hrtimer.c 46.2 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
35
#include <linux/export.h>
36 37 38 39
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46
#include <linux/sched.h>
47
#include <linux/sched/sysctl.h>
48
#include <linux/sched/rt.h>
49
#include <linux/sched/deadline.h>
50
#include <linux/timer.h>
51
#include <linux/freezer.h>
52 53 54

#include <asm/uaccess.h>

55 56
#include <trace/events/timer.h>

57
#include "tick-internal.h"
58

59 60
/*
 * The timer bases:
61
 *
62 63 64 65
 * There are more clockids then hrtimer bases. Thus, we index
 * into the timer bases by the hrtimer_base_type enum. When trying
 * to reach a base using a clockid, hrtimer_clockid_to_base()
 * is used to convert from clockid to the proper hrtimer_base_type.
66
 */
67
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
68
{
69
	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
70
	.clock_base =
71
	{
72
		{
73 74
			.index = HRTIMER_BASE_MONOTONIC,
			.clockid = CLOCK_MONOTONIC,
75 76
			.get_time = &ktime_get,
		},
T
Thomas Gleixner 已提交
77 78 79 80 81
		{
			.index = HRTIMER_BASE_REALTIME,
			.clockid = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
		},
82
		{
83 84
			.index = HRTIMER_BASE_BOOTTIME,
			.clockid = CLOCK_BOOTTIME,
85 86
			.get_time = &ktime_get_boottime,
		},
87 88 89 90 91
		{
			.index = HRTIMER_BASE_TAI,
			.clockid = CLOCK_TAI,
			.get_time = &ktime_get_clocktai,
		},
92
	}
93 94
};

95
static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
96 97 98
	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
99
	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
100
};
101 102 103 104 105 106

static inline int hrtimer_clockid_to_base(clockid_t clock_id)
{
	return hrtimer_clock_to_base_table[clock_id];
}

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
125 126 127
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
128
{
129
	struct hrtimer_clock_base *base;
130 131 132 133

	for (;;) {
		base = timer->base;
		if (likely(base != NULL)) {
134
			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
135 136 137
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
138
			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
139 140 141 142 143
		}
		cpu_relax();
	}
}

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
/*
 * With HIGHRES=y we do not migrate the timer when it is expiring
 * before the next event on the target cpu because we cannot reprogram
 * the target cpu hardware and we would cause it to fire late.
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	ktime_t expires;

	if (!new_base->cpu_base->hres_active)
		return 0;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
#else
	return 0;
#endif
}

167 168 169
/*
 * Switch the timer base to the current CPU when possible.
 */
170
static inline struct hrtimer_clock_base *
171 172
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
173
{
174 175
	struct hrtimer_clock_base *new_base;
	struct hrtimer_cpu_base *new_cpu_base;
176
	int this_cpu = smp_processor_id();
177
	int cpu = get_nohz_timer_target(pinned);
178
	int basenum = base->index;
179

180 181
again:
	new_cpu_base = &per_cpu(hrtimer_bases, cpu);
182
	new_base = &new_cpu_base->clock_base[basenum];
183 184 185

	if (base != new_base) {
		/*
186
		 * We are trying to move timer to new_base.
187 188 189 190 191 192 193
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
194
		if (unlikely(hrtimer_callback_running(timer)))
195 196 197 198
			return base;

		/* See the comment in lock_timer_base() */
		timer->base = NULL;
199 200
		raw_spin_unlock(&base->cpu_base->lock);
		raw_spin_lock(&new_base->cpu_base->lock);
201

202 203
		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
			cpu = this_cpu;
204 205
			raw_spin_unlock(&new_base->cpu_base->lock);
			raw_spin_lock(&base->cpu_base->lock);
206 207
			timer->base = base;
			goto again;
208
		}
209
		timer->base = new_base;
210 211 212 213 214
	} else {
		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
			cpu = this_cpu;
			goto again;
		}
215 216 217 218 219 220
	}
	return new_base;
}

#else /* CONFIG_SMP */

221
static inline struct hrtimer_clock_base *
222 223
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
224
	struct hrtimer_clock_base *base = timer->base;
225

226
	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
227 228 229 230

	return base;
}

231
# define switch_hrtimer_base(t, b, p)	(b)
232 233 234 235 236 237 238 239 240 241 242

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
/*
 * Divide a ktime value by a nanosecond value
 */
243
u64 __ktime_divns(const ktime_t kt, s64 div)
244
{
245
	u64 dclc;
246 247
	int sft = 0;

248
	dclc = ktime_to_ns(kt);
249 250 251 252 253 254 255 256
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
	dclc >>= sft;
	do_div(dclc, (unsigned long) div);

D
Davide Libenzi 已提交
257
	return dclc;
258
}
259
EXPORT_SYMBOL_GPL(__ktime_divns);
260 261
#endif /* BITS_PER_LONG >= 64 */

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
	ktime_t res = ktime_add(lhs, rhs);

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

279 280
EXPORT_SYMBOL_GPL(ktime_add_safe);

281 282 283 284
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

285 286 287 288 289
static void *hrtimer_debug_hint(void *addr)
{
	return ((struct hrtimer *) addr)->function;
}

290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
{
	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
349
	.debug_hint	= hrtimer_debug_hint,
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}
S
Stephen Hemminger 已提交
384
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
385 386 387 388 389 390 391 392 393 394 395 396

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
	   enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	trace_hrtimer_init(timer, clockid, mode);
}

static inline void debug_activate(struct hrtimer *timer)
{
	debug_hrtimer_activate(timer);
	trace_hrtimer_start(timer);
}

static inline void debug_deactivate(struct hrtimer *timer)
{
	debug_hrtimer_deactivate(timer);
	trace_hrtimer_cancel(timer);
}

417
#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
418 419 420 421 422 423 424 425
static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
					     struct hrtimer *timer)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	cpu_base->next_timer = timer;
#endif
}

426
static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
427 428 429
{
	struct hrtimer_clock_base *base = cpu_base->clock_base;
	ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
430
	unsigned int active = cpu_base->active_bases;
431

432
	hrtimer_update_next_timer(cpu_base, NULL);
433
	for (; active; base++, active >>= 1) {
434 435 436
		struct timerqueue_node *next;
		struct hrtimer *timer;

437
		if (!(active & 0x01))
438 439
			continue;

440
		next = timerqueue_getnext(&base->active);
441 442
		timer = container_of(next, struct hrtimer, node);
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
443
		if (expires.tv64 < expires_next.tv64) {
444
			expires_next = expires;
445 446
			hrtimer_update_next_timer(cpu_base, timer);
		}
447 448 449 450 451 452 453 454 455 456 457 458
	}
	/*
	 * clock_was_set() might have changed base->offset of any of
	 * the clock bases so the result might be negative. Fix it up
	 * to prevent a false positive in clockevents_program_event().
	 */
	if (expires_next.tv64 < 0)
		expires_next.tv64 = 0;
	return expires_next;
}
#endif

459 460 461 462 463 464
static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
{
	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;

465 466
	return ktime_get_update_offsets_now(&base->clock_was_set_seq,
					    offs_real, offs_boot, offs_tai);
467 468
}

469 470 471 472 473 474 475
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static int hrtimer_hres_enabled __read_mostly  = 1;
476 477
unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
EXPORT_SYMBOL_GPL(hrtimer_resolution);
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	if (!strcmp(str, "off"))
		hrtimer_hres_enabled = 0;
	else if (!strcmp(str, "on"))
		hrtimer_hres_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
506 507 508 509 510
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
{
	return cpu_base->hres_active;
}

511 512
static inline int hrtimer_hres_active(void)
{
513
	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
514 515 516 517 518 519 520
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
521 522
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
523
{
524 525 526 527 528 529
	ktime_t expires_next;

	if (!cpu_base->hres_active)
		return;

	expires_next = __hrtimer_get_next_event(cpu_base);
530

531 532 533 534 535
	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
		return;

	cpu_base->expires_next.tv64 = expires_next.tv64;

536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * leave the hang delay active in the hardware. We want the
	 * system to make progress. That also prevents the following
	 * scenario:
	 * T1 expires 50ms from now
	 * T2 expires 5s from now
	 *
	 * T1 is removed, so this code is called and would reprogram
	 * the hardware to 5s from now. Any hrtimer_start after that
	 * will not reprogram the hardware due to hang_detected being
	 * set. So we'd effectivly block all timers until the T2 event
	 * fires.
	 */
	if (cpu_base->hang_detected)
		return;

553 554 555 556 557 558 559 560 561 562 563
	if (cpu_base->expires_next.tv64 != KTIME_MAX)
		tick_program_event(cpu_base->expires_next, 1);
}

/*
 * Shared reprogramming for clock_realtime and clock_monotonic
 *
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
564 565 566 567 568
 * Note, that in case the state has HRTIMER_STATE_CALLBACK set, no reprogramming
 * and no expiry check happens. The timer gets enqueued into the rbtree. The
 * reprogramming and expiry check is done in the hrtimer_interrupt or in the
 * softirq.
 *
569 570 571 572 573
 * Called with interrupts disabled and base->cpu_base.lock held
 */
static int hrtimer_reprogram(struct hrtimer *timer,
			     struct hrtimer_clock_base *base)
{
574
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
575
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
576 577
	int res;

578
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
579

580 581 582
	/*
	 * When the callback is running, we do not reprogram the clock event
	 * device. The timer callback is either running on a different CPU or
583
	 * the callback is executed in the hrtimer_interrupt context. The
584 585 586 587 588 589
	 * reprogramming is handled either by the softirq, which called the
	 * callback or at the end of the hrtimer_interrupt.
	 */
	if (hrtimer_callback_running(timer))
		return 0;

590 591 592 593 594 595 596 597 598
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
	 * expiry time which is less than base->offset. Nothing wrong
	 * about that, just avoid to call into the tick code, which
	 * has now objections against negative expiry values.
	 */
	if (expires.tv64 < 0)
		return -ETIME;

599 600 601
	if (expires.tv64 >= cpu_base->expires_next.tv64)
		return 0;

602 603 604 605 606 607 608 609 610
	/*
	 * When the target cpu of the timer is currently executing
	 * hrtimer_interrupt(), then we do not touch the clock event
	 * device. hrtimer_interrupt() will reevaluate all clock bases
	 * before reprogramming the device.
	 */
	if (cpu_base->in_hrtirq)
		return 0;

611 612
	cpu_base->next_timer = timer;

613 614 615 616 617 618 619
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * do not schedule a timer which is earlier than the expiry
	 * which we enforced in the hang detection. We want the system
	 * to make progress.
	 */
	if (cpu_base->hang_detected)
620 621 622 623 624 625 626
		return 0;

	/*
	 * Clockevents returns -ETIME, when the event was in the past.
	 */
	res = tick_program_event(expires, 0);
	if (!IS_ERR_VALUE(res))
627
		cpu_base->expires_next = expires;
628 629 630 631 632 633 634 635 636 637 638 639
	return res;
}

/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
	base->expires_next.tv64 = KTIME_MAX;
	base->hres_active = 0;
}

640 641 642 643 644 645 646
/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
647
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
648

649
	if (!base->hres_active)
650 651 652
		return;

	raw_spin_lock(&base->lock);
653
	hrtimer_update_base(base);
654 655 656
	hrtimer_force_reprogram(base, 0);
	raw_spin_unlock(&base->lock);
}
657

658 659 660
/*
 * Switch to high resolution mode
 */
661
static int hrtimer_switch_to_hres(void)
662
{
663
	int cpu = smp_processor_id();
I
Ingo Molnar 已提交
664
	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
665 666 667
	unsigned long flags;

	if (base->hres_active)
668
		return 1;
669 670 671 672 673

	local_irq_save(flags);

	if (tick_init_highres()) {
		local_irq_restore(flags);
I
Ingo Molnar 已提交
674 675
		printk(KERN_WARNING "Could not switch to high resolution "
				    "mode on CPU %d\n", cpu);
676
		return 0;
677 678
	}
	base->hres_active = 1;
679
	hrtimer_resolution = HIGH_RES_NSEC;
680 681 682 683 684

	tick_setup_sched_timer();
	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
	local_irq_restore(flags);
685
	return 1;
686 687
}

688 689 690 691 692 693 694
static void clock_was_set_work(struct work_struct *work)
{
	clock_was_set();
}

static DECLARE_WORK(hrtimer_work, clock_was_set_work);

695
/*
696 697
 * Called from timekeeping and resume code to reprogramm the hrtimer
 * interrupt device on all cpus.
698 699 700
 */
void clock_was_set_delayed(void)
{
701
	schedule_work(&hrtimer_work);
702 703
}

704 705
#else

706
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
707 708
static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
709
static inline int hrtimer_switch_to_hres(void) { return 0; }
710 711
static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
712 713
static inline int hrtimer_reprogram(struct hrtimer *timer,
				    struct hrtimer_clock_base *base)
714 715 716 717
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
718
static inline void retrigger_next_event(void *arg) { }
719 720 721

#endif /* CONFIG_HIGH_RES_TIMERS */

722 723 724 725 726 727 728 729 730 731 732 733 734
/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
735
#ifdef CONFIG_HIGH_RES_TIMERS
736 737
	/* Retrigger the CPU local events everywhere */
	on_each_cpu(retrigger_next_event, NULL, 1);
738 739
#endif
	timerfd_clock_was_set();
740 741 742 743
}

/*
 * During resume we might have to reprogram the high resolution timer
744 745
 * interrupt on all online CPUs.  However, all other CPUs will be
 * stopped with IRQs interrupts disabled so the clock_was_set() call
746
 * must be deferred.
747 748 749 750 751 752
 */
void hrtimers_resume(void)
{
	WARN_ONCE(!irqs_disabled(),
		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");

753
	/* Retrigger on the local CPU */
754
	retrigger_next_event(NULL);
755 756
	/* And schedule a retrigger for all others */
	clock_was_set_delayed();
757 758
}

759
static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
760
{
761
#ifdef CONFIG_TIMER_STATS
762 763
	if (timer->start_site)
		return;
764
	timer->start_site = __builtin_return_address(0);
765 766
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
767 768 769 770 771 772 773 774
#endif
}

static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
#endif
775
}
776 777 778 779 780 781 782 783

static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	if (likely(!timer_stats_active))
		return;
	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
				 timer->function, timer->start_comm, 0);
784
#endif
785
}
786

787
/*
788
 * Counterpart to lock_hrtimer_base above:
789 790 791 792
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
793
	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
794 795 796 797 798
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
799
 * @now:	forward past this time
800 801 802
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
803
 * Returns the number of overruns.
804 805 806 807 808 809 810 811
 *
 * Can be safely called from the callback function of @timer. If
 * called from other contexts @timer must neither be enqueued nor
 * running the callback and the caller needs to take care of
 * serialization.
 *
 * Note: This only updates the timer expiry value and does not requeue
 * the timer.
812
 */
D
Davide Libenzi 已提交
813
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
814
{
D
Davide Libenzi 已提交
815
	u64 orun = 1;
816
	ktime_t delta;
817

818
	delta = ktime_sub(now, hrtimer_get_expires(timer));
819 820 821 822

	if (delta.tv64 < 0)
		return 0;

823 824
	if (interval.tv64 < hrtimer_resolution)
		interval.tv64 = hrtimer_resolution;
825

826
	if (unlikely(delta.tv64 >= interval.tv64)) {
827
		s64 incr = ktime_to_ns(interval);
828 829

		orun = ktime_divns(delta, incr);
830 831
		hrtimer_add_expires_ns(timer, incr * orun);
		if (hrtimer_get_expires_tv64(timer) > now.tv64)
832 833 834 835 836 837 838
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
839
	hrtimer_add_expires(timer, interval);
840 841 842

	return orun;
}
S
Stas Sergeev 已提交
843
EXPORT_SYMBOL_GPL(hrtimer_forward);
844 845 846 847 848 849

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
850 851
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
852
 */
853 854
static int enqueue_hrtimer(struct hrtimer *timer,
			   struct hrtimer_clock_base *base)
855
{
856
	debug_activate(timer);
857

858
	base->cpu_base->active_bases |= 1 << base->index;
859

860 861 862 863 864
	/*
	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
	 * state of a possibly running callback.
	 */
	timer->state |= HRTIMER_STATE_ENQUEUED;
865

866
	return timerqueue_add(&base->active, &timer->node);
867
}
868 869 870 871 872

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
873 874 875 876 877
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
878
 */
879
static void __remove_hrtimer(struct hrtimer *timer,
880
			     struct hrtimer_clock_base *base,
881
			     unsigned long newstate, int reprogram)
882
{
883
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
884
	unsigned int state = timer->state;
885

886 887 888
	timer->state = newstate;
	if (!(state & HRTIMER_STATE_ENQUEUED))
		return;
889

890
	if (!timerqueue_del(&base->active, &timer->node))
891
		cpu_base->active_bases &= ~(1 << base->index);
892

893
#ifdef CONFIG_HIGH_RES_TIMERS
894 895 896 897 898 899 900 901 902 903
	/*
	 * Note: If reprogram is false we do not update
	 * cpu_base->next_timer. This happens when we remove the first
	 * timer on a remote cpu. No harm as we never dereference
	 * cpu_base->next_timer. So the worst thing what can happen is
	 * an superflous call to hrtimer_force_reprogram() on the
	 * remote cpu later on if the same timer gets enqueued again.
	 */
	if (reprogram && timer == cpu_base->next_timer)
		hrtimer_force_reprogram(cpu_base, 1);
904
#endif
905 906 907 908 909 910
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
911
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
912
{
913
	if (hrtimer_is_queued(timer)) {
914
		unsigned long state;
915 916 917 918 919 920 921 922 923 924
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
925
		debug_deactivate(timer);
926
		timer_stats_hrtimer_clear_start_info(timer);
927
		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
928 929 930 931 932 933 934
		/*
		 * We must preserve the CALLBACK state flag here,
		 * otherwise we could move the timer base in
		 * switch_hrtimer_base.
		 */
		state = timer->state & HRTIMER_STATE_CALLBACK;
		__remove_hrtimer(timer, base, state, reprogram);
935 936 937 938 939
		return 1;
	}
	return 0;
}

940 941 942
int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode,
		int wakeup)
943
{
944
	struct hrtimer_clock_base *base, *new_base;
945
	unsigned long flags;
946
	int ret, leftmost;
947 948 949 950 951 952

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
	ret = remove_hrtimer(timer, base);

953
	if (mode & HRTIMER_MODE_REL) {
954
		tim = ktime_add_safe(tim, base->get_time());
955 956 957 958 959 960 961 962
		/*
		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
		 * to signal that they simply return xtime in
		 * do_gettimeoffset(). In this case we want to round up by
		 * resolution when starting a relative timer, to avoid short
		 * timeouts. This will go away with the GTOD framework.
		 */
#ifdef CONFIG_TIME_LOW_RES
963
		tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution));
964 965
#endif
	}
966

967
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
968

969 970 971
	/* Switch the timer base, if necessary: */
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);

972 973
	timer_stats_hrtimer_set_start_info(timer);

974 975
	leftmost = enqueue_hrtimer(timer, new_base);

976 977 978 979 980 981 982 983 984 985 986
	if (!leftmost) {
		unlock_hrtimer_base(timer, &flags);
		return ret;
	}

	if (!hrtimer_is_hres_active(timer)) {
		/*
		 * Kick to reschedule the next tick to handle the new timer
		 * on dynticks target.
		 */
		wake_up_nohz_cpu(new_base->cpu_base->cpu);
987
	} else if (new_base->cpu_base == this_cpu_ptr(&hrtimer_bases) &&
988
			hrtimer_reprogram(timer, new_base)) {
989 990 991 992 993 994
		/*
		 * Only allow reprogramming if the new base is on this CPU.
		 * (it might still be on another CPU if the timer was pending)
		 *
		 * XXX send_remote_softirq() ?
		 */
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
		if (wakeup) {
			/*
			 * We need to drop cpu_base->lock to avoid a
			 * lock ordering issue vs. rq->lock.
			 */
			raw_spin_unlock(&new_base->cpu_base->lock);
			raise_softirq_irqoff(HRTIMER_SOFTIRQ);
			local_irq_restore(flags);
			return ret;
		} else {
			__raise_softirq_irqoff(HRTIMER_SOFTIRQ);
		}
	}
1008 1009 1010 1011 1012

	unlock_hrtimer_base(timer, &flags);

	return ret;
}
1013
EXPORT_SYMBOL_GPL(__hrtimer_start_range_ns);
1014 1015 1016 1017 1018 1019

/**
 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
1020 1021
 * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL)
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode)
{
	return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
}
1032 1033 1034
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

/**
T
Thomas Gleixner 已提交
1035
 * hrtimer_start - (re)start an hrtimer on the current CPU
1036 1037
 * @timer:	the timer to be added
 * @tim:	expiry time
1038 1039
 * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL)
1040 1041 1042 1043 1044 1045 1046 1047
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int
hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
{
1048
	return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1049
}
1050
EXPORT_SYMBOL_GPL(hrtimer_start);
1051

1052

1053 1054 1055 1056 1057 1058 1059 1060
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
1061
 *    cannot be stopped
1062 1063 1064
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
1065
	struct hrtimer_clock_base *base;
1066 1067 1068 1069 1070
	unsigned long flags;
	int ret = -1;

	base = lock_hrtimer_base(timer, &flags);

1071
	if (!hrtimer_callback_running(timer))
1072 1073 1074 1075 1076 1077 1078
		ret = remove_hrtimer(timer, base);

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1079
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1096
		cpu_relax();
1097 1098
	}
}
1099
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
 */
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
{
	unsigned long flags;
	ktime_t rem;

1110
	lock_hrtimer_base(timer, &flags);
1111
	rem = hrtimer_expires_remaining(timer);
1112 1113 1114 1115
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1116
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1117

1118
#ifdef CONFIG_NO_HZ_COMMON
1119 1120 1121 1122 1123 1124 1125 1126
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
 * Returns the delta to the next expiry event or KTIME_MAX if no timer
 * is pending.
 */
ktime_t hrtimer_get_next_event(void)
{
1127
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1128
	ktime_t mindelta = { .tv64 = KTIME_MAX };
1129 1130
	unsigned long flags;

1131
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1132

1133
	if (!__hrtimer_hres_active(cpu_base))
1134 1135
		mindelta = ktime_sub(__hrtimer_get_next_event(cpu_base),
				     ktime_get());
1136

1137
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1138

1139 1140 1141 1142 1143 1144
	if (mindelta.tv64 < 0)
		mindelta.tv64 = 0;
	return mindelta;
}
#endif

1145 1146
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1147
{
1148
	struct hrtimer_cpu_base *cpu_base;
1149
	int base;
1150

1151 1152
	memset(timer, 0, sizeof(struct hrtimer));

1153
	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1154

1155
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1156 1157
		clock_id = CLOCK_MONOTONIC;

1158 1159
	base = hrtimer_clockid_to_base(clock_id);
	timer->base = &cpu_base->clock_base[base];
1160
	timerqueue_init(&timer->node);
1161 1162 1163 1164 1165 1166

#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
1167
}
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
 * @mode:	timer mode abs/rel
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
1178
	debug_init(timer, clock_id, mode);
1179 1180
	__hrtimer_init(timer, clock_id, mode);
}
1181
EXPORT_SYMBOL_GPL(hrtimer_init);
1182

1183 1184 1185
static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
			  struct hrtimer_clock_base *base,
			  struct hrtimer *timer, ktime_t *now)
1186 1187 1188 1189
{
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1190 1191
	WARN_ON(!irqs_disabled());

1192
	debug_deactivate(timer);
1193 1194 1195
	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
	timer_stats_account_hrtimer(timer);
	fn = timer->function;
1196 1197 1198 1199 1200 1201

	/*
	 * Because we run timers from hardirq context, there is no chance
	 * they get migrated to another cpu, therefore its safe to unlock
	 * the timer base.
	 */
1202
	raw_spin_unlock(&cpu_base->lock);
1203
	trace_hrtimer_expire_entry(timer, now);
1204
	restart = fn(timer);
1205
	trace_hrtimer_expire_exit(timer);
1206
	raw_spin_lock(&cpu_base->lock);
1207 1208

	/*
T
Thomas Gleixner 已提交
1209 1210 1211
	 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
	 * we do not reprogramm the event hardware. Happens either in
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1212 1213 1214
	 */
	if (restart != HRTIMER_NORESTART) {
		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1215
		enqueue_hrtimer(timer, base);
1216
	}
1217 1218 1219

	WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));

1220 1221 1222
	timer->state &= ~HRTIMER_STATE_CALLBACK;
}

1223
static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1224
{
1225 1226
	struct hrtimer_clock_base *base = cpu_base->clock_base;
	unsigned int active = cpu_base->active_bases;
1227

1228
	for (; active; base++, active >>= 1) {
1229
		struct timerqueue_node *node;
1230 1231
		ktime_t basenow;

1232
		if (!(active & 0x01))
1233
			continue;
1234 1235 1236

		basenow = ktime_add(now, base->offset);

1237
		while ((node = timerqueue_getnext(&base->active))) {
1238 1239
			struct hrtimer *timer;

1240
			timer = container_of(node, struct hrtimer, node);
1241

1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */
1254
			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
1255 1256
				break;

1257
			__run_hrtimer(cpu_base, base, timer, &basenow);
1258 1259
		}
	}
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
}

#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
	ktime_t expires_next, now, entry_time, delta;
	int retries = 0;

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event.tv64 = KTIME_MAX;

	raw_spin_lock(&cpu_base->lock);
	entry_time = now = hrtimer_update_base(cpu_base);
retry:
	cpu_base->in_hrtirq = 1;
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
	cpu_base->expires_next.tv64 = KTIME_MAX;

	__hrtimer_run_queues(cpu_base, now);

1293 1294
	/* Reevaluate the clock bases for the next expiry */
	expires_next = __hrtimer_get_next_event(cpu_base);
1295 1296 1297 1298
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1299
	cpu_base->expires_next = expires_next;
1300
	cpu_base->in_hrtirq = 0;
1301
	raw_spin_unlock(&cpu_base->lock);
1302 1303

	/* Reprogramming necessary ? */
1304 1305 1306 1307
	if (expires_next.tv64 == KTIME_MAX ||
	    !tick_program_event(expires_next, 0)) {
		cpu_base->hang_detected = 0;
		return;
1308
	}
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318

	/*
	 * The next timer was already expired due to:
	 * - tracing
	 * - long lasting callbacks
	 * - being scheduled away when running in a VM
	 *
	 * We need to prevent that we loop forever in the hrtimer
	 * interrupt routine. We give it 3 attempts to avoid
	 * overreacting on some spurious event.
1319 1320 1321
	 *
	 * Acquire base lock for updating the offsets and retrieving
	 * the current time.
1322
	 */
1323
	raw_spin_lock(&cpu_base->lock);
1324
	now = hrtimer_update_base(cpu_base);
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
	cpu_base->nr_retries++;
	if (++retries < 3)
		goto retry;
	/*
	 * Give the system a chance to do something else than looping
	 * here. We stored the entry time, so we know exactly how long
	 * we spent here. We schedule the next event this amount of
	 * time away.
	 */
	cpu_base->nr_hangs++;
	cpu_base->hang_detected = 1;
1336
	raw_spin_unlock(&cpu_base->lock);
1337
	delta = ktime_sub(now, entry_time);
1338 1339
	if ((unsigned int)delta.tv64 > cpu_base->max_hang_time)
		cpu_base->max_hang_time = (unsigned int) delta.tv64;
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
	/*
	 * Limit it to a sensible value as we enforce a longer
	 * delay. Give the CPU at least 100ms to catch up.
	 */
	if (delta.tv64 > 100 * NSEC_PER_MSEC)
		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
	else
		expires_next = ktime_add(now, delta);
	tick_program_event(expires_next, 1);
	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
		    ktime_to_ns(delta));
1351 1352
}

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
/*
 * local version of hrtimer_peek_ahead_timers() called with interrupts
 * disabled.
 */
static void __hrtimer_peek_ahead_timers(void)
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

1364
	td = this_cpu_ptr(&tick_cpu_device);
1365 1366 1367 1368
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
/**
 * hrtimer_peek_ahead_timers -- run soft-expired timers now
 *
 * hrtimer_peek_ahead_timers will peek at the timer queue of
 * the current cpu and check if there are any timers for which
 * the soft expires time has passed. If any such timers exist,
 * they are run immediately and then removed from the timer queue.
 *
 */
void hrtimer_peek_ahead_timers(void)
{
1380
	unsigned long flags;
1381

1382
	local_irq_save(flags);
1383
	__hrtimer_peek_ahead_timers();
1384 1385 1386
	local_irq_restore(flags);
}

1387 1388 1389 1390 1391
static void run_hrtimer_softirq(struct softirq_action *h)
{
	hrtimer_peek_ahead_timers();
}

1392 1393 1394 1395 1396
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1397

1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
/*
 * Called from timer softirq every jiffy, expire hrtimers:
 *
 * For HRT its the fall back code to run the softirq in the timer
 * softirq context in case the hrtimer initialization failed or has
 * not been done yet.
 */
void hrtimer_run_pending(void)
{
	if (hrtimer_hres_active())
		return;
1409

1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
	/*
	 * This _is_ ugly: We have to check in the softirq context,
	 * whether we can switch to highres and / or nohz mode. The
	 * clocksource switch happens in the timer interrupt with
	 * xtime_lock held. Notification from there only sets the
	 * check bit in the tick_oneshot code, otherwise we might
	 * deadlock vs. xtime_lock.
	 */
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
		hrtimer_switch_to_hres();
1420 1421
}

1422
/*
1423
 * Called from hardirq context every jiffy
1424
 */
1425
void hrtimer_run_queues(void)
1426
{
1427
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1428
	ktime_t now;
1429

1430
	if (__hrtimer_hres_active(cpu_base))
1431 1432
		return;

1433 1434 1435 1436
	raw_spin_lock(&cpu_base->lock);
	now = hrtimer_update_base(cpu_base);
	__hrtimer_run_queues(cpu_base, now);
	raw_spin_unlock(&cpu_base->lock);
1437 1438
}

1439 1440 1441
/*
 * Sleep related functions:
 */
1442
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1455
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1456 1457 1458 1459
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}
S
Stephen Hemminger 已提交
1460
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1461

1462
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1463
{
1464
	hrtimer_init_sleeper(t, current);
1465

1466 1467
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1468
		hrtimer_start_expires(&t->timer, mode);
P
Peter Zijlstra 已提交
1469 1470
		if (!hrtimer_active(&t->timer))
			t->task = NULL;
1471

1472
		if (likely(t->task))
1473
			freezable_schedule();
1474

1475
		hrtimer_cancel(&t->timer);
1476
		mode = HRTIMER_MODE_ABS;
1477 1478

	} while (t->task && !signal_pending(current));
1479

1480 1481
	__set_current_state(TASK_RUNNING);

1482
	return t->task == NULL;
1483 1484
}

1485 1486 1487 1488 1489
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

1490
	rem = hrtimer_expires_remaining(timer);
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
	if (rem.tv64 <= 0)
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;
}

1501
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1502
{
1503
	struct hrtimer_sleeper t;
1504
	struct timespec __user  *rmtp;
1505
	int ret = 0;
1506

1507
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1508
				HRTIMER_MODE_ABS);
1509
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1510

1511
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1512
		goto out;
1513

1514
	rmtp = restart->nanosleep.rmtp;
1515
	if (rmtp) {
1516
		ret = update_rmtp(&t.timer, rmtp);
1517
		if (ret <= 0)
1518
			goto out;
1519
	}
1520 1521

	/* The other values in restart are already filled in */
1522 1523 1524 1525
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1526 1527
}

1528
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1529 1530 1531
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1532
	struct hrtimer_sleeper t;
1533
	int ret = 0;
1534 1535 1536
	unsigned long slack;

	slack = current->timer_slack_ns;
1537
	if (dl_task(current) || rt_task(current))
1538
		slack = 0;
1539

1540
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1541
	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1542
	if (do_nanosleep(&t, mode))
1543
		goto out;
1544

1545
	/* Absolute timers do not update the rmtp value and restart: */
1546 1547 1548 1549
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1550

1551
	if (rmtp) {
1552
		ret = update_rmtp(&t.timer, rmtp);
1553
		if (ret <= 0)
1554
			goto out;
1555
	}
1556

1557
	restart = &current->restart_block;
1558
	restart->fn = hrtimer_nanosleep_restart;
1559
	restart->nanosleep.clockid = t.timer.base->clockid;
1560
	restart->nanosleep.rmtp = rmtp;
1561
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1562

1563 1564 1565 1566
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1567 1568
}

1569 1570
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1571
{
1572
	struct timespec tu;
1573 1574 1575 1576 1577 1578 1579

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1580
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1581 1582
}

1583 1584 1585
/*
 * Functions related to boot-time initialization:
 */
1586
static void init_hrtimers_cpu(int cpu)
1587
{
1588
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1589 1590
	int i;

1591
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1592
		cpu_base->clock_base[i].cpu_base = cpu_base;
1593 1594
		timerqueue_init_head(&cpu_base->clock_base[i].active);
	}
1595

1596
	cpu_base->cpu = cpu;
1597
	hrtimer_init_hres(cpu_base);
1598 1599 1600 1601
}

#ifdef CONFIG_HOTPLUG_CPU

1602
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1603
				struct hrtimer_clock_base *new_base)
1604 1605
{
	struct hrtimer *timer;
1606
	struct timerqueue_node *node;
1607

1608 1609
	while ((node = timerqueue_getnext(&old_base->active))) {
		timer = container_of(node, struct hrtimer, node);
1610
		BUG_ON(hrtimer_callback_running(timer));
1611
		debug_deactivate(timer);
T
Thomas Gleixner 已提交
1612 1613 1614 1615 1616 1617 1618

		/*
		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1619
		timer->base = new_base;
1620
		/*
T
Thomas Gleixner 已提交
1621 1622 1623 1624 1625 1626
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1627
		 */
1628
		enqueue_hrtimer(timer, new_base);
1629

T
Thomas Gleixner 已提交
1630 1631
		/* Clear the migration state bit */
		timer->state &= ~HRTIMER_STATE_MIGRATE;
1632 1633 1634
	}
}

1635
static void migrate_hrtimers(int scpu)
1636
{
1637
	struct hrtimer_cpu_base *old_base, *new_base;
1638
	int i;
1639

1640 1641
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1642 1643 1644

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
1645
	new_base = this_cpu_ptr(&hrtimer_bases);
1646 1647 1648 1649
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1650 1651
	raw_spin_lock(&new_base->lock);
	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1652

1653
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1654
		migrate_hrtimer_list(&old_base->clock_base[i],
1655
				     &new_base->clock_base[i]);
1656 1657
	}

1658 1659
	raw_spin_unlock(&old_base->lock);
	raw_spin_unlock(&new_base->lock);
1660

1661 1662 1663
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1664
}
1665

1666 1667
#endif /* CONFIG_HOTPLUG_CPU */

1668
static int hrtimer_cpu_notify(struct notifier_block *self,
1669 1670
					unsigned long action, void *hcpu)
{
1671
	int scpu = (long)hcpu;
1672 1673 1674 1675

	switch (action) {

	case CPU_UP_PREPARE:
1676
	case CPU_UP_PREPARE_FROZEN:
1677
		init_hrtimers_cpu(scpu);
1678 1679 1680 1681
		break;

#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
1682
	case CPU_DEAD_FROZEN:
1683
		migrate_hrtimers(scpu);
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
		break;
#endif

	default:
		break;
	}

	return NOTIFY_OK;
}

1694
static struct notifier_block hrtimers_nb = {
1695 1696 1697 1698 1699 1700 1701 1702
	.notifier_call = hrtimer_cpu_notify,
};

void __init hrtimers_init(void)
{
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
			  (void *)(long)smp_processor_id());
	register_cpu_notifier(&hrtimers_nb);
1703 1704 1705
#ifdef CONFIG_HIGH_RES_TIMERS
	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
#endif
1706 1707
}

1708
/**
1709
 * schedule_hrtimeout_range_clock - sleep until timeout
1710
 * @expires:	timeout value (ktime_t)
1711
 * @delta:	slack in expires timeout (ktime_t)
1712
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1713
 * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1714
 */
1715 1716 1717
int __sched
schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
			       const enum hrtimer_mode mode, int clock)
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
	if (expires && !expires->tv64) {
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
N
Namhyung Kim 已提交
1731
	 * A NULL parameter means "infinite"
1732 1733 1734 1735 1736 1737
	 */
	if (!expires) {
		schedule();
		return -EINTR;
	}

1738
	hrtimer_init_on_stack(&t.timer, clock, mode);
1739
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1740 1741 1742

	hrtimer_init_sleeper(&t, current);

1743
	hrtimer_start_expires(&t.timer, mode);
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
	if (!hrtimer_active(&t.timer))
		t.task = NULL;

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

/**
 * schedule_hrtimeout_range - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @delta:	slack in expires timeout (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
				     const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range_clock(expires, delta, mode,
					      CLOCK_MONOTONIC);
}
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1821
EXPORT_SYMBOL_GPL(schedule_hrtimeout);