hrtimer.c 46.1 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
35
#include <linux/export.h>
36 37 38 39
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46
#include <linux/sched/signal.h>
47
#include <linux/sched/sysctl.h>
48
#include <linux/sched/rt.h>
49
#include <linux/sched/deadline.h>
50
#include <linux/sched/nohz.h>
51
#include <linux/sched/debug.h>
52
#include <linux/timer.h>
53
#include <linux/freezer.h>
54
#include <linux/compat.h>
55

56
#include <linux/uaccess.h>
57

58 59
#include <trace/events/timer.h>

60
#include "tick-internal.h"
61

62 63
/*
 * The timer bases:
64
 *
Z
Zhen Lei 已提交
65
 * There are more clockids than hrtimer bases. Thus, we index
66 67 68
 * into the timer bases by the hrtimer_base_type enum. When trying
 * to reach a base using a clockid, hrtimer_clockid_to_base()
 * is used to convert from clockid to the proper hrtimer_base_type.
69
 */
70
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
71
{
72
	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
73
	.clock_base =
74
	{
75
		{
76 77
			.index = HRTIMER_BASE_MONOTONIC,
			.clockid = CLOCK_MONOTONIC,
78 79
			.get_time = &ktime_get,
		},
T
Thomas Gleixner 已提交
80 81 82 83 84
		{
			.index = HRTIMER_BASE_REALTIME,
			.clockid = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
		},
85
		{
86 87
			.index = HRTIMER_BASE_BOOTTIME,
			.clockid = CLOCK_BOOTTIME,
88 89
			.get_time = &ktime_get_boottime,
		},
90 91 92 93 94
		{
			.index = HRTIMER_BASE_TAI,
			.clockid = CLOCK_TAI,
			.get_time = &ktime_get_clocktai,
		},
95
	}
96 97
};

98
static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
99 100 101
	/* Make sure we catch unsupported clockids */
	[0 ... MAX_CLOCKS - 1]	= HRTIMER_MAX_CLOCK_BASES,

102 103 104
	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
105
	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
106
};
107

108 109 110 111 112 113
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

114 115 116 117 118 119 120 121 122 123 124
/*
 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
 * such that hrtimer_callback_running() can unconditionally dereference
 * timer->base->cpu_base
 */
static struct hrtimer_cpu_base migration_cpu_base = {
	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
};

#define migration_base	migration_cpu_base.clock_base[0]

125 126 127 128 129 130 131 132 133
/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
134 135
 * possible to set timer->base = &migration_base and drop the lock: the timer
 * remains locked.
136
 */
137 138 139
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
140
{
141
	struct hrtimer_clock_base *base;
142 143 144

	for (;;) {
		base = timer->base;
145
		if (likely(base != &migration_base)) {
146
			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
147 148 149
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
150
			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
151 152 153 154 155
		}
		cpu_relax();
	}
}

156
/*
157 158 159 160 161
 * We do not migrate the timer when it is expiring before the next
 * event on the target cpu. When high resolution is enabled, we cannot
 * reprogram the target cpu hardware and we would cause it to fire
 * late. To keep it simple, we handle the high resolution enabled and
 * disabled case similar.
162 163 164 165 166 167 168 169 170
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
	ktime_t expires;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
T
Thomas Gleixner 已提交
171
	return expires <= new_base->cpu_base->expires_next;
172 173
}

174 175 176 177
static inline
struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
					 int pinned)
{
178 179 180 181
#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
	if (static_branch_likely(&timers_migration_enabled) && !pinned)
		return &per_cpu(hrtimer_bases, get_nohz_timer_target());
#endif
182
	return base;
183 184
}

185
/*
186 187 188 189 190 191 192 193 194 195
 * We switch the timer base to a power-optimized selected CPU target,
 * if:
 *	- NO_HZ_COMMON is enabled
 *	- timer migration is enabled
 *	- the timer callback is not running
 *	- the timer is not the first expiring timer on the new target
 *
 * If one of the above requirements is not fulfilled we move the timer
 * to the current CPU or leave it on the previously assigned CPU if
 * the timer callback is currently running.
196
 */
197
static inline struct hrtimer_clock_base *
198 199
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
200
{
201
	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
202
	struct hrtimer_clock_base *new_base;
203
	int basenum = base->index;
204

205 206
	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
	new_cpu_base = get_target_base(this_cpu_base, pinned);
207
again:
208
	new_base = &new_cpu_base->clock_base[basenum];
209 210 211

	if (base != new_base) {
		/*
212
		 * We are trying to move timer to new_base.
213 214 215 216 217 218 219
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
220
		if (unlikely(hrtimer_callback_running(timer)))
221 222
			return base;

223 224
		/* See the comment in lock_hrtimer_base() */
		timer->base = &migration_base;
225 226
		raw_spin_unlock(&base->cpu_base->lock);
		raw_spin_lock(&new_base->cpu_base->lock);
227

228
		if (new_cpu_base != this_cpu_base &&
229
		    hrtimer_check_target(timer, new_base)) {
230 231
			raw_spin_unlock(&new_base->cpu_base->lock);
			raw_spin_lock(&base->cpu_base->lock);
232
			new_cpu_base = this_cpu_base;
233 234
			timer->base = base;
			goto again;
235
		}
236
		timer->base = new_base;
237
	} else {
238
		if (new_cpu_base != this_cpu_base &&
239
		    hrtimer_check_target(timer, new_base)) {
240
			new_cpu_base = this_cpu_base;
241 242
			goto again;
		}
243 244 245 246 247 248
	}
	return new_base;
}

#else /* CONFIG_SMP */

249
static inline struct hrtimer_clock_base *
250 251
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
252
	struct hrtimer_clock_base *base = timer->base;
253

254
	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
255 256 257 258

	return base;
}

259
# define switch_hrtimer_base(t, b, p)	(b)
260 261 262 263 264 265 266 267 268 269 270

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
/*
 * Divide a ktime value by a nanosecond value
 */
271
s64 __ktime_divns(const ktime_t kt, s64 div)
272 273
{
	int sft = 0;
274 275
	s64 dclc;
	u64 tmp;
276

277
	dclc = ktime_to_ns(kt);
278 279
	tmp = dclc < 0 ? -dclc : dclc;

280 281 282 283 284
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
285 286 287
	tmp >>= sft;
	do_div(tmp, (unsigned long) div);
	return dclc < 0 ? -tmp : tmp;
288
}
289
EXPORT_SYMBOL_GPL(__ktime_divns);
290 291
#endif /* BITS_PER_LONG >= 64 */

292 293 294 295 296
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
297
	ktime_t res = ktime_add_unsafe(lhs, rhs);
298 299 300 301 302

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
T
Thomas Gleixner 已提交
303
	if (res < 0 || res < lhs || res < rhs)
304 305 306 307 308
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

309 310
EXPORT_SYMBOL_GPL(ktime_add_safe);

311 312 313 314
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

315 316 317 318 319
static void *hrtimer_debug_hint(void *addr)
{
	return ((struct hrtimer *) addr)->function;
}

320 321 322 323
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
324
static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
325 326 327 328 329 330 331
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
332
		return true;
333
	default:
334
		return false;
335 336 337 338 339 340
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
341
 * - an unknown non-static object is activated
342
 */
343
static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
344 345 346 347 348 349
{
	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
350
		return false;
351 352 353 354 355 356 357
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
358
static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
359 360 361 362 363 364 365
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
366
		return true;
367
	default:
368
		return false;
369 370 371 372 373
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
374
	.debug_hint	= hrtimer_debug_hint,
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}
S
Stephen Hemminger 已提交
409
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
410 411 412 413 414

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}
415
EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
416 417 418 419 420 421 422

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

423 424 425 426 427 428 429 430
static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
	   enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	trace_hrtimer_init(timer, clockid, mode);
}

431 432
static inline void debug_activate(struct hrtimer *timer,
				  enum hrtimer_mode mode)
433 434
{
	debug_hrtimer_activate(timer);
435
	trace_hrtimer_start(timer, mode);
436 437 438 439 440 441 442 443
}

static inline void debug_deactivate(struct hrtimer *timer)
{
	debug_hrtimer_deactivate(timer);
	trace_hrtimer_cancel(timer);
}

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
static struct hrtimer_clock_base *
__next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
{
	unsigned int idx;

	if (!*active)
		return NULL;

	idx = __ffs(*active);
	*active &= ~(1U << idx);

	return &cpu_base->clock_base[idx];
}

#define for_each_active_base(base, cpu_base, active)	\
	while ((base = __next_base((cpu_base), &(active))))

461
#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
462
static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
463
{
464
	struct hrtimer_clock_base *base;
465
	unsigned int active = cpu_base->active_bases;
T
Thomas Gleixner 已提交
466
	ktime_t expires, expires_next = KTIME_MAX;
467

468
	cpu_base->next_timer = NULL;
469
	for_each_active_base(base, cpu_base, active) {
470 471 472
		struct timerqueue_node *next;
		struct hrtimer *timer;

473
		next = timerqueue_getnext(&base->active);
474 475
		timer = container_of(next, struct hrtimer, node);
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
T
Thomas Gleixner 已提交
476
		if (expires < expires_next) {
477
			expires_next = expires;
478
			cpu_base->next_timer = timer;
479
		}
480 481 482 483 484 485
	}
	/*
	 * clock_was_set() might have changed base->offset of any of
	 * the clock bases so the result might be negative. Fix it up
	 * to prevent a false positive in clockevents_program_event().
	 */
T
Thomas Gleixner 已提交
486 487
	if (expires_next < 0)
		expires_next = 0;
488 489 490 491
	return expires_next;
}
#endif

492 493 494 495 496 497
static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
{
	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;

498 499
	return ktime_get_update_offsets_now(&base->clock_was_set_seq,
					    offs_real, offs_boot, offs_tai);
500 501
}

502 503 504 505 506 507 508 509 510 511 512 513 514 515
/*
 * Is the high resolution mode active ?
 */
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
{
	return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
		cpu_base->hres_active : 0;
}

static inline int hrtimer_hres_active(void)
{
	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
}

516 517 518 519 520 521
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
522
static bool hrtimer_hres_enabled __read_mostly  = true;
523 524
unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
EXPORT_SYMBOL_GPL(hrtimer_resolution);
525 526 527 528 529 530

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
531
	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
549 550
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
551
{
552 553
	ktime_t expires_next;

554
	if (!__hrtimer_hres_active(cpu_base))
555 556 557
		return;

	expires_next = __hrtimer_get_next_event(cpu_base);
558

T
Thomas Gleixner 已提交
559
	if (skip_equal && expires_next == cpu_base->expires_next)
560 561
		return;

T
Thomas Gleixner 已提交
562
	cpu_base->expires_next = expires_next;
563

564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * leave the hang delay active in the hardware. We want the
	 * system to make progress. That also prevents the following
	 * scenario:
	 * T1 expires 50ms from now
	 * T2 expires 5s from now
	 *
	 * T1 is removed, so this code is called and would reprogram
	 * the hardware to 5s from now. Any hrtimer_start after that
	 * will not reprogram the hardware due to hang_detected being
	 * set. So we'd effectivly block all timers until the T2 event
	 * fires.
	 */
	if (cpu_base->hang_detected)
		return;

581
	tick_program_event(cpu_base->expires_next, 1);
582 583
}

584 585 586 587 588 589 590
/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
591
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
592

593
	if (!__hrtimer_hres_active(base))
594 595 596
		return;

	raw_spin_lock(&base->lock);
597
	hrtimer_update_base(base);
598 599 600
	hrtimer_force_reprogram(base, 0);
	raw_spin_unlock(&base->lock);
}
601

602 603 604
/*
 * Switch to high resolution mode
 */
605
static void hrtimer_switch_to_hres(void)
606
{
607
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
608 609

	if (tick_init_highres()) {
I
Ingo Molnar 已提交
610
		printk(KERN_WARNING "Could not switch to high resolution "
611
				    "mode on CPU %d\n", base->cpu);
612
		return;
613 614
	}
	base->hres_active = 1;
615
	hrtimer_resolution = HIGH_RES_NSEC;
616 617 618 619 620 621

	tick_setup_sched_timer();
	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
}

622 623 624 625 626 627 628
static void clock_was_set_work(struct work_struct *work)
{
	clock_was_set();
}

static DECLARE_WORK(hrtimer_work, clock_was_set_work);

629
/*
P
Pratyush Patel 已提交
630
 * Called from timekeeping and resume code to reprogram the hrtimer
631
 * interrupt device on all cpus.
632 633 634
 */
void clock_was_set_delayed(void)
{
635
	schedule_work(&hrtimer_work);
636 637
}

638 639 640
#else

static inline int hrtimer_is_hres_enabled(void) { return 0; }
641
static inline void hrtimer_switch_to_hres(void) { }
642 643
static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
644
static inline void retrigger_next_event(void *arg) { }
645 646 647

#endif /* CONFIG_HIGH_RES_TIMERS */

648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
/*
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
static void hrtimer_reprogram(struct hrtimer *timer,
			      struct hrtimer_clock_base *base)
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);

	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);

	/*
	 * If the timer is not on the current cpu, we cannot reprogram
	 * the other cpus clock event device.
	 */
	if (base->cpu_base != cpu_base)
		return;

	/*
	 * If the hrtimer interrupt is running, then it will
	 * reevaluate the clock bases and reprogram the clock event
	 * device. The callbacks are always executed in hard interrupt
	 * context so we don't need an extra check for a running
	 * callback.
	 */
	if (cpu_base->in_hrtirq)
		return;

	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
	 * expiry time which is less than base->offset. Set it to 0.
	 */
	if (expires < 0)
		expires = 0;

	if (expires >= cpu_base->expires_next)
		return;

	/* Update the pointer to the next expiring timer */
	cpu_base->next_timer = timer;

	/*
	 * If a hang was detected in the last timer interrupt then we
	 * do not schedule a timer which is earlier than the expiry
	 * which we enforced in the hang detection. We want the system
	 * to make progress.
	 */
	if (cpu_base->hang_detected)
		return;

	/*
	 * Program the timer hardware. We enforce the expiry for
	 * events which are already in the past.
	 */
	cpu_base->expires_next = expires;
	tick_program_event(expires, 1);
}

710 711 712 713 714 715 716 717 718 719 720 721 722
/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
723
#ifdef CONFIG_HIGH_RES_TIMERS
724 725
	/* Retrigger the CPU local events everywhere */
	on_each_cpu(retrigger_next_event, NULL, 1);
726 727
#endif
	timerfd_clock_was_set();
728 729 730 731
}

/*
 * During resume we might have to reprogram the high resolution timer
732 733
 * interrupt on all online CPUs.  However, all other CPUs will be
 * stopped with IRQs interrupts disabled so the clock_was_set() call
734
 * must be deferred.
735 736 737
 */
void hrtimers_resume(void)
{
738
	lockdep_assert_irqs_disabled();
739
	/* Retrigger on the local CPU */
740
	retrigger_next_event(NULL);
741 742
	/* And schedule a retrigger for all others */
	clock_was_set_delayed();
743 744
}

745
/*
746
 * Counterpart to lock_hrtimer_base above:
747 748 749 750
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
751
	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
752 753 754 755 756
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
757
 * @now:	forward past this time
758 759 760
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
761
 * Returns the number of overruns.
762 763 764 765 766 767 768 769
 *
 * Can be safely called from the callback function of @timer. If
 * called from other contexts @timer must neither be enqueued nor
 * running the callback and the caller needs to take care of
 * serialization.
 *
 * Note: This only updates the timer expiry value and does not requeue
 * the timer.
770
 */
D
Davide Libenzi 已提交
771
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
772
{
D
Davide Libenzi 已提交
773
	u64 orun = 1;
774
	ktime_t delta;
775

776
	delta = ktime_sub(now, hrtimer_get_expires(timer));
777

T
Thomas Gleixner 已提交
778
	if (delta < 0)
779 780
		return 0;

781 782 783
	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
		return 0;

T
Thomas Gleixner 已提交
784 785
	if (interval < hrtimer_resolution)
		interval = hrtimer_resolution;
786

T
Thomas Gleixner 已提交
787
	if (unlikely(delta >= interval)) {
788
		s64 incr = ktime_to_ns(interval);
789 790

		orun = ktime_divns(delta, incr);
791
		hrtimer_add_expires_ns(timer, incr * orun);
T
Thomas Gleixner 已提交
792
		if (hrtimer_get_expires_tv64(timer) > now)
793 794 795 796 797 798 799
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
800
	hrtimer_add_expires(timer, interval);
801 802 803

	return orun;
}
S
Stas Sergeev 已提交
804
EXPORT_SYMBOL_GPL(hrtimer_forward);
805 806 807 808 809 810

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
811 812
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
813
 */
814
static int enqueue_hrtimer(struct hrtimer *timer,
815 816
			   struct hrtimer_clock_base *base,
			   enum hrtimer_mode mode)
817
{
818
	debug_activate(timer, mode);
819

820
	base->cpu_base->active_bases |= 1 << base->index;
821

822
	timer->state = HRTIMER_STATE_ENQUEUED;
823

824
	return timerqueue_add(&base->active, &timer->node);
825
}
826 827 828 829 830

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
831 832 833 834 835
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
836
 */
837
static void __remove_hrtimer(struct hrtimer *timer,
838
			     struct hrtimer_clock_base *base,
839
			     u8 newstate, int reprogram)
840
{
841
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
842
	u8 state = timer->state;
843

844 845 846
	timer->state = newstate;
	if (!(state & HRTIMER_STATE_ENQUEUED))
		return;
847

848
	if (!timerqueue_del(&base->active, &timer->node))
849
		cpu_base->active_bases &= ~(1 << base->index);
850 851

#ifdef CONFIG_HIGH_RES_TIMERS
852 853 854 855 856 857 858 859 860 861
	/*
	 * Note: If reprogram is false we do not update
	 * cpu_base->next_timer. This happens when we remove the first
	 * timer on a remote cpu. No harm as we never dereference
	 * cpu_base->next_timer. So the worst thing what can happen is
	 * an superflous call to hrtimer_force_reprogram() on the
	 * remote cpu later on if the same timer gets enqueued again.
	 */
	if (reprogram && timer == cpu_base->next_timer)
		hrtimer_force_reprogram(cpu_base, 1);
862
#endif
863 864 865 866 867 868
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
869
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
870
{
871
	if (hrtimer_is_queued(timer)) {
872
		u8 state = timer->state;
873 874 875 876 877 878 879 880 881 882
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
883
		debug_deactivate(timer);
884
		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
885

886 887 888
		if (!restart)
			state = HRTIMER_STATE_INACTIVE;

889
		__remove_hrtimer(timer, base, state, reprogram);
890 891 892 893 894
		return 1;
	}
	return 0;
}

895 896 897 898 899 900 901 902 903 904 905
static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
					    const enum hrtimer_mode mode)
{
#ifdef CONFIG_TIME_LOW_RES
	/*
	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
	 * granular time values. For relative timers we add hrtimer_resolution
	 * (i.e. one jiffie) to prevent short timeouts.
	 */
	timer->is_rel = mode & HRTIMER_MODE_REL;
	if (timer->is_rel)
T
Thomas Gleixner 已提交
906
		tim = ktime_add_safe(tim, hrtimer_resolution);
907 908 909 910
#endif
	return tim;
}

911
/**
912
 * hrtimer_start_range_ns - (re)start an hrtimer
913 914 915
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
916 917
 * @mode:	timer mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED)
918
 */
919
void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
920
			    u64 delta_ns, const enum hrtimer_mode mode)
921
{
922
	struct hrtimer_clock_base *base, *new_base;
923
	unsigned long flags;
924
	int leftmost;
925 926 927 928

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
929
	remove_hrtimer(timer, base, true);
930

931
	if (mode & HRTIMER_MODE_REL)
932
		tim = ktime_add_safe(tim, base->get_time());
933 934

	tim = hrtimer_update_lowres(timer, tim, mode);
935

936
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
937

938 939 940
	/* Switch the timer base, if necessary: */
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);

941
	leftmost = enqueue_hrtimer(timer, new_base, mode);
942 943
	if (!leftmost)
		goto unlock;
944 945 946 947 948 949

	if (!hrtimer_is_hres_active(timer)) {
		/*
		 * Kick to reschedule the next tick to handle the new timer
		 * on dynticks target.
		 */
950
		if (is_timers_nohz_active())
951
			wake_up_nohz_cpu(new_base->cpu_base->cpu);
952 953
	} else {
		hrtimer_reprogram(timer, new_base);
954
	}
955
unlock:
956
	unlock_hrtimer_base(timer, &flags);
957
}
958 959
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

960 961 962 963 964 965 966
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
967
 * -1 when the timer is currently executing the callback function and
968
 *    cannot be stopped
969 970 971
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
972
	struct hrtimer_clock_base *base;
973 974 975
	unsigned long flags;
	int ret = -1;

976 977 978 979 980 981 982 983 984
	/*
	 * Check lockless first. If the timer is not active (neither
	 * enqueued nor running the callback, nothing to do here.  The
	 * base lock does not serialize against a concurrent enqueue,
	 * so we can avoid taking it.
	 */
	if (!hrtimer_active(timer))
		return 0;

985 986
	base = lock_hrtimer_base(timer, &flags);

987
	if (!hrtimer_callback_running(timer))
988
		ret = remove_hrtimer(timer, base, false);
989 990 991 992 993 994

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
995
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1012
		cpu_relax();
1013 1014
	}
}
1015
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1016 1017 1018 1019

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
1020
 * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1021
 */
1022
ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1023 1024 1025 1026
{
	unsigned long flags;
	ktime_t rem;

1027
	lock_hrtimer_base(timer, &flags);
1028 1029 1030 1031
	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
		rem = hrtimer_expires_remaining_adjusted(timer);
	else
		rem = hrtimer_expires_remaining(timer);
1032 1033 1034 1035
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1036
EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1037

1038
#ifdef CONFIG_NO_HZ_COMMON
1039 1040 1041
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
1042
 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1043
 */
1044
u64 hrtimer_get_next_event(void)
1045
{
1046
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1047
	u64 expires = KTIME_MAX;
1048 1049
	unsigned long flags;

1050
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1051

1052
	if (!__hrtimer_hres_active(cpu_base))
T
Thomas Gleixner 已提交
1053
		expires = __hrtimer_get_next_event(cpu_base);
1054

1055
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1056

1057
	return expires;
1058 1059 1060
}
#endif

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
static inline int hrtimer_clockid_to_base(clockid_t clock_id)
{
	if (likely(clock_id < MAX_CLOCKS)) {
		int base = hrtimer_clock_to_base_table[clock_id];

		if (likely(base != HRTIMER_MAX_CLOCK_BASES))
			return base;
	}
	WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
	return HRTIMER_BASE_MONOTONIC;
}

1073 1074
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1075
{
1076
	struct hrtimer_cpu_base *cpu_base;
1077
	int base;
1078

1079 1080
	memset(timer, 0, sizeof(struct hrtimer));

1081
	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1082

1083 1084 1085 1086 1087 1088
	/*
	 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
	 * clock modifications, so they needs to become CLOCK_MONOTONIC to
	 * ensure POSIX compliance.
	 */
	if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1089 1090
		clock_id = CLOCK_MONOTONIC;

1091 1092
	base = hrtimer_clockid_to_base(clock_id);
	timer->base = &cpu_base->clock_base[base];
1093
	timerqueue_init(&timer->node);
1094
}
1095 1096 1097 1098 1099

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
1100 1101
 * @mode:	timer mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL); pinned is not considered here!
1102 1103 1104 1105
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
1106
	debug_init(timer, clock_id, mode);
1107 1108
	__hrtimer_init(timer, clock_id, mode);
}
1109
EXPORT_SYMBOL_GPL(hrtimer_init);
1110

1111 1112 1113 1114
/*
 * A timer is active, when it is enqueued into the rbtree or the
 * callback function is running or it's in the state of being migrated
 * to another cpu.
1115
 *
1116
 * It is important for this function to not return a false negative.
1117
 */
1118
bool hrtimer_active(const struct hrtimer *timer)
1119
{
1120
	struct hrtimer_clock_base *base;
1121
	unsigned int seq;
1122

1123
	do {
1124 1125
		base = READ_ONCE(timer->base);
		seq = raw_read_seqcount_begin(&base->seq);
1126

1127
		if (timer->state != HRTIMER_STATE_INACTIVE ||
1128
		    base->running == timer)
1129 1130
			return true;

1131 1132
	} while (read_seqcount_retry(&base->seq, seq) ||
		 base != READ_ONCE(timer->base));
1133 1134

	return false;
1135
}
1136
EXPORT_SYMBOL_GPL(hrtimer_active);
1137

1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
/*
 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
 * distinct sections:
 *
 *  - queued:	the timer is queued
 *  - callback:	the timer is being ran
 *  - post:	the timer is inactive or (re)queued
 *
 * On the read side we ensure we observe timer->state and cpu_base->running
 * from the same section, if anything changed while we looked at it, we retry.
 * This includes timer->base changing because sequence numbers alone are
 * insufficient for that.
 *
 * The sequence numbers are required because otherwise we could still observe
 * a false negative if the read side got smeared over multiple consequtive
 * __run_hrtimer() invocations.
 */

1156 1157 1158
static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
			  struct hrtimer_clock_base *base,
			  struct hrtimer *timer, ktime_t *now)
1159 1160 1161 1162
{
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1163
	lockdep_assert_held(&cpu_base->lock);
1164

1165
	debug_deactivate(timer);
1166
	base->running = timer;
1167 1168 1169 1170 1171

	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
1172
	 * hrtimer_active() cannot observe base->running == NULL &&
1173 1174
	 * timer->state == INACTIVE.
	 */
1175
	raw_write_seqcount_barrier(&base->seq);
1176 1177

	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1178
	fn = timer->function;
1179

1180 1181 1182 1183 1184 1185 1186 1187
	/*
	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
	 * timer is restarted with a period then it becomes an absolute
	 * timer. If its not restarted it does not matter.
	 */
	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
		timer->is_rel = false;

1188
	/*
1189 1190 1191
	 * The timer is marked as running in the CPU base, so it is
	 * protected against migration to a different CPU even if the lock
	 * is dropped.
1192
	 */
1193
	raw_spin_unlock(&cpu_base->lock);
1194
	trace_hrtimer_expire_entry(timer, now);
1195
	restart = fn(timer);
1196
	trace_hrtimer_expire_exit(timer);
1197
	raw_spin_lock(&cpu_base->lock);
1198 1199

	/*
1200
	 * Note: We clear the running state after enqueue_hrtimer and
P
Pratyush Patel 已提交
1201
	 * we do not reprogram the event hardware. Happens either in
T
Thomas Gleixner 已提交
1202
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1203 1204 1205 1206
	 *
	 * Note: Because we dropped the cpu_base->lock above,
	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
	 * for us already.
1207
	 */
1208 1209
	if (restart != HRTIMER_NORESTART &&
	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1210
		enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1211

1212 1213 1214 1215
	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
1216
	 * hrtimer_active() cannot observe base->running.timer == NULL &&
1217 1218
	 * timer->state == INACTIVE.
	 */
1219
	raw_write_seqcount_barrier(&base->seq);
1220

1221 1222
	WARN_ON_ONCE(base->running != timer);
	base->running = NULL;
1223 1224
}

1225
static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1226
{
1227
	struct hrtimer_clock_base *base;
1228
	unsigned int active = cpu_base->active_bases;
1229

1230
	for_each_active_base(base, cpu_base, active) {
1231
		struct timerqueue_node *node;
1232 1233
		ktime_t basenow;

1234 1235
		basenow = ktime_add(now, base->offset);

1236
		while ((node = timerqueue_getnext(&base->active))) {
1237 1238
			struct hrtimer *timer;

1239
			timer = container_of(node, struct hrtimer, node);
1240

1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */
T
Thomas Gleixner 已提交
1253
			if (basenow < hrtimer_get_softexpires_tv64(timer))
1254 1255
				break;

1256
			__run_hrtimer(cpu_base, base, timer, &basenow);
1257 1258
		}
	}
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
}

#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
	ktime_t expires_next, now, entry_time, delta;
	int retries = 0;

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
T
Thomas Gleixner 已提交
1275
	dev->next_event = KTIME_MAX;
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287

	raw_spin_lock(&cpu_base->lock);
	entry_time = now = hrtimer_update_base(cpu_base);
retry:
	cpu_base->in_hrtirq = 1;
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
T
Thomas Gleixner 已提交
1288
	cpu_base->expires_next = KTIME_MAX;
1289 1290 1291

	__hrtimer_run_queues(cpu_base, now);

1292 1293
	/* Reevaluate the clock bases for the next expiry */
	expires_next = __hrtimer_get_next_event(cpu_base);
1294 1295 1296 1297
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1298
	cpu_base->expires_next = expires_next;
1299
	cpu_base->in_hrtirq = 0;
1300
	raw_spin_unlock(&cpu_base->lock);
1301 1302

	/* Reprogramming necessary ? */
1303
	if (!tick_program_event(expires_next, 0)) {
1304 1305
		cpu_base->hang_detected = 0;
		return;
1306
	}
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316

	/*
	 * The next timer was already expired due to:
	 * - tracing
	 * - long lasting callbacks
	 * - being scheduled away when running in a VM
	 *
	 * We need to prevent that we loop forever in the hrtimer
	 * interrupt routine. We give it 3 attempts to avoid
	 * overreacting on some spurious event.
1317 1318 1319
	 *
	 * Acquire base lock for updating the offsets and retrieving
	 * the current time.
1320
	 */
1321
	raw_spin_lock(&cpu_base->lock);
1322
	now = hrtimer_update_base(cpu_base);
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
	cpu_base->nr_retries++;
	if (++retries < 3)
		goto retry;
	/*
	 * Give the system a chance to do something else than looping
	 * here. We stored the entry time, so we know exactly how long
	 * we spent here. We schedule the next event this amount of
	 * time away.
	 */
	cpu_base->nr_hangs++;
	cpu_base->hang_detected = 1;
1334
	raw_spin_unlock(&cpu_base->lock);
1335
	delta = ktime_sub(now, entry_time);
T
Thomas Gleixner 已提交
1336 1337
	if ((unsigned int)delta > cpu_base->max_hang_time)
		cpu_base->max_hang_time = (unsigned int) delta;
1338 1339 1340 1341
	/*
	 * Limit it to a sensible value as we enforce a longer
	 * delay. Give the CPU at least 100ms to catch up.
	 */
T
Thomas Gleixner 已提交
1342
	if (delta > 100 * NSEC_PER_MSEC)
1343 1344 1345 1346 1347 1348
		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
	else
		expires_next = ktime_add(now, delta);
	tick_program_event(expires_next, 1);
	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
		    ktime_to_ns(delta));
1349 1350
}

1351
/* called with interrupts disabled */
1352
static inline void __hrtimer_peek_ahead_timers(void)
1353 1354 1355 1356 1357 1358
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

1359
	td = this_cpu_ptr(&tick_cpu_device);
1360 1361 1362 1363
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1364 1365 1366 1367 1368
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1369

1370
/*
1371
 * Called from run_local_timers in hardirq context every jiffy
1372
 */
1373
void hrtimer_run_queues(void)
1374
{
1375
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1376
	ktime_t now;
1377

1378
	if (__hrtimer_hres_active(cpu_base))
1379
		return;
1380

1381
	/*
1382 1383 1384 1385 1386
	 * This _is_ ugly: We have to check periodically, whether we
	 * can switch to highres and / or nohz mode. The clocksource
	 * switch happens with xtime_lock held. Notification from
	 * there only sets the check bit in the tick_oneshot code,
	 * otherwise we might deadlock vs. xtime_lock.
1387
	 */
1388
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1389
		hrtimer_switch_to_hres();
1390
		return;
1391
	}
1392

1393 1394 1395 1396
	raw_spin_lock(&cpu_base->lock);
	now = hrtimer_update_base(cpu_base);
	__hrtimer_run_queues(cpu_base, now);
	raw_spin_unlock(&cpu_base->lock);
1397 1398
}

1399 1400 1401
/*
 * Sleep related functions:
 */
1402
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1415
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1416 1417 1418 1419
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}
S
Stephen Hemminger 已提交
1420
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1421

1422
int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1423 1424 1425 1426
{
	switch(restart->nanosleep.type) {
#ifdef CONFIG_COMPAT
	case TT_COMPAT:
1427
		if (compat_put_timespec64(ts, restart->nanosleep.compat_rmtp))
1428 1429 1430 1431
			return -EFAULT;
		break;
#endif
	case TT_NATIVE:
1432
		if (put_timespec64(ts, restart->nanosleep.rmtp))
1433 1434 1435 1436 1437 1438 1439 1440
			return -EFAULT;
		break;
	default:
		BUG();
	}
	return -ERESTART_RESTARTBLOCK;
}

1441
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1442
{
1443 1444
	struct restart_block *restart;

1445
	hrtimer_init_sleeper(t, current);
1446

1447 1448
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1449
		hrtimer_start_expires(&t->timer, mode);
1450

1451
		if (likely(t->task))
1452
			freezable_schedule();
1453

1454
		hrtimer_cancel(&t->timer);
1455
		mode = HRTIMER_MODE_ABS;
1456 1457

	} while (t->task && !signal_pending(current));
1458

1459 1460
	__set_current_state(TASK_RUNNING);

1461
	if (!t->task)
1462 1463
		return 0;

1464 1465
	restart = &current->restart_block;
	if (restart->nanosleep.type != TT_NONE) {
1466
		ktime_t rem = hrtimer_expires_remaining(&t->timer);
1467
		struct timespec64 rmt;
1468

1469 1470
		if (rem <= 0)
			return 0;
1471
		rmt = ktime_to_timespec64(rem);
1472

1473
		return nanosleep_copyout(restart, &rmt);
1474 1475
	}
	return -ERESTART_RESTARTBLOCK;
1476 1477
}

A
Al Viro 已提交
1478
static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1479
{
1480
	struct hrtimer_sleeper t;
1481
	int ret;
1482

1483
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1484
				HRTIMER_MODE_ABS);
1485
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1486

1487
	ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1488 1489
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1490 1491
}

1492
long hrtimer_nanosleep(const struct timespec64 *rqtp,
1493 1494
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
1495
	struct restart_block *restart;
1496
	struct hrtimer_sleeper t;
1497
	int ret = 0;
1498
	u64 slack;
1499 1500

	slack = current->timer_slack_ns;
1501
	if (dl_task(current) || rt_task(current))
1502
		slack = 0;
1503

1504
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1505
	hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
1506 1507
	ret = do_nanosleep(&t, mode);
	if (ret != -ERESTART_RESTARTBLOCK)
1508
		goto out;
1509

1510
	/* Absolute timers do not update the rmtp value and restart: */
1511 1512 1513 1514
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1515

1516
	restart = &current->restart_block;
1517
	restart->fn = hrtimer_nanosleep_restart;
1518
	restart->nanosleep.clockid = t.timer.base->clockid;
1519
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1520 1521 1522
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1523 1524
}

1525 1526
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1527
{
1528
	struct timespec64 tu;
1529

1530
	if (get_timespec64(&tu, rqtp))
1531 1532
		return -EFAULT;

1533
	if (!timespec64_valid(&tu))
1534 1535
		return -EINVAL;

1536
	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1537
	current->restart_block.nanosleep.rmtp = rmtp;
1538
	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1539 1540
}

1541 1542 1543 1544 1545
#ifdef CONFIG_COMPAT

COMPAT_SYSCALL_DEFINE2(nanosleep, struct compat_timespec __user *, rqtp,
		       struct compat_timespec __user *, rmtp)
{
1546
	struct timespec64 tu;
1547

1548
	if (compat_get_timespec64(&tu, rqtp))
1549 1550
		return -EFAULT;

1551
	if (!timespec64_valid(&tu))
1552 1553 1554 1555
		return -EINVAL;

	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
	current->restart_block.nanosleep.compat_rmtp = rmtp;
1556
	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1557 1558 1559
}
#endif

1560 1561 1562
/*
 * Functions related to boot-time initialization:
 */
1563
int hrtimers_prepare_cpu(unsigned int cpu)
1564
{
1565
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1566 1567
	int i;

1568
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1569
		cpu_base->clock_base[i].cpu_base = cpu_base;
1570 1571
		timerqueue_init_head(&cpu_base->clock_base[i].active);
	}
1572

1573
	cpu_base->cpu = cpu;
1574
	cpu_base->hres_active = 0;
1575
	cpu_base->expires_next = KTIME_MAX;
1576
	return 0;
1577 1578 1579 1580
}

#ifdef CONFIG_HOTPLUG_CPU

1581
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1582
				struct hrtimer_clock_base *new_base)
1583 1584
{
	struct hrtimer *timer;
1585
	struct timerqueue_node *node;
1586

1587 1588
	while ((node = timerqueue_getnext(&old_base->active))) {
		timer = container_of(node, struct hrtimer, node);
1589
		BUG_ON(hrtimer_callback_running(timer));
1590
		debug_deactivate(timer);
T
Thomas Gleixner 已提交
1591 1592

		/*
1593
		 * Mark it as ENQUEUED not INACTIVE otherwise the
T
Thomas Gleixner 已提交
1594 1595 1596
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
1597
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1598
		timer->base = new_base;
1599
		/*
T
Thomas Gleixner 已提交
1600 1601 1602 1603 1604 1605
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1606
		 */
1607
		enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
1608 1609 1610
	}
}

1611
int hrtimers_dead_cpu(unsigned int scpu)
1612
{
1613
	struct hrtimer_cpu_base *old_base, *new_base;
1614
	int i;
1615

1616 1617
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1618 1619 1620

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
1621
	new_base = this_cpu_ptr(&hrtimer_bases);
1622 1623 1624 1625
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1626 1627
	raw_spin_lock(&new_base->lock);
	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1628

1629
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1630
		migrate_hrtimer_list(&old_base->clock_base[i],
1631
				     &new_base->clock_base[i]);
1632 1633
	}

1634 1635
	raw_spin_unlock(&old_base->lock);
	raw_spin_unlock(&new_base->lock);
1636

1637 1638 1639
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1640
	return 0;
1641
}
1642

1643 1644 1645 1646
#endif /* CONFIG_HOTPLUG_CPU */

void __init hrtimers_init(void)
{
1647
	hrtimers_prepare_cpu(smp_processor_id());
1648 1649
}

1650
/**
1651
 * schedule_hrtimeout_range_clock - sleep until timeout
1652
 * @expires:	timeout value (ktime_t)
1653
 * @delta:	slack in expires timeout (ktime_t)
1654 1655
 * @mode:	timer mode
 * @clock_id:	timer clock to be used
1656
 */
1657
int __sched
1658
schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1659
			       const enum hrtimer_mode mode, clockid_t clock_id)
1660 1661 1662 1663 1664 1665 1666
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
T
Thomas Gleixner 已提交
1667
	if (expires && *expires == 0) {
1668 1669 1670 1671 1672
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
N
Namhyung Kim 已提交
1673
	 * A NULL parameter means "infinite"
1674 1675 1676 1677 1678 1679
	 */
	if (!expires) {
		schedule();
		return -EINTR;
	}

1680
	hrtimer_init_on_stack(&t.timer, clock_id, mode);
1681
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1682 1683 1684

	hrtimer_init_sleeper(&t, current);

1685
	hrtimer_start_expires(&t.timer, mode);
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1697 1698 1699 1700 1701

/**
 * schedule_hrtimeout_range - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @delta:	slack in expires timeout (ktime_t)
1702
 * @mode:	timer mode
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1716 1717
 * pass before the routine returns unless the current task is explicitly
 * woken up, (e.g. by wake_up_process()).
1718 1719
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1720 1721
 * delivered to the current task or the current task is explicitly woken
 * up.
1722 1723 1724 1725
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
1726 1727 1728
 * Returns 0 when the timer has expired. If the task was woken before the
 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
 * by an explicit wakeup, it returns -EINTR.
1729
 */
1730
int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1731 1732 1733 1734 1735
				     const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range_clock(expires, delta, mode,
					      CLOCK_MONOTONIC);
}
1736 1737 1738 1739 1740
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
1741
 * @mode:	timer mode
1742 1743 1744 1745 1746 1747 1748 1749
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1750 1751
 * pass before the routine returns unless the current task is explicitly
 * woken up, (e.g. by wake_up_process()).
1752 1753
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1754 1755
 * delivered to the current task or the current task is explicitly woken
 * up.
1756 1757 1758 1759
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
1760 1761 1762
 * Returns 0 when the timer has expired. If the task was woken before the
 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
 * by an explicit wakeup, it returns -EINTR.
1763 1764 1765 1766 1767 1768
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1769
EXPORT_SYMBOL_GPL(schedule_hrtimeout);