hrtimer.c 46.8 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
35
#include <linux/export.h>
36 37 38 39
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46
#include <linux/sched.h>
47
#include <linux/sched/sysctl.h>
48
#include <linux/sched/rt.h>
49
#include <linux/sched/deadline.h>
50
#include <linux/timer.h>
51
#include <linux/freezer.h>
52 53 54

#include <asm/uaccess.h>

55 56
#include <trace/events/timer.h>

57
#include "tick-internal.h"
58

59 60
/*
 * The timer bases:
61
 *
Z
Zhen Lei 已提交
62
 * There are more clockids than hrtimer bases. Thus, we index
63 64 65
 * into the timer bases by the hrtimer_base_type enum. When trying
 * to reach a base using a clockid, hrtimer_clockid_to_base()
 * is used to convert from clockid to the proper hrtimer_base_type.
66
 */
67
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
68
{
69
	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
70
	.seq = SEQCNT_ZERO(hrtimer_bases.seq),
71
	.clock_base =
72
	{
73
		{
74 75
			.index = HRTIMER_BASE_MONOTONIC,
			.clockid = CLOCK_MONOTONIC,
76 77
			.get_time = &ktime_get,
		},
T
Thomas Gleixner 已提交
78 79 80 81 82
		{
			.index = HRTIMER_BASE_REALTIME,
			.clockid = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
		},
83
		{
84 85
			.index = HRTIMER_BASE_BOOTTIME,
			.clockid = CLOCK_BOOTTIME,
86 87
			.get_time = &ktime_get_boottime,
		},
88 89 90 91 92
		{
			.index = HRTIMER_BASE_TAI,
			.clockid = CLOCK_TAI,
			.get_time = &ktime_get_clocktai,
		},
93
	}
94 95
};

96
static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
97 98 99
	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
100
	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
101
};
102 103 104 105 106 107

static inline int hrtimer_clockid_to_base(clockid_t clock_id)
{
	return hrtimer_clock_to_base_table[clock_id];
}

108 109 110 111 112 113
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

114 115 116 117 118 119 120 121 122 123 124 125
/*
 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
 * such that hrtimer_callback_running() can unconditionally dereference
 * timer->base->cpu_base
 */
static struct hrtimer_cpu_base migration_cpu_base = {
	.seq = SEQCNT_ZERO(migration_cpu_base),
	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
};

#define migration_base	migration_cpu_base.clock_base[0]

126 127 128 129 130 131 132 133 134
/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
135 136
 * possible to set timer->base = &migration_base and drop the lock: the timer
 * remains locked.
137
 */
138 139 140
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
141
{
142
	struct hrtimer_clock_base *base;
143 144 145

	for (;;) {
		base = timer->base;
146
		if (likely(base != &migration_base)) {
147
			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
148 149 150
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
151
			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
152 153 154 155 156
		}
		cpu_relax();
	}
}

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
/*
 * With HIGHRES=y we do not migrate the timer when it is expiring
 * before the next event on the target cpu because we cannot reprogram
 * the target cpu hardware and we would cause it to fire late.
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	ktime_t expires;

	if (!new_base->cpu_base->hres_active)
		return 0;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
#else
	return 0;
#endif
}

180 181 182 183 184 185
#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
static inline
struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
					 int pinned)
{
	if (pinned || !base->migration_enabled)
186
		return base;
187 188 189 190 191 192 193
	return &per_cpu(hrtimer_bases, get_nohz_timer_target());
}
#else
static inline
struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
					 int pinned)
{
194
	return base;
195 196 197
}
#endif

198
/*
199 200 201 202 203 204 205 206 207 208
 * We switch the timer base to a power-optimized selected CPU target,
 * if:
 *	- NO_HZ_COMMON is enabled
 *	- timer migration is enabled
 *	- the timer callback is not running
 *	- the timer is not the first expiring timer on the new target
 *
 * If one of the above requirements is not fulfilled we move the timer
 * to the current CPU or leave it on the previously assigned CPU if
 * the timer callback is currently running.
209
 */
210
static inline struct hrtimer_clock_base *
211 212
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
213
{
214
	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
215
	struct hrtimer_clock_base *new_base;
216
	int basenum = base->index;
217

218 219
	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
	new_cpu_base = get_target_base(this_cpu_base, pinned);
220
again:
221
	new_base = &new_cpu_base->clock_base[basenum];
222 223 224

	if (base != new_base) {
		/*
225
		 * We are trying to move timer to new_base.
226 227 228 229 230 231 232
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
233
		if (unlikely(hrtimer_callback_running(timer)))
234 235
			return base;

236 237
		/* See the comment in lock_hrtimer_base() */
		timer->base = &migration_base;
238 239
		raw_spin_unlock(&base->cpu_base->lock);
		raw_spin_lock(&new_base->cpu_base->lock);
240

241
		if (new_cpu_base != this_cpu_base &&
242
		    hrtimer_check_target(timer, new_base)) {
243 244
			raw_spin_unlock(&new_base->cpu_base->lock);
			raw_spin_lock(&base->cpu_base->lock);
245
			new_cpu_base = this_cpu_base;
246 247
			timer->base = base;
			goto again;
248
		}
249
		timer->base = new_base;
250
	} else {
251
		if (new_cpu_base != this_cpu_base &&
252
		    hrtimer_check_target(timer, new_base)) {
253
			new_cpu_base = this_cpu_base;
254 255
			goto again;
		}
256 257 258 259 260 261
	}
	return new_base;
}

#else /* CONFIG_SMP */

262
static inline struct hrtimer_clock_base *
263 264
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
265
	struct hrtimer_clock_base *base = timer->base;
266

267
	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
268 269 270 271

	return base;
}

272
# define switch_hrtimer_base(t, b, p)	(b)
273 274 275 276 277 278 279 280 281 282 283

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
/*
 * Divide a ktime value by a nanosecond value
 */
284
s64 __ktime_divns(const ktime_t kt, s64 div)
285 286
{
	int sft = 0;
287 288
	s64 dclc;
	u64 tmp;
289

290
	dclc = ktime_to_ns(kt);
291 292
	tmp = dclc < 0 ? -dclc : dclc;

293 294 295 296 297
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
298 299 300
	tmp >>= sft;
	do_div(tmp, (unsigned long) div);
	return dclc < 0 ? -tmp : tmp;
301
}
302
EXPORT_SYMBOL_GPL(__ktime_divns);
303 304
#endif /* BITS_PER_LONG >= 64 */

305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
	ktime_t res = ktime_add(lhs, rhs);

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

322 323
EXPORT_SYMBOL_GPL(ktime_add_safe);

324 325 326 327
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

328 329 330 331 332
static void *hrtimer_debug_hint(void *addr)
{
	return ((struct hrtimer *) addr)->function;
}

333 334 335 336
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
337
static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
338 339 340 341 342 343 344
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
345
		return true;
346
	default:
347
		return false;
348 349 350 351 352 353 354 355
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
356
static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
357 358 359 360 361
{
	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		WARN_ON_ONCE(1);
362
		return false;
363 364 365 366 367

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
368
		return false;
369 370 371 372 373 374 375
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
376
static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
377 378 379 380 381 382 383
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
384
		return true;
385
	default:
386
		return false;
387 388 389 390 391
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
392
	.debug_hint	= hrtimer_debug_hint,
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}
S
Stephen Hemminger 已提交
427
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
428 429 430 431 432 433 434 435 436 437 438 439

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
	   enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	trace_hrtimer_init(timer, clockid, mode);
}

static inline void debug_activate(struct hrtimer *timer)
{
	debug_hrtimer_activate(timer);
	trace_hrtimer_start(timer);
}

static inline void debug_deactivate(struct hrtimer *timer)
{
	debug_hrtimer_deactivate(timer);
	trace_hrtimer_cancel(timer);
}

460
#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
461 462 463 464 465 466 467 468
static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
					     struct hrtimer *timer)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	cpu_base->next_timer = timer;
#endif
}

469
static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
470 471 472
{
	struct hrtimer_clock_base *base = cpu_base->clock_base;
	ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
473
	unsigned int active = cpu_base->active_bases;
474

475
	hrtimer_update_next_timer(cpu_base, NULL);
476
	for (; active; base++, active >>= 1) {
477 478 479
		struct timerqueue_node *next;
		struct hrtimer *timer;

480
		if (!(active & 0x01))
481 482
			continue;

483
		next = timerqueue_getnext(&base->active);
484 485
		timer = container_of(next, struct hrtimer, node);
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
486
		if (expires.tv64 < expires_next.tv64) {
487
			expires_next = expires;
488 489
			hrtimer_update_next_timer(cpu_base, timer);
		}
490 491 492 493 494 495 496 497 498 499 500 501
	}
	/*
	 * clock_was_set() might have changed base->offset of any of
	 * the clock bases so the result might be negative. Fix it up
	 * to prevent a false positive in clockevents_program_event().
	 */
	if (expires_next.tv64 < 0)
		expires_next.tv64 = 0;
	return expires_next;
}
#endif

502 503 504 505 506 507
static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
{
	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;

508 509
	return ktime_get_update_offsets_now(&base->clock_was_set_seq,
					    offs_real, offs_boot, offs_tai);
510 511
}

512 513 514 515 516 517
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
518
static bool hrtimer_hres_enabled __read_mostly  = true;
519 520
unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
EXPORT_SYMBOL_GPL(hrtimer_resolution);
521 522 523 524 525 526

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
527
	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
543 544 545 546 547
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
{
	return cpu_base->hres_active;
}

548 549
static inline int hrtimer_hres_active(void)
{
550
	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
551 552 553 554 555 556 557
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
558 559
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
560
{
561 562 563 564 565 566
	ktime_t expires_next;

	if (!cpu_base->hres_active)
		return;

	expires_next = __hrtimer_get_next_event(cpu_base);
567

568 569 570 571 572
	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
		return;

	cpu_base->expires_next.tv64 = expires_next.tv64;

573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * leave the hang delay active in the hardware. We want the
	 * system to make progress. That also prevents the following
	 * scenario:
	 * T1 expires 50ms from now
	 * T2 expires 5s from now
	 *
	 * T1 is removed, so this code is called and would reprogram
	 * the hardware to 5s from now. Any hrtimer_start after that
	 * will not reprogram the hardware due to hang_detected being
	 * set. So we'd effectivly block all timers until the T2 event
	 * fires.
	 */
	if (cpu_base->hang_detected)
		return;

590
	tick_program_event(cpu_base->expires_next, 1);
591 592 593 594 595 596 597 598 599
}

/*
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
600 601
static void hrtimer_reprogram(struct hrtimer *timer,
			      struct hrtimer_clock_base *base)
602
{
603
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
604
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
605

606
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
607

608
	/*
609 610
	 * If the timer is not on the current cpu, we cannot reprogram
	 * the other cpus clock event device.
611
	 */
612 613 614 615 616 617 618 619 620 621 622 623
	if (base->cpu_base != cpu_base)
		return;

	/*
	 * If the hrtimer interrupt is running, then it will
	 * reevaluate the clock bases and reprogram the clock event
	 * device. The callbacks are always executed in hard interrupt
	 * context so we don't need an extra check for a running
	 * callback.
	 */
	if (cpu_base->in_hrtirq)
		return;
624

625 626
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
627
	 * expiry time which is less than base->offset. Set it to 0.
628 629
	 */
	if (expires.tv64 < 0)
630
		expires.tv64 = 0;
631

632
	if (expires.tv64 >= cpu_base->expires_next.tv64)
633
		return;
634

635
	/* Update the pointer to the next expiring timer */
636
	cpu_base->next_timer = timer;
637

638 639 640 641 642 643 644
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * do not schedule a timer which is earlier than the expiry
	 * which we enforced in the hang detection. We want the system
	 * to make progress.
	 */
	if (cpu_base->hang_detected)
645
		return;
646 647

	/*
648 649
	 * Program the timer hardware. We enforce the expiry for
	 * events which are already in the past.
650
	 */
651 652
	cpu_base->expires_next = expires;
	tick_program_event(expires, 1);
653 654 655 656 657 658 659 660 661 662 663
}

/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
	base->expires_next.tv64 = KTIME_MAX;
	base->hres_active = 0;
}

664 665 666 667 668 669 670
/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
671
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
672

673
	if (!base->hres_active)
674 675 676
		return;

	raw_spin_lock(&base->lock);
677
	hrtimer_update_base(base);
678 679 680
	hrtimer_force_reprogram(base, 0);
	raw_spin_unlock(&base->lock);
}
681

682 683 684
/*
 * Switch to high resolution mode
 */
685
static void hrtimer_switch_to_hres(void)
686
{
687
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
688 689

	if (tick_init_highres()) {
I
Ingo Molnar 已提交
690
		printk(KERN_WARNING "Could not switch to high resolution "
691
				    "mode on CPU %d\n", base->cpu);
692
		return;
693 694
	}
	base->hres_active = 1;
695
	hrtimer_resolution = HIGH_RES_NSEC;
696 697 698 699 700 701

	tick_setup_sched_timer();
	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
}

702 703 704 705 706 707 708
static void clock_was_set_work(struct work_struct *work)
{
	clock_was_set();
}

static DECLARE_WORK(hrtimer_work, clock_was_set_work);

709
/*
710 711
 * Called from timekeeping and resume code to reprogramm the hrtimer
 * interrupt device on all cpus.
712 713 714
 */
void clock_was_set_delayed(void)
{
715
	schedule_work(&hrtimer_work);
716 717
}

718 719
#else

720
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
721 722
static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
723
static inline void hrtimer_switch_to_hres(void) { }
724 725
static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
726 727
static inline int hrtimer_reprogram(struct hrtimer *timer,
				    struct hrtimer_clock_base *base)
728 729 730 731
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
732
static inline void retrigger_next_event(void *arg) { }
733 734 735

#endif /* CONFIG_HIGH_RES_TIMERS */

736 737 738 739 740 741 742 743 744 745 746 747 748
/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
749
#ifdef CONFIG_HIGH_RES_TIMERS
750 751
	/* Retrigger the CPU local events everywhere */
	on_each_cpu(retrigger_next_event, NULL, 1);
752 753
#endif
	timerfd_clock_was_set();
754 755 756 757
}

/*
 * During resume we might have to reprogram the high resolution timer
758 759
 * interrupt on all online CPUs.  However, all other CPUs will be
 * stopped with IRQs interrupts disabled so the clock_was_set() call
760
 * must be deferred.
761 762 763 764 765 766
 */
void hrtimers_resume(void)
{
	WARN_ONCE(!irqs_disabled(),
		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");

767
	/* Retrigger on the local CPU */
768
	retrigger_next_event(NULL);
769 770
	/* And schedule a retrigger for all others */
	clock_was_set_delayed();
771 772
}

773
static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
774
{
775
#ifdef CONFIG_TIMER_STATS
776 777
	if (timer->start_site)
		return;
778
	timer->start_site = __builtin_return_address(0);
779 780
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
781 782 783 784 785 786 787 788
#endif
}

static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
#endif
789
}
790 791 792 793 794 795 796 797

static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	if (likely(!timer_stats_active))
		return;
	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
				 timer->function, timer->start_comm, 0);
798
#endif
799
}
800

801
/*
802
 * Counterpart to lock_hrtimer_base above:
803 804 805 806
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
807
	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
808 809 810 811 812
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
813
 * @now:	forward past this time
814 815 816
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
817
 * Returns the number of overruns.
818 819 820 821 822 823 824 825
 *
 * Can be safely called from the callback function of @timer. If
 * called from other contexts @timer must neither be enqueued nor
 * running the callback and the caller needs to take care of
 * serialization.
 *
 * Note: This only updates the timer expiry value and does not requeue
 * the timer.
826
 */
D
Davide Libenzi 已提交
827
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
828
{
D
Davide Libenzi 已提交
829
	u64 orun = 1;
830
	ktime_t delta;
831

832
	delta = ktime_sub(now, hrtimer_get_expires(timer));
833 834 835 836

	if (delta.tv64 < 0)
		return 0;

837 838 839
	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
		return 0;

840 841
	if (interval.tv64 < hrtimer_resolution)
		interval.tv64 = hrtimer_resolution;
842

843
	if (unlikely(delta.tv64 >= interval.tv64)) {
844
		s64 incr = ktime_to_ns(interval);
845 846

		orun = ktime_divns(delta, incr);
847 848
		hrtimer_add_expires_ns(timer, incr * orun);
		if (hrtimer_get_expires_tv64(timer) > now.tv64)
849 850 851 852 853 854 855
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
856
	hrtimer_add_expires(timer, interval);
857 858 859

	return orun;
}
S
Stas Sergeev 已提交
860
EXPORT_SYMBOL_GPL(hrtimer_forward);
861 862 863 864 865 866

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
867 868
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
869
 */
870 871
static int enqueue_hrtimer(struct hrtimer *timer,
			   struct hrtimer_clock_base *base)
872
{
873
	debug_activate(timer);
874

875
	base->cpu_base->active_bases |= 1 << base->index;
876

877
	timer->state = HRTIMER_STATE_ENQUEUED;
878

879
	return timerqueue_add(&base->active, &timer->node);
880
}
881 882 883 884 885

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
886 887 888 889 890
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
891
 */
892
static void __remove_hrtimer(struct hrtimer *timer,
893
			     struct hrtimer_clock_base *base,
894
			     u8 newstate, int reprogram)
895
{
896
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
897
	u8 state = timer->state;
898

899 900 901
	timer->state = newstate;
	if (!(state & HRTIMER_STATE_ENQUEUED))
		return;
902

903
	if (!timerqueue_del(&base->active, &timer->node))
904
		cpu_base->active_bases &= ~(1 << base->index);
905 906

#ifdef CONFIG_HIGH_RES_TIMERS
907 908 909 910 911 912 913 914 915 916
	/*
	 * Note: If reprogram is false we do not update
	 * cpu_base->next_timer. This happens when we remove the first
	 * timer on a remote cpu. No harm as we never dereference
	 * cpu_base->next_timer. So the worst thing what can happen is
	 * an superflous call to hrtimer_force_reprogram() on the
	 * remote cpu later on if the same timer gets enqueued again.
	 */
	if (reprogram && timer == cpu_base->next_timer)
		hrtimer_force_reprogram(cpu_base, 1);
917
#endif
918 919 920 921 922 923
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
924
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
925
{
926
	if (hrtimer_is_queued(timer)) {
927
		u8 state = timer->state;
928 929 930 931 932 933 934 935 936 937
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
938
		debug_deactivate(timer);
939
		timer_stats_hrtimer_clear_start_info(timer);
940
		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
941

942 943 944
		if (!restart)
			state = HRTIMER_STATE_INACTIVE;

945
		__remove_hrtimer(timer, base, state, reprogram);
946 947 948 949 950
		return 1;
	}
	return 0;
}

951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
					    const enum hrtimer_mode mode)
{
#ifdef CONFIG_TIME_LOW_RES
	/*
	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
	 * granular time values. For relative timers we add hrtimer_resolution
	 * (i.e. one jiffie) to prevent short timeouts.
	 */
	timer->is_rel = mode & HRTIMER_MODE_REL;
	if (timer->is_rel)
		tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution));
#endif
	return tim;
}

967 968 969 970 971 972 973 974
/**
 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
 * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL)
 */
975
void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
976
			    u64 delta_ns, const enum hrtimer_mode mode)
977
{
978
	struct hrtimer_clock_base *base, *new_base;
979
	unsigned long flags;
980
	int leftmost;
981 982 983 984

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
985
	remove_hrtimer(timer, base, true);
986

987
	if (mode & HRTIMER_MODE_REL)
988
		tim = ktime_add_safe(tim, base->get_time());
989 990

	tim = hrtimer_update_lowres(timer, tim, mode);
991

992
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
993

994 995 996
	/* Switch the timer base, if necessary: */
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);

997 998
	timer_stats_hrtimer_set_start_info(timer);

999
	leftmost = enqueue_hrtimer(timer, new_base);
1000 1001
	if (!leftmost)
		goto unlock;
1002 1003 1004 1005 1006 1007

	if (!hrtimer_is_hres_active(timer)) {
		/*
		 * Kick to reschedule the next tick to handle the new timer
		 * on dynticks target.
		 */
1008 1009
		if (new_base->cpu_base->nohz_active)
			wake_up_nohz_cpu(new_base->cpu_base->cpu);
1010 1011
	} else {
		hrtimer_reprogram(timer, new_base);
1012
	}
1013
unlock:
1014
	unlock_hrtimer_base(timer, &flags);
1015
}
1016 1017
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

1018 1019 1020 1021 1022 1023 1024 1025
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
1026
 *    cannot be stopped
1027 1028 1029
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
1030
	struct hrtimer_clock_base *base;
1031 1032 1033
	unsigned long flags;
	int ret = -1;

1034 1035 1036 1037 1038 1039 1040 1041 1042
	/*
	 * Check lockless first. If the timer is not active (neither
	 * enqueued nor running the callback, nothing to do here.  The
	 * base lock does not serialize against a concurrent enqueue,
	 * so we can avoid taking it.
	 */
	if (!hrtimer_active(timer))
		return 0;

1043 1044
	base = lock_hrtimer_base(timer, &flags);

1045
	if (!hrtimer_callback_running(timer))
1046
		ret = remove_hrtimer(timer, base, false);
1047 1048 1049 1050 1051 1052

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1053
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1070
		cpu_relax();
1071 1072
	}
}
1073
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1074 1075 1076 1077

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
1078
 * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1079
 */
1080
ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1081 1082 1083 1084
{
	unsigned long flags;
	ktime_t rem;

1085
	lock_hrtimer_base(timer, &flags);
1086 1087 1088 1089
	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
		rem = hrtimer_expires_remaining_adjusted(timer);
	else
		rem = hrtimer_expires_remaining(timer);
1090 1091 1092 1093
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1094
EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1095

1096
#ifdef CONFIG_NO_HZ_COMMON
1097 1098 1099
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
1100
 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1101
 */
1102
u64 hrtimer_get_next_event(void)
1103
{
1104
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1105
	u64 expires = KTIME_MAX;
1106 1107
	unsigned long flags;

1108
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1109

1110
	if (!__hrtimer_hres_active(cpu_base))
1111
		expires = __hrtimer_get_next_event(cpu_base).tv64;
1112

1113
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1114

1115
	return expires;
1116 1117 1118
}
#endif

1119 1120
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1121
{
1122
	struct hrtimer_cpu_base *cpu_base;
1123
	int base;
1124

1125 1126
	memset(timer, 0, sizeof(struct hrtimer));

1127
	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1128

1129
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1130 1131
		clock_id = CLOCK_MONOTONIC;

1132 1133
	base = hrtimer_clockid_to_base(clock_id);
	timer->base = &cpu_base->clock_base[base];
1134
	timerqueue_init(&timer->node);
1135 1136 1137 1138 1139 1140

#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
1141
}
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
 * @mode:	timer mode abs/rel
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
1152
	debug_init(timer, clock_id, mode);
1153 1154
	__hrtimer_init(timer, clock_id, mode);
}
1155
EXPORT_SYMBOL_GPL(hrtimer_init);
1156

1157 1158 1159 1160
/*
 * A timer is active, when it is enqueued into the rbtree or the
 * callback function is running or it's in the state of being migrated
 * to another cpu.
1161
 *
1162
 * It is important for this function to not return a false negative.
1163
 */
1164
bool hrtimer_active(const struct hrtimer *timer)
1165
{
1166
	struct hrtimer_cpu_base *cpu_base;
1167
	unsigned int seq;
1168

1169 1170 1171
	do {
		cpu_base = READ_ONCE(timer->base->cpu_base);
		seq = raw_read_seqcount_begin(&cpu_base->seq);
1172

1173 1174 1175 1176 1177 1178 1179 1180
		if (timer->state != HRTIMER_STATE_INACTIVE ||
		    cpu_base->running == timer)
			return true;

	} while (read_seqcount_retry(&cpu_base->seq, seq) ||
		 cpu_base != READ_ONCE(timer->base->cpu_base));

	return false;
1181
}
1182
EXPORT_SYMBOL_GPL(hrtimer_active);
1183

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
/*
 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
 * distinct sections:
 *
 *  - queued:	the timer is queued
 *  - callback:	the timer is being ran
 *  - post:	the timer is inactive or (re)queued
 *
 * On the read side we ensure we observe timer->state and cpu_base->running
 * from the same section, if anything changed while we looked at it, we retry.
 * This includes timer->base changing because sequence numbers alone are
 * insufficient for that.
 *
 * The sequence numbers are required because otherwise we could still observe
 * a false negative if the read side got smeared over multiple consequtive
 * __run_hrtimer() invocations.
 */

1202 1203 1204
static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
			  struct hrtimer_clock_base *base,
			  struct hrtimer *timer, ktime_t *now)
1205 1206 1207 1208
{
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1209
	lockdep_assert_held(&cpu_base->lock);
1210

1211
	debug_deactivate(timer);
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
	cpu_base->running = timer;

	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
	 * timer->state == INACTIVE.
	 */
	raw_write_seqcount_barrier(&cpu_base->seq);

	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1224 1225
	timer_stats_account_hrtimer(timer);
	fn = timer->function;
1226

1227 1228 1229 1230 1231 1232 1233 1234
	/*
	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
	 * timer is restarted with a period then it becomes an absolute
	 * timer. If its not restarted it does not matter.
	 */
	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
		timer->is_rel = false;

1235 1236 1237 1238 1239
	/*
	 * Because we run timers from hardirq context, there is no chance
	 * they get migrated to another cpu, therefore its safe to unlock
	 * the timer base.
	 */
1240
	raw_spin_unlock(&cpu_base->lock);
1241
	trace_hrtimer_expire_entry(timer, now);
1242
	restart = fn(timer);
1243
	trace_hrtimer_expire_exit(timer);
1244
	raw_spin_lock(&cpu_base->lock);
1245 1246

	/*
1247
	 * Note: We clear the running state after enqueue_hrtimer and
T
Thomas Gleixner 已提交
1248 1249
	 * we do not reprogramm the event hardware. Happens either in
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1250 1251 1252 1253
	 *
	 * Note: Because we dropped the cpu_base->lock above,
	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
	 * for us already.
1254
	 */
1255 1256
	if (restart != HRTIMER_NORESTART &&
	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1257
		enqueue_hrtimer(timer, base);
1258

1259 1260 1261 1262 1263 1264 1265 1266
	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
	 * timer->state == INACTIVE.
	 */
	raw_write_seqcount_barrier(&cpu_base->seq);
1267

1268 1269
	WARN_ON_ONCE(cpu_base->running != timer);
	cpu_base->running = NULL;
1270 1271
}

1272
static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1273
{
1274 1275
	struct hrtimer_clock_base *base = cpu_base->clock_base;
	unsigned int active = cpu_base->active_bases;
1276

1277
	for (; active; base++, active >>= 1) {
1278
		struct timerqueue_node *node;
1279 1280
		ktime_t basenow;

1281
		if (!(active & 0x01))
1282
			continue;
1283 1284 1285

		basenow = ktime_add(now, base->offset);

1286
		while ((node = timerqueue_getnext(&base->active))) {
1287 1288
			struct hrtimer *timer;

1289
			timer = container_of(node, struct hrtimer, node);
1290

1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */
1303
			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
1304 1305
				break;

1306
			__run_hrtimer(cpu_base, base, timer, &basenow);
1307 1308
		}
	}
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
}

#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
	ktime_t expires_next, now, entry_time, delta;
	int retries = 0;

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event.tv64 = KTIME_MAX;

	raw_spin_lock(&cpu_base->lock);
	entry_time = now = hrtimer_update_base(cpu_base);
retry:
	cpu_base->in_hrtirq = 1;
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
	cpu_base->expires_next.tv64 = KTIME_MAX;

	__hrtimer_run_queues(cpu_base, now);

1342 1343
	/* Reevaluate the clock bases for the next expiry */
	expires_next = __hrtimer_get_next_event(cpu_base);
1344 1345 1346 1347
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1348
	cpu_base->expires_next = expires_next;
1349
	cpu_base->in_hrtirq = 0;
1350
	raw_spin_unlock(&cpu_base->lock);
1351 1352

	/* Reprogramming necessary ? */
1353
	if (!tick_program_event(expires_next, 0)) {
1354 1355
		cpu_base->hang_detected = 0;
		return;
1356
	}
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366

	/*
	 * The next timer was already expired due to:
	 * - tracing
	 * - long lasting callbacks
	 * - being scheduled away when running in a VM
	 *
	 * We need to prevent that we loop forever in the hrtimer
	 * interrupt routine. We give it 3 attempts to avoid
	 * overreacting on some spurious event.
1367 1368 1369
	 *
	 * Acquire base lock for updating the offsets and retrieving
	 * the current time.
1370
	 */
1371
	raw_spin_lock(&cpu_base->lock);
1372
	now = hrtimer_update_base(cpu_base);
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
	cpu_base->nr_retries++;
	if (++retries < 3)
		goto retry;
	/*
	 * Give the system a chance to do something else than looping
	 * here. We stored the entry time, so we know exactly how long
	 * we spent here. We schedule the next event this amount of
	 * time away.
	 */
	cpu_base->nr_hangs++;
	cpu_base->hang_detected = 1;
1384
	raw_spin_unlock(&cpu_base->lock);
1385
	delta = ktime_sub(now, entry_time);
1386 1387
	if ((unsigned int)delta.tv64 > cpu_base->max_hang_time)
		cpu_base->max_hang_time = (unsigned int) delta.tv64;
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
	/*
	 * Limit it to a sensible value as we enforce a longer
	 * delay. Give the CPU at least 100ms to catch up.
	 */
	if (delta.tv64 > 100 * NSEC_PER_MSEC)
		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
	else
		expires_next = ktime_add(now, delta);
	tick_program_event(expires_next, 1);
	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
		    ktime_to_ns(delta));
1399 1400
}

1401 1402 1403 1404
/*
 * local version of hrtimer_peek_ahead_timers() called with interrupts
 * disabled.
 */
1405
static inline void __hrtimer_peek_ahead_timers(void)
1406 1407 1408 1409 1410 1411
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

1412
	td = this_cpu_ptr(&tick_cpu_device);
1413 1414 1415 1416
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1417 1418 1419 1420 1421
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1422

1423
/*
1424
 * Called from run_local_timers in hardirq context every jiffy
1425
 */
1426
void hrtimer_run_queues(void)
1427
{
1428
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1429
	ktime_t now;
1430

1431
	if (__hrtimer_hres_active(cpu_base))
1432
		return;
1433

1434
	/*
1435 1436 1437 1438 1439
	 * This _is_ ugly: We have to check periodically, whether we
	 * can switch to highres and / or nohz mode. The clocksource
	 * switch happens with xtime_lock held. Notification from
	 * there only sets the check bit in the tick_oneshot code,
	 * otherwise we might deadlock vs. xtime_lock.
1440
	 */
1441
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1442
		hrtimer_switch_to_hres();
1443
		return;
1444
	}
1445

1446 1447 1448 1449
	raw_spin_lock(&cpu_base->lock);
	now = hrtimer_update_base(cpu_base);
	__hrtimer_run_queues(cpu_base, now);
	raw_spin_unlock(&cpu_base->lock);
1450 1451
}

1452 1453 1454
/*
 * Sleep related functions:
 */
1455
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1468
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1469 1470 1471 1472
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}
S
Stephen Hemminger 已提交
1473
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1474

1475
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1476
{
1477
	hrtimer_init_sleeper(t, current);
1478

1479 1480
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1481
		hrtimer_start_expires(&t->timer, mode);
1482

1483
		if (likely(t->task))
1484
			freezable_schedule();
1485

1486
		hrtimer_cancel(&t->timer);
1487
		mode = HRTIMER_MODE_ABS;
1488 1489

	} while (t->task && !signal_pending(current));
1490

1491 1492
	__set_current_state(TASK_RUNNING);

1493
	return t->task == NULL;
1494 1495
}

1496 1497 1498 1499 1500
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

1501
	rem = hrtimer_expires_remaining(timer);
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
	if (rem.tv64 <= 0)
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;
}

1512
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1513
{
1514
	struct hrtimer_sleeper t;
1515
	struct timespec __user  *rmtp;
1516
	int ret = 0;
1517

1518
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1519
				HRTIMER_MODE_ABS);
1520
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1521

1522
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1523
		goto out;
1524

1525
	rmtp = restart->nanosleep.rmtp;
1526
	if (rmtp) {
1527
		ret = update_rmtp(&t.timer, rmtp);
1528
		if (ret <= 0)
1529
			goto out;
1530
	}
1531 1532

	/* The other values in restart are already filled in */
1533 1534 1535 1536
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1537 1538
}

1539
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1540 1541 1542
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1543
	struct hrtimer_sleeper t;
1544
	int ret = 0;
1545
	u64 slack;
1546 1547

	slack = current->timer_slack_ns;
1548
	if (dl_task(current) || rt_task(current))
1549
		slack = 0;
1550

1551
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1552
	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1553
	if (do_nanosleep(&t, mode))
1554
		goto out;
1555

1556
	/* Absolute timers do not update the rmtp value and restart: */
1557 1558 1559 1560
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1561

1562
	if (rmtp) {
1563
		ret = update_rmtp(&t.timer, rmtp);
1564
		if (ret <= 0)
1565
			goto out;
1566
	}
1567

1568
	restart = &current->restart_block;
1569
	restart->fn = hrtimer_nanosleep_restart;
1570
	restart->nanosleep.clockid = t.timer.base->clockid;
1571
	restart->nanosleep.rmtp = rmtp;
1572
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1573

1574 1575 1576 1577
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1578 1579
}

1580 1581
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1582
{
1583
	struct timespec tu;
1584 1585 1586 1587 1588 1589 1590

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1591
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1592 1593
}

1594 1595 1596
/*
 * Functions related to boot-time initialization:
 */
1597
static void init_hrtimers_cpu(int cpu)
1598
{
1599
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1600 1601
	int i;

1602
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1603
		cpu_base->clock_base[i].cpu_base = cpu_base;
1604 1605
		timerqueue_init_head(&cpu_base->clock_base[i].active);
	}
1606

1607
	cpu_base->cpu = cpu;
1608
	hrtimer_init_hres(cpu_base);
1609 1610 1611 1612
}

#ifdef CONFIG_HOTPLUG_CPU

1613
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1614
				struct hrtimer_clock_base *new_base)
1615 1616
{
	struct hrtimer *timer;
1617
	struct timerqueue_node *node;
1618

1619 1620
	while ((node = timerqueue_getnext(&old_base->active))) {
		timer = container_of(node, struct hrtimer, node);
1621
		BUG_ON(hrtimer_callback_running(timer));
1622
		debug_deactivate(timer);
T
Thomas Gleixner 已提交
1623 1624

		/*
1625
		 * Mark it as ENQUEUED not INACTIVE otherwise the
T
Thomas Gleixner 已提交
1626 1627 1628
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
1629
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1630
		timer->base = new_base;
1631
		/*
T
Thomas Gleixner 已提交
1632 1633 1634 1635 1636 1637
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1638
		 */
1639
		enqueue_hrtimer(timer, new_base);
1640 1641 1642
	}
}

1643
static void migrate_hrtimers(int scpu)
1644
{
1645
	struct hrtimer_cpu_base *old_base, *new_base;
1646
	int i;
1647

1648 1649
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1650 1651 1652

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
1653
	new_base = this_cpu_ptr(&hrtimer_bases);
1654 1655 1656 1657
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1658 1659
	raw_spin_lock(&new_base->lock);
	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1660

1661
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1662
		migrate_hrtimer_list(&old_base->clock_base[i],
1663
				     &new_base->clock_base[i]);
1664 1665
	}

1666 1667
	raw_spin_unlock(&old_base->lock);
	raw_spin_unlock(&new_base->lock);
1668

1669 1670 1671
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1672
}
1673

1674 1675
#endif /* CONFIG_HOTPLUG_CPU */

1676
static int hrtimer_cpu_notify(struct notifier_block *self,
1677 1678
					unsigned long action, void *hcpu)
{
1679
	int scpu = (long)hcpu;
1680 1681 1682 1683

	switch (action) {

	case CPU_UP_PREPARE:
1684
	case CPU_UP_PREPARE_FROZEN:
1685
		init_hrtimers_cpu(scpu);
1686 1687 1688 1689
		break;

#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
1690
	case CPU_DEAD_FROZEN:
1691
		migrate_hrtimers(scpu);
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
		break;
#endif

	default:
		break;
	}

	return NOTIFY_OK;
}

1702
static struct notifier_block hrtimers_nb = {
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
	.notifier_call = hrtimer_cpu_notify,
};

void __init hrtimers_init(void)
{
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
			  (void *)(long)smp_processor_id());
	register_cpu_notifier(&hrtimers_nb);
}

1713
/**
1714
 * schedule_hrtimeout_range_clock - sleep until timeout
1715
 * @expires:	timeout value (ktime_t)
1716
 * @delta:	slack in expires timeout (ktime_t)
1717
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1718
 * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1719
 */
1720
int __sched
1721
schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1722
			       const enum hrtimer_mode mode, int clock)
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
	if (expires && !expires->tv64) {
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
N
Namhyung Kim 已提交
1736
	 * A NULL parameter means "infinite"
1737 1738 1739 1740 1741 1742
	 */
	if (!expires) {
		schedule();
		return -EINTR;
	}

1743
	hrtimer_init_on_stack(&t.timer, clock, mode);
1744
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1745 1746 1747

	hrtimer_init_sleeper(&t, current);

1748
	hrtimer_start_expires(&t.timer, mode);
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788

/**
 * schedule_hrtimeout_range - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @delta:	slack in expires timeout (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
1789
int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1790 1791 1792 1793 1794
				     const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range_clock(expires, delta, mode,
					      CLOCK_MONOTONIC);
}
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1824
EXPORT_SYMBOL_GPL(schedule_hrtimeout);