blk-mq.c 67.3 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22 23
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>
24
#include <linux/crash_dump.h>
25
#include <linux/prefetch.h>
26 27 28 29 30 31 32

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"
33
#include "blk-stat.h"
J
Jens Axboe 已提交
34
#include "blk-wbt.h"
35
#include "blk-mq-sched.h"
36 37 38 39 40 41 42

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
43
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
44
{
45 46 47
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
48 49
}

50 51 52 53 54 55
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
56 57
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
58 59 60 61 62
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
63
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
64 65
}

66
void blk_mq_freeze_queue_start(struct request_queue *q)
67
{
68
	int freeze_depth;
69

70 71
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
72
		percpu_ref_kill(&q->q_usage_counter);
73
		blk_mq_run_hw_queues(q, false);
74
	}
75
}
76
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
77 78 79

static void blk_mq_freeze_queue_wait(struct request_queue *q)
{
80
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
81 82
}

83 84 85 86
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
87
void blk_freeze_queue(struct request_queue *q)
88
{
89 90 91 92 93 94 95
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
96 97 98
	blk_mq_freeze_queue_start(q);
	blk_mq_freeze_queue_wait(q);
}
99 100 101 102 103 104 105 106 107

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
108
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
109

110
void blk_mq_unfreeze_queue(struct request_queue *q)
111
{
112
	int freeze_depth;
113

114 115 116
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
117
		percpu_ref_reinit(&q->q_usage_counter);
118
		wake_up_all(&q->mq_freeze_wq);
119
	}
120
}
121
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
122

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
/**
 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
 * callback function is invoked. Additionally, it is not prevented that
 * new queue_rq() calls occur unless the queue has been stopped first.
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

	blk_mq_stop_hw_queues(q);

	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
			synchronize_srcu(&hctx->queue_rq_srcu);
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

150 151 152 153 154 155 156 157
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
158 159 160 161 162 163 164

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
165 166
}

167 168 169 170 171 172
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

173 174
void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			struct request *rq, unsigned int op)
175
{
176 177 178
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
179
	rq->mq_ctx = ctx;
180
	rq->cmd_flags = op;
181 182
	if (blk_queue_io_stat(q))
		rq->rq_flags |= RQF_IO_STAT;
183 184 185 186 187 188
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
189
	rq->start_time = jiffies;
190 191
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
192
	set_start_time_ns(rq);
193 194 195 196 197 198 199 200 201 202 203 204
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
205 206
	rq->timeout = 0;

207 208 209 210
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

211
	ctx->rq_dispatched[op_is_sync(op)]++;
212
}
213
EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
214

215 216
struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
				       unsigned int op)
217 218 219 220
{
	struct request *rq;
	unsigned int tag;

221
	tag = blk_mq_get_tag(data);
222
	if (tag != BLK_MQ_TAG_FAIL) {
223 224 225
		struct blk_mq_tags *tags = blk_mq_tags_from_data(data);

		rq = tags->static_rqs[tag];
226

227 228 229 230
		if (data->flags & BLK_MQ_REQ_INTERNAL) {
			rq->tag = -1;
			rq->internal_tag = tag;
		} else {
231 232 233 234
			if (blk_mq_tag_busy(data->hctx)) {
				rq->rq_flags = RQF_MQ_INFLIGHT;
				atomic_inc(&data->hctx->nr_active);
			}
235 236 237 238
			rq->tag = tag;
			rq->internal_tag = -1;
		}

239
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
240 241 242 243 244
		return rq;
	}

	return NULL;
}
245
EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
246

247 248
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
249
{
250
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
251
	struct request *rq;
252
	int ret;
253

254
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
255 256
	if (ret)
		return ERR_PTR(ret);
257

258
	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
259

260 261 262 263
	blk_mq_put_ctx(alloc_data.ctx);
	blk_queue_exit(q);

	if (!rq)
264
		return ERR_PTR(-EWOULDBLOCK);
265 266 267 268

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
269 270
	return rq;
}
271
EXPORT_SYMBOL(blk_mq_alloc_request);
272

M
Ming Lin 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	struct blk_mq_alloc_data alloc_data;
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

298 299 300 301
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
M
Ming Lin 已提交
302
	hctx = q->queue_hw_ctx[hctx_idx];
303 304 305 306
	if (!blk_mq_hw_queue_mapped(hctx)) {
		ret = -EXDEV;
		goto out_queue_exit;
	}
M
Ming Lin 已提交
307 308 309
	ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));

	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
310
	rq = __blk_mq_alloc_request(&alloc_data, rw);
M
Ming Lin 已提交
311
	if (!rq) {
312 313
		ret = -EWOULDBLOCK;
		goto out_queue_exit;
M
Ming Lin 已提交
314 315 316
	}

	return rq;
317 318 319 320

out_queue_exit:
	blk_queue_exit(q);
	return ERR_PTR(ret);
M
Ming Lin 已提交
321 322 323
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

324 325
void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			     struct request *rq)
326
{
327
	const int sched_tag = rq->internal_tag;
328 329
	struct request_queue *q = rq->q;

330
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
331
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
332 333

	wbt_done(q->rq_wb, &rq->issue_stat);
334
	rq->rq_flags = 0;
335

336
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
337
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
338 339 340 341
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
		blk_mq_sched_completed_request(hctx, rq);
342
	blk_mq_sched_restart_queues(hctx);
343
	blk_queue_exit(q);
344 345
}

346
static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
347
				     struct request *rq)
348 349 350 351
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
352 353 354 355 356 357
	__blk_mq_finish_request(hctx, ctx, rq);
}

void blk_mq_finish_request(struct request *rq)
{
	blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
358 359 360 361
}

void blk_mq_free_request(struct request *rq)
{
362
	blk_mq_sched_put_request(rq);
363
}
J
Jens Axboe 已提交
364
EXPORT_SYMBOL_GPL(blk_mq_free_request);
365

366
inline void __blk_mq_end_request(struct request *rq, int error)
367
{
M
Ming Lei 已提交
368 369
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
370
	if (rq->end_io) {
J
Jens Axboe 已提交
371
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
372
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
373 374 375
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
376
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
377
	}
378
}
379
EXPORT_SYMBOL(__blk_mq_end_request);
380

381
void blk_mq_end_request(struct request *rq, int error)
382 383 384
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
385
	__blk_mq_end_request(rq, error);
386
}
387
EXPORT_SYMBOL(blk_mq_end_request);
388

389
static void __blk_mq_complete_request_remote(void *data)
390
{
391
	struct request *rq = data;
392

393
	rq->q->softirq_done_fn(rq);
394 395
}

396
static void blk_mq_ipi_complete_request(struct request *rq)
397 398
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
399
	bool shared = false;
400 401
	int cpu;

C
Christoph Hellwig 已提交
402
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
403 404 405
		rq->q->softirq_done_fn(rq);
		return;
	}
406 407

	cpu = get_cpu();
C
Christoph Hellwig 已提交
408 409 410 411
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
412
		rq->csd.func = __blk_mq_complete_request_remote;
413 414
		rq->csd.info = rq;
		rq->csd.flags = 0;
415
		smp_call_function_single_async(ctx->cpu, &rq->csd);
416
	} else {
417
		rq->q->softirq_done_fn(rq);
418
	}
419 420
	put_cpu();
}
421

422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
static void blk_mq_stat_add(struct request *rq)
{
	if (rq->rq_flags & RQF_STATS) {
		/*
		 * We could rq->mq_ctx here, but there's less of a risk
		 * of races if we have the completion event add the stats
		 * to the local software queue.
		 */
		struct blk_mq_ctx *ctx;

		ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
		blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
	}
}

437
static void __blk_mq_complete_request(struct request *rq)
438 439 440
{
	struct request_queue *q = rq->q;

441 442
	blk_mq_stat_add(rq);

443
	if (!q->softirq_done_fn)
444
		blk_mq_end_request(rq, rq->errors);
445 446 447 448
	else
		blk_mq_ipi_complete_request(rq);
}

449 450 451 452 453 454 455 456
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
457
void blk_mq_complete_request(struct request *rq, int error)
458
{
459 460 461
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
462
		return;
463 464
	if (!blk_mark_rq_complete(rq)) {
		rq->errors = error;
465
		__blk_mq_complete_request(rq);
466
	}
467 468
}
EXPORT_SYMBOL(blk_mq_complete_request);
469

470 471 472 473 474 475
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

476
void blk_mq_start_request(struct request *rq)
477 478 479
{
	struct request_queue *q = rq->q;

480 481
	blk_mq_sched_started_request(rq);

482 483
	trace_block_rq_issue(q, rq);

484 485 486
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
		blk_stat_set_issue_time(&rq->issue_stat);
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
487
		wbt_issue(q->rq_wb, &rq->issue_stat);
488 489
	}

490
	blk_add_timer(rq);
491

492 493 494 495 496 497
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

498 499 500 501 502 503
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
504 505 506 507
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
508 509 510 511 512 513 514 515 516

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
517
}
518
EXPORT_SYMBOL(blk_mq_start_request);
519

520
static void __blk_mq_requeue_request(struct request *rq)
521 522 523 524
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
525
	wbt_requeue(q->rq_wb, &rq->issue_stat);
526
	blk_mq_sched_requeue_request(rq);
527

528 529 530 531
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
532 533
}

534
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
535 536 537 538
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
539
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
540 541 542
}
EXPORT_SYMBOL(blk_mq_requeue_request);

543 544 545
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
546
		container_of(work, struct request_queue, requeue_work.work);
547 548 549 550 551 552 553 554 555
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
556
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
557 558
			continue;

559
		rq->rq_flags &= ~RQF_SOFTBARRIER;
560
		list_del_init(&rq->queuelist);
561
		blk_mq_sched_insert_request(rq, true, false, false, true);
562 563 564 565 566
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
567
		blk_mq_sched_insert_request(rq, false, false, false, true);
568 569
	}

570
	blk_mq_run_hw_queues(q, false);
571 572
}

573 574
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
575 576 577 578 579 580 581 582
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
583
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
584 585 586

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
587
		rq->rq_flags |= RQF_SOFTBARRIER;
588 589 590 591 592
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
593 594 595

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
596 597 598 599 600
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
601
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
602 603 604
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

605 606 607 608 609 610 611 612
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

633 634
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
635 636
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
637
		return tags->rqs[tag];
638
	}
639 640

	return NULL;
641 642 643
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

644
struct blk_mq_timeout_data {
645 646
	unsigned long next;
	unsigned int next_set;
647 648
};

649
void blk_mq_rq_timed_out(struct request *req, bool reserved)
650
{
J
Jens Axboe 已提交
651
	const struct blk_mq_ops *ops = req->q->mq_ops;
652
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
653 654 655 656 657 658 659 660 661 662

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
663 664
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
665

666
	if (ops->timeout)
667
		ret = ops->timeout(req, reserved);
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
683
}
684

685 686 687 688
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
689

690 691 692 693 694
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		/*
		 * If a request wasn't started before the queue was
		 * marked dying, kill it here or it'll go unnoticed.
		 */
695 696 697 698
		if (unlikely(blk_queue_dying(rq->q))) {
			rq->errors = -EIO;
			blk_mq_end_request(rq, rq->errors);
		}
699
		return;
700
	}
701

702 703
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
704
			blk_mq_rq_timed_out(rq, reserved);
705 706 707 708
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
709 710
}

711
static void blk_mq_timeout_work(struct work_struct *work)
712
{
713 714
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
715 716 717 718 719
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
720

721 722 723 724 725 726 727 728 729 730 731 732 733 734
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
	 * blk_mq_freeze_queue_start, and the moment the last request is
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
735 736
		return;

737
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
738

739 740 741
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
742
	} else {
743 744
		struct blk_mq_hw_ctx *hctx;

745 746 747 748 749
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
750
	}
751
	blk_queue_exit(q);
752 753 754 755 756 757 758 759 760 761 762 763 764 765
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
766
		bool merged = false;
767 768 769 770 771 772 773

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

774 775 776 777
		switch (blk_try_merge(rq, bio)) {
		case ELEVATOR_BACK_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_back_merge(q, rq, bio);
778
			break;
779 780 781
		case ELEVATOR_FRONT_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_front_merge(q, rq, bio);
782
			break;
783 784 785
		case ELEVATOR_DISCARD_MERGE:
			merged = bio_attempt_discard_merge(q, rq, bio);
			break;
786 787
		default:
			continue;
788
		}
789 790 791 792

		if (merged)
			ctx->rq_merged++;
		return merged;
793 794 795 796 797
	}

	return false;
}

798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

816 817 818 819
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
820
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
821
{
822 823 824 825
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
826

827
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
828
}
829
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
830

831 832 833 834
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
835

836
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
837 838
}

839 840
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

	if (blk_mq_hctx_stopped(data.hctx))
		return false;

	if (rq->tag != -1) {
done:
		if (hctx)
			*hctx = data.hctx;
		return true;
	}

	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
860 861 862 863
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
864 865 866 867 868 869 870
		data.hctx->tags->rqs[rq->tag] = rq;
		goto done;
	}

	return false;
}

871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
static void blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				  struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

910
bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
911 912 913
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
914 915
	LIST_HEAD(driver_list);
	struct list_head *dptr;
916
	int queued, ret = BLK_MQ_RQ_QUEUE_OK;
917

918 919 920 921 922 923
	/*
	 * Start off with dptr being NULL, so we start the first request
	 * immediately, even if we have more pending.
	 */
	dptr = NULL;

924 925 926
	/*
	 * Now process all the entries, sending them to the driver.
	 */
927
	queued = 0;
928
	while (!list_empty(list)) {
929
		struct blk_mq_queue_data bd;
930

931
		rq = list_first_entry(list, struct request, queuelist);
932 933 934
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
935 936 937 938 939 940 941

			/*
			 * We failed getting a driver tag. Mark the queue(s)
			 * as needing a restart. Retry getting a tag again,
			 * in case the needed IO completed right before we
			 * marked the queue as needing a restart.
			 */
942
			blk_mq_sched_mark_restart(hctx);
943 944
			if (!blk_mq_get_driver_tag(rq, &hctx, false))
				break;
945
		}
946 947
		list_del_init(&rq->queuelist);

948 949
		bd.rq = rq;
		bd.list = dptr;
950
		bd.last = list_empty(list);
951 952

		ret = q->mq_ops->queue_rq(hctx, &bd);
953 954 955
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
956
			break;
957
		case BLK_MQ_RQ_QUEUE_BUSY:
958
			blk_mq_put_driver_tag(hctx, rq);
959
			list_add(&rq->queuelist, list);
960
			__blk_mq_requeue_request(rq);
961 962 963 964
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
965
			rq->errors = -EIO;
966
			blk_mq_end_request(rq, rq->errors);
967 968 969 970 971
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
972 973 974 975 976

		/*
		 * We've done the first request. If we have more than 1
		 * left in the list, set dptr to defer issue.
		 */
977
		if (!dptr && list->next != list->prev)
978
			dptr = &driver_list;
979 980
	}

981
	hctx->dispatched[queued_to_index(queued)]++;
982 983 984 985 986

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
987
	if (!list_empty(list)) {
988
		spin_lock(&hctx->lock);
989
		list_splice_init(list, &hctx->dispatch);
990
		spin_unlock(&hctx->lock);
991

992 993 994 995 996 997 998 999
		/*
		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
		 * it's possible the queue is stopped and restarted again
		 * before this. Queue restart will dispatch requests. And since
		 * requests in rq_list aren't added into hctx->dispatch yet,
		 * the requests in rq_list might get lost.
		 *
		 * blk_mq_run_hw_queue() already checks the STOPPED bit
1000 1001 1002 1003 1004 1005
		 *
		 * If RESTART is set, then let completion restart the queue
		 * instead of potentially looping here.
		 */
		if (!blk_mq_sched_needs_restart(hctx))
			blk_mq_run_hw_queue(hctx, true);
1006
	}
1007 1008 1009 1010

	return ret != BLK_MQ_RQ_QUEUE_BUSY;
}

1011 1012 1013 1014 1015 1016 1017 1018 1019
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1020
		blk_mq_sched_dispatch_requests(hctx);
1021 1022 1023
		rcu_read_unlock();
	} else {
		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1024
		blk_mq_sched_dispatch_requests(hctx);
1025 1026 1027 1028
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1029 1030 1031 1032 1033 1034 1035 1036
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1037 1038
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1039 1040

	if (--hctx->next_cpu_batch <= 0) {
1041
		int next_cpu;
1042 1043 1044 1045 1046 1047 1048 1049 1050

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1051
	return hctx->next_cpu;
1052 1053
}

1054 1055
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
1056 1057
	if (unlikely(blk_mq_hctx_stopped(hctx) ||
		     !blk_mq_hw_queue_mapped(hctx)))
1058 1059
		return;

1060
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1061 1062
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1063
			__blk_mq_run_hw_queue(hctx);
1064
			put_cpu();
1065 1066
			return;
		}
1067

1068
		put_cpu();
1069
	}
1070

1071
	kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
1072 1073
}

1074
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1075 1076 1077 1078 1079
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1080
		if (!blk_mq_hctx_has_pending(hctx) ||
1081
		    blk_mq_hctx_stopped(hctx))
1082 1083
			continue;

1084
		blk_mq_run_hw_queue(hctx, async);
1085 1086
	}
}
1087
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1088

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1109 1110
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1111
	cancel_work(&hctx->run_work);
1112
	cancel_delayed_work(&hctx->delay_work);
1113 1114 1115 1116
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1127 1128 1129
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1130

1131
	blk_mq_run_hw_queue(hctx, false);
1132 1133 1134
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1155
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1156 1157 1158 1159
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1160 1161
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1162 1163 1164
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1165
static void blk_mq_run_work_fn(struct work_struct *work)
1166 1167 1168
{
	struct blk_mq_hw_ctx *hctx;

1169
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1170

1171 1172 1173
	__blk_mq_run_hw_queue(hctx);
}

1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1186 1187
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1188

1189
	blk_mq_stop_hw_queue(hctx);
1190 1191
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
1192 1193 1194
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1195 1196 1197
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1198
{
J
Jens Axboe 已提交
1199 1200
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1201 1202
	trace_block_rq_insert(hctx->queue, rq);

1203 1204 1205 1206
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1207
}
1208

1209 1210
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1211 1212 1213
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

J
Jens Axboe 已提交
1214
	__blk_mq_insert_req_list(hctx, rq, at_head);
1215 1216 1217
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1218 1219
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1231
		BUG_ON(rq->mq_ctx != ctx);
1232
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1233
		__blk_mq_insert_req_list(hctx, rq, false);
1234
	}
1235
	blk_mq_hctx_mark_pending(hctx, ctx);
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1272 1273 1274 1275
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1292 1293 1294
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1295 1296 1297 1298 1299 1300
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1301

1302
	blk_account_io_start(rq, true);
1303 1304
}

1305 1306 1307 1308 1309 1310
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1311 1312 1313
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1314
{
1315
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1316 1317 1318 1319 1320 1321 1322
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1323 1324
		struct request_queue *q = hctx->queue;

1325 1326 1327 1328 1329
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1330

1331
		spin_unlock(&ctx->lock);
1332
		__blk_mq_finish_request(hctx, ctx, rq);
1333
		return true;
1334
	}
1335
}
1336

1337 1338
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1339 1340 1341 1342
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1343 1344
}

1345
static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie)
1346 1347 1348 1349 1350 1351 1352
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
		.list = NULL,
		.last = 1
	};
1353 1354 1355
	struct blk_mq_hw_ctx *hctx;
	blk_qc_t new_cookie;
	int ret;
1356

1357
	if (q->elevator)
1358 1359
		goto insert;

1360 1361 1362 1363 1364
	if (!blk_mq_get_driver_tag(rq, &hctx, false))
		goto insert;

	new_cookie = request_to_qc_t(hctx, rq);

1365 1366 1367 1368 1369 1370
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1371 1372
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
1373
		return;
1374
	}
1375

1376 1377 1378 1379 1380 1381
	__blk_mq_requeue_request(rq);

	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
1382
		return;
1383
	}
1384

1385
insert:
1386
	blk_mq_sched_insert_request(rq, false, true, true, false);
1387 1388
}

1389 1390 1391 1392 1393
/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
1394
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1395
{
1396
	const int is_sync = op_is_sync(bio->bi_opf);
1397
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1398
	struct blk_mq_alloc_data data = { .flags = 0 };
1399
	struct request *rq;
1400
	unsigned int request_count = 0, srcu_idx;
1401
	struct blk_plug *plug;
1402
	struct request *same_queue_rq = NULL;
1403
	blk_qc_t cookie;
J
Jens Axboe 已提交
1404
	unsigned int wb_acct;
1405 1406 1407 1408

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1409
		bio_io_error(bio);
1410
		return BLK_QC_T_NONE;
1411 1412
	}

1413 1414
	blk_queue_split(q, &bio, q->bio_split);

1415 1416 1417
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1418

1419 1420 1421
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1422 1423
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1424 1425 1426
	trace_block_getrq(q, bio, bio->bi_opf);

	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1427 1428
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1429
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1430 1431 1432
	}

	wbt_track(&rq->issue_stat, wb_acct);
1433

1434
	cookie = request_to_qc_t(data.hctx, rq);
1435 1436

	if (unlikely(is_flush_fua)) {
1437
		blk_mq_put_ctx(data.ctx);
1438
		blk_mq_bio_to_request(rq, bio);
1439
		blk_mq_get_driver_tag(rq, NULL, true);
1440
		blk_insert_flush(rq);
1441 1442
		blk_mq_run_hw_queue(data.hctx, true);
		goto done;
1443 1444
	}

1445
	plug = current->plug;
1446 1447 1448 1449 1450
	/*
	 * If the driver supports defer issued based on 'last', then
	 * queue it up like normal since we can potentially save some
	 * CPU this way.
	 */
1451 1452 1453
	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
		struct request *old_rq = NULL;
1454 1455 1456 1457

		blk_mq_bio_to_request(rq, bio);

		/*
1458
		 * We do limited plugging. If the bio can be merged, do that.
1459 1460
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1461
		 */
1462
		if (plug) {
1463 1464
			/*
			 * The plug list might get flushed before this. If that
1465 1466 1467
			 * happens, same_queue_rq is invalid and plug list is
			 * empty
			 */
1468 1469
			if (same_queue_rq && !list_empty(&plug->mq_list)) {
				old_rq = same_queue_rq;
1470
				list_del_init(&old_rq->queuelist);
1471
			}
1472 1473 1474 1475 1476
			list_add_tail(&rq->queuelist, &plug->mq_list);
		} else /* is_sync */
			old_rq = rq;
		blk_mq_put_ctx(data.ctx);
		if (!old_rq)
1477
			goto done;
1478 1479 1480

		if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
			rcu_read_lock();
1481
			blk_mq_try_issue_directly(old_rq, &cookie);
1482 1483 1484
			rcu_read_unlock();
		} else {
			srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1485
			blk_mq_try_issue_directly(old_rq, &cookie);
1486 1487
			srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
		}
1488
		goto done;
1489 1490
	}

1491 1492 1493
	if (q->elevator) {
		blk_mq_put_ctx(data.ctx);
		blk_mq_bio_to_request(rq, bio);
1494
		blk_mq_sched_insert_request(rq, false, true,
1495
						!is_sync || is_flush_fua, true);
1496 1497
		goto done;
	}
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
	blk_mq_put_ctx(data.ctx);
1508 1509
done:
	return cookie;
1510 1511 1512 1513 1514 1515
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
1516
static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1517
{
1518
	const int is_sync = op_is_sync(bio->bi_opf);
1519
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1520 1521
	struct blk_plug *plug;
	unsigned int request_count = 0;
1522
	struct blk_mq_alloc_data data = { .flags = 0 };
1523
	struct request *rq;
1524
	blk_qc_t cookie;
J
Jens Axboe 已提交
1525
	unsigned int wb_acct;
1526 1527 1528 1529

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1530
		bio_io_error(bio);
1531
		return BLK_QC_T_NONE;
1532 1533
	}

1534 1535
	blk_queue_split(q, &bio, q->bio_split);

1536 1537 1538 1539 1540
	if (!is_flush_fua && !blk_queue_nomerges(q)) {
		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
			return BLK_QC_T_NONE;
	} else
		request_count = blk_plug_queued_count(q);
1541

1542 1543 1544
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1545 1546
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1547 1548 1549
	trace_block_getrq(q, bio, bio->bi_opf);

	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1550 1551
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1552
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1553 1554 1555
	}

	wbt_track(&rq->issue_stat, wb_acct);
1556

1557
	cookie = request_to_qc_t(data.hctx, rq);
1558 1559

	if (unlikely(is_flush_fua)) {
1560
		blk_mq_put_ctx(data.ctx);
1561
		blk_mq_bio_to_request(rq, bio);
1562
		blk_mq_get_driver_tag(rq, NULL, true);
1563
		blk_insert_flush(rq);
1564 1565
		blk_mq_run_hw_queue(data.hctx, true);
		goto done;
1566 1567 1568 1569 1570 1571 1572
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
1573 1574
	plug = current->plug;
	if (plug) {
1575 1576
		struct request *last = NULL;

1577
		blk_mq_bio_to_request(rq, bio);
1578 1579 1580 1581 1582 1583 1584

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
M
Ming Lei 已提交
1585
		if (!request_count)
1586
			trace_block_plug(q);
1587 1588
		else
			last = list_entry_rq(plug->mq_list.prev);
1589 1590 1591

		blk_mq_put_ctx(data.ctx);

1592 1593
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1594 1595
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1596
		}
1597

1598
		list_add_tail(&rq->queuelist, &plug->mq_list);
1599
		return cookie;
1600 1601
	}

1602 1603 1604
	if (q->elevator) {
		blk_mq_put_ctx(data.ctx);
		blk_mq_bio_to_request(rq, bio);
1605
		blk_mq_sched_insert_request(rq, false, true,
1606
						!is_sync || is_flush_fua, true);
1607 1608
		goto done;
	}
1609 1610 1611 1612 1613 1614 1615 1616
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1617 1618
	}

1619
	blk_mq_put_ctx(data.ctx);
1620
done:
1621
	return cookie;
1622 1623
}

1624 1625
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1626
{
1627
	struct page *page;
1628

1629
	if (tags->rqs && set->ops->exit_request) {
1630
		int i;
1631

1632
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1633 1634 1635
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1636
				continue;
J
Jens Axboe 已提交
1637
			set->ops->exit_request(set->driver_data, rq,
1638
						hctx_idx, i);
J
Jens Axboe 已提交
1639
			tags->static_rqs[i] = NULL;
1640
		}
1641 1642
	}

1643 1644
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1645
		list_del_init(&page->lru);
1646 1647 1648 1649 1650
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1651 1652
		__free_pages(page, page->private);
	}
1653
}
1654

1655 1656
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1657
	kfree(tags->rqs);
1658
	tags->rqs = NULL;
J
Jens Axboe 已提交
1659 1660
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1661

1662
	blk_mq_free_tags(tags);
1663 1664
}

1665 1666 1667 1668
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1669
{
1670
	struct blk_mq_tags *tags;
1671

1672
	tags = blk_mq_init_tags(nr_tags, reserved_tags,
S
Shaohua Li 已提交
1673 1674
				set->numa_node,
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1675 1676
	if (!tags)
		return NULL;
1677

1678
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1679
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1680
				 set->numa_node);
1681 1682 1683 1684
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1685

J
Jens Axboe 已提交
1686 1687 1688 1689 1690 1691 1692 1693 1694
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
				 set->numa_node);
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

	INIT_LIST_HEAD(&tags->page_list);

1711 1712 1713 1714
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1715
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1716
				cache_line_size());
1717
	left = rq_size * depth;
1718

1719
	for (i = 0; i < depth; ) {
1720 1721 1722 1723 1724
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1725
		while (this_order && left < order_to_size(this_order - 1))
1726 1727 1728
			this_order--;

		do {
1729
			page = alloc_pages_node(set->numa_node,
1730
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1731
				this_order);
1732 1733 1734 1735 1736 1737 1738 1739 1740
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1741
			goto fail;
1742 1743

		page->private = this_order;
1744
		list_add_tail(&page->lru, &tags->page_list);
1745 1746

		p = page_address(page);
1747 1748 1749 1750
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1751
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1752
		entries_per_page = order_to_size(this_order) / rq_size;
1753
		to_do = min(entries_per_page, depth - i);
1754 1755
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1756 1757 1758
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1759 1760
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
J
Jens Axboe 已提交
1761
						rq, hctx_idx, i,
1762
						set->numa_node)) {
J
Jens Axboe 已提交
1763
					tags->static_rqs[i] = NULL;
1764
					goto fail;
1765
				}
1766 1767
			}

1768 1769 1770 1771
			p += rq_size;
			i++;
		}
	}
1772
	return 0;
1773

1774
fail:
1775 1776
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1777 1778
}

J
Jens Axboe 已提交
1779 1780 1781 1782 1783
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1784
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1785
{
1786
	struct blk_mq_hw_ctx *hctx;
1787 1788 1789
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1790
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1791
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1792 1793 1794 1795 1796 1797 1798 1799 1800

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1801
		return 0;
1802

J
Jens Axboe 已提交
1803 1804 1805
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1806 1807

	blk_mq_run_hw_queue(hctx, true);
1808
	return 0;
1809 1810
}

1811
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1812
{
1813 1814
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1815 1816
}

1817
/* hctx->ctxs will be freed in queue's release handler */
1818 1819 1820 1821
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1822 1823
	unsigned flush_start_tag = set->queue_depth;

1824 1825
	blk_mq_tag_idle(hctx);

1826 1827 1828 1829 1830
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1831 1832 1833
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1834 1835 1836
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		cleanup_srcu_struct(&hctx->queue_rq_srcu);

1837
	blk_mq_remove_cpuhp(hctx);
1838
	blk_free_flush_queue(hctx->fq);
1839
	sbitmap_free(&hctx->ctx_map);
1840 1841
}

M
Ming Lei 已提交
1842 1843 1844 1845 1846 1847 1848 1849 1850
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1851
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1852 1853 1854 1855 1856 1857 1858 1859 1860
	}
}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

1861
	queue_for_each_hw_ctx(q, hctx, i)
M
Ming Lei 已提交
1862 1863 1864
		free_cpumask_var(hctx->cpumask);
}

1865 1866 1867
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1868
{
1869
	int node;
1870
	unsigned flush_start_tag = set->queue_depth;
1871 1872 1873 1874 1875

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1876
	INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1877 1878 1879 1880 1881
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1882
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1883

1884
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1885 1886

	hctx->tags = set->tags[hctx_idx];
1887 1888

	/*
1889 1890
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1891
	 */
1892 1893 1894 1895
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1896

1897 1898
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1899
		goto free_ctxs;
1900

1901
	hctx->nr_ctx = 0;
1902

1903 1904 1905
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1906

1907 1908 1909
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;
1910

1911 1912 1913 1914 1915
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1916

1917 1918 1919
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		init_srcu_struct(&hctx->queue_rq_srcu);

1920
	return 0;
1921

1922 1923 1924 1925 1926
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1927
 free_bitmap:
1928
	sbitmap_free(&hctx->ctx_map);
1929 1930 1931
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
1932
	blk_mq_remove_cpuhp(hctx);
1933 1934
	return -1;
}
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;
1950 1951
		blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
		blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
1952 1953 1954 1955 1956

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

C
Christoph Hellwig 已提交
1957
		hctx = blk_mq_map_queue(q, i);
1958

1959 1960 1961 1962 1963
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1964
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1965 1966 1967
	}
}

1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
1990 1991 1992 1993 1994
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
1995 1996
}

1997 1998
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
1999
{
2000
	unsigned int i, hctx_idx;
2001 2002
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2003
	struct blk_mq_tag_set *set = q->tag_set;
2004

2005 2006 2007 2008 2009
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2010
	queue_for_each_hw_ctx(q, hctx, i) {
2011
		cpumask_clear(hctx->cpumask);
2012 2013 2014 2015 2016 2017
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
2018
	for_each_possible_cpu(i) {
2019
		/* If the cpu isn't online, the cpu is mapped to first hctx */
2020
		if (!cpumask_test_cpu(i, online_mask))
2021 2022
			continue;

2023 2024
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2025 2026
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2027 2028 2029 2030 2031 2032
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2033
			q->mq_map[i] = 0;
2034 2035
		}

2036
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2037
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2038

2039
		cpumask_set_cpu(i, hctx->cpumask);
2040 2041 2042
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2043

2044 2045
	mutex_unlock(&q->sysfs_lock);

2046
	queue_for_each_hw_ctx(q, hctx, i) {
2047
		/*
2048 2049
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2050 2051
		 */
		if (!hctx->nr_ctx) {
2052 2053 2054 2055
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2056 2057 2058
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2059
			hctx->tags = NULL;
2060 2061 2062
			continue;
		}

M
Ming Lei 已提交
2063 2064 2065
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2066 2067 2068 2069 2070
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2071
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2072

2073 2074 2075
		/*
		 * Initialize batch roundrobin counts
		 */
2076 2077 2078
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2079 2080
}

2081
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2082 2083 2084 2085
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
2097 2098 2099

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2100
		queue_set_hctx_shared(q, shared);
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
2111 2112 2113 2114 2115 2116
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2117 2118 2119 2120 2121 2122 2123 2124 2125
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2126 2127 2128 2129 2130 2131 2132 2133 2134

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2135
	list_add_tail(&q->tag_set_list, &set->tag_list);
2136

2137 2138 2139
	mutex_unlock(&set->tag_list_lock);
}

2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

2151 2152
	blk_mq_sched_teardown(q);

2153
	/* hctx kobj stays in hctx */
2154 2155 2156 2157
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
		kfree(hctx->ctxs);
2158
		kfree(hctx);
2159
	}
2160

2161 2162
	q->mq_map = NULL;

2163 2164 2165 2166 2167 2168
	kfree(q->queue_hw_ctx);

	/* ctx kobj stays in queue_ctx */
	free_percpu(q->queue_ctx);
}

2169
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
2185 2186
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2187
{
K
Keith Busch 已提交
2188 2189
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2190

K
Keith Busch 已提交
2191
	blk_mq_sysfs_unregister(q);
2192
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2193
		int node;
2194

K
Keith Busch 已提交
2195 2196 2197 2198
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2199 2200
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
2201
		if (!hctxs[i])
K
Keith Busch 已提交
2202
			break;
2203

2204
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2205 2206 2207 2208 2209
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2210

2211
		atomic_set(&hctxs[i]->nr_active, 0);
2212
		hctxs[i]->numa_node = node;
2213
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2214 2215 2216 2217 2218 2219 2220 2221

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2222
	}
K
Keith Busch 已提交
2223 2224 2225 2226
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2227 2228
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
			blk_mq_exit_hctx(q, set, hctx, j);
			free_cpumask_var(hctx->cpumask);
			kobject_put(&hctx->kobj);
			kfree(hctx->ctxs);
			kfree(hctx);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2245 2246 2247
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

K
Keith Busch 已提交
2248 2249
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2250
		goto err_exit;
K
Keith Busch 已提交
2251 2252 2253 2254 2255 2256

	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2257
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2258 2259 2260 2261

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2262

2263
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2264
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2265 2266 2267

	q->nr_queues = nr_cpu_ids;

2268
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2269

2270 2271 2272
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2273 2274
	q->sg_reserved_size = INT_MAX;

2275
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2276 2277 2278
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2279 2280 2281 2282 2283
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

2284 2285 2286 2287 2288
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2289 2290 2291 2292 2293
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2294 2295
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2296

2297
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2298

2299
	get_online_cpus();
2300 2301
	mutex_lock(&all_q_mutex);

2302
	list_add_tail(&q->all_q_node, &all_q_list);
2303
	blk_mq_add_queue_tag_set(set, q);
2304
	blk_mq_map_swqueue(q, cpu_online_mask);
2305

2306
	mutex_unlock(&all_q_mutex);
2307
	put_online_cpus();
2308

2309 2310 2311 2312 2313 2314 2315 2316
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2317
	return q;
2318

2319
err_hctxs:
K
Keith Busch 已提交
2320
	kfree(q->queue_hw_ctx);
2321
err_percpu:
K
Keith Busch 已提交
2322
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2323 2324
err_exit:
	q->mq_ops = NULL;
2325 2326
	return ERR_PTR(-ENOMEM);
}
2327
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2328 2329 2330

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2331
	struct blk_mq_tag_set	*set = q->tag_set;
2332

2333 2334 2335 2336
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

J
Jens Axboe 已提交
2337 2338
	wbt_exit(q);

2339 2340
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2341 2342
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
2343 2344 2345
}

/* Basically redo blk_mq_init_queue with queue frozen */
2346 2347
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2348
{
2349
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2350

2351 2352
	blk_mq_sysfs_unregister(q);

2353 2354 2355 2356 2357 2358
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2359
	blk_mq_map_swqueue(q, online_mask);
2360

2361
	blk_mq_sysfs_register(q);
2362 2363
}

2364 2365 2366 2367 2368 2369 2370 2371
/*
 * New online cpumask which is going to be set in this hotplug event.
 * Declare this cpumasks as global as cpu-hotplug operation is invoked
 * one-by-one and dynamically allocating this could result in a failure.
 */
static struct cpumask cpuhp_online_new;

static void blk_mq_queue_reinit_work(void)
2372 2373 2374 2375
{
	struct request_queue *q;

	mutex_lock(&all_q_mutex);
2376 2377 2378 2379 2380 2381 2382 2383 2384
	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_start(q);
2385
	list_for_each_entry(q, &all_q_list, all_q_node)
2386 2387
		blk_mq_freeze_queue_wait(q);

2388
	list_for_each_entry(q, &all_q_list, all_q_node)
2389
		blk_mq_queue_reinit(q, &cpuhp_online_new);
2390 2391 2392 2393

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2394
	mutex_unlock(&all_q_mutex);
2395 2396 2397 2398
}

static int blk_mq_queue_reinit_dead(unsigned int cpu)
{
2399
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
	blk_mq_queue_reinit_work();
	return 0;
}

/*
 * Before hotadded cpu starts handling requests, new mappings must be
 * established.  Otherwise, these requests in hw queue might never be
 * dispatched.
 *
 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
 * for CPU0, and ctx1 for CPU1).
 *
 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
 *
2415 2416 2417 2418
 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
 * ignored.
2419 2420 2421 2422 2423 2424 2425
 */
static int blk_mq_queue_reinit_prepare(unsigned int cpu)
{
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
	cpumask_set_cpu(cpu, &cpuhp_online_new);
	blk_mq_queue_reinit_work();
	return 0;
2426 2427
}

2428 2429 2430 2431
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2432 2433
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2434 2435 2436 2437 2438 2439
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2440
		blk_mq_free_rq_map(set->tags[i]);
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2480 2481 2482 2483 2484 2485
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2486 2487
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2488 2489
	int ret;

B
Bart Van Assche 已提交
2490 2491
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2492 2493
	if (!set->nr_hw_queues)
		return -EINVAL;
2494
	if (!set->queue_depth)
2495 2496 2497 2498
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2499
	if (!set->ops->queue_rq)
2500 2501
		return -EINVAL;

2502 2503 2504 2505 2506
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2507

2508 2509 2510 2511 2512 2513 2514 2515 2516
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2517 2518 2519 2520 2521
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2522

K
Keith Busch 已提交
2523
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2524 2525
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2526
		return -ENOMEM;
2527

2528 2529 2530
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2531 2532 2533
	if (!set->mq_map)
		goto out_free_tags;

2534 2535 2536 2537 2538 2539 2540 2541 2542
	if (set->ops->map_queues)
		ret = set->ops->map_queues(set);
	else
		ret = blk_mq_map_queues(set);
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2543
		goto out_free_mq_map;
2544

2545 2546 2547
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2548
	return 0;
2549 2550 2551 2552 2553

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2554 2555
	kfree(set->tags);
	set->tags = NULL;
2556
	return ret;
2557 2558 2559 2560 2561 2562 2563
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2564 2565
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2566

2567 2568 2569
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2570
	kfree(set->tags);
2571
	set->tags = NULL;
2572 2573 2574
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2575 2576 2577 2578 2579 2580
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2581
	if (!set)
2582 2583
		return -EINVAL;

2584 2585 2586
	blk_mq_freeze_queue(q);
	blk_mq_quiesce_queue(q);

2587 2588
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2589 2590
		if (!hctx->tags)
			continue;
2591 2592 2593 2594
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2595 2596 2597 2598 2599 2600 2601 2602
		if (!hctx->sched_tags) {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
							min(nr, set->queue_depth),
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2603 2604 2605 2606 2607 2608 2609
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2610 2611 2612
	blk_mq_unfreeze_queue(q);
	blk_mq_start_stopped_hw_queues(q, true);

2613 2614 2615
	return ret;
}

K
Keith Busch 已提交
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	struct request_queue *q;

	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);

		if (q->nr_hw_queues > 1)
			blk_queue_make_request(q, blk_mq_make_request);
		else
			blk_queue_make_request(q, blk_sq_make_request);

		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	struct blk_rq_stat stat[2];
	unsigned long ret = 0;

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
	if (!blk_stat_enable(q))
		return 0;

	/*
	 * We don't have to do this once per IO, should optimize this
	 * to just use the current window of stats until it changes
	 */
	memset(&stat, 0, sizeof(stat));
	blk_hctx_stat_get(hctx, stat);

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
	 * than ~10 usec.
	 */
	if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
		ret = (stat[BLK_STAT_READ].mean + 1) / 2;
	else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
		ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;

	return ret;
}

2682
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2683
				     struct blk_mq_hw_ctx *hctx,
2684 2685 2686 2687
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2688
	unsigned int nsecs;
2689 2690
	ktime_t kt;

2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2709 2710 2711 2712 2713 2714 2715 2716
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2717
	kt = nsecs;
2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2740 2741 2742 2743 2744
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2745 2746 2747 2748 2749 2750 2751
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2752
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2753 2754
		return true;

J
Jens Axboe 已提交
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2798 2799 2800 2801
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
	else
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
J
Jens Axboe 已提交
2802 2803 2804 2805 2806

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2817 2818
static int __init blk_mq_init(void)
{
2819 2820
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2821

2822 2823 2824
	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
				  blk_mq_queue_reinit_prepare,
				  blk_mq_queue_reinit_dead);
2825 2826 2827
	return 0;
}
subsys_initcall(blk_mq_init);