hrtimer.c 53.9 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
35
#include <linux/export.h>
36 37 38 39 40
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
#include <linux/interrupt.h>
41
#include <linux/tick.h>
42 43
#include <linux/seq_file.h>
#include <linux/err.h>
44
#include <linux/debugobjects.h>
45
#include <linux/sched/signal.h>
46
#include <linux/sched/sysctl.h>
47
#include <linux/sched/rt.h>
48
#include <linux/sched/deadline.h>
49
#include <linux/sched/nohz.h>
50
#include <linux/sched/debug.h>
51
#include <linux/timer.h>
52
#include <linux/freezer.h>
53
#include <linux/compat.h>
54

55
#include <linux/uaccess.h>
56

57 58
#include <trace/events/timer.h>

59
#include "tick-internal.h"
60

61 62 63 64 65 66 67 68 69
/*
 * Masks for selecting the soft and hard context timers from
 * cpu_base->active
 */
#define MASK_SHIFT		(HRTIMER_BASE_MONOTONIC_SOFT)
#define HRTIMER_ACTIVE_HARD	((1U << MASK_SHIFT) - 1)
#define HRTIMER_ACTIVE_SOFT	(HRTIMER_ACTIVE_HARD << MASK_SHIFT)
#define HRTIMER_ACTIVE_ALL	(HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)

70 71
/*
 * The timer bases:
72
 *
Z
Zhen Lei 已提交
73
 * There are more clockids than hrtimer bases. Thus, we index
74 75 76
 * into the timer bases by the hrtimer_base_type enum. When trying
 * to reach a base using a clockid, hrtimer_clockid_to_base()
 * is used to convert from clockid to the proper hrtimer_base_type.
77
 */
78
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
79
{
80
	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
81
	.clock_base =
82
	{
83
		{
84 85
			.index = HRTIMER_BASE_MONOTONIC,
			.clockid = CLOCK_MONOTONIC,
86 87
			.get_time = &ktime_get,
		},
T
Thomas Gleixner 已提交
88 89 90 91 92
		{
			.index = HRTIMER_BASE_REALTIME,
			.clockid = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
		},
93 94 95 96 97
		{
			.index = HRTIMER_BASE_BOOTTIME,
			.clockid = CLOCK_BOOTTIME,
			.get_time = &ktime_get_boottime,
		},
98 99 100 101 102
		{
			.index = HRTIMER_BASE_TAI,
			.clockid = CLOCK_TAI,
			.get_time = &ktime_get_clocktai,
		},
103 104 105 106 107 108 109 110 111 112
		{
			.index = HRTIMER_BASE_MONOTONIC_SOFT,
			.clockid = CLOCK_MONOTONIC,
			.get_time = &ktime_get,
		},
		{
			.index = HRTIMER_BASE_REALTIME_SOFT,
			.clockid = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
		},
113 114 115 116 117
		{
			.index = HRTIMER_BASE_BOOTTIME_SOFT,
			.clockid = CLOCK_BOOTTIME,
			.get_time = &ktime_get_boottime,
		},
118 119 120 121 122
		{
			.index = HRTIMER_BASE_TAI_SOFT,
			.clockid = CLOCK_TAI,
			.get_time = &ktime_get_clocktai,
		},
123
	}
124 125
};

126
static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
127 128 129
	/* Make sure we catch unsupported clockids */
	[0 ... MAX_CLOCKS - 1]	= HRTIMER_MAX_CLOCK_BASES,

130 131
	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
132
	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
133
	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
134
};
135

136 137 138 139 140 141
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

142 143 144 145 146 147 148 149 150 151 152
/*
 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
 * such that hrtimer_callback_running() can unconditionally dereference
 * timer->base->cpu_base
 */
static struct hrtimer_cpu_base migration_cpu_base = {
	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
};

#define migration_base	migration_cpu_base.clock_base[0]

153 154 155 156 157 158 159 160 161
/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
162 163
 * possible to set timer->base = &migration_base and drop the lock: the timer
 * remains locked.
164
 */
165 166 167
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
168
{
169
	struct hrtimer_clock_base *base;
170 171 172

	for (;;) {
		base = timer->base;
173
		if (likely(base != &migration_base)) {
174
			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
175 176 177
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
178
			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
179 180 181 182 183
		}
		cpu_relax();
	}
}

184
/*
185 186 187 188 189
 * We do not migrate the timer when it is expiring before the next
 * event on the target cpu. When high resolution is enabled, we cannot
 * reprogram the target cpu hardware and we would cause it to fire
 * late. To keep it simple, we handle the high resolution enabled and
 * disabled case similar.
190 191 192 193 194 195 196 197 198
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
	ktime_t expires;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
199
	return expires < new_base->cpu_base->expires_next;
200 201
}

202 203 204 205
static inline
struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
					 int pinned)
{
206 207 208 209
#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
	if (static_branch_likely(&timers_migration_enabled) && !pinned)
		return &per_cpu(hrtimer_bases, get_nohz_timer_target());
#endif
210
	return base;
211 212
}

213
/*
214 215 216 217 218 219 220 221 222 223
 * We switch the timer base to a power-optimized selected CPU target,
 * if:
 *	- NO_HZ_COMMON is enabled
 *	- timer migration is enabled
 *	- the timer callback is not running
 *	- the timer is not the first expiring timer on the new target
 *
 * If one of the above requirements is not fulfilled we move the timer
 * to the current CPU or leave it on the previously assigned CPU if
 * the timer callback is currently running.
224
 */
225
static inline struct hrtimer_clock_base *
226 227
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
228
{
229
	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
230
	struct hrtimer_clock_base *new_base;
231
	int basenum = base->index;
232

233 234
	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
	new_cpu_base = get_target_base(this_cpu_base, pinned);
235
again:
236
	new_base = &new_cpu_base->clock_base[basenum];
237 238 239

	if (base != new_base) {
		/*
240
		 * We are trying to move timer to new_base.
241 242 243 244 245 246 247
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
248
		if (unlikely(hrtimer_callback_running(timer)))
249 250
			return base;

251 252
		/* See the comment in lock_hrtimer_base() */
		timer->base = &migration_base;
253 254
		raw_spin_unlock(&base->cpu_base->lock);
		raw_spin_lock(&new_base->cpu_base->lock);
255

256
		if (new_cpu_base != this_cpu_base &&
257
		    hrtimer_check_target(timer, new_base)) {
258 259
			raw_spin_unlock(&new_base->cpu_base->lock);
			raw_spin_lock(&base->cpu_base->lock);
260
			new_cpu_base = this_cpu_base;
261 262
			timer->base = base;
			goto again;
263
		}
264
		timer->base = new_base;
265
	} else {
266
		if (new_cpu_base != this_cpu_base &&
267
		    hrtimer_check_target(timer, new_base)) {
268
			new_cpu_base = this_cpu_base;
269 270
			goto again;
		}
271 272 273 274 275 276
	}
	return new_base;
}

#else /* CONFIG_SMP */

277
static inline struct hrtimer_clock_base *
278 279
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
280
	struct hrtimer_clock_base *base = timer->base;
281

282
	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
283 284 285 286

	return base;
}

287
# define switch_hrtimer_base(t, b, p)	(b)
288 289 290 291 292 293 294 295 296 297 298

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
/*
 * Divide a ktime value by a nanosecond value
 */
299
s64 __ktime_divns(const ktime_t kt, s64 div)
300 301
{
	int sft = 0;
302 303
	s64 dclc;
	u64 tmp;
304

305
	dclc = ktime_to_ns(kt);
306 307
	tmp = dclc < 0 ? -dclc : dclc;

308 309 310 311 312
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
313 314 315
	tmp >>= sft;
	do_div(tmp, (unsigned long) div);
	return dclc < 0 ? -tmp : tmp;
316
}
317
EXPORT_SYMBOL_GPL(__ktime_divns);
318 319
#endif /* BITS_PER_LONG >= 64 */

320 321 322 323 324
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
325
	ktime_t res = ktime_add_unsafe(lhs, rhs);
326 327 328 329 330

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
T
Thomas Gleixner 已提交
331
	if (res < 0 || res < lhs || res < rhs)
332 333 334 335 336
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

337 338
EXPORT_SYMBOL_GPL(ktime_add_safe);

339 340 341 342
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

343 344 345 346 347
static void *hrtimer_debug_hint(void *addr)
{
	return ((struct hrtimer *) addr)->function;
}

348 349 350 351
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
352
static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
353 354 355 356 357 358 359
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
360
		return true;
361
	default:
362
		return false;
363 364 365 366 367 368
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
369
 * - an unknown non-static object is activated
370
 */
371
static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
372 373 374 375 376 377
{
	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
378
		return false;
379 380 381 382 383 384 385
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
386
static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
387 388 389 390 391 392 393
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
394
		return true;
395
	default:
396
		return false;
397 398 399 400 401
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
402
	.debug_hint	= hrtimer_debug_hint,
403 404 405 406 407 408 409 410 411 412
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

413 414
static inline void debug_hrtimer_activate(struct hrtimer *timer,
					  enum hrtimer_mode mode)
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}
S
Stephen Hemminger 已提交
438
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
439 440 441 442 443

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}
444
EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
445 446

#else
447

448
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
449 450
static inline void debug_hrtimer_activate(struct hrtimer *timer,
					  enum hrtimer_mode mode) { }
451 452 453
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

454 455 456 457 458 459 460 461
static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
	   enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	trace_hrtimer_init(timer, clockid, mode);
}

462 463
static inline void debug_activate(struct hrtimer *timer,
				  enum hrtimer_mode mode)
464
{
465
	debug_hrtimer_activate(timer, mode);
466
	trace_hrtimer_start(timer, mode);
467 468 469 470 471 472 473 474
}

static inline void debug_deactivate(struct hrtimer *timer)
{
	debug_hrtimer_deactivate(timer);
	trace_hrtimer_cancel(timer);
}

475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
static struct hrtimer_clock_base *
__next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
{
	unsigned int idx;

	if (!*active)
		return NULL;

	idx = __ffs(*active);
	*active &= ~(1U << idx);

	return &cpu_base->clock_base[idx];
}

#define for_each_active_base(base, cpu_base, active)	\
	while ((base = __next_base((cpu_base), &(active))))

492
static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
493
					 const struct hrtimer *exclude,
494 495
					 unsigned int active,
					 ktime_t expires_next)
496
{
497
	struct hrtimer_clock_base *base;
498
	ktime_t expires;
499

500
	for_each_active_base(base, cpu_base, active) {
501 502 503
		struct timerqueue_node *next;
		struct hrtimer *timer;

504
		next = timerqueue_getnext(&base->active);
505
		timer = container_of(next, struct hrtimer, node);
506 507
		if (timer == exclude) {
			/* Get to the next timer in the queue. */
508
			next = timerqueue_iterate_next(next);
509 510 511 512 513
			if (!next)
				continue;

			timer = container_of(next, struct hrtimer, node);
		}
514
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
T
Thomas Gleixner 已提交
515
		if (expires < expires_next) {
516
			expires_next = expires;
517 518 519 520 521

			/* Skip cpu_base update if a timer is being excluded. */
			if (exclude)
				continue;

522 523 524 525
			if (timer->is_soft)
				cpu_base->softirq_next_timer = timer;
			else
				cpu_base->next_timer = timer;
526
		}
527 528 529 530 531 532
	}
	/*
	 * clock_was_set() might have changed base->offset of any of
	 * the clock bases so the result might be negative. Fix it up
	 * to prevent a false positive in clockevents_program_event().
	 */
T
Thomas Gleixner 已提交
533 534
	if (expires_next < 0)
		expires_next = 0;
535 536 537
	return expires_next;
}

538 539 540 541
/*
 * Recomputes cpu_base::*next_timer and returns the earliest expires_next but
 * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram.
 *
542 543 544 545 546 547 548 549
 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
 * those timers will get run whenever the softirq gets handled, at the end of
 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
 *
 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
 *
550
 * @active_mask must be one of:
551
 *  - HRTIMER_ACTIVE_ALL,
552 553 554
 *  - HRTIMER_ACTIVE_SOFT, or
 *  - HRTIMER_ACTIVE_HARD.
 */
555 556
static ktime_t
__hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
557
{
558
	unsigned int active;
559
	struct hrtimer *next_timer = NULL;
560 561
	ktime_t expires_next = KTIME_MAX;

562 563 564
	if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
		active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
		cpu_base->softirq_next_timer = NULL;
565 566
		expires_next = __hrtimer_next_event_base(cpu_base, NULL,
							 active, KTIME_MAX);
567 568 569

		next_timer = cpu_base->softirq_next_timer;
	}
570

571 572 573
	if (active_mask & HRTIMER_ACTIVE_HARD) {
		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
		cpu_base->next_timer = next_timer;
574 575
		expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
							 expires_next);
576
	}
577 578 579 580

	return expires_next;
}

581 582 583
static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
{
	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
584
	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
585 586
	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;

587
	ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
588
					    offs_real, offs_boot, offs_tai);
589 590

	base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
591
	base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
592 593 594
	base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;

	return now;
595 596
}

597 598 599 600 601 602 603 604 605 606 607 608 609 610
/*
 * Is the high resolution mode active ?
 */
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
{
	return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
		cpu_base->hres_active : 0;
}

static inline int hrtimer_hres_active(void)
{
	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
}

611 612 613 614 615
/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
616 617
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
618
{
619 620
	ktime_t expires_next;

621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
	/*
	 * Find the current next expiration time.
	 */
	expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);

	if (cpu_base->next_timer && cpu_base->next_timer->is_soft) {
		/*
		 * When the softirq is activated, hrtimer has to be
		 * programmed with the first hard hrtimer because soft
		 * timer interrupt could occur too late.
		 */
		if (cpu_base->softirq_activated)
			expires_next = __hrtimer_get_next_event(cpu_base,
								HRTIMER_ACTIVE_HARD);
		else
			cpu_base->softirq_expires_next = expires_next;
	}
638

T
Thomas Gleixner 已提交
639
	if (skip_equal && expires_next == cpu_base->expires_next)
640 641
		return;

T
Thomas Gleixner 已提交
642
	cpu_base->expires_next = expires_next;
643

644
	/*
645 646 647
	 * If hres is not active, hardware does not have to be
	 * reprogrammed yet.
	 *
648 649 650 651 652 653 654 655 656 657 658 659 660
	 * If a hang was detected in the last timer interrupt then we
	 * leave the hang delay active in the hardware. We want the
	 * system to make progress. That also prevents the following
	 * scenario:
	 * T1 expires 50ms from now
	 * T2 expires 5s from now
	 *
	 * T1 is removed, so this code is called and would reprogram
	 * the hardware to 5s from now. Any hrtimer_start after that
	 * will not reprogram the hardware due to hang_detected being
	 * set. So we'd effectivly block all timers until the T2 event
	 * fires.
	 */
661
	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
662 663
		return;

664
	tick_program_event(cpu_base->expires_next, 1);
665 666
}

667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static bool hrtimer_hres_enabled __read_mostly  = true;
unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
EXPORT_SYMBOL_GPL(hrtimer_resolution);

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

695 696 697 698 699 700 701
/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
702
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
703

704
	if (!__hrtimer_hres_active(base))
705 706 707
		return;

	raw_spin_lock(&base->lock);
708
	hrtimer_update_base(base);
709 710 711
	hrtimer_force_reprogram(base, 0);
	raw_spin_unlock(&base->lock);
}
712

713 714 715
/*
 * Switch to high resolution mode
 */
716
static void hrtimer_switch_to_hres(void)
717
{
718
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
719 720

	if (tick_init_highres()) {
I
Ingo Molnar 已提交
721
		printk(KERN_WARNING "Could not switch to high resolution "
722
				    "mode on CPU %d\n", base->cpu);
723
		return;
724 725
	}
	base->hres_active = 1;
726
	hrtimer_resolution = HIGH_RES_NSEC;
727 728 729 730 731 732

	tick_setup_sched_timer();
	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
}

733 734 735 736 737 738 739
static void clock_was_set_work(struct work_struct *work)
{
	clock_was_set();
}

static DECLARE_WORK(hrtimer_work, clock_was_set_work);

740
/*
P
Pratyush Patel 已提交
741
 * Called from timekeeping and resume code to reprogram the hrtimer
742
 * interrupt device on all cpus.
743 744 745
 */
void clock_was_set_delayed(void)
{
746
	schedule_work(&hrtimer_work);
747 748
}

749 750 751
#else

static inline int hrtimer_is_hres_enabled(void) { return 0; }
752
static inline void hrtimer_switch_to_hres(void) { }
753
static inline void retrigger_next_event(void *arg) { }
754 755 756

#endif /* CONFIG_HIGH_RES_TIMERS */

757 758 759 760 761 762 763
/*
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
764
static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
765 766
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
767
	struct hrtimer_clock_base *base = timer->base;
768 769 770 771
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);

	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);

772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
	 * expiry time which is less than base->offset. Set it to 0.
	 */
	if (expires < 0)
		expires = 0;

	if (timer->is_soft) {
		/*
		 * soft hrtimer could be started on a remote CPU. In this
		 * case softirq_expires_next needs to be updated on the
		 * remote CPU. The soft hrtimer will not expire before the
		 * first hard hrtimer on the remote CPU -
		 * hrtimer_check_target() prevents this case.
		 */
		struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;

		if (timer_cpu_base->softirq_activated)
			return;

		if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
			return;

		timer_cpu_base->softirq_next_timer = timer;
		timer_cpu_base->softirq_expires_next = expires;

		if (!ktime_before(expires, timer_cpu_base->expires_next) ||
		    !reprogram)
			return;
	}

803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
	/*
	 * If the timer is not on the current cpu, we cannot reprogram
	 * the other cpus clock event device.
	 */
	if (base->cpu_base != cpu_base)
		return;

	/*
	 * If the hrtimer interrupt is running, then it will
	 * reevaluate the clock bases and reprogram the clock event
	 * device. The callbacks are always executed in hard interrupt
	 * context so we don't need an extra check for a running
	 * callback.
	 */
	if (cpu_base->in_hrtirq)
		return;

	if (expires >= cpu_base->expires_next)
		return;

	/* Update the pointer to the next expiring timer */
	cpu_base->next_timer = timer;
825
	cpu_base->expires_next = expires;
826 827

	/*
828 829 830
	 * If hres is not active, hardware does not have to be
	 * programmed yet.
	 *
831 832 833 834 835
	 * If a hang was detected in the last timer interrupt then we
	 * do not schedule a timer which is earlier than the expiry
	 * which we enforced in the hang detection. We want the system
	 * to make progress.
	 */
836
	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
837 838 839 840 841 842 843 844 845
		return;

	/*
	 * Program the timer hardware. We enforce the expiry for
	 * events which are already in the past.
	 */
	tick_program_event(expires, 1);
}

846 847 848 849 850 851 852 853 854 855 856 857 858
/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
859
#ifdef CONFIG_HIGH_RES_TIMERS
860 861
	/* Retrigger the CPU local events everywhere */
	on_each_cpu(retrigger_next_event, NULL, 1);
862 863
#endif
	timerfd_clock_was_set();
864 865 866 867
}

/*
 * During resume we might have to reprogram the high resolution timer
868 869
 * interrupt on all online CPUs.  However, all other CPUs will be
 * stopped with IRQs interrupts disabled so the clock_was_set() call
870
 * must be deferred.
871 872 873
 */
void hrtimers_resume(void)
{
874
	lockdep_assert_irqs_disabled();
875
	/* Retrigger on the local CPU */
876
	retrigger_next_event(NULL);
877 878
	/* And schedule a retrigger for all others */
	clock_was_set_delayed();
879 880
}

881
/*
882
 * Counterpart to lock_hrtimer_base above:
883 884 885 886
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
887
	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
888 889 890 891 892
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
893
 * @now:	forward past this time
894 895 896
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
897
 * Returns the number of overruns.
898 899 900 901 902 903 904 905
 *
 * Can be safely called from the callback function of @timer. If
 * called from other contexts @timer must neither be enqueued nor
 * running the callback and the caller needs to take care of
 * serialization.
 *
 * Note: This only updates the timer expiry value and does not requeue
 * the timer.
906
 */
D
Davide Libenzi 已提交
907
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
908
{
D
Davide Libenzi 已提交
909
	u64 orun = 1;
910
	ktime_t delta;
911

912
	delta = ktime_sub(now, hrtimer_get_expires(timer));
913

T
Thomas Gleixner 已提交
914
	if (delta < 0)
915 916
		return 0;

917 918 919
	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
		return 0;

T
Thomas Gleixner 已提交
920 921
	if (interval < hrtimer_resolution)
		interval = hrtimer_resolution;
922

T
Thomas Gleixner 已提交
923
	if (unlikely(delta >= interval)) {
924
		s64 incr = ktime_to_ns(interval);
925 926

		orun = ktime_divns(delta, incr);
927
		hrtimer_add_expires_ns(timer, incr * orun);
T
Thomas Gleixner 已提交
928
		if (hrtimer_get_expires_tv64(timer) > now)
929 930 931 932 933 934 935
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
936
	hrtimer_add_expires(timer, interval);
937 938 939

	return orun;
}
S
Stas Sergeev 已提交
940
EXPORT_SYMBOL_GPL(hrtimer_forward);
941 942 943 944 945 946

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
947 948
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
949
 */
950
static int enqueue_hrtimer(struct hrtimer *timer,
951 952
			   struct hrtimer_clock_base *base,
			   enum hrtimer_mode mode)
953
{
954
	debug_activate(timer, mode);
955

956
	base->cpu_base->active_bases |= 1 << base->index;
957

958
	timer->state = HRTIMER_STATE_ENQUEUED;
959

960
	return timerqueue_add(&base->active, &timer->node);
961
}
962 963 964 965 966

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
967 968 969 970 971
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
972
 */
973
static void __remove_hrtimer(struct hrtimer *timer,
974
			     struct hrtimer_clock_base *base,
975
			     u8 newstate, int reprogram)
976
{
977
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
978
	u8 state = timer->state;
979

980 981 982
	timer->state = newstate;
	if (!(state & HRTIMER_STATE_ENQUEUED))
		return;
983

984
	if (!timerqueue_del(&base->active, &timer->node))
985
		cpu_base->active_bases &= ~(1 << base->index);
986

987 988 989 990 991 992 993 994 995 996
	/*
	 * Note: If reprogram is false we do not update
	 * cpu_base->next_timer. This happens when we remove the first
	 * timer on a remote cpu. No harm as we never dereference
	 * cpu_base->next_timer. So the worst thing what can happen is
	 * an superflous call to hrtimer_force_reprogram() on the
	 * remote cpu later on if the same timer gets enqueued again.
	 */
	if (reprogram && timer == cpu_base->next_timer)
		hrtimer_force_reprogram(cpu_base, 1);
997 998 999 1000 1001 1002
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
1003
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
1004
{
1005
	if (hrtimer_is_queued(timer)) {
1006
		u8 state = timer->state;
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
1017
		debug_deactivate(timer);
1018
		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1019

1020 1021 1022
		if (!restart)
			state = HRTIMER_STATE_INACTIVE;

1023
		__remove_hrtimer(timer, base, state, reprogram);
1024 1025 1026 1027 1028
		return 1;
	}
	return 0;
}

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
					    const enum hrtimer_mode mode)
{
#ifdef CONFIG_TIME_LOW_RES
	/*
	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
	 * granular time values. For relative timers we add hrtimer_resolution
	 * (i.e. one jiffie) to prevent short timeouts.
	 */
	timer->is_rel = mode & HRTIMER_MODE_REL;
	if (timer->is_rel)
T
Thomas Gleixner 已提交
1040
		tim = ktime_add_safe(tim, hrtimer_resolution);
1041 1042 1043 1044
#endif
	return tim;
}

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
static void
hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
{
	ktime_t expires;

	/*
	 * Find the next SOFT expiration.
	 */
	expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);

	/*
	 * reprogramming needs to be triggered, even if the next soft
	 * hrtimer expires at the same time than the next hard
	 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
	 */
	if (expires == KTIME_MAX)
		return;

	/*
	 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
	 * cpu_base->*expires_next is only set by hrtimer_reprogram()
	 */
	hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
}

1070 1071 1072
static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
				    u64 delta_ns, const enum hrtimer_mode mode,
				    struct hrtimer_clock_base *base)
1073
{
1074
	struct hrtimer_clock_base *new_base;
1075 1076

	/* Remove an active timer from the queue: */
1077
	remove_hrtimer(timer, base, true);
1078

1079
	if (mode & HRTIMER_MODE_REL)
1080
		tim = ktime_add_safe(tim, base->get_time());
1081 1082

	tim = hrtimer_update_lowres(timer, tim, mode);
1083

1084
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1085

1086 1087 1088
	/* Switch the timer base, if necessary: */
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);

1089 1090
	return enqueue_hrtimer(timer, new_base, mode);
}
1091

1092 1093 1094 1095 1096 1097
/**
 * hrtimer_start_range_ns - (re)start an hrtimer
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
 * @mode:	timer mode: absolute (HRTIMER_MODE_ABS) or
1098 1099
 *		relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
 *		softirq based mode is considered for debug purpose only!
1100 1101 1102 1103 1104 1105 1106
 */
void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
			    u64 delta_ns, const enum hrtimer_mode mode)
{
	struct hrtimer_clock_base *base;
	unsigned long flags;

1107 1108 1109 1110 1111 1112
	/*
	 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
	 * match.
	 */
	WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);

1113 1114 1115
	base = lock_hrtimer_base(timer, &flags);

	if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1116
		hrtimer_reprogram(timer, true);
1117

1118
	unlock_hrtimer_base(timer, &flags);
1119
}
1120 1121
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

1122 1123 1124 1125 1126 1127 1128
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
1129
 * -1 when the timer is currently executing the callback function and
1130
 *    cannot be stopped
1131 1132 1133
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
1134
	struct hrtimer_clock_base *base;
1135 1136 1137
	unsigned long flags;
	int ret = -1;

1138 1139 1140 1141 1142 1143 1144 1145 1146
	/*
	 * Check lockless first. If the timer is not active (neither
	 * enqueued nor running the callback, nothing to do here.  The
	 * base lock does not serialize against a concurrent enqueue,
	 * so we can avoid taking it.
	 */
	if (!hrtimer_active(timer))
		return 0;

1147 1148
	base = lock_hrtimer_base(timer, &flags);

1149
	if (!hrtimer_callback_running(timer))
1150
		ret = remove_hrtimer(timer, base, false);
1151 1152 1153 1154 1155 1156

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1157
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1174
		cpu_relax();
1175 1176
	}
}
1177
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1178 1179 1180 1181

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
1182
 * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1183
 */
1184
ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1185 1186 1187 1188
{
	unsigned long flags;
	ktime_t rem;

1189
	lock_hrtimer_base(timer, &flags);
1190 1191 1192 1193
	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
		rem = hrtimer_expires_remaining_adjusted(timer);
	else
		rem = hrtimer_expires_remaining(timer);
1194 1195 1196 1197
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1198
EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1199

1200
#ifdef CONFIG_NO_HZ_COMMON
1201 1202 1203
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
1204
 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1205
 */
1206
u64 hrtimer_get_next_event(void)
1207
{
1208
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1209
	u64 expires = KTIME_MAX;
1210 1211
	unsigned long flags;

1212
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1213

1214
	if (!__hrtimer_hres_active(cpu_base))
1215
		expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1216

1217
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1218

1219
	return expires;
1220
}
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253

/**
 * hrtimer_next_event_without - time until next expiry event w/o one timer
 * @exclude:	timer to exclude
 *
 * Returns the next expiry time over all timers except for the @exclude one or
 * KTIME_MAX if none of them is pending.
 */
u64 hrtimer_next_event_without(const struct hrtimer *exclude)
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
	u64 expires = KTIME_MAX;
	unsigned long flags;

	raw_spin_lock_irqsave(&cpu_base->lock, flags);

	if (__hrtimer_hres_active(cpu_base)) {
		unsigned int active;

		if (!cpu_base->softirq_activated) {
			active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
			expires = __hrtimer_next_event_base(cpu_base, exclude,
							    active, KTIME_MAX);
		}
		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
		expires = __hrtimer_next_event_base(cpu_base, exclude, active,
						    expires);
	}

	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);

	return expires;
}
1254 1255
#endif

1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
static inline int hrtimer_clockid_to_base(clockid_t clock_id)
{
	if (likely(clock_id < MAX_CLOCKS)) {
		int base = hrtimer_clock_to_base_table[clock_id];

		if (likely(base != HRTIMER_MAX_CLOCK_BASES))
			return base;
	}
	WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
	return HRTIMER_BASE_MONOTONIC;
}

1268 1269
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1270
{
1271 1272
	bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
	int base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1273
	struct hrtimer_cpu_base *cpu_base;
1274

1275 1276
	memset(timer, 0, sizeof(struct hrtimer));

1277
	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1278

1279 1280 1281 1282 1283 1284
	/*
	 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
	 * clock modifications, so they needs to become CLOCK_MONOTONIC to
	 * ensure POSIX compliance.
	 */
	if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1285 1286
		clock_id = CLOCK_MONOTONIC;

1287 1288
	base += hrtimer_clockid_to_base(clock_id);
	timer->is_soft = softtimer;
1289
	timer->base = &cpu_base->clock_base[base];
1290
	timerqueue_init(&timer->node);
1291
}
1292 1293 1294 1295 1296

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
1297 1298 1299 1300 1301 1302 1303
 * @mode:       The modes which are relevant for intitialization:
 *              HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
 *              HRTIMER_MODE_REL_SOFT
 *
 *              The PINNED variants of the above can be handed in,
 *              but the PINNED bit is ignored as pinning happens
 *              when the hrtimer is started
1304 1305 1306 1307
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
1308
	debug_init(timer, clock_id, mode);
1309 1310
	__hrtimer_init(timer, clock_id, mode);
}
1311
EXPORT_SYMBOL_GPL(hrtimer_init);
1312

1313 1314 1315 1316
/*
 * A timer is active, when it is enqueued into the rbtree or the
 * callback function is running or it's in the state of being migrated
 * to another cpu.
1317
 *
1318
 * It is important for this function to not return a false negative.
1319
 */
1320
bool hrtimer_active(const struct hrtimer *timer)
1321
{
1322
	struct hrtimer_clock_base *base;
1323
	unsigned int seq;
1324

1325
	do {
1326 1327
		base = READ_ONCE(timer->base);
		seq = raw_read_seqcount_begin(&base->seq);
1328

1329
		if (timer->state != HRTIMER_STATE_INACTIVE ||
1330
		    base->running == timer)
1331 1332
			return true;

1333 1334
	} while (read_seqcount_retry(&base->seq, seq) ||
		 base != READ_ONCE(timer->base));
1335 1336

	return false;
1337
}
1338
EXPORT_SYMBOL_GPL(hrtimer_active);
1339

1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
/*
 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
 * distinct sections:
 *
 *  - queued:	the timer is queued
 *  - callback:	the timer is being ran
 *  - post:	the timer is inactive or (re)queued
 *
 * On the read side we ensure we observe timer->state and cpu_base->running
 * from the same section, if anything changed while we looked at it, we retry.
 * This includes timer->base changing because sequence numbers alone are
 * insufficient for that.
 *
 * The sequence numbers are required because otherwise we could still observe
 * a false negative if the read side got smeared over multiple consequtive
 * __run_hrtimer() invocations.
 */

1358 1359
static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
			  struct hrtimer_clock_base *base,
1360 1361
			  struct hrtimer *timer, ktime_t *now,
			  unsigned long flags)
1362 1363 1364 1365
{
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1366
	lockdep_assert_held(&cpu_base->lock);
1367

1368
	debug_deactivate(timer);
1369
	base->running = timer;
1370 1371 1372 1373 1374

	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
1375
	 * hrtimer_active() cannot observe base->running == NULL &&
1376 1377
	 * timer->state == INACTIVE.
	 */
1378
	raw_write_seqcount_barrier(&base->seq);
1379 1380

	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1381
	fn = timer->function;
1382

1383 1384 1385 1386 1387 1388 1389 1390
	/*
	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
	 * timer is restarted with a period then it becomes an absolute
	 * timer. If its not restarted it does not matter.
	 */
	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
		timer->is_rel = false;

1391
	/*
1392 1393 1394
	 * The timer is marked as running in the CPU base, so it is
	 * protected against migration to a different CPU even if the lock
	 * is dropped.
1395
	 */
1396
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1397
	trace_hrtimer_expire_entry(timer, now);
1398
	restart = fn(timer);
1399
	trace_hrtimer_expire_exit(timer);
1400
	raw_spin_lock_irq(&cpu_base->lock);
1401 1402

	/*
1403
	 * Note: We clear the running state after enqueue_hrtimer and
P
Pratyush Patel 已提交
1404
	 * we do not reprogram the event hardware. Happens either in
T
Thomas Gleixner 已提交
1405
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1406 1407 1408 1409
	 *
	 * Note: Because we dropped the cpu_base->lock above,
	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
	 * for us already.
1410
	 */
1411 1412
	if (restart != HRTIMER_NORESTART &&
	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1413
		enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1414

1415 1416 1417 1418
	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
1419
	 * hrtimer_active() cannot observe base->running.timer == NULL &&
1420 1421
	 * timer->state == INACTIVE.
	 */
1422
	raw_write_seqcount_barrier(&base->seq);
1423

1424 1425
	WARN_ON_ONCE(base->running != timer);
	base->running = NULL;
1426 1427
}

1428
static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1429
				 unsigned long flags, unsigned int active_mask)
1430
{
1431
	struct hrtimer_clock_base *base;
1432
	unsigned int active = cpu_base->active_bases & active_mask;
1433

1434
	for_each_active_base(base, cpu_base, active) {
1435
		struct timerqueue_node *node;
1436 1437
		ktime_t basenow;

1438 1439
		basenow = ktime_add(now, base->offset);

1440
		while ((node = timerqueue_getnext(&base->active))) {
1441 1442
			struct hrtimer *timer;

1443
			timer = container_of(node, struct hrtimer, node);
1444

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */
T
Thomas Gleixner 已提交
1457
			if (basenow < hrtimer_get_softexpires_tv64(timer))
1458 1459
				break;

1460
			__run_hrtimer(cpu_base, base, timer, &basenow, flags);
1461 1462
		}
	}
1463 1464
}

1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
	unsigned long flags;
	ktime_t now;

	raw_spin_lock_irqsave(&cpu_base->lock, flags);

	now = hrtimer_update_base(cpu_base);
	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);

	cpu_base->softirq_activated = 0;
	hrtimer_update_softirq_timer(cpu_base, true);

	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
}

1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
	ktime_t expires_next, now, entry_time, delta;
1492
	unsigned long flags;
1493 1494 1495 1496
	int retries = 0;

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
T
Thomas Gleixner 已提交
1497
	dev->next_event = KTIME_MAX;
1498

1499
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
	entry_time = now = hrtimer_update_base(cpu_base);
retry:
	cpu_base->in_hrtirq = 1;
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
T
Thomas Gleixner 已提交
1510
	cpu_base->expires_next = KTIME_MAX;
1511

1512 1513 1514 1515 1516 1517
	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
		cpu_base->softirq_expires_next = KTIME_MAX;
		cpu_base->softirq_activated = 1;
		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
	}

1518
	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1519

1520
	/* Reevaluate the clock bases for the next expiry */
1521
	expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1522 1523 1524 1525
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1526
	cpu_base->expires_next = expires_next;
1527
	cpu_base->in_hrtirq = 0;
1528
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1529 1530

	/* Reprogramming necessary ? */
1531
	if (!tick_program_event(expires_next, 0)) {
1532 1533
		cpu_base->hang_detected = 0;
		return;
1534
	}
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544

	/*
	 * The next timer was already expired due to:
	 * - tracing
	 * - long lasting callbacks
	 * - being scheduled away when running in a VM
	 *
	 * We need to prevent that we loop forever in the hrtimer
	 * interrupt routine. We give it 3 attempts to avoid
	 * overreacting on some spurious event.
1545 1546 1547
	 *
	 * Acquire base lock for updating the offsets and retrieving
	 * the current time.
1548
	 */
1549
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1550
	now = hrtimer_update_base(cpu_base);
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
	cpu_base->nr_retries++;
	if (++retries < 3)
		goto retry;
	/*
	 * Give the system a chance to do something else than looping
	 * here. We stored the entry time, so we know exactly how long
	 * we spent here. We schedule the next event this amount of
	 * time away.
	 */
	cpu_base->nr_hangs++;
	cpu_base->hang_detected = 1;
1562 1563
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);

1564
	delta = ktime_sub(now, entry_time);
T
Thomas Gleixner 已提交
1565 1566
	if ((unsigned int)delta > cpu_base->max_hang_time)
		cpu_base->max_hang_time = (unsigned int) delta;
1567 1568 1569 1570
	/*
	 * Limit it to a sensible value as we enforce a longer
	 * delay. Give the CPU at least 100ms to catch up.
	 */
T
Thomas Gleixner 已提交
1571
	if (delta > 100 * NSEC_PER_MSEC)
1572 1573 1574 1575 1576 1577
		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
	else
		expires_next = ktime_add(now, delta);
	tick_program_event(expires_next, 1);
	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
		    ktime_to_ns(delta));
1578 1579
}

1580
/* called with interrupts disabled */
1581
static inline void __hrtimer_peek_ahead_timers(void)
1582 1583 1584 1585 1586 1587
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

1588
	td = this_cpu_ptr(&tick_cpu_device);
1589 1590 1591 1592
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1593 1594 1595 1596 1597
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1598

1599
/*
1600
 * Called from run_local_timers in hardirq context every jiffy
1601
 */
1602
void hrtimer_run_queues(void)
1603
{
1604
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1605
	unsigned long flags;
1606
	ktime_t now;
1607

1608
	if (__hrtimer_hres_active(cpu_base))
1609
		return;
1610

1611
	/*
1612 1613 1614 1615 1616
	 * This _is_ ugly: We have to check periodically, whether we
	 * can switch to highres and / or nohz mode. The clocksource
	 * switch happens with xtime_lock held. Notification from
	 * there only sets the check bit in the tick_oneshot code,
	 * otherwise we might deadlock vs. xtime_lock.
1617
	 */
1618
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1619
		hrtimer_switch_to_hres();
1620
		return;
1621
	}
1622

1623
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1624
	now = hrtimer_update_base(cpu_base);
1625 1626 1627 1628 1629 1630 1631

	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
		cpu_base->softirq_expires_next = KTIME_MAX;
		cpu_base->softirq_activated = 1;
		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
	}

1632
	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1633
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1634 1635
}

1636 1637 1638
/*
 * Sleep related functions:
 */
1639
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1652
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1653 1654 1655 1656
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}
S
Stephen Hemminger 已提交
1657
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1658

1659
int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1660 1661 1662 1663
{
	switch(restart->nanosleep.type) {
#ifdef CONFIG_COMPAT
	case TT_COMPAT:
1664
		if (compat_put_timespec64(ts, restart->nanosleep.compat_rmtp))
1665 1666 1667 1668
			return -EFAULT;
		break;
#endif
	case TT_NATIVE:
1669
		if (put_timespec64(ts, restart->nanosleep.rmtp))
1670 1671 1672 1673 1674 1675 1676 1677
			return -EFAULT;
		break;
	default:
		BUG();
	}
	return -ERESTART_RESTARTBLOCK;
}

1678
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1679
{
1680 1681
	struct restart_block *restart;

1682
	hrtimer_init_sleeper(t, current);
1683

1684 1685
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1686
		hrtimer_start_expires(&t->timer, mode);
1687

1688
		if (likely(t->task))
1689
			freezable_schedule();
1690

1691
		hrtimer_cancel(&t->timer);
1692
		mode = HRTIMER_MODE_ABS;
1693 1694

	} while (t->task && !signal_pending(current));
1695

1696 1697
	__set_current_state(TASK_RUNNING);

1698
	if (!t->task)
1699 1700
		return 0;

1701 1702
	restart = &current->restart_block;
	if (restart->nanosleep.type != TT_NONE) {
1703
		ktime_t rem = hrtimer_expires_remaining(&t->timer);
1704
		struct timespec64 rmt;
1705

1706 1707
		if (rem <= 0)
			return 0;
1708
		rmt = ktime_to_timespec64(rem);
1709

1710
		return nanosleep_copyout(restart, &rmt);
1711 1712
	}
	return -ERESTART_RESTARTBLOCK;
1713 1714
}

A
Al Viro 已提交
1715
static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1716
{
1717
	struct hrtimer_sleeper t;
1718
	int ret;
1719

1720
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1721
				HRTIMER_MODE_ABS);
1722
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1723

1724
	ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1725 1726
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1727 1728
}

1729
long hrtimer_nanosleep(const struct timespec64 *rqtp,
1730 1731
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
1732
	struct restart_block *restart;
1733
	struct hrtimer_sleeper t;
1734
	int ret = 0;
1735
	u64 slack;
1736 1737

	slack = current->timer_slack_ns;
1738
	if (dl_task(current) || rt_task(current))
1739
		slack = 0;
1740

1741
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1742
	hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
1743 1744
	ret = do_nanosleep(&t, mode);
	if (ret != -ERESTART_RESTARTBLOCK)
1745
		goto out;
1746

1747
	/* Absolute timers do not update the rmtp value and restart: */
1748 1749 1750 1751
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1752

1753
	restart = &current->restart_block;
1754
	restart->fn = hrtimer_nanosleep_restart;
1755
	restart->nanosleep.clockid = t.timer.base->clockid;
1756
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1757 1758 1759
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1760 1761
}

1762 1763
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1764
{
1765
	struct timespec64 tu;
1766

1767
	if (get_timespec64(&tu, rqtp))
1768 1769
		return -EFAULT;

1770
	if (!timespec64_valid(&tu))
1771 1772
		return -EINVAL;

1773
	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1774
	current->restart_block.nanosleep.rmtp = rmtp;
1775
	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1776 1777
}

1778 1779 1780 1781 1782
#ifdef CONFIG_COMPAT

COMPAT_SYSCALL_DEFINE2(nanosleep, struct compat_timespec __user *, rqtp,
		       struct compat_timespec __user *, rmtp)
{
1783
	struct timespec64 tu;
1784

1785
	if (compat_get_timespec64(&tu, rqtp))
1786 1787
		return -EFAULT;

1788
	if (!timespec64_valid(&tu))
1789 1790 1791 1792
		return -EINVAL;

	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
	current->restart_block.nanosleep.compat_rmtp = rmtp;
1793
	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1794 1795 1796
}
#endif

1797 1798 1799
/*
 * Functions related to boot-time initialization:
 */
1800
int hrtimers_prepare_cpu(unsigned int cpu)
1801
{
1802
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1803 1804
	int i;

1805
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1806
		cpu_base->clock_base[i].cpu_base = cpu_base;
1807 1808
		timerqueue_init_head(&cpu_base->clock_base[i].active);
	}
1809

1810
	cpu_base->cpu = cpu;
1811
	cpu_base->active_bases = 0;
1812
	cpu_base->hres_active = 0;
1813 1814 1815
	cpu_base->hang_detected = 0;
	cpu_base->next_timer = NULL;
	cpu_base->softirq_next_timer = NULL;
1816
	cpu_base->expires_next = KTIME_MAX;
1817
	cpu_base->softirq_expires_next = KTIME_MAX;
1818
	return 0;
1819 1820 1821 1822
}

#ifdef CONFIG_HOTPLUG_CPU

1823
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1824
				struct hrtimer_clock_base *new_base)
1825 1826
{
	struct hrtimer *timer;
1827
	struct timerqueue_node *node;
1828

1829 1830
	while ((node = timerqueue_getnext(&old_base->active))) {
		timer = container_of(node, struct hrtimer, node);
1831
		BUG_ON(hrtimer_callback_running(timer));
1832
		debug_deactivate(timer);
T
Thomas Gleixner 已提交
1833 1834

		/*
1835
		 * Mark it as ENQUEUED not INACTIVE otherwise the
T
Thomas Gleixner 已提交
1836 1837 1838
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
1839
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1840
		timer->base = new_base;
1841
		/*
T
Thomas Gleixner 已提交
1842 1843 1844 1845 1846 1847
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1848
		 */
1849
		enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
1850 1851 1852
	}
}

1853
int hrtimers_dead_cpu(unsigned int scpu)
1854
{
1855
	struct hrtimer_cpu_base *old_base, *new_base;
1856
	int i;
1857

1858 1859
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1860

1861 1862 1863 1864 1865 1866
	/*
	 * this BH disable ensures that raise_softirq_irqoff() does
	 * not wakeup ksoftirqd (and acquire the pi-lock) while
	 * holding the cpu_base lock
	 */
	local_bh_disable();
1867 1868
	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
1869
	new_base = this_cpu_ptr(&hrtimer_bases);
1870 1871 1872 1873
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1874 1875
	raw_spin_lock(&new_base->lock);
	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1876

1877
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1878
		migrate_hrtimer_list(&old_base->clock_base[i],
1879
				     &new_base->clock_base[i]);
1880 1881
	}

1882 1883 1884 1885 1886 1887
	/*
	 * The migration might have changed the first expiring softirq
	 * timer on this CPU. Update it.
	 */
	hrtimer_update_softirq_timer(new_base, false);

1888 1889
	raw_spin_unlock(&old_base->lock);
	raw_spin_unlock(&new_base->lock);
1890

1891 1892 1893
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1894
	local_bh_enable();
1895
	return 0;
1896
}
1897

1898 1899 1900 1901
#endif /* CONFIG_HOTPLUG_CPU */

void __init hrtimers_init(void)
{
1902
	hrtimers_prepare_cpu(smp_processor_id());
1903
	open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
1904 1905
}

1906
/**
1907
 * schedule_hrtimeout_range_clock - sleep until timeout
1908
 * @expires:	timeout value (ktime_t)
1909
 * @delta:	slack in expires timeout (ktime_t)
1910 1911
 * @mode:	timer mode
 * @clock_id:	timer clock to be used
1912
 */
1913
int __sched
1914
schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1915
			       const enum hrtimer_mode mode, clockid_t clock_id)
1916 1917 1918 1919 1920 1921 1922
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
T
Thomas Gleixner 已提交
1923
	if (expires && *expires == 0) {
1924 1925 1926 1927 1928
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
N
Namhyung Kim 已提交
1929
	 * A NULL parameter means "infinite"
1930 1931 1932 1933 1934 1935
	 */
	if (!expires) {
		schedule();
		return -EINTR;
	}

1936
	hrtimer_init_on_stack(&t.timer, clock_id, mode);
1937
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1938 1939 1940

	hrtimer_init_sleeper(&t, current);

1941
	hrtimer_start_expires(&t.timer, mode);
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1953 1954 1955 1956 1957

/**
 * schedule_hrtimeout_range - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @delta:	slack in expires timeout (ktime_t)
1958
 * @mode:	timer mode
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1972 1973
 * pass before the routine returns unless the current task is explicitly
 * woken up, (e.g. by wake_up_process()).
1974 1975
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1976 1977
 * delivered to the current task or the current task is explicitly woken
 * up.
1978 1979 1980 1981
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
1982 1983 1984
 * Returns 0 when the timer has expired. If the task was woken before the
 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
 * by an explicit wakeup, it returns -EINTR.
1985
 */
1986
int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1987 1988 1989 1990 1991
				     const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range_clock(expires, delta, mode,
					      CLOCK_MONOTONIC);
}
1992 1993 1994 1995 1996
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
1997
 * @mode:	timer mode
1998 1999 2000 2001 2002 2003 2004 2005
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2006 2007
 * pass before the routine returns unless the current task is explicitly
 * woken up, (e.g. by wake_up_process()).
2008 2009
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2010 2011
 * delivered to the current task or the current task is explicitly woken
 * up.
2012 2013 2014 2015
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
2016 2017 2018
 * Returns 0 when the timer has expired. If the task was woken before the
 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
 * by an explicit wakeup, it returns -EINTR.
2019 2020 2021 2022 2023 2024
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
2025
EXPORT_SYMBOL_GPL(schedule_hrtimeout);