hrtimer.c 45.8 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
35
#include <linux/export.h>
36 37 38 39
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46
#include <linux/sched/signal.h>
47
#include <linux/sched/sysctl.h>
48
#include <linux/sched/rt.h>
49
#include <linux/sched/deadline.h>
50
#include <linux/sched/nohz.h>
51
#include <linux/sched/debug.h>
52
#include <linux/timer.h>
53
#include <linux/freezer.h>
54
#include <linux/compat.h>
55

56
#include <linux/uaccess.h>
57

58 59
#include <trace/events/timer.h>

60
#include "tick-internal.h"
61

62 63
/*
 * The timer bases:
64
 *
Z
Zhen Lei 已提交
65
 * There are more clockids than hrtimer bases. Thus, we index
66 67 68
 * into the timer bases by the hrtimer_base_type enum. When trying
 * to reach a base using a clockid, hrtimer_clockid_to_base()
 * is used to convert from clockid to the proper hrtimer_base_type.
69
 */
70
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
71
{
72
	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
73
	.clock_base =
74
	{
75
		{
76 77
			.index = HRTIMER_BASE_MONOTONIC,
			.clockid = CLOCK_MONOTONIC,
78 79
			.get_time = &ktime_get,
		},
T
Thomas Gleixner 已提交
80 81 82 83 84
		{
			.index = HRTIMER_BASE_REALTIME,
			.clockid = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
		},
85
		{
86 87
			.index = HRTIMER_BASE_BOOTTIME,
			.clockid = CLOCK_BOOTTIME,
88 89
			.get_time = &ktime_get_boottime,
		},
90 91 92 93 94
		{
			.index = HRTIMER_BASE_TAI,
			.clockid = CLOCK_TAI,
			.get_time = &ktime_get_clocktai,
		},
95
	}
96 97
};

98
static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
99 100 101
	/* Make sure we catch unsupported clockids */
	[0 ... MAX_CLOCKS - 1]	= HRTIMER_MAX_CLOCK_BASES,

102 103 104
	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
105
	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
106
};
107

108 109 110 111 112 113
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

114 115 116 117 118 119 120 121 122 123 124
/*
 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
 * such that hrtimer_callback_running() can unconditionally dereference
 * timer->base->cpu_base
 */
static struct hrtimer_cpu_base migration_cpu_base = {
	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
};

#define migration_base	migration_cpu_base.clock_base[0]

125 126 127 128 129 130 131 132 133
/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
134 135
 * possible to set timer->base = &migration_base and drop the lock: the timer
 * remains locked.
136
 */
137 138 139
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
140
{
141
	struct hrtimer_clock_base *base;
142 143 144

	for (;;) {
		base = timer->base;
145
		if (likely(base != &migration_base)) {
146
			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
147 148 149
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
150
			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
151 152 153 154 155
		}
		cpu_relax();
	}
}

156
/*
157 158 159 160 161
 * We do not migrate the timer when it is expiring before the next
 * event on the target cpu. When high resolution is enabled, we cannot
 * reprogram the target cpu hardware and we would cause it to fire
 * late. To keep it simple, we handle the high resolution enabled and
 * disabled case similar.
162 163 164 165 166 167 168 169 170
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
	ktime_t expires;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
T
Thomas Gleixner 已提交
171
	return expires <= new_base->cpu_base->expires_next;
172 173
}

174 175 176 177
static inline
struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
					 int pinned)
{
178 179 180 181
#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
	if (static_branch_likely(&timers_migration_enabled) && !pinned)
		return &per_cpu(hrtimer_bases, get_nohz_timer_target());
#endif
182
	return base;
183 184
}

185
/*
186 187 188 189 190 191 192 193 194 195
 * We switch the timer base to a power-optimized selected CPU target,
 * if:
 *	- NO_HZ_COMMON is enabled
 *	- timer migration is enabled
 *	- the timer callback is not running
 *	- the timer is not the first expiring timer on the new target
 *
 * If one of the above requirements is not fulfilled we move the timer
 * to the current CPU or leave it on the previously assigned CPU if
 * the timer callback is currently running.
196
 */
197
static inline struct hrtimer_clock_base *
198 199
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
200
{
201
	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
202
	struct hrtimer_clock_base *new_base;
203
	int basenum = base->index;
204

205 206
	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
	new_cpu_base = get_target_base(this_cpu_base, pinned);
207
again:
208
	new_base = &new_cpu_base->clock_base[basenum];
209 210 211

	if (base != new_base) {
		/*
212
		 * We are trying to move timer to new_base.
213 214 215 216 217 218 219
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
220
		if (unlikely(hrtimer_callback_running(timer)))
221 222
			return base;

223 224
		/* See the comment in lock_hrtimer_base() */
		timer->base = &migration_base;
225 226
		raw_spin_unlock(&base->cpu_base->lock);
		raw_spin_lock(&new_base->cpu_base->lock);
227

228
		if (new_cpu_base != this_cpu_base &&
229
		    hrtimer_check_target(timer, new_base)) {
230 231
			raw_spin_unlock(&new_base->cpu_base->lock);
			raw_spin_lock(&base->cpu_base->lock);
232
			new_cpu_base = this_cpu_base;
233 234
			timer->base = base;
			goto again;
235
		}
236
		timer->base = new_base;
237
	} else {
238
		if (new_cpu_base != this_cpu_base &&
239
		    hrtimer_check_target(timer, new_base)) {
240
			new_cpu_base = this_cpu_base;
241 242
			goto again;
		}
243 244 245 246 247 248
	}
	return new_base;
}

#else /* CONFIG_SMP */

249
static inline struct hrtimer_clock_base *
250 251
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
252
	struct hrtimer_clock_base *base = timer->base;
253

254
	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
255 256 257 258

	return base;
}

259
# define switch_hrtimer_base(t, b, p)	(b)
260 261 262 263 264 265 266 267 268 269 270

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
/*
 * Divide a ktime value by a nanosecond value
 */
271
s64 __ktime_divns(const ktime_t kt, s64 div)
272 273
{
	int sft = 0;
274 275
	s64 dclc;
	u64 tmp;
276

277
	dclc = ktime_to_ns(kt);
278 279
	tmp = dclc < 0 ? -dclc : dclc;

280 281 282 283 284
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
285 286 287
	tmp >>= sft;
	do_div(tmp, (unsigned long) div);
	return dclc < 0 ? -tmp : tmp;
288
}
289
EXPORT_SYMBOL_GPL(__ktime_divns);
290 291
#endif /* BITS_PER_LONG >= 64 */

292 293 294 295 296
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
297
	ktime_t res = ktime_add_unsafe(lhs, rhs);
298 299 300 301 302

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
T
Thomas Gleixner 已提交
303
	if (res < 0 || res < lhs || res < rhs)
304 305 306 307 308
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

309 310
EXPORT_SYMBOL_GPL(ktime_add_safe);

311 312 313 314
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

315 316 317 318 319
static void *hrtimer_debug_hint(void *addr)
{
	return ((struct hrtimer *) addr)->function;
}

320 321 322 323
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
324
static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
325 326 327 328 329 330 331
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
332
		return true;
333
	default:
334
		return false;
335 336 337 338 339 340
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
341
 * - an unknown non-static object is activated
342
 */
343
static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
344 345 346 347 348 349
{
	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
350
		return false;
351 352 353 354 355 356 357
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
358
static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
359 360 361 362 363 364 365
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
366
		return true;
367
	default:
368
		return false;
369 370 371 372 373
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
374
	.debug_hint	= hrtimer_debug_hint,
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}
S
Stephen Hemminger 已提交
409
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
410 411 412 413 414

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}
415
EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
416 417 418 419 420 421 422

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

423 424 425 426 427 428 429 430
static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
	   enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	trace_hrtimer_init(timer, clockid, mode);
}

431 432
static inline void debug_activate(struct hrtimer *timer,
				  enum hrtimer_mode mode)
433 434
{
	debug_hrtimer_activate(timer);
435
	trace_hrtimer_start(timer, mode);
436 437 438 439 440 441 442 443
}

static inline void debug_deactivate(struct hrtimer *timer)
{
	debug_hrtimer_deactivate(timer);
	trace_hrtimer_cancel(timer);
}

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
static struct hrtimer_clock_base *
__next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
{
	unsigned int idx;

	if (!*active)
		return NULL;

	idx = __ffs(*active);
	*active &= ~(1U << idx);

	return &cpu_base->clock_base[idx];
}

#define for_each_active_base(base, cpu_base, active)	\
	while ((base = __next_base((cpu_base), &(active))))

461
static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
462
{
463
	struct hrtimer_clock_base *base;
464
	unsigned int active = cpu_base->active_bases;
T
Thomas Gleixner 已提交
465
	ktime_t expires, expires_next = KTIME_MAX;
466

467
	cpu_base->next_timer = NULL;
468
	for_each_active_base(base, cpu_base, active) {
469 470 471
		struct timerqueue_node *next;
		struct hrtimer *timer;

472
		next = timerqueue_getnext(&base->active);
473 474
		timer = container_of(next, struct hrtimer, node);
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
T
Thomas Gleixner 已提交
475
		if (expires < expires_next) {
476
			expires_next = expires;
477
			cpu_base->next_timer = timer;
478
		}
479 480 481 482 483 484
	}
	/*
	 * clock_was_set() might have changed base->offset of any of
	 * the clock bases so the result might be negative. Fix it up
	 * to prevent a false positive in clockevents_program_event().
	 */
T
Thomas Gleixner 已提交
485 486
	if (expires_next < 0)
		expires_next = 0;
487 488 489
	return expires_next;
}

490 491 492 493 494 495
static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
{
	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;

496 497
	return ktime_get_update_offsets_now(&base->clock_was_set_seq,
					    offs_real, offs_boot, offs_tai);
498 499
}

500 501 502 503 504 505 506 507 508 509 510 511 512 513
/*
 * Is the high resolution mode active ?
 */
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
{
	return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
		cpu_base->hres_active : 0;
}

static inline int hrtimer_hres_active(void)
{
	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
}

514 515 516 517 518
/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
519 520
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
521
{
522 523 524
	ktime_t expires_next;

	expires_next = __hrtimer_get_next_event(cpu_base);
525

T
Thomas Gleixner 已提交
526
	if (skip_equal && expires_next == cpu_base->expires_next)
527 528
		return;

T
Thomas Gleixner 已提交
529
	cpu_base->expires_next = expires_next;
530

531
	/*
532 533 534
	 * If hres is not active, hardware does not have to be
	 * reprogrammed yet.
	 *
535 536 537 538 539 540 541 542 543 544 545 546 547
	 * If a hang was detected in the last timer interrupt then we
	 * leave the hang delay active in the hardware. We want the
	 * system to make progress. That also prevents the following
	 * scenario:
	 * T1 expires 50ms from now
	 * T2 expires 5s from now
	 *
	 * T1 is removed, so this code is called and would reprogram
	 * the hardware to 5s from now. Any hrtimer_start after that
	 * will not reprogram the hardware due to hang_detected being
	 * set. So we'd effectivly block all timers until the T2 event
	 * fires.
	 */
548
	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
549 550
		return;

551
	tick_program_event(cpu_base->expires_next, 1);
552 553
}

554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static bool hrtimer_hres_enabled __read_mostly  = true;
unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
EXPORT_SYMBOL_GPL(hrtimer_resolution);

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

582 583 584 585 586 587 588
/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
589
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
590

591
	if (!__hrtimer_hres_active(base))
592 593 594
		return;

	raw_spin_lock(&base->lock);
595
	hrtimer_update_base(base);
596 597 598
	hrtimer_force_reprogram(base, 0);
	raw_spin_unlock(&base->lock);
}
599

600 601 602
/*
 * Switch to high resolution mode
 */
603
static void hrtimer_switch_to_hres(void)
604
{
605
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
606 607

	if (tick_init_highres()) {
I
Ingo Molnar 已提交
608
		printk(KERN_WARNING "Could not switch to high resolution "
609
				    "mode on CPU %d\n", base->cpu);
610
		return;
611 612
	}
	base->hres_active = 1;
613
	hrtimer_resolution = HIGH_RES_NSEC;
614 615 616 617 618 619

	tick_setup_sched_timer();
	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
}

620 621 622 623 624 625 626
static void clock_was_set_work(struct work_struct *work)
{
	clock_was_set();
}

static DECLARE_WORK(hrtimer_work, clock_was_set_work);

627
/*
P
Pratyush Patel 已提交
628
 * Called from timekeeping and resume code to reprogram the hrtimer
629
 * interrupt device on all cpus.
630 631 632
 */
void clock_was_set_delayed(void)
{
633
	schedule_work(&hrtimer_work);
634 635
}

636 637 638
#else

static inline int hrtimer_is_hres_enabled(void) { return 0; }
639
static inline void hrtimer_switch_to_hres(void) { }
640
static inline void retrigger_next_event(void *arg) { }
641 642 643

#endif /* CONFIG_HIGH_RES_TIMERS */

644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
/*
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
static void hrtimer_reprogram(struct hrtimer *timer,
			      struct hrtimer_clock_base *base)
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);

	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);

	/*
	 * If the timer is not on the current cpu, we cannot reprogram
	 * the other cpus clock event device.
	 */
	if (base->cpu_base != cpu_base)
		return;

	/*
	 * If the hrtimer interrupt is running, then it will
	 * reevaluate the clock bases and reprogram the clock event
	 * device. The callbacks are always executed in hard interrupt
	 * context so we don't need an extra check for a running
	 * callback.
	 */
	if (cpu_base->in_hrtirq)
		return;

	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
	 * expiry time which is less than base->offset. Set it to 0.
	 */
	if (expires < 0)
		expires = 0;

	if (expires >= cpu_base->expires_next)
		return;

	/* Update the pointer to the next expiring timer */
	cpu_base->next_timer = timer;
688
	cpu_base->expires_next = expires;
689 690

	/*
691 692 693
	 * If hres is not active, hardware does not have to be
	 * programmed yet.
	 *
694 695 696 697 698
	 * If a hang was detected in the last timer interrupt then we
	 * do not schedule a timer which is earlier than the expiry
	 * which we enforced in the hang detection. We want the system
	 * to make progress.
	 */
699
	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
700 701 702 703 704 705 706 707 708
		return;

	/*
	 * Program the timer hardware. We enforce the expiry for
	 * events which are already in the past.
	 */
	tick_program_event(expires, 1);
}

709 710 711 712 713 714 715 716 717 718 719 720 721
/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
722
#ifdef CONFIG_HIGH_RES_TIMERS
723 724
	/* Retrigger the CPU local events everywhere */
	on_each_cpu(retrigger_next_event, NULL, 1);
725 726
#endif
	timerfd_clock_was_set();
727 728 729 730
}

/*
 * During resume we might have to reprogram the high resolution timer
731 732
 * interrupt on all online CPUs.  However, all other CPUs will be
 * stopped with IRQs interrupts disabled so the clock_was_set() call
733
 * must be deferred.
734 735 736
 */
void hrtimers_resume(void)
{
737
	lockdep_assert_irqs_disabled();
738
	/* Retrigger on the local CPU */
739
	retrigger_next_event(NULL);
740 741
	/* And schedule a retrigger for all others */
	clock_was_set_delayed();
742 743
}

744
/*
745
 * Counterpart to lock_hrtimer_base above:
746 747 748 749
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
750
	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
751 752 753 754 755
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
756
 * @now:	forward past this time
757 758 759
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
760
 * Returns the number of overruns.
761 762 763 764 765 766 767 768
 *
 * Can be safely called from the callback function of @timer. If
 * called from other contexts @timer must neither be enqueued nor
 * running the callback and the caller needs to take care of
 * serialization.
 *
 * Note: This only updates the timer expiry value and does not requeue
 * the timer.
769
 */
D
Davide Libenzi 已提交
770
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
771
{
D
Davide Libenzi 已提交
772
	u64 orun = 1;
773
	ktime_t delta;
774

775
	delta = ktime_sub(now, hrtimer_get_expires(timer));
776

T
Thomas Gleixner 已提交
777
	if (delta < 0)
778 779
		return 0;

780 781 782
	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
		return 0;

T
Thomas Gleixner 已提交
783 784
	if (interval < hrtimer_resolution)
		interval = hrtimer_resolution;
785

T
Thomas Gleixner 已提交
786
	if (unlikely(delta >= interval)) {
787
		s64 incr = ktime_to_ns(interval);
788 789

		orun = ktime_divns(delta, incr);
790
		hrtimer_add_expires_ns(timer, incr * orun);
T
Thomas Gleixner 已提交
791
		if (hrtimer_get_expires_tv64(timer) > now)
792 793 794 795 796 797 798
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
799
	hrtimer_add_expires(timer, interval);
800 801 802

	return orun;
}
S
Stas Sergeev 已提交
803
EXPORT_SYMBOL_GPL(hrtimer_forward);
804 805 806 807 808 809

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
810 811
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
812
 */
813
static int enqueue_hrtimer(struct hrtimer *timer,
814 815
			   struct hrtimer_clock_base *base,
			   enum hrtimer_mode mode)
816
{
817
	debug_activate(timer, mode);
818

819
	base->cpu_base->active_bases |= 1 << base->index;
820

821
	timer->state = HRTIMER_STATE_ENQUEUED;
822

823
	return timerqueue_add(&base->active, &timer->node);
824
}
825 826 827 828 829

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
830 831 832 833 834
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
835
 */
836
static void __remove_hrtimer(struct hrtimer *timer,
837
			     struct hrtimer_clock_base *base,
838
			     u8 newstate, int reprogram)
839
{
840
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
841
	u8 state = timer->state;
842

843 844 845
	timer->state = newstate;
	if (!(state & HRTIMER_STATE_ENQUEUED))
		return;
846

847
	if (!timerqueue_del(&base->active, &timer->node))
848
		cpu_base->active_bases &= ~(1 << base->index);
849

850 851 852 853 854 855 856 857 858 859
	/*
	 * Note: If reprogram is false we do not update
	 * cpu_base->next_timer. This happens when we remove the first
	 * timer on a remote cpu. No harm as we never dereference
	 * cpu_base->next_timer. So the worst thing what can happen is
	 * an superflous call to hrtimer_force_reprogram() on the
	 * remote cpu later on if the same timer gets enqueued again.
	 */
	if (reprogram && timer == cpu_base->next_timer)
		hrtimer_force_reprogram(cpu_base, 1);
860 861 862 863 864 865
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
866
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
867
{
868
	if (hrtimer_is_queued(timer)) {
869
		u8 state = timer->state;
870 871 872 873 874 875 876 877 878 879
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
880
		debug_deactivate(timer);
881
		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
882

883 884 885
		if (!restart)
			state = HRTIMER_STATE_INACTIVE;

886
		__remove_hrtimer(timer, base, state, reprogram);
887 888 889 890 891
		return 1;
	}
	return 0;
}

892 893 894 895 896 897 898 899 900 901 902
static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
					    const enum hrtimer_mode mode)
{
#ifdef CONFIG_TIME_LOW_RES
	/*
	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
	 * granular time values. For relative timers we add hrtimer_resolution
	 * (i.e. one jiffie) to prevent short timeouts.
	 */
	timer->is_rel = mode & HRTIMER_MODE_REL;
	if (timer->is_rel)
T
Thomas Gleixner 已提交
903
		tim = ktime_add_safe(tim, hrtimer_resolution);
904 905 906 907
#endif
	return tim;
}

908
/**
909
 * hrtimer_start_range_ns - (re)start an hrtimer
910 911 912
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
913 914
 * @mode:	timer mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED)
915
 */
916
void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
917
			    u64 delta_ns, const enum hrtimer_mode mode)
918
{
919
	struct hrtimer_clock_base *base, *new_base;
920
	unsigned long flags;
921
	int leftmost;
922 923 924 925

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
926
	remove_hrtimer(timer, base, true);
927

928
	if (mode & HRTIMER_MODE_REL)
929
		tim = ktime_add_safe(tim, base->get_time());
930 931

	tim = hrtimer_update_lowres(timer, tim, mode);
932

933
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
934

935 936 937
	/* Switch the timer base, if necessary: */
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);

938
	leftmost = enqueue_hrtimer(timer, new_base, mode);
939 940
	if (!leftmost)
		goto unlock;
941

942
	hrtimer_reprogram(timer, new_base);
943
unlock:
944
	unlock_hrtimer_base(timer, &flags);
945
}
946 947
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

948 949 950 951 952 953 954
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
955
 * -1 when the timer is currently executing the callback function and
956
 *    cannot be stopped
957 958 959
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
960
	struct hrtimer_clock_base *base;
961 962 963
	unsigned long flags;
	int ret = -1;

964 965 966 967 968 969 970 971 972
	/*
	 * Check lockless first. If the timer is not active (neither
	 * enqueued nor running the callback, nothing to do here.  The
	 * base lock does not serialize against a concurrent enqueue,
	 * so we can avoid taking it.
	 */
	if (!hrtimer_active(timer))
		return 0;

973 974
	base = lock_hrtimer_base(timer, &flags);

975
	if (!hrtimer_callback_running(timer))
976
		ret = remove_hrtimer(timer, base, false);
977 978 979 980 981 982

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
983
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1000
		cpu_relax();
1001 1002
	}
}
1003
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1004 1005 1006 1007

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
1008
 * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1009
 */
1010
ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1011 1012 1013 1014
{
	unsigned long flags;
	ktime_t rem;

1015
	lock_hrtimer_base(timer, &flags);
1016 1017 1018 1019
	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
		rem = hrtimer_expires_remaining_adjusted(timer);
	else
		rem = hrtimer_expires_remaining(timer);
1020 1021 1022 1023
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1024
EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1025

1026
#ifdef CONFIG_NO_HZ_COMMON
1027 1028 1029
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
1030
 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1031
 */
1032
u64 hrtimer_get_next_event(void)
1033
{
1034
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1035
	u64 expires = KTIME_MAX;
1036 1037
	unsigned long flags;

1038
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1039

1040
	if (!__hrtimer_hres_active(cpu_base))
T
Thomas Gleixner 已提交
1041
		expires = __hrtimer_get_next_event(cpu_base);
1042

1043
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1044

1045
	return expires;
1046 1047 1048
}
#endif

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
static inline int hrtimer_clockid_to_base(clockid_t clock_id)
{
	if (likely(clock_id < MAX_CLOCKS)) {
		int base = hrtimer_clock_to_base_table[clock_id];

		if (likely(base != HRTIMER_MAX_CLOCK_BASES))
			return base;
	}
	WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
	return HRTIMER_BASE_MONOTONIC;
}

1061 1062
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1063
{
1064
	struct hrtimer_cpu_base *cpu_base;
1065
	int base;
1066

1067 1068
	memset(timer, 0, sizeof(struct hrtimer));

1069
	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1070

1071 1072 1073 1074 1075 1076
	/*
	 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
	 * clock modifications, so they needs to become CLOCK_MONOTONIC to
	 * ensure POSIX compliance.
	 */
	if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1077 1078
		clock_id = CLOCK_MONOTONIC;

1079 1080
	base = hrtimer_clockid_to_base(clock_id);
	timer->base = &cpu_base->clock_base[base];
1081
	timerqueue_init(&timer->node);
1082
}
1083 1084 1085 1086 1087

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
1088 1089
 * @mode:	timer mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL); pinned is not considered here!
1090 1091 1092 1093
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
1094
	debug_init(timer, clock_id, mode);
1095 1096
	__hrtimer_init(timer, clock_id, mode);
}
1097
EXPORT_SYMBOL_GPL(hrtimer_init);
1098

1099 1100 1101 1102
/*
 * A timer is active, when it is enqueued into the rbtree or the
 * callback function is running or it's in the state of being migrated
 * to another cpu.
1103
 *
1104
 * It is important for this function to not return a false negative.
1105
 */
1106
bool hrtimer_active(const struct hrtimer *timer)
1107
{
1108
	struct hrtimer_clock_base *base;
1109
	unsigned int seq;
1110

1111
	do {
1112 1113
		base = READ_ONCE(timer->base);
		seq = raw_read_seqcount_begin(&base->seq);
1114

1115
		if (timer->state != HRTIMER_STATE_INACTIVE ||
1116
		    base->running == timer)
1117 1118
			return true;

1119 1120
	} while (read_seqcount_retry(&base->seq, seq) ||
		 base != READ_ONCE(timer->base));
1121 1122

	return false;
1123
}
1124
EXPORT_SYMBOL_GPL(hrtimer_active);
1125

1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
/*
 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
 * distinct sections:
 *
 *  - queued:	the timer is queued
 *  - callback:	the timer is being ran
 *  - post:	the timer is inactive or (re)queued
 *
 * On the read side we ensure we observe timer->state and cpu_base->running
 * from the same section, if anything changed while we looked at it, we retry.
 * This includes timer->base changing because sequence numbers alone are
 * insufficient for that.
 *
 * The sequence numbers are required because otherwise we could still observe
 * a false negative if the read side got smeared over multiple consequtive
 * __run_hrtimer() invocations.
 */

1144 1145 1146
static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
			  struct hrtimer_clock_base *base,
			  struct hrtimer *timer, ktime_t *now)
1147 1148 1149 1150
{
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1151
	lockdep_assert_held(&cpu_base->lock);
1152

1153
	debug_deactivate(timer);
1154
	base->running = timer;
1155 1156 1157 1158 1159

	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
1160
	 * hrtimer_active() cannot observe base->running == NULL &&
1161 1162
	 * timer->state == INACTIVE.
	 */
1163
	raw_write_seqcount_barrier(&base->seq);
1164 1165

	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1166
	fn = timer->function;
1167

1168 1169 1170 1171 1172 1173 1174 1175
	/*
	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
	 * timer is restarted with a period then it becomes an absolute
	 * timer. If its not restarted it does not matter.
	 */
	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
		timer->is_rel = false;

1176
	/*
1177 1178 1179
	 * The timer is marked as running in the CPU base, so it is
	 * protected against migration to a different CPU even if the lock
	 * is dropped.
1180
	 */
1181
	raw_spin_unlock(&cpu_base->lock);
1182
	trace_hrtimer_expire_entry(timer, now);
1183
	restart = fn(timer);
1184
	trace_hrtimer_expire_exit(timer);
1185
	raw_spin_lock(&cpu_base->lock);
1186 1187

	/*
1188
	 * Note: We clear the running state after enqueue_hrtimer and
P
Pratyush Patel 已提交
1189
	 * we do not reprogram the event hardware. Happens either in
T
Thomas Gleixner 已提交
1190
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1191 1192 1193 1194
	 *
	 * Note: Because we dropped the cpu_base->lock above,
	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
	 * for us already.
1195
	 */
1196 1197
	if (restart != HRTIMER_NORESTART &&
	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1198
		enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1199

1200 1201 1202 1203
	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
1204
	 * hrtimer_active() cannot observe base->running.timer == NULL &&
1205 1206
	 * timer->state == INACTIVE.
	 */
1207
	raw_write_seqcount_barrier(&base->seq);
1208

1209 1210
	WARN_ON_ONCE(base->running != timer);
	base->running = NULL;
1211 1212
}

1213
static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1214
{
1215
	struct hrtimer_clock_base *base;
1216
	unsigned int active = cpu_base->active_bases;
1217

1218
	for_each_active_base(base, cpu_base, active) {
1219
		struct timerqueue_node *node;
1220 1221
		ktime_t basenow;

1222 1223
		basenow = ktime_add(now, base->offset);

1224
		while ((node = timerqueue_getnext(&base->active))) {
1225 1226
			struct hrtimer *timer;

1227
			timer = container_of(node, struct hrtimer, node);
1228

1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */
T
Thomas Gleixner 已提交
1241
			if (basenow < hrtimer_get_softexpires_tv64(timer))
1242 1243
				break;

1244
			__run_hrtimer(cpu_base, base, timer, &basenow);
1245 1246
		}
	}
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
}

#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
	ktime_t expires_next, now, entry_time, delta;
	int retries = 0;

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
T
Thomas Gleixner 已提交
1263
	dev->next_event = KTIME_MAX;
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275

	raw_spin_lock(&cpu_base->lock);
	entry_time = now = hrtimer_update_base(cpu_base);
retry:
	cpu_base->in_hrtirq = 1;
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
T
Thomas Gleixner 已提交
1276
	cpu_base->expires_next = KTIME_MAX;
1277 1278 1279

	__hrtimer_run_queues(cpu_base, now);

1280 1281
	/* Reevaluate the clock bases for the next expiry */
	expires_next = __hrtimer_get_next_event(cpu_base);
1282 1283 1284 1285
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1286
	cpu_base->expires_next = expires_next;
1287
	cpu_base->in_hrtirq = 0;
1288
	raw_spin_unlock(&cpu_base->lock);
1289 1290

	/* Reprogramming necessary ? */
1291
	if (!tick_program_event(expires_next, 0)) {
1292 1293
		cpu_base->hang_detected = 0;
		return;
1294
	}
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304

	/*
	 * The next timer was already expired due to:
	 * - tracing
	 * - long lasting callbacks
	 * - being scheduled away when running in a VM
	 *
	 * We need to prevent that we loop forever in the hrtimer
	 * interrupt routine. We give it 3 attempts to avoid
	 * overreacting on some spurious event.
1305 1306 1307
	 *
	 * Acquire base lock for updating the offsets and retrieving
	 * the current time.
1308
	 */
1309
	raw_spin_lock(&cpu_base->lock);
1310
	now = hrtimer_update_base(cpu_base);
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
	cpu_base->nr_retries++;
	if (++retries < 3)
		goto retry;
	/*
	 * Give the system a chance to do something else than looping
	 * here. We stored the entry time, so we know exactly how long
	 * we spent here. We schedule the next event this amount of
	 * time away.
	 */
	cpu_base->nr_hangs++;
	cpu_base->hang_detected = 1;
1322
	raw_spin_unlock(&cpu_base->lock);
1323
	delta = ktime_sub(now, entry_time);
T
Thomas Gleixner 已提交
1324 1325
	if ((unsigned int)delta > cpu_base->max_hang_time)
		cpu_base->max_hang_time = (unsigned int) delta;
1326 1327 1328 1329
	/*
	 * Limit it to a sensible value as we enforce a longer
	 * delay. Give the CPU at least 100ms to catch up.
	 */
T
Thomas Gleixner 已提交
1330
	if (delta > 100 * NSEC_PER_MSEC)
1331 1332 1333 1334 1335 1336
		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
	else
		expires_next = ktime_add(now, delta);
	tick_program_event(expires_next, 1);
	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
		    ktime_to_ns(delta));
1337 1338
}

1339
/* called with interrupts disabled */
1340
static inline void __hrtimer_peek_ahead_timers(void)
1341 1342 1343 1344 1345 1346
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

1347
	td = this_cpu_ptr(&tick_cpu_device);
1348 1349 1350 1351
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1352 1353 1354 1355 1356
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1357

1358
/*
1359
 * Called from run_local_timers in hardirq context every jiffy
1360
 */
1361
void hrtimer_run_queues(void)
1362
{
1363
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1364
	ktime_t now;
1365

1366
	if (__hrtimer_hres_active(cpu_base))
1367
		return;
1368

1369
	/*
1370 1371 1372 1373 1374
	 * This _is_ ugly: We have to check periodically, whether we
	 * can switch to highres and / or nohz mode. The clocksource
	 * switch happens with xtime_lock held. Notification from
	 * there only sets the check bit in the tick_oneshot code,
	 * otherwise we might deadlock vs. xtime_lock.
1375
	 */
1376
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1377
		hrtimer_switch_to_hres();
1378
		return;
1379
	}
1380

1381 1382 1383 1384
	raw_spin_lock(&cpu_base->lock);
	now = hrtimer_update_base(cpu_base);
	__hrtimer_run_queues(cpu_base, now);
	raw_spin_unlock(&cpu_base->lock);
1385 1386
}

1387 1388 1389
/*
 * Sleep related functions:
 */
1390
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1403
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1404 1405 1406 1407
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}
S
Stephen Hemminger 已提交
1408
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1409

1410
int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1411 1412 1413 1414
{
	switch(restart->nanosleep.type) {
#ifdef CONFIG_COMPAT
	case TT_COMPAT:
1415
		if (compat_put_timespec64(ts, restart->nanosleep.compat_rmtp))
1416 1417 1418 1419
			return -EFAULT;
		break;
#endif
	case TT_NATIVE:
1420
		if (put_timespec64(ts, restart->nanosleep.rmtp))
1421 1422 1423 1424 1425 1426 1427 1428
			return -EFAULT;
		break;
	default:
		BUG();
	}
	return -ERESTART_RESTARTBLOCK;
}

1429
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1430
{
1431 1432
	struct restart_block *restart;

1433
	hrtimer_init_sleeper(t, current);
1434

1435 1436
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1437
		hrtimer_start_expires(&t->timer, mode);
1438

1439
		if (likely(t->task))
1440
			freezable_schedule();
1441

1442
		hrtimer_cancel(&t->timer);
1443
		mode = HRTIMER_MODE_ABS;
1444 1445

	} while (t->task && !signal_pending(current));
1446

1447 1448
	__set_current_state(TASK_RUNNING);

1449
	if (!t->task)
1450 1451
		return 0;

1452 1453
	restart = &current->restart_block;
	if (restart->nanosleep.type != TT_NONE) {
1454
		ktime_t rem = hrtimer_expires_remaining(&t->timer);
1455
		struct timespec64 rmt;
1456

1457 1458
		if (rem <= 0)
			return 0;
1459
		rmt = ktime_to_timespec64(rem);
1460

1461
		return nanosleep_copyout(restart, &rmt);
1462 1463
	}
	return -ERESTART_RESTARTBLOCK;
1464 1465
}

A
Al Viro 已提交
1466
static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1467
{
1468
	struct hrtimer_sleeper t;
1469
	int ret;
1470

1471
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1472
				HRTIMER_MODE_ABS);
1473
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1474

1475
	ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1476 1477
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1478 1479
}

1480
long hrtimer_nanosleep(const struct timespec64 *rqtp,
1481 1482
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
1483
	struct restart_block *restart;
1484
	struct hrtimer_sleeper t;
1485
	int ret = 0;
1486
	u64 slack;
1487 1488

	slack = current->timer_slack_ns;
1489
	if (dl_task(current) || rt_task(current))
1490
		slack = 0;
1491

1492
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1493
	hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
1494 1495
	ret = do_nanosleep(&t, mode);
	if (ret != -ERESTART_RESTARTBLOCK)
1496
		goto out;
1497

1498
	/* Absolute timers do not update the rmtp value and restart: */
1499 1500 1501 1502
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1503

1504
	restart = &current->restart_block;
1505
	restart->fn = hrtimer_nanosleep_restart;
1506
	restart->nanosleep.clockid = t.timer.base->clockid;
1507
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1508 1509 1510
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1511 1512
}

1513 1514
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1515
{
1516
	struct timespec64 tu;
1517

1518
	if (get_timespec64(&tu, rqtp))
1519 1520
		return -EFAULT;

1521
	if (!timespec64_valid(&tu))
1522 1523
		return -EINVAL;

1524
	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1525
	current->restart_block.nanosleep.rmtp = rmtp;
1526
	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1527 1528
}

1529 1530 1531 1532 1533
#ifdef CONFIG_COMPAT

COMPAT_SYSCALL_DEFINE2(nanosleep, struct compat_timespec __user *, rqtp,
		       struct compat_timespec __user *, rmtp)
{
1534
	struct timespec64 tu;
1535

1536
	if (compat_get_timespec64(&tu, rqtp))
1537 1538
		return -EFAULT;

1539
	if (!timespec64_valid(&tu))
1540 1541 1542 1543
		return -EINVAL;

	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
	current->restart_block.nanosleep.compat_rmtp = rmtp;
1544
	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1545 1546 1547
}
#endif

1548 1549 1550
/*
 * Functions related to boot-time initialization:
 */
1551
int hrtimers_prepare_cpu(unsigned int cpu)
1552
{
1553
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1554 1555
	int i;

1556
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1557
		cpu_base->clock_base[i].cpu_base = cpu_base;
1558 1559
		timerqueue_init_head(&cpu_base->clock_base[i].active);
	}
1560

1561
	cpu_base->cpu = cpu;
1562
	cpu_base->hres_active = 0;
1563
	cpu_base->expires_next = KTIME_MAX;
1564
	return 0;
1565 1566 1567 1568
}

#ifdef CONFIG_HOTPLUG_CPU

1569
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1570
				struct hrtimer_clock_base *new_base)
1571 1572
{
	struct hrtimer *timer;
1573
	struct timerqueue_node *node;
1574

1575 1576
	while ((node = timerqueue_getnext(&old_base->active))) {
		timer = container_of(node, struct hrtimer, node);
1577
		BUG_ON(hrtimer_callback_running(timer));
1578
		debug_deactivate(timer);
T
Thomas Gleixner 已提交
1579 1580

		/*
1581
		 * Mark it as ENQUEUED not INACTIVE otherwise the
T
Thomas Gleixner 已提交
1582 1583 1584
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
1585
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1586
		timer->base = new_base;
1587
		/*
T
Thomas Gleixner 已提交
1588 1589 1590 1591 1592 1593
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1594
		 */
1595
		enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
1596 1597 1598
	}
}

1599
int hrtimers_dead_cpu(unsigned int scpu)
1600
{
1601
	struct hrtimer_cpu_base *old_base, *new_base;
1602
	int i;
1603

1604 1605
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1606 1607 1608

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
1609
	new_base = this_cpu_ptr(&hrtimer_bases);
1610 1611 1612 1613
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1614 1615
	raw_spin_lock(&new_base->lock);
	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1616

1617
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1618
		migrate_hrtimer_list(&old_base->clock_base[i],
1619
				     &new_base->clock_base[i]);
1620 1621
	}

1622 1623
	raw_spin_unlock(&old_base->lock);
	raw_spin_unlock(&new_base->lock);
1624

1625 1626 1627
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1628
	return 0;
1629
}
1630

1631 1632 1633 1634
#endif /* CONFIG_HOTPLUG_CPU */

void __init hrtimers_init(void)
{
1635
	hrtimers_prepare_cpu(smp_processor_id());
1636 1637
}

1638
/**
1639
 * schedule_hrtimeout_range_clock - sleep until timeout
1640
 * @expires:	timeout value (ktime_t)
1641
 * @delta:	slack in expires timeout (ktime_t)
1642 1643
 * @mode:	timer mode
 * @clock_id:	timer clock to be used
1644
 */
1645
int __sched
1646
schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1647
			       const enum hrtimer_mode mode, clockid_t clock_id)
1648 1649 1650 1651 1652 1653 1654
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
T
Thomas Gleixner 已提交
1655
	if (expires && *expires == 0) {
1656 1657 1658 1659 1660
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
N
Namhyung Kim 已提交
1661
	 * A NULL parameter means "infinite"
1662 1663 1664 1665 1666 1667
	 */
	if (!expires) {
		schedule();
		return -EINTR;
	}

1668
	hrtimer_init_on_stack(&t.timer, clock_id, mode);
1669
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1670 1671 1672

	hrtimer_init_sleeper(&t, current);

1673
	hrtimer_start_expires(&t.timer, mode);
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1685 1686 1687 1688 1689

/**
 * schedule_hrtimeout_range - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @delta:	slack in expires timeout (ktime_t)
1690
 * @mode:	timer mode
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1704 1705
 * pass before the routine returns unless the current task is explicitly
 * woken up, (e.g. by wake_up_process()).
1706 1707
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1708 1709
 * delivered to the current task or the current task is explicitly woken
 * up.
1710 1711 1712 1713
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
1714 1715 1716
 * Returns 0 when the timer has expired. If the task was woken before the
 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
 * by an explicit wakeup, it returns -EINTR.
1717
 */
1718
int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1719 1720 1721 1722 1723
				     const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range_clock(expires, delta, mode,
					      CLOCK_MONOTONIC);
}
1724 1725 1726 1727 1728
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
1729
 * @mode:	timer mode
1730 1731 1732 1733 1734 1735 1736 1737
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1738 1739
 * pass before the routine returns unless the current task is explicitly
 * woken up, (e.g. by wake_up_process()).
1740 1741
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1742 1743
 * delivered to the current task or the current task is explicitly woken
 * up.
1744 1745 1746 1747
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
1748 1749 1750
 * Returns 0 when the timer has expired. If the task was woken before the
 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
 * by an explicit wakeup, it returns -EINTR.
1751 1752 1753 1754 1755 1756
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1757
EXPORT_SYMBOL_GPL(schedule_hrtimeout);