hrtimer.c 46.0 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
35
#include <linux/export.h>
36 37 38 39
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46
#include <linux/sched.h>
47
#include <linux/sched/sysctl.h>
48
#include <linux/sched/rt.h>
49
#include <linux/sched/deadline.h>
50
#include <linux/timer.h>
51
#include <linux/freezer.h>
52 53 54

#include <asm/uaccess.h>

55 56
#include <trace/events/timer.h>

57
#include "tick-internal.h"
58

59 60
/*
 * The timer bases:
61
 *
62 63 64 65
 * There are more clockids then hrtimer bases. Thus, we index
 * into the timer bases by the hrtimer_base_type enum. When trying
 * to reach a base using a clockid, hrtimer_clockid_to_base()
 * is used to convert from clockid to the proper hrtimer_base_type.
66
 */
67
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
68
{
69
	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
70
	.seq = SEQCNT_ZERO(hrtimer_bases.seq),
71
	.clock_base =
72
	{
73
		{
74 75
			.index = HRTIMER_BASE_MONOTONIC,
			.clockid = CLOCK_MONOTONIC,
76 77
			.get_time = &ktime_get,
		},
T
Thomas Gleixner 已提交
78 79 80 81 82
		{
			.index = HRTIMER_BASE_REALTIME,
			.clockid = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
		},
83
		{
84 85
			.index = HRTIMER_BASE_BOOTTIME,
			.clockid = CLOCK_BOOTTIME,
86 87
			.get_time = &ktime_get_boottime,
		},
88 89 90 91 92
		{
			.index = HRTIMER_BASE_TAI,
			.clockid = CLOCK_TAI,
			.get_time = &ktime_get_clocktai,
		},
93
	}
94 95
};

96
static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
97 98 99
	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
100
	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
101
};
102 103 104 105 106 107

static inline int hrtimer_clockid_to_base(clockid_t clock_id)
{
	return hrtimer_clock_to_base_table[clock_id];
}

108 109 110 111 112 113
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

114 115 116 117 118 119 120 121 122 123 124 125
/*
 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
 * such that hrtimer_callback_running() can unconditionally dereference
 * timer->base->cpu_base
 */
static struct hrtimer_cpu_base migration_cpu_base = {
	.seq = SEQCNT_ZERO(migration_cpu_base),
	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
};

#define migration_base	migration_cpu_base.clock_base[0]

126 127 128 129 130 131 132 133 134
/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
135 136
 * possible to set timer->base = &migration_base and drop the lock: the timer
 * remains locked.
137
 */
138 139 140
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
141
{
142
	struct hrtimer_clock_base *base;
143 144 145

	for (;;) {
		base = timer->base;
146
		if (likely(base != &migration_base)) {
147
			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
148 149 150
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
151
			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
152 153 154 155 156
		}
		cpu_relax();
	}
}

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
/*
 * With HIGHRES=y we do not migrate the timer when it is expiring
 * before the next event on the target cpu because we cannot reprogram
 * the target cpu hardware and we would cause it to fire late.
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	ktime_t expires;

	if (!new_base->cpu_base->hres_active)
		return 0;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
#else
	return 0;
#endif
}

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
static inline
struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
					 int pinned)
{
	if (pinned || !base->migration_enabled)
		return this_cpu_ptr(&hrtimer_bases);
	return &per_cpu(hrtimer_bases, get_nohz_timer_target());
}
#else
static inline
struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
					 int pinned)
{
	return this_cpu_ptr(&hrtimer_bases);
}
#endif

198 199 200
/*
 * Switch the timer base to the current CPU when possible.
 */
201
static inline struct hrtimer_clock_base *
202 203
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
204
{
205
	struct hrtimer_cpu_base *new_cpu_base, *this_base;
206
	struct hrtimer_clock_base *new_base;
207
	int basenum = base->index;
208

209 210
	this_base = this_cpu_ptr(&hrtimer_bases);
	new_cpu_base = get_target_base(this_base, pinned);
211
again:
212
	new_base = &new_cpu_base->clock_base[basenum];
213 214 215

	if (base != new_base) {
		/*
216
		 * We are trying to move timer to new_base.
217 218 219 220 221 222 223
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
224
		if (unlikely(hrtimer_callback_running(timer)))
225 226
			return base;

227 228
		/* See the comment in lock_hrtimer_base() */
		timer->base = &migration_base;
229 230
		raw_spin_unlock(&base->cpu_base->lock);
		raw_spin_lock(&new_base->cpu_base->lock);
231

232 233
		if (new_cpu_base != this_base &&
		    hrtimer_check_target(timer, new_base)) {
234 235
			raw_spin_unlock(&new_base->cpu_base->lock);
			raw_spin_lock(&base->cpu_base->lock);
236
			new_cpu_base = this_base;
237 238
			timer->base = base;
			goto again;
239
		}
240
		timer->base = new_base;
241
	} else {
242 243 244
		if (new_cpu_base != this_base &&
		    hrtimer_check_target(timer, new_base)) {
			new_cpu_base = this_base;
245 246
			goto again;
		}
247 248 249 250 251 252
	}
	return new_base;
}

#else /* CONFIG_SMP */

253
static inline struct hrtimer_clock_base *
254 255
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
256
	struct hrtimer_clock_base *base = timer->base;
257

258
	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
259 260 261 262

	return base;
}

263
# define switch_hrtimer_base(t, b, p)	(b)
264 265 266 267 268 269 270 271 272 273 274

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
/*
 * Divide a ktime value by a nanosecond value
 */
275
s64 __ktime_divns(const ktime_t kt, s64 div)
276 277
{
	int sft = 0;
278 279
	s64 dclc;
	u64 tmp;
280

281
	dclc = ktime_to_ns(kt);
282 283
	tmp = dclc < 0 ? -dclc : dclc;

284 285 286 287 288
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
289 290 291
	tmp >>= sft;
	do_div(tmp, (unsigned long) div);
	return dclc < 0 ? -tmp : tmp;
292
}
293
EXPORT_SYMBOL_GPL(__ktime_divns);
294 295
#endif /* BITS_PER_LONG >= 64 */

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
	ktime_t res = ktime_add(lhs, rhs);

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

313 314
EXPORT_SYMBOL_GPL(ktime_add_safe);

315 316 317 318
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

319 320 321 322 323
static void *hrtimer_debug_hint(void *addr)
{
	return ((struct hrtimer *) addr)->function;
}

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
{
	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
383
	.debug_hint	= hrtimer_debug_hint,
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}
S
Stephen Hemminger 已提交
418
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
419 420 421 422 423 424 425 426 427 428 429 430

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
	   enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	trace_hrtimer_init(timer, clockid, mode);
}

static inline void debug_activate(struct hrtimer *timer)
{
	debug_hrtimer_activate(timer);
	trace_hrtimer_start(timer);
}

static inline void debug_deactivate(struct hrtimer *timer)
{
	debug_hrtimer_deactivate(timer);
	trace_hrtimer_cancel(timer);
}

451
#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
452 453 454 455 456 457 458 459
static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
					     struct hrtimer *timer)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	cpu_base->next_timer = timer;
#endif
}

460
static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
461 462 463
{
	struct hrtimer_clock_base *base = cpu_base->clock_base;
	ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
464
	unsigned int active = cpu_base->active_bases;
465

466
	hrtimer_update_next_timer(cpu_base, NULL);
467
	for (; active; base++, active >>= 1) {
468 469 470
		struct timerqueue_node *next;
		struct hrtimer *timer;

471
		if (!(active & 0x01))
472 473
			continue;

474
		next = timerqueue_getnext(&base->active);
475 476
		timer = container_of(next, struct hrtimer, node);
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
477
		if (expires.tv64 < expires_next.tv64) {
478
			expires_next = expires;
479 480
			hrtimer_update_next_timer(cpu_base, timer);
		}
481 482 483 484 485 486 487 488 489 490 491 492
	}
	/*
	 * clock_was_set() might have changed base->offset of any of
	 * the clock bases so the result might be negative. Fix it up
	 * to prevent a false positive in clockevents_program_event().
	 */
	if (expires_next.tv64 < 0)
		expires_next.tv64 = 0;
	return expires_next;
}
#endif

493 494 495 496 497 498
static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
{
	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;

499 500
	return ktime_get_update_offsets_now(&base->clock_was_set_seq,
					    offs_real, offs_boot, offs_tai);
501 502
}

503 504 505 506 507 508 509
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static int hrtimer_hres_enabled __read_mostly  = 1;
510 511
unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
EXPORT_SYMBOL_GPL(hrtimer_resolution);
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	if (!strcmp(str, "off"))
		hrtimer_hres_enabled = 0;
	else if (!strcmp(str, "on"))
		hrtimer_hres_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
540 541 542 543 544
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
{
	return cpu_base->hres_active;
}

545 546
static inline int hrtimer_hres_active(void)
{
547
	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
548 549 550 551 552 553 554
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
555 556
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
557
{
558 559 560 561 562 563
	ktime_t expires_next;

	if (!cpu_base->hres_active)
		return;

	expires_next = __hrtimer_get_next_event(cpu_base);
564

565 566 567 568 569
	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
		return;

	cpu_base->expires_next.tv64 = expires_next.tv64;

570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * leave the hang delay active in the hardware. We want the
	 * system to make progress. That also prevents the following
	 * scenario:
	 * T1 expires 50ms from now
	 * T2 expires 5s from now
	 *
	 * T1 is removed, so this code is called and would reprogram
	 * the hardware to 5s from now. Any hrtimer_start after that
	 * will not reprogram the hardware due to hang_detected being
	 * set. So we'd effectivly block all timers until the T2 event
	 * fires.
	 */
	if (cpu_base->hang_detected)
		return;

587
	tick_program_event(cpu_base->expires_next, 1);
588 589 590 591 592 593 594 595 596
}

/*
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
597 598
static void hrtimer_reprogram(struct hrtimer *timer,
			      struct hrtimer_clock_base *base)
599
{
600
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
601
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
602

603
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
604

605
	/*
606 607
	 * If the timer is not on the current cpu, we cannot reprogram
	 * the other cpus clock event device.
608
	 */
609 610 611 612 613 614 615 616 617 618 619 620
	if (base->cpu_base != cpu_base)
		return;

	/*
	 * If the hrtimer interrupt is running, then it will
	 * reevaluate the clock bases and reprogram the clock event
	 * device. The callbacks are always executed in hard interrupt
	 * context so we don't need an extra check for a running
	 * callback.
	 */
	if (cpu_base->in_hrtirq)
		return;
621

622 623
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
624
	 * expiry time which is less than base->offset. Set it to 0.
625 626
	 */
	if (expires.tv64 < 0)
627
		expires.tv64 = 0;
628

629
	if (expires.tv64 >= cpu_base->expires_next.tv64)
630
		return;
631

632
	/* Update the pointer to the next expiring timer */
633
	cpu_base->next_timer = timer;
634

635 636 637 638 639 640 641
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * do not schedule a timer which is earlier than the expiry
	 * which we enforced in the hang detection. We want the system
	 * to make progress.
	 */
	if (cpu_base->hang_detected)
642
		return;
643 644

	/*
645 646
	 * Program the timer hardware. We enforce the expiry for
	 * events which are already in the past.
647
	 */
648 649
	cpu_base->expires_next = expires;
	tick_program_event(expires, 1);
650 651 652 653 654 655 656 657 658 659 660
}

/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
	base->expires_next.tv64 = KTIME_MAX;
	base->hres_active = 0;
}

661 662 663 664 665 666 667
/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
668
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
669

670
	if (!base->hres_active)
671 672 673
		return;

	raw_spin_lock(&base->lock);
674
	hrtimer_update_base(base);
675 676 677
	hrtimer_force_reprogram(base, 0);
	raw_spin_unlock(&base->lock);
}
678

679 680 681
/*
 * Switch to high resolution mode
 */
682
static int hrtimer_switch_to_hres(void)
683
{
684
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
685 686

	if (tick_init_highres()) {
I
Ingo Molnar 已提交
687
		printk(KERN_WARNING "Could not switch to high resolution "
688
				    "mode on CPU %d\n", base->cpu);
689
		return 0;
690 691
	}
	base->hres_active = 1;
692
	hrtimer_resolution = HIGH_RES_NSEC;
693 694 695 696

	tick_setup_sched_timer();
	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
697
	return 1;
698 699
}

700 701 702 703 704 705 706
static void clock_was_set_work(struct work_struct *work)
{
	clock_was_set();
}

static DECLARE_WORK(hrtimer_work, clock_was_set_work);

707
/*
708 709
 * Called from timekeeping and resume code to reprogramm the hrtimer
 * interrupt device on all cpus.
710 711 712
 */
void clock_was_set_delayed(void)
{
713
	schedule_work(&hrtimer_work);
714 715
}

716 717
#else

718
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
719 720
static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
721
static inline int hrtimer_switch_to_hres(void) { return 0; }
722 723
static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
724 725
static inline int hrtimer_reprogram(struct hrtimer *timer,
				    struct hrtimer_clock_base *base)
726 727 728 729
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
730
static inline void retrigger_next_event(void *arg) { }
731 732 733

#endif /* CONFIG_HIGH_RES_TIMERS */

734 735 736 737 738 739 740 741 742 743 744 745 746
/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
747
#ifdef CONFIG_HIGH_RES_TIMERS
748 749
	/* Retrigger the CPU local events everywhere */
	on_each_cpu(retrigger_next_event, NULL, 1);
750 751
#endif
	timerfd_clock_was_set();
752 753 754 755
}

/*
 * During resume we might have to reprogram the high resolution timer
756 757
 * interrupt on all online CPUs.  However, all other CPUs will be
 * stopped with IRQs interrupts disabled so the clock_was_set() call
758
 * must be deferred.
759 760 761 762 763 764
 */
void hrtimers_resume(void)
{
	WARN_ONCE(!irqs_disabled(),
		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");

765
	/* Retrigger on the local CPU */
766
	retrigger_next_event(NULL);
767 768
	/* And schedule a retrigger for all others */
	clock_was_set_delayed();
769 770
}

771
static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
772
{
773
#ifdef CONFIG_TIMER_STATS
774 775
	if (timer->start_site)
		return;
776
	timer->start_site = __builtin_return_address(0);
777 778
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
779 780 781 782 783 784 785 786
#endif
}

static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
#endif
787
}
788 789 790 791 792 793 794 795

static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	if (likely(!timer_stats_active))
		return;
	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
				 timer->function, timer->start_comm, 0);
796
#endif
797
}
798

799
/*
800
 * Counterpart to lock_hrtimer_base above:
801 802 803 804
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
805
	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
806 807 808 809 810
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
811
 * @now:	forward past this time
812 813 814
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
815
 * Returns the number of overruns.
816 817 818 819 820 821 822 823
 *
 * Can be safely called from the callback function of @timer. If
 * called from other contexts @timer must neither be enqueued nor
 * running the callback and the caller needs to take care of
 * serialization.
 *
 * Note: This only updates the timer expiry value and does not requeue
 * the timer.
824
 */
D
Davide Libenzi 已提交
825
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
826
{
D
Davide Libenzi 已提交
827
	u64 orun = 1;
828
	ktime_t delta;
829

830
	delta = ktime_sub(now, hrtimer_get_expires(timer));
831 832 833 834

	if (delta.tv64 < 0)
		return 0;

835 836 837
	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
		return 0;

838 839
	if (interval.tv64 < hrtimer_resolution)
		interval.tv64 = hrtimer_resolution;
840

841
	if (unlikely(delta.tv64 >= interval.tv64)) {
842
		s64 incr = ktime_to_ns(interval);
843 844

		orun = ktime_divns(delta, incr);
845 846
		hrtimer_add_expires_ns(timer, incr * orun);
		if (hrtimer_get_expires_tv64(timer) > now.tv64)
847 848 849 850 851 852 853
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
854
	hrtimer_add_expires(timer, interval);
855 856 857

	return orun;
}
S
Stas Sergeev 已提交
858
EXPORT_SYMBOL_GPL(hrtimer_forward);
859 860 861 862 863 864

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
865 866
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
867
 */
868 869
static int enqueue_hrtimer(struct hrtimer *timer,
			   struct hrtimer_clock_base *base)
870
{
871
	debug_activate(timer);
872

873
	base->cpu_base->active_bases |= 1 << base->index;
874

875
	timer->state = HRTIMER_STATE_ENQUEUED;
876

877
	return timerqueue_add(&base->active, &timer->node);
878
}
879 880 881 882 883

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
884 885 886 887 888
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
889
 */
890
static void __remove_hrtimer(struct hrtimer *timer,
891
			     struct hrtimer_clock_base *base,
892
			     unsigned long newstate, int reprogram)
893
{
894
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
895
	unsigned int state = timer->state;
896

897 898 899
	timer->state = newstate;
	if (!(state & HRTIMER_STATE_ENQUEUED))
		return;
900

901
	if (!timerqueue_del(&base->active, &timer->node))
902
		cpu_base->active_bases &= ~(1 << base->index);
903 904

#ifdef CONFIG_HIGH_RES_TIMERS
905 906 907 908 909 910 911 912 913 914
	/*
	 * Note: If reprogram is false we do not update
	 * cpu_base->next_timer. This happens when we remove the first
	 * timer on a remote cpu. No harm as we never dereference
	 * cpu_base->next_timer. So the worst thing what can happen is
	 * an superflous call to hrtimer_force_reprogram() on the
	 * remote cpu later on if the same timer gets enqueued again.
	 */
	if (reprogram && timer == cpu_base->next_timer)
		hrtimer_force_reprogram(cpu_base, 1);
915
#endif
916 917 918 919 920 921
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
922
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
923
{
924
	if (hrtimer_is_queued(timer)) {
925
		unsigned long state = timer->state;
926 927 928 929 930 931 932 933 934 935
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
936
		debug_deactivate(timer);
937
		timer_stats_hrtimer_clear_start_info(timer);
938
		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
939

940 941 942
		if (!restart)
			state = HRTIMER_STATE_INACTIVE;

943
		__remove_hrtimer(timer, base, state, reprogram);
944 945 946 947 948
		return 1;
	}
	return 0;
}

949 950 951 952 953 954 955 956
/**
 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
 * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL)
 */
957 958
void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
			    unsigned long delta_ns, const enum hrtimer_mode mode)
959
{
960
	struct hrtimer_clock_base *base, *new_base;
961
	unsigned long flags;
962
	int leftmost;
963 964 965 966

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
967
	remove_hrtimer(timer, base, true);
968

969
	if (mode & HRTIMER_MODE_REL) {
970
		tim = ktime_add_safe(tim, base->get_time());
971 972 973 974 975 976 977 978
		/*
		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
		 * to signal that they simply return xtime in
		 * do_gettimeoffset(). In this case we want to round up by
		 * resolution when starting a relative timer, to avoid short
		 * timeouts. This will go away with the GTOD framework.
		 */
#ifdef CONFIG_TIME_LOW_RES
979
		tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution));
980 981
#endif
	}
982

983
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
984

985 986 987
	/* Switch the timer base, if necessary: */
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);

988 989
	timer_stats_hrtimer_set_start_info(timer);

990
	leftmost = enqueue_hrtimer(timer, new_base);
991 992
	if (!leftmost)
		goto unlock;
993 994 995 996 997 998

	if (!hrtimer_is_hres_active(timer)) {
		/*
		 * Kick to reschedule the next tick to handle the new timer
		 * on dynticks target.
		 */
999 1000
		if (new_base->cpu_base->nohz_active)
			wake_up_nohz_cpu(new_base->cpu_base->cpu);
1001 1002
	} else {
		hrtimer_reprogram(timer, new_base);
1003
	}
1004
unlock:
1005
	unlock_hrtimer_base(timer, &flags);
1006
}
1007 1008
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

1009 1010 1011 1012 1013 1014 1015 1016
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
1017
 *    cannot be stopped
1018 1019 1020
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
1021
	struct hrtimer_clock_base *base;
1022 1023 1024
	unsigned long flags;
	int ret = -1;

1025 1026 1027 1028 1029 1030 1031 1032 1033
	/*
	 * Check lockless first. If the timer is not active (neither
	 * enqueued nor running the callback, nothing to do here.  The
	 * base lock does not serialize against a concurrent enqueue,
	 * so we can avoid taking it.
	 */
	if (!hrtimer_active(timer))
		return 0;

1034 1035
	base = lock_hrtimer_base(timer, &flags);

1036
	if (!hrtimer_callback_running(timer))
1037
		ret = remove_hrtimer(timer, base, false);
1038 1039 1040 1041 1042 1043

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1044
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1061
		cpu_relax();
1062 1063
	}
}
1064
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
 */
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
{
	unsigned long flags;
	ktime_t rem;

1075
	lock_hrtimer_base(timer, &flags);
1076
	rem = hrtimer_expires_remaining(timer);
1077 1078 1079 1080
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1081
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1082

1083
#ifdef CONFIG_NO_HZ_COMMON
1084 1085 1086
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
1087
 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1088
 */
1089
u64 hrtimer_get_next_event(void)
1090
{
1091
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1092
	u64 expires = KTIME_MAX;
1093 1094
	unsigned long flags;

1095
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1096

1097
	if (!__hrtimer_hres_active(cpu_base))
1098
		expires = __hrtimer_get_next_event(cpu_base).tv64;
1099

1100
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1101

1102
	return expires;
1103 1104 1105
}
#endif

1106 1107
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1108
{
1109
	struct hrtimer_cpu_base *cpu_base;
1110
	int base;
1111

1112 1113
	memset(timer, 0, sizeof(struct hrtimer));

1114
	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1115

1116
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1117 1118
		clock_id = CLOCK_MONOTONIC;

1119 1120
	base = hrtimer_clockid_to_base(clock_id);
	timer->base = &cpu_base->clock_base[base];
1121
	timerqueue_init(&timer->node);
1122 1123 1124 1125 1126 1127

#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
1128
}
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
 * @mode:	timer mode abs/rel
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
1139
	debug_init(timer, clock_id, mode);
1140 1141
	__hrtimer_init(timer, clock_id, mode);
}
1142
EXPORT_SYMBOL_GPL(hrtimer_init);
1143

1144 1145 1146 1147
/*
 * A timer is active, when it is enqueued into the rbtree or the
 * callback function is running or it's in the state of being migrated
 * to another cpu.
1148
 *
1149
 * It is important for this function to not return a false negative.
1150
 */
1151
bool hrtimer_active(const struct hrtimer *timer)
1152
{
1153
	struct hrtimer_cpu_base *cpu_base;
1154
	unsigned int seq;
1155

1156 1157 1158
	do {
		cpu_base = READ_ONCE(timer->base->cpu_base);
		seq = raw_read_seqcount_begin(&cpu_base->seq);
1159

1160 1161 1162 1163 1164 1165 1166 1167
		if (timer->state != HRTIMER_STATE_INACTIVE ||
		    cpu_base->running == timer)
			return true;

	} while (read_seqcount_retry(&cpu_base->seq, seq) ||
		 cpu_base != READ_ONCE(timer->base->cpu_base));

	return false;
1168
}
1169
EXPORT_SYMBOL_GPL(hrtimer_active);
1170

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
/*
 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
 * distinct sections:
 *
 *  - queued:	the timer is queued
 *  - callback:	the timer is being ran
 *  - post:	the timer is inactive or (re)queued
 *
 * On the read side we ensure we observe timer->state and cpu_base->running
 * from the same section, if anything changed while we looked at it, we retry.
 * This includes timer->base changing because sequence numbers alone are
 * insufficient for that.
 *
 * The sequence numbers are required because otherwise we could still observe
 * a false negative if the read side got smeared over multiple consequtive
 * __run_hrtimer() invocations.
 */

1189 1190 1191
static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
			  struct hrtimer_clock_base *base,
			  struct hrtimer *timer, ktime_t *now)
1192 1193 1194 1195
{
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1196
	lockdep_assert_held(&cpu_base->lock);
1197

1198
	debug_deactivate(timer);
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
	cpu_base->running = timer;

	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
	 * timer->state == INACTIVE.
	 */
	raw_write_seqcount_barrier(&cpu_base->seq);

	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1211 1212
	timer_stats_account_hrtimer(timer);
	fn = timer->function;
1213 1214 1215 1216 1217 1218

	/*
	 * Because we run timers from hardirq context, there is no chance
	 * they get migrated to another cpu, therefore its safe to unlock
	 * the timer base.
	 */
1219
	raw_spin_unlock(&cpu_base->lock);
1220
	trace_hrtimer_expire_entry(timer, now);
1221
	restart = fn(timer);
1222
	trace_hrtimer_expire_exit(timer);
1223
	raw_spin_lock(&cpu_base->lock);
1224 1225

	/*
1226
	 * Note: We clear the running state after enqueue_hrtimer and
T
Thomas Gleixner 已提交
1227 1228
	 * we do not reprogramm the event hardware. Happens either in
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1229 1230 1231 1232
	 *
	 * Note: Because we dropped the cpu_base->lock above,
	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
	 * for us already.
1233
	 */
1234 1235
	if (restart != HRTIMER_NORESTART &&
	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1236
		enqueue_hrtimer(timer, base);
1237

1238 1239 1240 1241 1242 1243 1244 1245
	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
	 * timer->state == INACTIVE.
	 */
	raw_write_seqcount_barrier(&cpu_base->seq);
1246

1247 1248
	WARN_ON_ONCE(cpu_base->running != timer);
	cpu_base->running = NULL;
1249 1250
}

1251
static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1252
{
1253 1254
	struct hrtimer_clock_base *base = cpu_base->clock_base;
	unsigned int active = cpu_base->active_bases;
1255

1256
	for (; active; base++, active >>= 1) {
1257
		struct timerqueue_node *node;
1258 1259
		ktime_t basenow;

1260
		if (!(active & 0x01))
1261
			continue;
1262 1263 1264

		basenow = ktime_add(now, base->offset);

1265
		while ((node = timerqueue_getnext(&base->active))) {
1266 1267
			struct hrtimer *timer;

1268
			timer = container_of(node, struct hrtimer, node);
1269

1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */
1282
			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
1283 1284
				break;

1285
			__run_hrtimer(cpu_base, base, timer, &basenow);
1286 1287
		}
	}
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
}

#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
	ktime_t expires_next, now, entry_time, delta;
	int retries = 0;

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event.tv64 = KTIME_MAX;

	raw_spin_lock(&cpu_base->lock);
	entry_time = now = hrtimer_update_base(cpu_base);
retry:
	cpu_base->in_hrtirq = 1;
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
	cpu_base->expires_next.tv64 = KTIME_MAX;

	__hrtimer_run_queues(cpu_base, now);

1321 1322
	/* Reevaluate the clock bases for the next expiry */
	expires_next = __hrtimer_get_next_event(cpu_base);
1323 1324 1325 1326
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1327
	cpu_base->expires_next = expires_next;
1328
	cpu_base->in_hrtirq = 0;
1329
	raw_spin_unlock(&cpu_base->lock);
1330 1331

	/* Reprogramming necessary ? */
1332
	if (!tick_program_event(expires_next, 0)) {
1333 1334
		cpu_base->hang_detected = 0;
		return;
1335
	}
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345

	/*
	 * The next timer was already expired due to:
	 * - tracing
	 * - long lasting callbacks
	 * - being scheduled away when running in a VM
	 *
	 * We need to prevent that we loop forever in the hrtimer
	 * interrupt routine. We give it 3 attempts to avoid
	 * overreacting on some spurious event.
1346 1347 1348
	 *
	 * Acquire base lock for updating the offsets and retrieving
	 * the current time.
1349
	 */
1350
	raw_spin_lock(&cpu_base->lock);
1351
	now = hrtimer_update_base(cpu_base);
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
	cpu_base->nr_retries++;
	if (++retries < 3)
		goto retry;
	/*
	 * Give the system a chance to do something else than looping
	 * here. We stored the entry time, so we know exactly how long
	 * we spent here. We schedule the next event this amount of
	 * time away.
	 */
	cpu_base->nr_hangs++;
	cpu_base->hang_detected = 1;
1363
	raw_spin_unlock(&cpu_base->lock);
1364
	delta = ktime_sub(now, entry_time);
1365 1366
	if ((unsigned int)delta.tv64 > cpu_base->max_hang_time)
		cpu_base->max_hang_time = (unsigned int) delta.tv64;
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
	/*
	 * Limit it to a sensible value as we enforce a longer
	 * delay. Give the CPU at least 100ms to catch up.
	 */
	if (delta.tv64 > 100 * NSEC_PER_MSEC)
		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
	else
		expires_next = ktime_add(now, delta);
	tick_program_event(expires_next, 1);
	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
		    ktime_to_ns(delta));
1378 1379
}

1380 1381 1382 1383
/*
 * local version of hrtimer_peek_ahead_timers() called with interrupts
 * disabled.
 */
1384
static inline void __hrtimer_peek_ahead_timers(void)
1385 1386 1387 1388 1389 1390
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

1391
	td = this_cpu_ptr(&tick_cpu_device);
1392 1393 1394 1395
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1396 1397 1398 1399 1400
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1401

1402
/*
1403
 * Called from run_local_timers in hardirq context every jiffy
1404
 */
1405
void hrtimer_run_queues(void)
1406
{
1407
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1408
	ktime_t now;
1409

1410
	if (__hrtimer_hres_active(cpu_base))
1411
		return;
1412

1413
	/*
1414 1415 1416 1417 1418
	 * This _is_ ugly: We have to check periodically, whether we
	 * can switch to highres and / or nohz mode. The clocksource
	 * switch happens with xtime_lock held. Notification from
	 * there only sets the check bit in the tick_oneshot code,
	 * otherwise we might deadlock vs. xtime_lock.
1419
	 */
1420
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1421
		hrtimer_switch_to_hres();
1422
		return;
1423
	}
1424

1425 1426 1427 1428
	raw_spin_lock(&cpu_base->lock);
	now = hrtimer_update_base(cpu_base);
	__hrtimer_run_queues(cpu_base, now);
	raw_spin_unlock(&cpu_base->lock);
1429 1430
}

1431 1432 1433
/*
 * Sleep related functions:
 */
1434
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1447
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1448 1449 1450 1451
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}
S
Stephen Hemminger 已提交
1452
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1453

1454
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1455
{
1456
	hrtimer_init_sleeper(t, current);
1457

1458 1459
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1460
		hrtimer_start_expires(&t->timer, mode);
1461

1462
		if (likely(t->task))
1463
			freezable_schedule();
1464

1465
		hrtimer_cancel(&t->timer);
1466
		mode = HRTIMER_MODE_ABS;
1467 1468

	} while (t->task && !signal_pending(current));
1469

1470 1471
	__set_current_state(TASK_RUNNING);

1472
	return t->task == NULL;
1473 1474
}

1475 1476 1477 1478 1479
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

1480
	rem = hrtimer_expires_remaining(timer);
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
	if (rem.tv64 <= 0)
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;
}

1491
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1492
{
1493
	struct hrtimer_sleeper t;
1494
	struct timespec __user  *rmtp;
1495
	int ret = 0;
1496

1497
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1498
				HRTIMER_MODE_ABS);
1499
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1500

1501
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1502
		goto out;
1503

1504
	rmtp = restart->nanosleep.rmtp;
1505
	if (rmtp) {
1506
		ret = update_rmtp(&t.timer, rmtp);
1507
		if (ret <= 0)
1508
			goto out;
1509
	}
1510 1511

	/* The other values in restart are already filled in */
1512 1513 1514 1515
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1516 1517
}

1518
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1519 1520 1521
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1522
	struct hrtimer_sleeper t;
1523
	int ret = 0;
1524 1525 1526
	unsigned long slack;

	slack = current->timer_slack_ns;
1527
	if (dl_task(current) || rt_task(current))
1528
		slack = 0;
1529

1530
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1531
	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1532
	if (do_nanosleep(&t, mode))
1533
		goto out;
1534

1535
	/* Absolute timers do not update the rmtp value and restart: */
1536 1537 1538 1539
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1540

1541
	if (rmtp) {
1542
		ret = update_rmtp(&t.timer, rmtp);
1543
		if (ret <= 0)
1544
			goto out;
1545
	}
1546

1547
	restart = &current->restart_block;
1548
	restart->fn = hrtimer_nanosleep_restart;
1549
	restart->nanosleep.clockid = t.timer.base->clockid;
1550
	restart->nanosleep.rmtp = rmtp;
1551
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1552

1553 1554 1555 1556
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1557 1558
}

1559 1560
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1561
{
1562
	struct timespec tu;
1563 1564 1565 1566 1567 1568 1569

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1570
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1571 1572
}

1573 1574 1575
/*
 * Functions related to boot-time initialization:
 */
1576
static void init_hrtimers_cpu(int cpu)
1577
{
1578
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1579 1580
	int i;

1581
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1582
		cpu_base->clock_base[i].cpu_base = cpu_base;
1583 1584
		timerqueue_init_head(&cpu_base->clock_base[i].active);
	}
1585

1586
	cpu_base->cpu = cpu;
1587
	hrtimer_init_hres(cpu_base);
1588 1589 1590 1591
}

#ifdef CONFIG_HOTPLUG_CPU

1592
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1593
				struct hrtimer_clock_base *new_base)
1594 1595
{
	struct hrtimer *timer;
1596
	struct timerqueue_node *node;
1597

1598 1599
	while ((node = timerqueue_getnext(&old_base->active))) {
		timer = container_of(node, struct hrtimer, node);
1600
		BUG_ON(hrtimer_callback_running(timer));
1601
		debug_deactivate(timer);
T
Thomas Gleixner 已提交
1602 1603

		/*
1604
		 * Mark it as ENQUEUED not INACTIVE otherwise the
T
Thomas Gleixner 已提交
1605 1606 1607
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
1608
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1609
		timer->base = new_base;
1610
		/*
T
Thomas Gleixner 已提交
1611 1612 1613 1614 1615 1616
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1617
		 */
1618
		enqueue_hrtimer(timer, new_base);
1619 1620 1621
	}
}

1622
static void migrate_hrtimers(int scpu)
1623
{
1624
	struct hrtimer_cpu_base *old_base, *new_base;
1625
	int i;
1626

1627 1628
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1629 1630 1631

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
1632
	new_base = this_cpu_ptr(&hrtimer_bases);
1633 1634 1635 1636
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1637 1638
	raw_spin_lock(&new_base->lock);
	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1639

1640
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1641
		migrate_hrtimer_list(&old_base->clock_base[i],
1642
				     &new_base->clock_base[i]);
1643 1644
	}

1645 1646
	raw_spin_unlock(&old_base->lock);
	raw_spin_unlock(&new_base->lock);
1647

1648 1649 1650
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1651
}
1652

1653 1654
#endif /* CONFIG_HOTPLUG_CPU */

1655
static int hrtimer_cpu_notify(struct notifier_block *self,
1656 1657
					unsigned long action, void *hcpu)
{
1658
	int scpu = (long)hcpu;
1659 1660 1661 1662

	switch (action) {

	case CPU_UP_PREPARE:
1663
	case CPU_UP_PREPARE_FROZEN:
1664
		init_hrtimers_cpu(scpu);
1665 1666 1667 1668
		break;

#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
1669
	case CPU_DEAD_FROZEN:
1670
		migrate_hrtimers(scpu);
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
		break;
#endif

	default:
		break;
	}

	return NOTIFY_OK;
}

1681
static struct notifier_block hrtimers_nb = {
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
	.notifier_call = hrtimer_cpu_notify,
};

void __init hrtimers_init(void)
{
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
			  (void *)(long)smp_processor_id());
	register_cpu_notifier(&hrtimers_nb);
}

1692
/**
1693
 * schedule_hrtimeout_range_clock - sleep until timeout
1694
 * @expires:	timeout value (ktime_t)
1695
 * @delta:	slack in expires timeout (ktime_t)
1696
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1697
 * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1698
 */
1699 1700 1701
int __sched
schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
			       const enum hrtimer_mode mode, int clock)
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
	if (expires && !expires->tv64) {
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
N
Namhyung Kim 已提交
1715
	 * A NULL parameter means "infinite"
1716 1717 1718 1719 1720 1721
	 */
	if (!expires) {
		schedule();
		return -EINTR;
	}

1722
	hrtimer_init_on_stack(&t.timer, clock, mode);
1723
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1724 1725 1726

	hrtimer_init_sleeper(&t, current);

1727
	hrtimer_start_expires(&t.timer, mode);
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773

/**
 * schedule_hrtimeout_range - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @delta:	slack in expires timeout (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
				     const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range_clock(expires, delta, mode,
					      CLOCK_MONOTONIC);
}
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1803
EXPORT_SYMBOL_GPL(schedule_hrtimeout);