hrtimer.c 46.3 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
35
#include <linux/export.h>
36 37 38 39
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46
#include <linux/sched/signal.h>
47
#include <linux/sched/sysctl.h>
48
#include <linux/sched/rt.h>
49
#include <linux/sched/deadline.h>
50
#include <linux/sched/nohz.h>
51
#include <linux/sched/debug.h>
52
#include <linux/timer.h>
53
#include <linux/freezer.h>
54
#include <linux/compat.h>
55

56
#include <linux/uaccess.h>
57

58 59
#include <trace/events/timer.h>

60
#include "tick-internal.h"
61

62 63
/*
 * The timer bases:
64
 *
Z
Zhen Lei 已提交
65
 * There are more clockids than hrtimer bases. Thus, we index
66 67 68
 * into the timer bases by the hrtimer_base_type enum. When trying
 * to reach a base using a clockid, hrtimer_clockid_to_base()
 * is used to convert from clockid to the proper hrtimer_base_type.
69
 */
70
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
71
{
72
	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
73
	.seq = SEQCNT_ZERO(hrtimer_bases.seq),
74
	.clock_base =
75
	{
76
		{
77 78
			.index = HRTIMER_BASE_MONOTONIC,
			.clockid = CLOCK_MONOTONIC,
79 80
			.get_time = &ktime_get,
		},
T
Thomas Gleixner 已提交
81 82 83 84 85
		{
			.index = HRTIMER_BASE_REALTIME,
			.clockid = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
		},
86
		{
87 88
			.index = HRTIMER_BASE_BOOTTIME,
			.clockid = CLOCK_BOOTTIME,
89 90
			.get_time = &ktime_get_boottime,
		},
91 92 93 94 95
		{
			.index = HRTIMER_BASE_TAI,
			.clockid = CLOCK_TAI,
			.get_time = &ktime_get_clocktai,
		},
96
	}
97 98
};

99
static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
100 101 102
	/* Make sure we catch unsupported clockids */
	[0 ... MAX_CLOCKS - 1]	= HRTIMER_MAX_CLOCK_BASES,

103 104 105
	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
106
	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
107
};
108

109 110 111 112 113 114
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

115 116 117 118 119 120 121 122 123 124 125 126
/*
 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
 * such that hrtimer_callback_running() can unconditionally dereference
 * timer->base->cpu_base
 */
static struct hrtimer_cpu_base migration_cpu_base = {
	.seq = SEQCNT_ZERO(migration_cpu_base),
	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
};

#define migration_base	migration_cpu_base.clock_base[0]

127 128 129 130 131 132 133 134 135
/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
136 137
 * possible to set timer->base = &migration_base and drop the lock: the timer
 * remains locked.
138
 */
139 140 141
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
142
{
143
	struct hrtimer_clock_base *base;
144 145 146

	for (;;) {
		base = timer->base;
147
		if (likely(base != &migration_base)) {
148
			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
149 150 151
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
152
			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
153 154 155 156 157
		}
		cpu_relax();
	}
}

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
/*
 * With HIGHRES=y we do not migrate the timer when it is expiring
 * before the next event on the target cpu because we cannot reprogram
 * the target cpu hardware and we would cause it to fire late.
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	ktime_t expires;

	if (!new_base->cpu_base->hres_active)
		return 0;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
T
Thomas Gleixner 已提交
175
	return expires <= new_base->cpu_base->expires_next;
176 177 178 179 180
#else
	return 0;
#endif
}

181 182 183 184
static inline
struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
					 int pinned)
{
185 186 187 188
#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
	if (static_branch_likely(&timers_migration_enabled) && !pinned)
		return &per_cpu(hrtimer_bases, get_nohz_timer_target());
#endif
189
	return base;
190 191
}

192
/*
193 194 195 196 197 198 199 200 201 202
 * We switch the timer base to a power-optimized selected CPU target,
 * if:
 *	- NO_HZ_COMMON is enabled
 *	- timer migration is enabled
 *	- the timer callback is not running
 *	- the timer is not the first expiring timer on the new target
 *
 * If one of the above requirements is not fulfilled we move the timer
 * to the current CPU or leave it on the previously assigned CPU if
 * the timer callback is currently running.
203
 */
204
static inline struct hrtimer_clock_base *
205 206
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
207
{
208
	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
209
	struct hrtimer_clock_base *new_base;
210
	int basenum = base->index;
211

212 213
	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
	new_cpu_base = get_target_base(this_cpu_base, pinned);
214
again:
215
	new_base = &new_cpu_base->clock_base[basenum];
216 217 218

	if (base != new_base) {
		/*
219
		 * We are trying to move timer to new_base.
220 221 222 223 224 225 226
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
227
		if (unlikely(hrtimer_callback_running(timer)))
228 229
			return base;

230 231
		/* See the comment in lock_hrtimer_base() */
		timer->base = &migration_base;
232 233
		raw_spin_unlock(&base->cpu_base->lock);
		raw_spin_lock(&new_base->cpu_base->lock);
234

235
		if (new_cpu_base != this_cpu_base &&
236
		    hrtimer_check_target(timer, new_base)) {
237 238
			raw_spin_unlock(&new_base->cpu_base->lock);
			raw_spin_lock(&base->cpu_base->lock);
239
			new_cpu_base = this_cpu_base;
240 241
			timer->base = base;
			goto again;
242
		}
243
		timer->base = new_base;
244
	} else {
245
		if (new_cpu_base != this_cpu_base &&
246
		    hrtimer_check_target(timer, new_base)) {
247
			new_cpu_base = this_cpu_base;
248 249
			goto again;
		}
250 251 252 253 254 255
	}
	return new_base;
}

#else /* CONFIG_SMP */

256
static inline struct hrtimer_clock_base *
257 258
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
259
	struct hrtimer_clock_base *base = timer->base;
260

261
	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
262 263 264 265

	return base;
}

266
# define switch_hrtimer_base(t, b, p)	(b)
267 268 269 270 271 272 273 274 275 276 277

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
/*
 * Divide a ktime value by a nanosecond value
 */
278
s64 __ktime_divns(const ktime_t kt, s64 div)
279 280
{
	int sft = 0;
281 282
	s64 dclc;
	u64 tmp;
283

284
	dclc = ktime_to_ns(kt);
285 286
	tmp = dclc < 0 ? -dclc : dclc;

287 288 289 290 291
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
292 293 294
	tmp >>= sft;
	do_div(tmp, (unsigned long) div);
	return dclc < 0 ? -tmp : tmp;
295
}
296
EXPORT_SYMBOL_GPL(__ktime_divns);
297 298
#endif /* BITS_PER_LONG >= 64 */

299 300 301 302 303
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
304
	ktime_t res = ktime_add_unsafe(lhs, rhs);
305 306 307 308 309

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
T
Thomas Gleixner 已提交
310
	if (res < 0 || res < lhs || res < rhs)
311 312 313 314 315
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

316 317
EXPORT_SYMBOL_GPL(ktime_add_safe);

318 319 320 321
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

322 323 324 325 326
static void *hrtimer_debug_hint(void *addr)
{
	return ((struct hrtimer *) addr)->function;
}

327 328 329 330
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
331
static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
332 333 334 335 336 337 338
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
339
		return true;
340
	default:
341
		return false;
342 343 344 345 346 347
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
348
 * - an unknown non-static object is activated
349
 */
350
static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
351 352 353 354 355 356
{
	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
357
		return false;
358 359 360 361 362 363 364
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
365
static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
366 367 368 369 370 371 372
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
373
		return true;
374
	default:
375
		return false;
376 377 378 379 380
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
381
	.debug_hint	= hrtimer_debug_hint,
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}
S
Stephen Hemminger 已提交
416
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
417 418 419 420 421

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}
422
EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
423 424 425 426 427 428 429

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
	   enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	trace_hrtimer_init(timer, clockid, mode);
}

static inline void debug_activate(struct hrtimer *timer)
{
	debug_hrtimer_activate(timer);
	trace_hrtimer_start(timer);
}

static inline void debug_deactivate(struct hrtimer *timer)
{
	debug_hrtimer_deactivate(timer);
	trace_hrtimer_cancel(timer);
}

450
#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
451 452 453 454 455 456 457 458
static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
					     struct hrtimer *timer)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	cpu_base->next_timer = timer;
#endif
}

459
static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
460 461
{
	struct hrtimer_clock_base *base = cpu_base->clock_base;
462
	unsigned int active = cpu_base->active_bases;
T
Thomas Gleixner 已提交
463
	ktime_t expires, expires_next = KTIME_MAX;
464

465
	hrtimer_update_next_timer(cpu_base, NULL);
466
	for (; active; base++, active >>= 1) {
467 468 469
		struct timerqueue_node *next;
		struct hrtimer *timer;

470
		if (!(active & 0x01))
471 472
			continue;

473
		next = timerqueue_getnext(&base->active);
474 475
		timer = container_of(next, struct hrtimer, node);
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
T
Thomas Gleixner 已提交
476
		if (expires < expires_next) {
477
			expires_next = expires;
478 479
			hrtimer_update_next_timer(cpu_base, timer);
		}
480 481 482 483 484 485
	}
	/*
	 * clock_was_set() might have changed base->offset of any of
	 * the clock bases so the result might be negative. Fix it up
	 * to prevent a false positive in clockevents_program_event().
	 */
T
Thomas Gleixner 已提交
486 487
	if (expires_next < 0)
		expires_next = 0;
488 489 490 491
	return expires_next;
}
#endif

492 493 494 495 496 497
static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
{
	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;

498 499
	return ktime_get_update_offsets_now(&base->clock_was_set_seq,
					    offs_real, offs_boot, offs_tai);
500 501
}

502 503 504 505 506 507
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
508
static bool hrtimer_hres_enabled __read_mostly  = true;
509 510
unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
EXPORT_SYMBOL_GPL(hrtimer_resolution);
511 512 513 514 515 516

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
517
	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
533 534 535 536 537
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
{
	return cpu_base->hres_active;
}

538 539
static inline int hrtimer_hres_active(void)
{
540
	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
541 542 543 544 545 546 547
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
548 549
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
550
{
551 552 553 554 555 556
	ktime_t expires_next;

	if (!cpu_base->hres_active)
		return;

	expires_next = __hrtimer_get_next_event(cpu_base);
557

T
Thomas Gleixner 已提交
558
	if (skip_equal && expires_next == cpu_base->expires_next)
559 560
		return;

T
Thomas Gleixner 已提交
561
	cpu_base->expires_next = expires_next;
562

563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * leave the hang delay active in the hardware. We want the
	 * system to make progress. That also prevents the following
	 * scenario:
	 * T1 expires 50ms from now
	 * T2 expires 5s from now
	 *
	 * T1 is removed, so this code is called and would reprogram
	 * the hardware to 5s from now. Any hrtimer_start after that
	 * will not reprogram the hardware due to hang_detected being
	 * set. So we'd effectivly block all timers until the T2 event
	 * fires.
	 */
	if (cpu_base->hang_detected)
		return;

580
	tick_program_event(cpu_base->expires_next, 1);
581 582 583 584 585 586 587 588 589
}

/*
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
590 591
static void hrtimer_reprogram(struct hrtimer *timer,
			      struct hrtimer_clock_base *base)
592
{
593
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
594
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
595

596
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
597

598
	/*
599 600
	 * If the timer is not on the current cpu, we cannot reprogram
	 * the other cpus clock event device.
601
	 */
602 603 604 605 606 607 608 609 610 611 612 613
	if (base->cpu_base != cpu_base)
		return;

	/*
	 * If the hrtimer interrupt is running, then it will
	 * reevaluate the clock bases and reprogram the clock event
	 * device. The callbacks are always executed in hard interrupt
	 * context so we don't need an extra check for a running
	 * callback.
	 */
	if (cpu_base->in_hrtirq)
		return;
614

615 616
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
617
	 * expiry time which is less than base->offset. Set it to 0.
618
	 */
T
Thomas Gleixner 已提交
619 620
	if (expires < 0)
		expires = 0;
621

T
Thomas Gleixner 已提交
622
	if (expires >= cpu_base->expires_next)
623
		return;
624

625
	/* Update the pointer to the next expiring timer */
626
	cpu_base->next_timer = timer;
627

628 629 630 631 632 633 634
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * do not schedule a timer which is earlier than the expiry
	 * which we enforced in the hang detection. We want the system
	 * to make progress.
	 */
	if (cpu_base->hang_detected)
635
		return;
636 637

	/*
638 639
	 * Program the timer hardware. We enforce the expiry for
	 * events which are already in the past.
640
	 */
641 642
	cpu_base->expires_next = expires;
	tick_program_event(expires, 1);
643 644 645 646 647 648 649
}

/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
T
Thomas Gleixner 已提交
650
	base->expires_next = KTIME_MAX;
651 652 653
	base->hres_active = 0;
}

654 655 656 657 658 659 660
/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
661
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
662

663
	if (!base->hres_active)
664 665 666
		return;

	raw_spin_lock(&base->lock);
667
	hrtimer_update_base(base);
668 669 670
	hrtimer_force_reprogram(base, 0);
	raw_spin_unlock(&base->lock);
}
671

672 673 674
/*
 * Switch to high resolution mode
 */
675
static void hrtimer_switch_to_hres(void)
676
{
677
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
678 679

	if (tick_init_highres()) {
I
Ingo Molnar 已提交
680
		printk(KERN_WARNING "Could not switch to high resolution "
681
				    "mode on CPU %d\n", base->cpu);
682
		return;
683 684
	}
	base->hres_active = 1;
685
	hrtimer_resolution = HIGH_RES_NSEC;
686 687 688 689 690 691

	tick_setup_sched_timer();
	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
}

692 693 694 695 696 697 698
static void clock_was_set_work(struct work_struct *work)
{
	clock_was_set();
}

static DECLARE_WORK(hrtimer_work, clock_was_set_work);

699
/*
P
Pratyush Patel 已提交
700
 * Called from timekeeping and resume code to reprogram the hrtimer
701
 * interrupt device on all cpus.
702 703 704
 */
void clock_was_set_delayed(void)
{
705
	schedule_work(&hrtimer_work);
706 707
}

708 709
#else

710
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
711 712
static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
713
static inline void hrtimer_switch_to_hres(void) { }
714 715
static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
716 717
static inline int hrtimer_reprogram(struct hrtimer *timer,
				    struct hrtimer_clock_base *base)
718 719 720 721
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
722
static inline void retrigger_next_event(void *arg) { }
723 724 725

#endif /* CONFIG_HIGH_RES_TIMERS */

726 727 728 729 730 731 732 733 734 735 736 737 738
/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
739
#ifdef CONFIG_HIGH_RES_TIMERS
740 741
	/* Retrigger the CPU local events everywhere */
	on_each_cpu(retrigger_next_event, NULL, 1);
742 743
#endif
	timerfd_clock_was_set();
744 745 746 747
}

/*
 * During resume we might have to reprogram the high resolution timer
748 749
 * interrupt on all online CPUs.  However, all other CPUs will be
 * stopped with IRQs interrupts disabled so the clock_was_set() call
750
 * must be deferred.
751 752 753
 */
void hrtimers_resume(void)
{
754
	lockdep_assert_irqs_disabled();
755
	/* Retrigger on the local CPU */
756
	retrigger_next_event(NULL);
757 758
	/* And schedule a retrigger for all others */
	clock_was_set_delayed();
759 760
}

761
/*
762
 * Counterpart to lock_hrtimer_base above:
763 764 765 766
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
767
	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
768 769 770 771 772
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
773
 * @now:	forward past this time
774 775 776
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
777
 * Returns the number of overruns.
778 779 780 781 782 783 784 785
 *
 * Can be safely called from the callback function of @timer. If
 * called from other contexts @timer must neither be enqueued nor
 * running the callback and the caller needs to take care of
 * serialization.
 *
 * Note: This only updates the timer expiry value and does not requeue
 * the timer.
786
 */
D
Davide Libenzi 已提交
787
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
788
{
D
Davide Libenzi 已提交
789
	u64 orun = 1;
790
	ktime_t delta;
791

792
	delta = ktime_sub(now, hrtimer_get_expires(timer));
793

T
Thomas Gleixner 已提交
794
	if (delta < 0)
795 796
		return 0;

797 798 799
	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
		return 0;

T
Thomas Gleixner 已提交
800 801
	if (interval < hrtimer_resolution)
		interval = hrtimer_resolution;
802

T
Thomas Gleixner 已提交
803
	if (unlikely(delta >= interval)) {
804
		s64 incr = ktime_to_ns(interval);
805 806

		orun = ktime_divns(delta, incr);
807
		hrtimer_add_expires_ns(timer, incr * orun);
T
Thomas Gleixner 已提交
808
		if (hrtimer_get_expires_tv64(timer) > now)
809 810 811 812 813 814 815
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
816
	hrtimer_add_expires(timer, interval);
817 818 819

	return orun;
}
S
Stas Sergeev 已提交
820
EXPORT_SYMBOL_GPL(hrtimer_forward);
821 822 823 824 825 826

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
827 828
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
829
 */
830 831
static int enqueue_hrtimer(struct hrtimer *timer,
			   struct hrtimer_clock_base *base)
832
{
833
	debug_activate(timer);
834

835
	base->cpu_base->active_bases |= 1 << base->index;
836

837
	timer->state = HRTIMER_STATE_ENQUEUED;
838

839
	return timerqueue_add(&base->active, &timer->node);
840
}
841 842 843 844 845

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
846 847 848 849 850
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
851
 */
852
static void __remove_hrtimer(struct hrtimer *timer,
853
			     struct hrtimer_clock_base *base,
854
			     u8 newstate, int reprogram)
855
{
856
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
857
	u8 state = timer->state;
858

859 860 861
	timer->state = newstate;
	if (!(state & HRTIMER_STATE_ENQUEUED))
		return;
862

863
	if (!timerqueue_del(&base->active, &timer->node))
864
		cpu_base->active_bases &= ~(1 << base->index);
865 866

#ifdef CONFIG_HIGH_RES_TIMERS
867 868 869 870 871 872 873 874 875 876
	/*
	 * Note: If reprogram is false we do not update
	 * cpu_base->next_timer. This happens when we remove the first
	 * timer on a remote cpu. No harm as we never dereference
	 * cpu_base->next_timer. So the worst thing what can happen is
	 * an superflous call to hrtimer_force_reprogram() on the
	 * remote cpu later on if the same timer gets enqueued again.
	 */
	if (reprogram && timer == cpu_base->next_timer)
		hrtimer_force_reprogram(cpu_base, 1);
877
#endif
878 879 880 881 882 883
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
884
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
885
{
886
	if (hrtimer_is_queued(timer)) {
887
		u8 state = timer->state;
888 889 890 891 892 893 894 895 896 897
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
898
		debug_deactivate(timer);
899
		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
900

901 902 903
		if (!restart)
			state = HRTIMER_STATE_INACTIVE;

904
		__remove_hrtimer(timer, base, state, reprogram);
905 906 907 908 909
		return 1;
	}
	return 0;
}

910 911 912 913 914 915 916 917 918 919 920
static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
					    const enum hrtimer_mode mode)
{
#ifdef CONFIG_TIME_LOW_RES
	/*
	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
	 * granular time values. For relative timers we add hrtimer_resolution
	 * (i.e. one jiffie) to prevent short timeouts.
	 */
	timer->is_rel = mode & HRTIMER_MODE_REL;
	if (timer->is_rel)
T
Thomas Gleixner 已提交
921
		tim = ktime_add_safe(tim, hrtimer_resolution);
922 923 924 925
#endif
	return tim;
}

926
/**
927
 * hrtimer_start_range_ns - (re)start an hrtimer
928 929 930
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
931 932
 * @mode:	timer mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED)
933
 */
934
void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
935
			    u64 delta_ns, const enum hrtimer_mode mode)
936
{
937
	struct hrtimer_clock_base *base, *new_base;
938
	unsigned long flags;
939
	int leftmost;
940 941 942 943

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
944
	remove_hrtimer(timer, base, true);
945

946
	if (mode & HRTIMER_MODE_REL)
947
		tim = ktime_add_safe(tim, base->get_time());
948 949

	tim = hrtimer_update_lowres(timer, tim, mode);
950

951
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
952

953 954 955
	/* Switch the timer base, if necessary: */
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);

956
	leftmost = enqueue_hrtimer(timer, new_base);
957 958
	if (!leftmost)
		goto unlock;
959 960 961 962 963 964

	if (!hrtimer_is_hres_active(timer)) {
		/*
		 * Kick to reschedule the next tick to handle the new timer
		 * on dynticks target.
		 */
965
		if (is_timers_nohz_active())
966
			wake_up_nohz_cpu(new_base->cpu_base->cpu);
967 968
	} else {
		hrtimer_reprogram(timer, new_base);
969
	}
970
unlock:
971
	unlock_hrtimer_base(timer, &flags);
972
}
973 974
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

975 976 977 978 979 980 981
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
982
 * -1 when the timer is currently executing the callback function and
983
 *    cannot be stopped
984 985 986
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
987
	struct hrtimer_clock_base *base;
988 989 990
	unsigned long flags;
	int ret = -1;

991 992 993 994 995 996 997 998 999
	/*
	 * Check lockless first. If the timer is not active (neither
	 * enqueued nor running the callback, nothing to do here.  The
	 * base lock does not serialize against a concurrent enqueue,
	 * so we can avoid taking it.
	 */
	if (!hrtimer_active(timer))
		return 0;

1000 1001
	base = lock_hrtimer_base(timer, &flags);

1002
	if (!hrtimer_callback_running(timer))
1003
		ret = remove_hrtimer(timer, base, false);
1004 1005 1006 1007 1008 1009

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1010
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1027
		cpu_relax();
1028 1029
	}
}
1030
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1031 1032 1033 1034

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
1035
 * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1036
 */
1037
ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1038 1039 1040 1041
{
	unsigned long flags;
	ktime_t rem;

1042
	lock_hrtimer_base(timer, &flags);
1043 1044 1045 1046
	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
		rem = hrtimer_expires_remaining_adjusted(timer);
	else
		rem = hrtimer_expires_remaining(timer);
1047 1048 1049 1050
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1051
EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1052

1053
#ifdef CONFIG_NO_HZ_COMMON
1054 1055 1056
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
1057
 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1058
 */
1059
u64 hrtimer_get_next_event(void)
1060
{
1061
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1062
	u64 expires = KTIME_MAX;
1063 1064
	unsigned long flags;

1065
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1066

1067
	if (!__hrtimer_hres_active(cpu_base))
T
Thomas Gleixner 已提交
1068
		expires = __hrtimer_get_next_event(cpu_base);
1069

1070
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1071

1072
	return expires;
1073 1074 1075
}
#endif

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
static inline int hrtimer_clockid_to_base(clockid_t clock_id)
{
	if (likely(clock_id < MAX_CLOCKS)) {
		int base = hrtimer_clock_to_base_table[clock_id];

		if (likely(base != HRTIMER_MAX_CLOCK_BASES))
			return base;
	}
	WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
	return HRTIMER_BASE_MONOTONIC;
}

1088 1089
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1090
{
1091
	struct hrtimer_cpu_base *cpu_base;
1092
	int base;
1093

1094 1095
	memset(timer, 0, sizeof(struct hrtimer));

1096
	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1097

1098
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1099 1100
		clock_id = CLOCK_MONOTONIC;

1101 1102
	base = hrtimer_clockid_to_base(clock_id);
	timer->base = &cpu_base->clock_base[base];
1103
	timerqueue_init(&timer->node);
1104
}
1105 1106 1107 1108 1109

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
1110 1111
 * @mode:	timer mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL); pinned is not considered here!
1112 1113 1114 1115
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
1116
	debug_init(timer, clock_id, mode);
1117 1118
	__hrtimer_init(timer, clock_id, mode);
}
1119
EXPORT_SYMBOL_GPL(hrtimer_init);
1120

1121 1122 1123 1124
/*
 * A timer is active, when it is enqueued into the rbtree or the
 * callback function is running or it's in the state of being migrated
 * to another cpu.
1125
 *
1126
 * It is important for this function to not return a false negative.
1127
 */
1128
bool hrtimer_active(const struct hrtimer *timer)
1129
{
1130
	struct hrtimer_cpu_base *cpu_base;
1131
	unsigned int seq;
1132

1133 1134 1135
	do {
		cpu_base = READ_ONCE(timer->base->cpu_base);
		seq = raw_read_seqcount_begin(&cpu_base->seq);
1136

1137 1138 1139 1140 1141 1142 1143 1144
		if (timer->state != HRTIMER_STATE_INACTIVE ||
		    cpu_base->running == timer)
			return true;

	} while (read_seqcount_retry(&cpu_base->seq, seq) ||
		 cpu_base != READ_ONCE(timer->base->cpu_base));

	return false;
1145
}
1146
EXPORT_SYMBOL_GPL(hrtimer_active);
1147

1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
/*
 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
 * distinct sections:
 *
 *  - queued:	the timer is queued
 *  - callback:	the timer is being ran
 *  - post:	the timer is inactive or (re)queued
 *
 * On the read side we ensure we observe timer->state and cpu_base->running
 * from the same section, if anything changed while we looked at it, we retry.
 * This includes timer->base changing because sequence numbers alone are
 * insufficient for that.
 *
 * The sequence numbers are required because otherwise we could still observe
 * a false negative if the read side got smeared over multiple consequtive
 * __run_hrtimer() invocations.
 */

1166 1167 1168
static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
			  struct hrtimer_clock_base *base,
			  struct hrtimer *timer, ktime_t *now)
1169 1170 1171 1172
{
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1173
	lockdep_assert_held(&cpu_base->lock);
1174

1175
	debug_deactivate(timer);
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
	cpu_base->running = timer;

	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
	 * timer->state == INACTIVE.
	 */
	raw_write_seqcount_barrier(&cpu_base->seq);

	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1188
	fn = timer->function;
1189

1190 1191 1192 1193 1194 1195 1196 1197
	/*
	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
	 * timer is restarted with a period then it becomes an absolute
	 * timer. If its not restarted it does not matter.
	 */
	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
		timer->is_rel = false;

1198
	/*
1199 1200 1201
	 * The timer is marked as running in the CPU base, so it is
	 * protected against migration to a different CPU even if the lock
	 * is dropped.
1202
	 */
1203
	raw_spin_unlock(&cpu_base->lock);
1204
	trace_hrtimer_expire_entry(timer, now);
1205
	restart = fn(timer);
1206
	trace_hrtimer_expire_exit(timer);
1207
	raw_spin_lock(&cpu_base->lock);
1208 1209

	/*
1210
	 * Note: We clear the running state after enqueue_hrtimer and
P
Pratyush Patel 已提交
1211
	 * we do not reprogram the event hardware. Happens either in
T
Thomas Gleixner 已提交
1212
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1213 1214 1215 1216
	 *
	 * Note: Because we dropped the cpu_base->lock above,
	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
	 * for us already.
1217
	 */
1218 1219
	if (restart != HRTIMER_NORESTART &&
	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1220
		enqueue_hrtimer(timer, base);
1221

1222 1223 1224 1225 1226 1227 1228 1229
	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
	 * timer->state == INACTIVE.
	 */
	raw_write_seqcount_barrier(&cpu_base->seq);
1230

1231 1232
	WARN_ON_ONCE(cpu_base->running != timer);
	cpu_base->running = NULL;
1233 1234
}

1235
static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1236
{
1237 1238
	struct hrtimer_clock_base *base = cpu_base->clock_base;
	unsigned int active = cpu_base->active_bases;
1239

1240
	for (; active; base++, active >>= 1) {
1241
		struct timerqueue_node *node;
1242 1243
		ktime_t basenow;

1244
		if (!(active & 0x01))
1245
			continue;
1246 1247 1248

		basenow = ktime_add(now, base->offset);

1249
		while ((node = timerqueue_getnext(&base->active))) {
1250 1251
			struct hrtimer *timer;

1252
			timer = container_of(node, struct hrtimer, node);
1253

1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */
T
Thomas Gleixner 已提交
1266
			if (basenow < hrtimer_get_softexpires_tv64(timer))
1267 1268
				break;

1269
			__run_hrtimer(cpu_base, base, timer, &basenow);
1270 1271
		}
	}
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
}

#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
	ktime_t expires_next, now, entry_time, delta;
	int retries = 0;

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
T
Thomas Gleixner 已提交
1288
	dev->next_event = KTIME_MAX;
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300

	raw_spin_lock(&cpu_base->lock);
	entry_time = now = hrtimer_update_base(cpu_base);
retry:
	cpu_base->in_hrtirq = 1;
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
T
Thomas Gleixner 已提交
1301
	cpu_base->expires_next = KTIME_MAX;
1302 1303 1304

	__hrtimer_run_queues(cpu_base, now);

1305 1306
	/* Reevaluate the clock bases for the next expiry */
	expires_next = __hrtimer_get_next_event(cpu_base);
1307 1308 1309 1310
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1311
	cpu_base->expires_next = expires_next;
1312
	cpu_base->in_hrtirq = 0;
1313
	raw_spin_unlock(&cpu_base->lock);
1314 1315

	/* Reprogramming necessary ? */
1316
	if (!tick_program_event(expires_next, 0)) {
1317 1318
		cpu_base->hang_detected = 0;
		return;
1319
	}
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329

	/*
	 * The next timer was already expired due to:
	 * - tracing
	 * - long lasting callbacks
	 * - being scheduled away when running in a VM
	 *
	 * We need to prevent that we loop forever in the hrtimer
	 * interrupt routine. We give it 3 attempts to avoid
	 * overreacting on some spurious event.
1330 1331 1332
	 *
	 * Acquire base lock for updating the offsets and retrieving
	 * the current time.
1333
	 */
1334
	raw_spin_lock(&cpu_base->lock);
1335
	now = hrtimer_update_base(cpu_base);
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
	cpu_base->nr_retries++;
	if (++retries < 3)
		goto retry;
	/*
	 * Give the system a chance to do something else than looping
	 * here. We stored the entry time, so we know exactly how long
	 * we spent here. We schedule the next event this amount of
	 * time away.
	 */
	cpu_base->nr_hangs++;
	cpu_base->hang_detected = 1;
1347
	raw_spin_unlock(&cpu_base->lock);
1348
	delta = ktime_sub(now, entry_time);
T
Thomas Gleixner 已提交
1349 1350
	if ((unsigned int)delta > cpu_base->max_hang_time)
		cpu_base->max_hang_time = (unsigned int) delta;
1351 1352 1353 1354
	/*
	 * Limit it to a sensible value as we enforce a longer
	 * delay. Give the CPU at least 100ms to catch up.
	 */
T
Thomas Gleixner 已提交
1355
	if (delta > 100 * NSEC_PER_MSEC)
1356 1357 1358 1359 1360 1361
		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
	else
		expires_next = ktime_add(now, delta);
	tick_program_event(expires_next, 1);
	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
		    ktime_to_ns(delta));
1362 1363
}

1364
/* called with interrupts disabled */
1365
static inline void __hrtimer_peek_ahead_timers(void)
1366 1367 1368 1369 1370 1371
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

1372
	td = this_cpu_ptr(&tick_cpu_device);
1373 1374 1375 1376
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1377 1378 1379 1380 1381
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1382

1383
/*
1384
 * Called from run_local_timers in hardirq context every jiffy
1385
 */
1386
void hrtimer_run_queues(void)
1387
{
1388
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1389
	ktime_t now;
1390

1391
	if (__hrtimer_hres_active(cpu_base))
1392
		return;
1393

1394
	/*
1395 1396 1397 1398 1399
	 * This _is_ ugly: We have to check periodically, whether we
	 * can switch to highres and / or nohz mode. The clocksource
	 * switch happens with xtime_lock held. Notification from
	 * there only sets the check bit in the tick_oneshot code,
	 * otherwise we might deadlock vs. xtime_lock.
1400
	 */
1401
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1402
		hrtimer_switch_to_hres();
1403
		return;
1404
	}
1405

1406 1407 1408 1409
	raw_spin_lock(&cpu_base->lock);
	now = hrtimer_update_base(cpu_base);
	__hrtimer_run_queues(cpu_base, now);
	raw_spin_unlock(&cpu_base->lock);
1410 1411
}

1412 1413 1414
/*
 * Sleep related functions:
 */
1415
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1428
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1429 1430 1431 1432
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}
S
Stephen Hemminger 已提交
1433
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1434

1435
int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1436 1437 1438 1439
{
	switch(restart->nanosleep.type) {
#ifdef CONFIG_COMPAT
	case TT_COMPAT:
1440
		if (compat_put_timespec64(ts, restart->nanosleep.compat_rmtp))
1441 1442 1443 1444
			return -EFAULT;
		break;
#endif
	case TT_NATIVE:
1445
		if (put_timespec64(ts, restart->nanosleep.rmtp))
1446 1447 1448 1449 1450 1451 1452 1453
			return -EFAULT;
		break;
	default:
		BUG();
	}
	return -ERESTART_RESTARTBLOCK;
}

1454
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1455
{
1456 1457
	struct restart_block *restart;

1458
	hrtimer_init_sleeper(t, current);
1459

1460 1461
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1462
		hrtimer_start_expires(&t->timer, mode);
1463

1464
		if (likely(t->task))
1465
			freezable_schedule();
1466

1467
		hrtimer_cancel(&t->timer);
1468
		mode = HRTIMER_MODE_ABS;
1469 1470

	} while (t->task && !signal_pending(current));
1471

1472 1473
	__set_current_state(TASK_RUNNING);

1474
	if (!t->task)
1475 1476
		return 0;

1477 1478
	restart = &current->restart_block;
	if (restart->nanosleep.type != TT_NONE) {
1479
		ktime_t rem = hrtimer_expires_remaining(&t->timer);
1480
		struct timespec64 rmt;
1481

1482 1483
		if (rem <= 0)
			return 0;
1484
		rmt = ktime_to_timespec64(rem);
1485

1486
		return nanosleep_copyout(restart, &rmt);
1487 1488
	}
	return -ERESTART_RESTARTBLOCK;
1489 1490
}

A
Al Viro 已提交
1491
static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1492
{
1493
	struct hrtimer_sleeper t;
1494
	int ret;
1495

1496
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1497
				HRTIMER_MODE_ABS);
1498
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1499

1500
	ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1501 1502
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1503 1504
}

1505
long hrtimer_nanosleep(const struct timespec64 *rqtp,
1506 1507
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
1508
	struct restart_block *restart;
1509
	struct hrtimer_sleeper t;
1510
	int ret = 0;
1511
	u64 slack;
1512 1513

	slack = current->timer_slack_ns;
1514
	if (dl_task(current) || rt_task(current))
1515
		slack = 0;
1516

1517
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1518
	hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
1519 1520
	ret = do_nanosleep(&t, mode);
	if (ret != -ERESTART_RESTARTBLOCK)
1521
		goto out;
1522

1523
	/* Absolute timers do not update the rmtp value and restart: */
1524 1525 1526 1527
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1528

1529
	restart = &current->restart_block;
1530
	restart->fn = hrtimer_nanosleep_restart;
1531
	restart->nanosleep.clockid = t.timer.base->clockid;
1532
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1533 1534 1535
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1536 1537
}

1538 1539
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1540
{
1541
	struct timespec64 tu;
1542

1543
	if (get_timespec64(&tu, rqtp))
1544 1545
		return -EFAULT;

1546
	if (!timespec64_valid(&tu))
1547 1548
		return -EINVAL;

1549
	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1550
	current->restart_block.nanosleep.rmtp = rmtp;
1551
	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1552 1553
}

1554 1555 1556 1557 1558
#ifdef CONFIG_COMPAT

COMPAT_SYSCALL_DEFINE2(nanosleep, struct compat_timespec __user *, rqtp,
		       struct compat_timespec __user *, rmtp)
{
1559
	struct timespec64 tu;
1560

1561
	if (compat_get_timespec64(&tu, rqtp))
1562 1563
		return -EFAULT;

1564
	if (!timespec64_valid(&tu))
1565 1566 1567 1568
		return -EINVAL;

	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
	current->restart_block.nanosleep.compat_rmtp = rmtp;
1569
	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1570 1571 1572
}
#endif

1573 1574 1575
/*
 * Functions related to boot-time initialization:
 */
1576
int hrtimers_prepare_cpu(unsigned int cpu)
1577
{
1578
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1579 1580
	int i;

1581
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1582
		cpu_base->clock_base[i].cpu_base = cpu_base;
1583 1584
		timerqueue_init_head(&cpu_base->clock_base[i].active);
	}
1585

1586
	cpu_base->cpu = cpu;
1587
	hrtimer_init_hres(cpu_base);
1588
	return 0;
1589 1590 1591 1592
}

#ifdef CONFIG_HOTPLUG_CPU

1593
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1594
				struct hrtimer_clock_base *new_base)
1595 1596
{
	struct hrtimer *timer;
1597
	struct timerqueue_node *node;
1598

1599 1600
	while ((node = timerqueue_getnext(&old_base->active))) {
		timer = container_of(node, struct hrtimer, node);
1601
		BUG_ON(hrtimer_callback_running(timer));
1602
		debug_deactivate(timer);
T
Thomas Gleixner 已提交
1603 1604

		/*
1605
		 * Mark it as ENQUEUED not INACTIVE otherwise the
T
Thomas Gleixner 已提交
1606 1607 1608
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
1609
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1610
		timer->base = new_base;
1611
		/*
T
Thomas Gleixner 已提交
1612 1613 1614 1615 1616 1617
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1618
		 */
1619
		enqueue_hrtimer(timer, new_base);
1620 1621 1622
	}
}

1623
int hrtimers_dead_cpu(unsigned int scpu)
1624
{
1625
	struct hrtimer_cpu_base *old_base, *new_base;
1626
	int i;
1627

1628 1629
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1630 1631 1632

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
1633
	new_base = this_cpu_ptr(&hrtimer_bases);
1634 1635 1636 1637
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1638 1639
	raw_spin_lock(&new_base->lock);
	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1640

1641
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1642
		migrate_hrtimer_list(&old_base->clock_base[i],
1643
				     &new_base->clock_base[i]);
1644 1645
	}

1646 1647
	raw_spin_unlock(&old_base->lock);
	raw_spin_unlock(&new_base->lock);
1648

1649 1650 1651
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1652
	return 0;
1653
}
1654

1655 1656 1657 1658
#endif /* CONFIG_HOTPLUG_CPU */

void __init hrtimers_init(void)
{
1659
	hrtimers_prepare_cpu(smp_processor_id());
1660 1661
}

1662
/**
1663
 * schedule_hrtimeout_range_clock - sleep until timeout
1664
 * @expires:	timeout value (ktime_t)
1665
 * @delta:	slack in expires timeout (ktime_t)
1666 1667
 * @mode:	timer mode
 * @clock_id:	timer clock to be used
1668
 */
1669
int __sched
1670
schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1671
			       const enum hrtimer_mode mode, clockid_t clock_id)
1672 1673 1674 1675 1676 1677 1678
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
T
Thomas Gleixner 已提交
1679
	if (expires && *expires == 0) {
1680 1681 1682 1683 1684
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
N
Namhyung Kim 已提交
1685
	 * A NULL parameter means "infinite"
1686 1687 1688 1689 1690 1691
	 */
	if (!expires) {
		schedule();
		return -EINTR;
	}

1692
	hrtimer_init_on_stack(&t.timer, clock_id, mode);
1693
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1694 1695 1696

	hrtimer_init_sleeper(&t, current);

1697
	hrtimer_start_expires(&t.timer, mode);
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1709 1710 1711 1712 1713

/**
 * schedule_hrtimeout_range - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @delta:	slack in expires timeout (ktime_t)
1714
 * @mode:	timer mode
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1728 1729
 * pass before the routine returns unless the current task is explicitly
 * woken up, (e.g. by wake_up_process()).
1730 1731
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1732 1733
 * delivered to the current task or the current task is explicitly woken
 * up.
1734 1735 1736 1737
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
1738 1739 1740
 * Returns 0 when the timer has expired. If the task was woken before the
 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
 * by an explicit wakeup, it returns -EINTR.
1741
 */
1742
int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1743 1744 1745 1746 1747
				     const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range_clock(expires, delta, mode,
					      CLOCK_MONOTONIC);
}
1748 1749 1750 1751 1752
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
1753
 * @mode:	timer mode
1754 1755 1756 1757 1758 1759 1760 1761
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1762 1763
 * pass before the routine returns unless the current task is explicitly
 * woken up, (e.g. by wake_up_process()).
1764 1765
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1766 1767
 * delivered to the current task or the current task is explicitly woken
 * up.
1768 1769 1770 1771
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
1772 1773 1774
 * Returns 0 when the timer has expired. If the task was woken before the
 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
 * by an explicit wakeup, it returns -EINTR.
1775 1776 1777 1778 1779 1780
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1781
EXPORT_SYMBOL_GPL(schedule_hrtimeout);