hrtimer.c 52.2 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
35
#include <linux/export.h>
36 37 38 39
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46
#include <linux/sched/signal.h>
47
#include <linux/sched/sysctl.h>
48
#include <linux/sched/rt.h>
49
#include <linux/sched/deadline.h>
50
#include <linux/sched/nohz.h>
51
#include <linux/sched/debug.h>
52
#include <linux/timer.h>
53
#include <linux/freezer.h>
54
#include <linux/compat.h>
55

56
#include <linux/uaccess.h>
57

58 59
#include <trace/events/timer.h>

60
#include "tick-internal.h"
61

62 63 64 65 66 67 68 69 70
/*
 * Masks for selecting the soft and hard context timers from
 * cpu_base->active
 */
#define MASK_SHIFT		(HRTIMER_BASE_MONOTONIC_SOFT)
#define HRTIMER_ACTIVE_HARD	((1U << MASK_SHIFT) - 1)
#define HRTIMER_ACTIVE_SOFT	(HRTIMER_ACTIVE_HARD << MASK_SHIFT)
#define HRTIMER_ACTIVE_ALL	(HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)

71 72
/*
 * The timer bases:
73
 *
Z
Zhen Lei 已提交
74
 * There are more clockids than hrtimer bases. Thus, we index
75 76 77
 * into the timer bases by the hrtimer_base_type enum. When trying
 * to reach a base using a clockid, hrtimer_clockid_to_base()
 * is used to convert from clockid to the proper hrtimer_base_type.
78
 */
79
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
80
{
81
	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
82
	.clock_base =
83
	{
84
		{
85 86
			.index = HRTIMER_BASE_MONOTONIC,
			.clockid = CLOCK_MONOTONIC,
87 88
			.get_time = &ktime_get,
		},
T
Thomas Gleixner 已提交
89 90 91 92 93
		{
			.index = HRTIMER_BASE_REALTIME,
			.clockid = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
		},
94
		{
95 96
			.index = HRTIMER_BASE_BOOTTIME,
			.clockid = CLOCK_BOOTTIME,
97 98
			.get_time = &ktime_get_boottime,
		},
99 100 101 102 103
		{
			.index = HRTIMER_BASE_TAI,
			.clockid = CLOCK_TAI,
			.get_time = &ktime_get_clocktai,
		},
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
		{
			.index = HRTIMER_BASE_MONOTONIC_SOFT,
			.clockid = CLOCK_MONOTONIC,
			.get_time = &ktime_get,
		},
		{
			.index = HRTIMER_BASE_REALTIME_SOFT,
			.clockid = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
		},
		{
			.index = HRTIMER_BASE_BOOTTIME_SOFT,
			.clockid = CLOCK_BOOTTIME,
			.get_time = &ktime_get_boottime,
		},
		{
			.index = HRTIMER_BASE_TAI_SOFT,
			.clockid = CLOCK_TAI,
			.get_time = &ktime_get_clocktai,
		},
124
	}
125 126
};

127
static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
128 129 130
	/* Make sure we catch unsupported clockids */
	[0 ... MAX_CLOCKS - 1]	= HRTIMER_MAX_CLOCK_BASES,

131 132 133
	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
134
	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
135
};
136

137 138 139 140 141 142
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

143 144 145 146 147 148 149 150 151 152 153
/*
 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
 * such that hrtimer_callback_running() can unconditionally dereference
 * timer->base->cpu_base
 */
static struct hrtimer_cpu_base migration_cpu_base = {
	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
};

#define migration_base	migration_cpu_base.clock_base[0]

154 155 156 157 158 159 160 161 162
/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
163 164
 * possible to set timer->base = &migration_base and drop the lock: the timer
 * remains locked.
165
 */
166 167 168
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
169
{
170
	struct hrtimer_clock_base *base;
171 172 173

	for (;;) {
		base = timer->base;
174
		if (likely(base != &migration_base)) {
175
			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
176 177 178
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
179
			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
180 181 182 183 184
		}
		cpu_relax();
	}
}

185
/*
186 187 188 189 190
 * We do not migrate the timer when it is expiring before the next
 * event on the target cpu. When high resolution is enabled, we cannot
 * reprogram the target cpu hardware and we would cause it to fire
 * late. To keep it simple, we handle the high resolution enabled and
 * disabled case similar.
191 192 193 194 195 196 197 198 199
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
	ktime_t expires;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
200
	return expires < new_base->cpu_base->expires_next;
201 202
}

203 204 205 206
static inline
struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
					 int pinned)
{
207 208 209 210
#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
	if (static_branch_likely(&timers_migration_enabled) && !pinned)
		return &per_cpu(hrtimer_bases, get_nohz_timer_target());
#endif
211
	return base;
212 213
}

214
/*
215 216 217 218 219 220 221 222 223 224
 * We switch the timer base to a power-optimized selected CPU target,
 * if:
 *	- NO_HZ_COMMON is enabled
 *	- timer migration is enabled
 *	- the timer callback is not running
 *	- the timer is not the first expiring timer on the new target
 *
 * If one of the above requirements is not fulfilled we move the timer
 * to the current CPU or leave it on the previously assigned CPU if
 * the timer callback is currently running.
225
 */
226
static inline struct hrtimer_clock_base *
227 228
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
229
{
230
	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
231
	struct hrtimer_clock_base *new_base;
232
	int basenum = base->index;
233

234 235
	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
	new_cpu_base = get_target_base(this_cpu_base, pinned);
236
again:
237
	new_base = &new_cpu_base->clock_base[basenum];
238 239 240

	if (base != new_base) {
		/*
241
		 * We are trying to move timer to new_base.
242 243 244 245 246 247 248
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
249
		if (unlikely(hrtimer_callback_running(timer)))
250 251
			return base;

252 253
		/* See the comment in lock_hrtimer_base() */
		timer->base = &migration_base;
254 255
		raw_spin_unlock(&base->cpu_base->lock);
		raw_spin_lock(&new_base->cpu_base->lock);
256

257
		if (new_cpu_base != this_cpu_base &&
258
		    hrtimer_check_target(timer, new_base)) {
259 260
			raw_spin_unlock(&new_base->cpu_base->lock);
			raw_spin_lock(&base->cpu_base->lock);
261
			new_cpu_base = this_cpu_base;
262 263
			timer->base = base;
			goto again;
264
		}
265
		timer->base = new_base;
266
	} else {
267
		if (new_cpu_base != this_cpu_base &&
268
		    hrtimer_check_target(timer, new_base)) {
269
			new_cpu_base = this_cpu_base;
270 271
			goto again;
		}
272 273 274 275 276 277
	}
	return new_base;
}

#else /* CONFIG_SMP */

278
static inline struct hrtimer_clock_base *
279 280
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
281
	struct hrtimer_clock_base *base = timer->base;
282

283
	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
284 285 286 287

	return base;
}

288
# define switch_hrtimer_base(t, b, p)	(b)
289 290 291 292 293 294 295 296 297 298 299

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
/*
 * Divide a ktime value by a nanosecond value
 */
300
s64 __ktime_divns(const ktime_t kt, s64 div)
301 302
{
	int sft = 0;
303 304
	s64 dclc;
	u64 tmp;
305

306
	dclc = ktime_to_ns(kt);
307 308
	tmp = dclc < 0 ? -dclc : dclc;

309 310 311 312 313
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
314 315 316
	tmp >>= sft;
	do_div(tmp, (unsigned long) div);
	return dclc < 0 ? -tmp : tmp;
317
}
318
EXPORT_SYMBOL_GPL(__ktime_divns);
319 320
#endif /* BITS_PER_LONG >= 64 */

321 322 323 324 325
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
326
	ktime_t res = ktime_add_unsafe(lhs, rhs);
327 328 329 330 331

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
T
Thomas Gleixner 已提交
332
	if (res < 0 || res < lhs || res < rhs)
333 334 335 336 337
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

338 339
EXPORT_SYMBOL_GPL(ktime_add_safe);

340 341 342 343
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

344 345 346 347 348
static void *hrtimer_debug_hint(void *addr)
{
	return ((struct hrtimer *) addr)->function;
}

349 350 351 352
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
353
static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
354 355 356 357 358 359 360
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
361
		return true;
362
	default:
363
		return false;
364 365 366 367 368 369
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
370
 * - an unknown non-static object is activated
371
 */
372
static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
373 374 375 376 377 378
{
	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
379
		return false;
380 381 382 383 384 385 386
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
387
static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
388 389 390 391 392 393 394
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
395
		return true;
396
	default:
397
		return false;
398 399 400 401 402
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
403
	.debug_hint	= hrtimer_debug_hint,
404 405 406 407 408 409 410 411 412 413
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

414 415
static inline void debug_hrtimer_activate(struct hrtimer *timer,
					  enum hrtimer_mode mode)
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}
S
Stephen Hemminger 已提交
439
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
440 441 442 443 444

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}
445
EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
446 447

#else
448

449
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
450 451
static inline void debug_hrtimer_activate(struct hrtimer *timer,
					  enum hrtimer_mode mode) { }
452 453 454
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

455 456 457 458 459 460 461 462
static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
	   enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	trace_hrtimer_init(timer, clockid, mode);
}

463 464
static inline void debug_activate(struct hrtimer *timer,
				  enum hrtimer_mode mode)
465
{
466
	debug_hrtimer_activate(timer, mode);
467
	trace_hrtimer_start(timer, mode);
468 469 470 471 472 473 474 475
}

static inline void debug_deactivate(struct hrtimer *timer)
{
	debug_hrtimer_deactivate(timer);
	trace_hrtimer_cancel(timer);
}

476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
static struct hrtimer_clock_base *
__next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
{
	unsigned int idx;

	if (!*active)
		return NULL;

	idx = __ffs(*active);
	*active &= ~(1U << idx);

	return &cpu_base->clock_base[idx];
}

#define for_each_active_base(base, cpu_base, active)	\
	while ((base = __next_base((cpu_base), &(active))))

493 494 495
static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
					 unsigned int active,
					 ktime_t expires_next)
496
{
497
	struct hrtimer_clock_base *base;
498
	ktime_t expires;
499

500
	for_each_active_base(base, cpu_base, active) {
501 502 503
		struct timerqueue_node *next;
		struct hrtimer *timer;

504
		next = timerqueue_getnext(&base->active);
505 506
		timer = container_of(next, struct hrtimer, node);
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
T
Thomas Gleixner 已提交
507
		if (expires < expires_next) {
508
			expires_next = expires;
509 510 511 512
			if (timer->is_soft)
				cpu_base->softirq_next_timer = timer;
			else
				cpu_base->next_timer = timer;
513
		}
514 515 516 517 518 519
	}
	/*
	 * clock_was_set() might have changed base->offset of any of
	 * the clock bases so the result might be negative. Fix it up
	 * to prevent a false positive in clockevents_program_event().
	 */
T
Thomas Gleixner 已提交
520 521
	if (expires_next < 0)
		expires_next = 0;
522 523 524
	return expires_next;
}

525 526 527 528
/*
 * Recomputes cpu_base::*next_timer and returns the earliest expires_next but
 * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram.
 *
529 530 531 532 533 534 535 536
 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
 * those timers will get run whenever the softirq gets handled, at the end of
 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
 *
 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
 *
537
 * @active_mask must be one of:
538
 *  - HRTIMER_ACTIVE_ALL,
539 540 541
 *  - HRTIMER_ACTIVE_SOFT, or
 *  - HRTIMER_ACTIVE_HARD.
 */
542 543
static ktime_t
__hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
544
{
545
	unsigned int active;
546
	struct hrtimer *next_timer = NULL;
547 548
	ktime_t expires_next = KTIME_MAX;

549 550 551 552 553 554 555
	if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
		active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
		cpu_base->softirq_next_timer = NULL;
		expires_next = __hrtimer_next_event_base(cpu_base, active, KTIME_MAX);

		next_timer = cpu_base->softirq_next_timer;
	}
556

557 558 559 560 561
	if (active_mask & HRTIMER_ACTIVE_HARD) {
		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
		cpu_base->next_timer = next_timer;
		expires_next = __hrtimer_next_event_base(cpu_base, active, expires_next);
	}
562 563 564 565

	return expires_next;
}

566 567 568 569 570 571
static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
{
	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;

572
	ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
573
					    offs_real, offs_boot, offs_tai);
574 575 576 577 578 579

	base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
	base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
	base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;

	return now;
580 581
}

582 583 584 585 586 587 588 589 590 591 592 593 594 595
/*
 * Is the high resolution mode active ?
 */
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
{
	return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
		cpu_base->hres_active : 0;
}

static inline int hrtimer_hres_active(void)
{
	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
}

596 597 598 599 600
/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
601 602
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
603
{
604 605
	ktime_t expires_next;

606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
	/*
	 * Find the current next expiration time.
	 */
	expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);

	if (cpu_base->next_timer && cpu_base->next_timer->is_soft) {
		/*
		 * When the softirq is activated, hrtimer has to be
		 * programmed with the first hard hrtimer because soft
		 * timer interrupt could occur too late.
		 */
		if (cpu_base->softirq_activated)
			expires_next = __hrtimer_get_next_event(cpu_base,
								HRTIMER_ACTIVE_HARD);
		else
			cpu_base->softirq_expires_next = expires_next;
	}
623

T
Thomas Gleixner 已提交
624
	if (skip_equal && expires_next == cpu_base->expires_next)
625 626
		return;

T
Thomas Gleixner 已提交
627
	cpu_base->expires_next = expires_next;
628

629
	/*
630 631 632
	 * If hres is not active, hardware does not have to be
	 * reprogrammed yet.
	 *
633 634 635 636 637 638 639 640 641 642 643 644 645
	 * If a hang was detected in the last timer interrupt then we
	 * leave the hang delay active in the hardware. We want the
	 * system to make progress. That also prevents the following
	 * scenario:
	 * T1 expires 50ms from now
	 * T2 expires 5s from now
	 *
	 * T1 is removed, so this code is called and would reprogram
	 * the hardware to 5s from now. Any hrtimer_start after that
	 * will not reprogram the hardware due to hang_detected being
	 * set. So we'd effectivly block all timers until the T2 event
	 * fires.
	 */
646
	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
647 648
		return;

649
	tick_program_event(cpu_base->expires_next, 1);
650 651
}

652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static bool hrtimer_hres_enabled __read_mostly  = true;
unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
EXPORT_SYMBOL_GPL(hrtimer_resolution);

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

680 681 682 683 684 685 686
/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
687
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
688

689
	if (!__hrtimer_hres_active(base))
690 691 692
		return;

	raw_spin_lock(&base->lock);
693
	hrtimer_update_base(base);
694 695 696
	hrtimer_force_reprogram(base, 0);
	raw_spin_unlock(&base->lock);
}
697

698 699 700
/*
 * Switch to high resolution mode
 */
701
static void hrtimer_switch_to_hres(void)
702
{
703
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
704 705

	if (tick_init_highres()) {
I
Ingo Molnar 已提交
706
		printk(KERN_WARNING "Could not switch to high resolution "
707
				    "mode on CPU %d\n", base->cpu);
708
		return;
709 710
	}
	base->hres_active = 1;
711
	hrtimer_resolution = HIGH_RES_NSEC;
712 713 714 715 716 717

	tick_setup_sched_timer();
	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
}

718 719 720 721 722 723 724
static void clock_was_set_work(struct work_struct *work)
{
	clock_was_set();
}

static DECLARE_WORK(hrtimer_work, clock_was_set_work);

725
/*
P
Pratyush Patel 已提交
726
 * Called from timekeeping and resume code to reprogram the hrtimer
727
 * interrupt device on all cpus.
728 729 730
 */
void clock_was_set_delayed(void)
{
731
	schedule_work(&hrtimer_work);
732 733
}

734 735 736
#else

static inline int hrtimer_is_hres_enabled(void) { return 0; }
737
static inline void hrtimer_switch_to_hres(void) { }
738
static inline void retrigger_next_event(void *arg) { }
739 740 741

#endif /* CONFIG_HIGH_RES_TIMERS */

742 743 744 745 746 747 748
/*
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
749
static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
750 751
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
752
	struct hrtimer_clock_base *base = timer->base;
753 754 755 756
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);

	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);

757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
	 * expiry time which is less than base->offset. Set it to 0.
	 */
	if (expires < 0)
		expires = 0;

	if (timer->is_soft) {
		/*
		 * soft hrtimer could be started on a remote CPU. In this
		 * case softirq_expires_next needs to be updated on the
		 * remote CPU. The soft hrtimer will not expire before the
		 * first hard hrtimer on the remote CPU -
		 * hrtimer_check_target() prevents this case.
		 */
		struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;

		if (timer_cpu_base->softirq_activated)
			return;

		if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
			return;

		timer_cpu_base->softirq_next_timer = timer;
		timer_cpu_base->softirq_expires_next = expires;

		if (!ktime_before(expires, timer_cpu_base->expires_next) ||
		    !reprogram)
			return;
	}

788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
	/*
	 * If the timer is not on the current cpu, we cannot reprogram
	 * the other cpus clock event device.
	 */
	if (base->cpu_base != cpu_base)
		return;

	/*
	 * If the hrtimer interrupt is running, then it will
	 * reevaluate the clock bases and reprogram the clock event
	 * device. The callbacks are always executed in hard interrupt
	 * context so we don't need an extra check for a running
	 * callback.
	 */
	if (cpu_base->in_hrtirq)
		return;

	if (expires >= cpu_base->expires_next)
		return;

	/* Update the pointer to the next expiring timer */
	cpu_base->next_timer = timer;
810
	cpu_base->expires_next = expires;
811 812

	/*
813 814 815
	 * If hres is not active, hardware does not have to be
	 * programmed yet.
	 *
816 817 818 819 820
	 * If a hang was detected in the last timer interrupt then we
	 * do not schedule a timer which is earlier than the expiry
	 * which we enforced in the hang detection. We want the system
	 * to make progress.
	 */
821
	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
822 823 824 825 826 827 828 829 830
		return;

	/*
	 * Program the timer hardware. We enforce the expiry for
	 * events which are already in the past.
	 */
	tick_program_event(expires, 1);
}

831 832 833 834 835 836 837 838 839 840 841 842 843
/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
844
#ifdef CONFIG_HIGH_RES_TIMERS
845 846
	/* Retrigger the CPU local events everywhere */
	on_each_cpu(retrigger_next_event, NULL, 1);
847 848
#endif
	timerfd_clock_was_set();
849 850 851 852
}

/*
 * During resume we might have to reprogram the high resolution timer
853 854
 * interrupt on all online CPUs.  However, all other CPUs will be
 * stopped with IRQs interrupts disabled so the clock_was_set() call
855
 * must be deferred.
856 857 858
 */
void hrtimers_resume(void)
{
859
	lockdep_assert_irqs_disabled();
860
	/* Retrigger on the local CPU */
861
	retrigger_next_event(NULL);
862 863
	/* And schedule a retrigger for all others */
	clock_was_set_delayed();
864 865
}

866
/*
867
 * Counterpart to lock_hrtimer_base above:
868 869 870 871
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
872
	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
873 874 875 876 877
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
878
 * @now:	forward past this time
879 880 881
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
882
 * Returns the number of overruns.
883 884 885 886 887 888 889 890
 *
 * Can be safely called from the callback function of @timer. If
 * called from other contexts @timer must neither be enqueued nor
 * running the callback and the caller needs to take care of
 * serialization.
 *
 * Note: This only updates the timer expiry value and does not requeue
 * the timer.
891
 */
D
Davide Libenzi 已提交
892
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
893
{
D
Davide Libenzi 已提交
894
	u64 orun = 1;
895
	ktime_t delta;
896

897
	delta = ktime_sub(now, hrtimer_get_expires(timer));
898

T
Thomas Gleixner 已提交
899
	if (delta < 0)
900 901
		return 0;

902 903 904
	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
		return 0;

T
Thomas Gleixner 已提交
905 906
	if (interval < hrtimer_resolution)
		interval = hrtimer_resolution;
907

T
Thomas Gleixner 已提交
908
	if (unlikely(delta >= interval)) {
909
		s64 incr = ktime_to_ns(interval);
910 911

		orun = ktime_divns(delta, incr);
912
		hrtimer_add_expires_ns(timer, incr * orun);
T
Thomas Gleixner 已提交
913
		if (hrtimer_get_expires_tv64(timer) > now)
914 915 916 917 918 919 920
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
921
	hrtimer_add_expires(timer, interval);
922 923 924

	return orun;
}
S
Stas Sergeev 已提交
925
EXPORT_SYMBOL_GPL(hrtimer_forward);
926 927 928 929 930 931

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
932 933
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
934
 */
935
static int enqueue_hrtimer(struct hrtimer *timer,
936 937
			   struct hrtimer_clock_base *base,
			   enum hrtimer_mode mode)
938
{
939
	debug_activate(timer, mode);
940

941
	base->cpu_base->active_bases |= 1 << base->index;
942

943
	timer->state = HRTIMER_STATE_ENQUEUED;
944

945
	return timerqueue_add(&base->active, &timer->node);
946
}
947 948 949 950 951

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
952 953 954 955 956
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
957
 */
958
static void __remove_hrtimer(struct hrtimer *timer,
959
			     struct hrtimer_clock_base *base,
960
			     u8 newstate, int reprogram)
961
{
962
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
963
	u8 state = timer->state;
964

965 966 967
	timer->state = newstate;
	if (!(state & HRTIMER_STATE_ENQUEUED))
		return;
968

969
	if (!timerqueue_del(&base->active, &timer->node))
970
		cpu_base->active_bases &= ~(1 << base->index);
971

972 973 974 975 976 977 978 979 980 981
	/*
	 * Note: If reprogram is false we do not update
	 * cpu_base->next_timer. This happens when we remove the first
	 * timer on a remote cpu. No harm as we never dereference
	 * cpu_base->next_timer. So the worst thing what can happen is
	 * an superflous call to hrtimer_force_reprogram() on the
	 * remote cpu later on if the same timer gets enqueued again.
	 */
	if (reprogram && timer == cpu_base->next_timer)
		hrtimer_force_reprogram(cpu_base, 1);
982 983 984 985 986 987
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
988
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
989
{
990
	if (hrtimer_is_queued(timer)) {
991
		u8 state = timer->state;
992 993 994 995 996 997 998 999 1000 1001
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
1002
		debug_deactivate(timer);
1003
		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1004

1005 1006 1007
		if (!restart)
			state = HRTIMER_STATE_INACTIVE;

1008
		__remove_hrtimer(timer, base, state, reprogram);
1009 1010 1011 1012 1013
		return 1;
	}
	return 0;
}

1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
					    const enum hrtimer_mode mode)
{
#ifdef CONFIG_TIME_LOW_RES
	/*
	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
	 * granular time values. For relative timers we add hrtimer_resolution
	 * (i.e. one jiffie) to prevent short timeouts.
	 */
	timer->is_rel = mode & HRTIMER_MODE_REL;
	if (timer->is_rel)
T
Thomas Gleixner 已提交
1025
		tim = ktime_add_safe(tim, hrtimer_resolution);
1026 1027 1028 1029
#endif
	return tim;
}

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
static void
hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
{
	ktime_t expires;

	/*
	 * Find the next SOFT expiration.
	 */
	expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);

	/*
	 * reprogramming needs to be triggered, even if the next soft
	 * hrtimer expires at the same time than the next hard
	 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
	 */
	if (expires == KTIME_MAX)
		return;

	/*
	 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
	 * cpu_base->*expires_next is only set by hrtimer_reprogram()
	 */
	hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
}

1055 1056 1057
static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
				    u64 delta_ns, const enum hrtimer_mode mode,
				    struct hrtimer_clock_base *base)
1058
{
1059
	struct hrtimer_clock_base *new_base;
1060 1061

	/* Remove an active timer from the queue: */
1062
	remove_hrtimer(timer, base, true);
1063

1064
	if (mode & HRTIMER_MODE_REL)
1065
		tim = ktime_add_safe(tim, base->get_time());
1066 1067

	tim = hrtimer_update_lowres(timer, tim, mode);
1068

1069
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1070

1071 1072 1073
	/* Switch the timer base, if necessary: */
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);

1074 1075
	return enqueue_hrtimer(timer, new_base, mode);
}
1076

1077 1078 1079 1080 1081 1082
/**
 * hrtimer_start_range_ns - (re)start an hrtimer
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
 * @mode:	timer mode: absolute (HRTIMER_MODE_ABS) or
1083 1084
 *		relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
 *		softirq based mode is considered for debug purpose only!
1085 1086 1087 1088 1089 1090 1091
 */
void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
			    u64 delta_ns, const enum hrtimer_mode mode)
{
	struct hrtimer_clock_base *base;
	unsigned long flags;

1092 1093 1094 1095 1096 1097
	/*
	 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
	 * match.
	 */
	WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);

1098 1099 1100
	base = lock_hrtimer_base(timer, &flags);

	if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1101
		hrtimer_reprogram(timer, true);
1102

1103
	unlock_hrtimer_base(timer, &flags);
1104
}
1105 1106
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

1107 1108 1109 1110 1111 1112 1113
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
1114
 * -1 when the timer is currently executing the callback function and
1115
 *    cannot be stopped
1116 1117 1118
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
1119
	struct hrtimer_clock_base *base;
1120 1121 1122
	unsigned long flags;
	int ret = -1;

1123 1124 1125 1126 1127 1128 1129 1130 1131
	/*
	 * Check lockless first. If the timer is not active (neither
	 * enqueued nor running the callback, nothing to do here.  The
	 * base lock does not serialize against a concurrent enqueue,
	 * so we can avoid taking it.
	 */
	if (!hrtimer_active(timer))
		return 0;

1132 1133
	base = lock_hrtimer_base(timer, &flags);

1134
	if (!hrtimer_callback_running(timer))
1135
		ret = remove_hrtimer(timer, base, false);
1136 1137 1138 1139 1140 1141

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1142
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1159
		cpu_relax();
1160 1161
	}
}
1162
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1163 1164 1165 1166

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
1167
 * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1168
 */
1169
ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1170 1171 1172 1173
{
	unsigned long flags;
	ktime_t rem;

1174
	lock_hrtimer_base(timer, &flags);
1175 1176 1177 1178
	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
		rem = hrtimer_expires_remaining_adjusted(timer);
	else
		rem = hrtimer_expires_remaining(timer);
1179 1180 1181 1182
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1183
EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1184

1185
#ifdef CONFIG_NO_HZ_COMMON
1186 1187 1188
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
1189
 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1190
 */
1191
u64 hrtimer_get_next_event(void)
1192
{
1193
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1194
	u64 expires = KTIME_MAX;
1195 1196
	unsigned long flags;

1197
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1198

1199
	if (!__hrtimer_hres_active(cpu_base))
1200
		expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1201

1202
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1203

1204
	return expires;
1205 1206 1207
}
#endif

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
static inline int hrtimer_clockid_to_base(clockid_t clock_id)
{
	if (likely(clock_id < MAX_CLOCKS)) {
		int base = hrtimer_clock_to_base_table[clock_id];

		if (likely(base != HRTIMER_MAX_CLOCK_BASES))
			return base;
	}
	WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
	return HRTIMER_BASE_MONOTONIC;
}

1220 1221
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1222
{
1223
	struct hrtimer_cpu_base *cpu_base;
1224
	int base;
1225

1226 1227
	memset(timer, 0, sizeof(struct hrtimer));

1228
	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1229

1230 1231 1232 1233 1234 1235
	/*
	 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
	 * clock modifications, so they needs to become CLOCK_MONOTONIC to
	 * ensure POSIX compliance.
	 */
	if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1236 1237
		clock_id = CLOCK_MONOTONIC;

1238 1239
	base = hrtimer_clockid_to_base(clock_id);
	timer->base = &cpu_base->clock_base[base];
1240
	timerqueue_init(&timer->node);
1241
}
1242 1243 1244 1245 1246

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
1247 1248
 * @mode:	timer mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL); pinned is not considered here!
1249 1250 1251 1252
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
1253
	debug_init(timer, clock_id, mode);
1254 1255
	__hrtimer_init(timer, clock_id, mode);
}
1256
EXPORT_SYMBOL_GPL(hrtimer_init);
1257

1258 1259 1260 1261
/*
 * A timer is active, when it is enqueued into the rbtree or the
 * callback function is running or it's in the state of being migrated
 * to another cpu.
1262
 *
1263
 * It is important for this function to not return a false negative.
1264
 */
1265
bool hrtimer_active(const struct hrtimer *timer)
1266
{
1267
	struct hrtimer_clock_base *base;
1268
	unsigned int seq;
1269

1270
	do {
1271 1272
		base = READ_ONCE(timer->base);
		seq = raw_read_seqcount_begin(&base->seq);
1273

1274
		if (timer->state != HRTIMER_STATE_INACTIVE ||
1275
		    base->running == timer)
1276 1277
			return true;

1278 1279
	} while (read_seqcount_retry(&base->seq, seq) ||
		 base != READ_ONCE(timer->base));
1280 1281

	return false;
1282
}
1283
EXPORT_SYMBOL_GPL(hrtimer_active);
1284

1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
/*
 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
 * distinct sections:
 *
 *  - queued:	the timer is queued
 *  - callback:	the timer is being ran
 *  - post:	the timer is inactive or (re)queued
 *
 * On the read side we ensure we observe timer->state and cpu_base->running
 * from the same section, if anything changed while we looked at it, we retry.
 * This includes timer->base changing because sequence numbers alone are
 * insufficient for that.
 *
 * The sequence numbers are required because otherwise we could still observe
 * a false negative if the read side got smeared over multiple consequtive
 * __run_hrtimer() invocations.
 */

1303 1304
static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
			  struct hrtimer_clock_base *base,
1305 1306
			  struct hrtimer *timer, ktime_t *now,
			  unsigned long flags)
1307 1308 1309 1310
{
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1311
	lockdep_assert_held(&cpu_base->lock);
1312

1313
	debug_deactivate(timer);
1314
	base->running = timer;
1315 1316 1317 1318 1319

	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
1320
	 * hrtimer_active() cannot observe base->running == NULL &&
1321 1322
	 * timer->state == INACTIVE.
	 */
1323
	raw_write_seqcount_barrier(&base->seq);
1324 1325

	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1326
	fn = timer->function;
1327

1328 1329 1330 1331 1332 1333 1334 1335
	/*
	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
	 * timer is restarted with a period then it becomes an absolute
	 * timer. If its not restarted it does not matter.
	 */
	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
		timer->is_rel = false;

1336
	/*
1337 1338 1339
	 * The timer is marked as running in the CPU base, so it is
	 * protected against migration to a different CPU even if the lock
	 * is dropped.
1340
	 */
1341
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1342
	trace_hrtimer_expire_entry(timer, now);
1343
	restart = fn(timer);
1344
	trace_hrtimer_expire_exit(timer);
1345
	raw_spin_lock_irq(&cpu_base->lock);
1346 1347

	/*
1348
	 * Note: We clear the running state after enqueue_hrtimer and
P
Pratyush Patel 已提交
1349
	 * we do not reprogram the event hardware. Happens either in
T
Thomas Gleixner 已提交
1350
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1351 1352 1353 1354
	 *
	 * Note: Because we dropped the cpu_base->lock above,
	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
	 * for us already.
1355
	 */
1356 1357
	if (restart != HRTIMER_NORESTART &&
	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1358
		enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1359

1360 1361 1362 1363
	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
1364
	 * hrtimer_active() cannot observe base->running.timer == NULL &&
1365 1366
	 * timer->state == INACTIVE.
	 */
1367
	raw_write_seqcount_barrier(&base->seq);
1368

1369 1370
	WARN_ON_ONCE(base->running != timer);
	base->running = NULL;
1371 1372
}

1373
static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1374
				 unsigned long flags, unsigned int active_mask)
1375
{
1376
	struct hrtimer_clock_base *base;
1377
	unsigned int active = cpu_base->active_bases & active_mask;
1378

1379
	for_each_active_base(base, cpu_base, active) {
1380
		struct timerqueue_node *node;
1381 1382
		ktime_t basenow;

1383 1384
		basenow = ktime_add(now, base->offset);

1385
		while ((node = timerqueue_getnext(&base->active))) {
1386 1387
			struct hrtimer *timer;

1388
			timer = container_of(node, struct hrtimer, node);
1389

1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */
T
Thomas Gleixner 已提交
1402
			if (basenow < hrtimer_get_softexpires_tv64(timer))
1403 1404
				break;

1405
			__run_hrtimer(cpu_base, base, timer, &basenow, flags);
1406 1407
		}
	}
1408 1409
}

1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
	unsigned long flags;
	ktime_t now;

	raw_spin_lock_irqsave(&cpu_base->lock, flags);

	now = hrtimer_update_base(cpu_base);
	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);

	cpu_base->softirq_activated = 0;
	hrtimer_update_softirq_timer(cpu_base, true);

	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
}

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
	ktime_t expires_next, now, entry_time, delta;
1437
	unsigned long flags;
1438 1439 1440 1441
	int retries = 0;

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
T
Thomas Gleixner 已提交
1442
	dev->next_event = KTIME_MAX;
1443

1444
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
	entry_time = now = hrtimer_update_base(cpu_base);
retry:
	cpu_base->in_hrtirq = 1;
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
T
Thomas Gleixner 已提交
1455
	cpu_base->expires_next = KTIME_MAX;
1456

1457 1458 1459 1460 1461 1462
	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
		cpu_base->softirq_expires_next = KTIME_MAX;
		cpu_base->softirq_activated = 1;
		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
	}

1463
	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1464

1465
	/* Reevaluate the clock bases for the next expiry */
1466
	expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1467 1468 1469 1470
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1471
	cpu_base->expires_next = expires_next;
1472
	cpu_base->in_hrtirq = 0;
1473
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1474 1475

	/* Reprogramming necessary ? */
1476
	if (!tick_program_event(expires_next, 0)) {
1477 1478
		cpu_base->hang_detected = 0;
		return;
1479
	}
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489

	/*
	 * The next timer was already expired due to:
	 * - tracing
	 * - long lasting callbacks
	 * - being scheduled away when running in a VM
	 *
	 * We need to prevent that we loop forever in the hrtimer
	 * interrupt routine. We give it 3 attempts to avoid
	 * overreacting on some spurious event.
1490 1491 1492
	 *
	 * Acquire base lock for updating the offsets and retrieving
	 * the current time.
1493
	 */
1494
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1495
	now = hrtimer_update_base(cpu_base);
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
	cpu_base->nr_retries++;
	if (++retries < 3)
		goto retry;
	/*
	 * Give the system a chance to do something else than looping
	 * here. We stored the entry time, so we know exactly how long
	 * we spent here. We schedule the next event this amount of
	 * time away.
	 */
	cpu_base->nr_hangs++;
	cpu_base->hang_detected = 1;
1507 1508
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);

1509
	delta = ktime_sub(now, entry_time);
T
Thomas Gleixner 已提交
1510 1511
	if ((unsigned int)delta > cpu_base->max_hang_time)
		cpu_base->max_hang_time = (unsigned int) delta;
1512 1513 1514 1515
	/*
	 * Limit it to a sensible value as we enforce a longer
	 * delay. Give the CPU at least 100ms to catch up.
	 */
T
Thomas Gleixner 已提交
1516
	if (delta > 100 * NSEC_PER_MSEC)
1517 1518 1519 1520 1521 1522
		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
	else
		expires_next = ktime_add(now, delta);
	tick_program_event(expires_next, 1);
	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
		    ktime_to_ns(delta));
1523 1524
}

1525
/* called with interrupts disabled */
1526
static inline void __hrtimer_peek_ahead_timers(void)
1527 1528 1529 1530 1531 1532
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

1533
	td = this_cpu_ptr(&tick_cpu_device);
1534 1535 1536 1537
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1538 1539 1540 1541 1542
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1543

1544
/*
1545
 * Called from run_local_timers in hardirq context every jiffy
1546
 */
1547
void hrtimer_run_queues(void)
1548
{
1549
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1550
	unsigned long flags;
1551
	ktime_t now;
1552

1553
	if (__hrtimer_hres_active(cpu_base))
1554
		return;
1555

1556
	/*
1557 1558 1559 1560 1561
	 * This _is_ ugly: We have to check periodically, whether we
	 * can switch to highres and / or nohz mode. The clocksource
	 * switch happens with xtime_lock held. Notification from
	 * there only sets the check bit in the tick_oneshot code,
	 * otherwise we might deadlock vs. xtime_lock.
1562
	 */
1563
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1564
		hrtimer_switch_to_hres();
1565
		return;
1566
	}
1567

1568
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1569
	now = hrtimer_update_base(cpu_base);
1570 1571 1572 1573 1574 1575 1576

	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
		cpu_base->softirq_expires_next = KTIME_MAX;
		cpu_base->softirq_activated = 1;
		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
	}

1577
	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1578
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1579 1580
}

1581 1582 1583
/*
 * Sleep related functions:
 */
1584
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1597
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1598 1599 1600 1601
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}
S
Stephen Hemminger 已提交
1602
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1603

1604
int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1605 1606 1607 1608
{
	switch(restart->nanosleep.type) {
#ifdef CONFIG_COMPAT
	case TT_COMPAT:
1609
		if (compat_put_timespec64(ts, restart->nanosleep.compat_rmtp))
1610 1611 1612 1613
			return -EFAULT;
		break;
#endif
	case TT_NATIVE:
1614
		if (put_timespec64(ts, restart->nanosleep.rmtp))
1615 1616 1617 1618 1619 1620 1621 1622
			return -EFAULT;
		break;
	default:
		BUG();
	}
	return -ERESTART_RESTARTBLOCK;
}

1623
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1624
{
1625 1626
	struct restart_block *restart;

1627
	hrtimer_init_sleeper(t, current);
1628

1629 1630
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1631
		hrtimer_start_expires(&t->timer, mode);
1632

1633
		if (likely(t->task))
1634
			freezable_schedule();
1635

1636
		hrtimer_cancel(&t->timer);
1637
		mode = HRTIMER_MODE_ABS;
1638 1639

	} while (t->task && !signal_pending(current));
1640

1641 1642
	__set_current_state(TASK_RUNNING);

1643
	if (!t->task)
1644 1645
		return 0;

1646 1647
	restart = &current->restart_block;
	if (restart->nanosleep.type != TT_NONE) {
1648
		ktime_t rem = hrtimer_expires_remaining(&t->timer);
1649
		struct timespec64 rmt;
1650

1651 1652
		if (rem <= 0)
			return 0;
1653
		rmt = ktime_to_timespec64(rem);
1654

1655
		return nanosleep_copyout(restart, &rmt);
1656 1657
	}
	return -ERESTART_RESTARTBLOCK;
1658 1659
}

A
Al Viro 已提交
1660
static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1661
{
1662
	struct hrtimer_sleeper t;
1663
	int ret;
1664

1665
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1666
				HRTIMER_MODE_ABS);
1667
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1668

1669
	ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1670 1671
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1672 1673
}

1674
long hrtimer_nanosleep(const struct timespec64 *rqtp,
1675 1676
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
1677
	struct restart_block *restart;
1678
	struct hrtimer_sleeper t;
1679
	int ret = 0;
1680
	u64 slack;
1681 1682

	slack = current->timer_slack_ns;
1683
	if (dl_task(current) || rt_task(current))
1684
		slack = 0;
1685

1686
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1687
	hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
1688 1689
	ret = do_nanosleep(&t, mode);
	if (ret != -ERESTART_RESTARTBLOCK)
1690
		goto out;
1691

1692
	/* Absolute timers do not update the rmtp value and restart: */
1693 1694 1695 1696
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1697

1698
	restart = &current->restart_block;
1699
	restart->fn = hrtimer_nanosleep_restart;
1700
	restart->nanosleep.clockid = t.timer.base->clockid;
1701
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1702 1703 1704
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1705 1706
}

1707 1708
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1709
{
1710
	struct timespec64 tu;
1711

1712
	if (get_timespec64(&tu, rqtp))
1713 1714
		return -EFAULT;

1715
	if (!timespec64_valid(&tu))
1716 1717
		return -EINVAL;

1718
	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1719
	current->restart_block.nanosleep.rmtp = rmtp;
1720
	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1721 1722
}

1723 1724 1725 1726 1727
#ifdef CONFIG_COMPAT

COMPAT_SYSCALL_DEFINE2(nanosleep, struct compat_timespec __user *, rqtp,
		       struct compat_timespec __user *, rmtp)
{
1728
	struct timespec64 tu;
1729

1730
	if (compat_get_timespec64(&tu, rqtp))
1731 1732
		return -EFAULT;

1733
	if (!timespec64_valid(&tu))
1734 1735 1736 1737
		return -EINVAL;

	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
	current->restart_block.nanosleep.compat_rmtp = rmtp;
1738
	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1739 1740 1741
}
#endif

1742 1743 1744
/*
 * Functions related to boot-time initialization:
 */
1745
int hrtimers_prepare_cpu(unsigned int cpu)
1746
{
1747
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1748 1749
	int i;

1750
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1751
		cpu_base->clock_base[i].cpu_base = cpu_base;
1752 1753
		timerqueue_init_head(&cpu_base->clock_base[i].active);
	}
1754

1755
	cpu_base->cpu = cpu;
1756
	cpu_base->hres_active = 0;
1757
	cpu_base->expires_next = KTIME_MAX;
1758
	cpu_base->softirq_expires_next = KTIME_MAX;
1759
	return 0;
1760 1761 1762 1763
}

#ifdef CONFIG_HOTPLUG_CPU

1764
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1765
				struct hrtimer_clock_base *new_base)
1766 1767
{
	struct hrtimer *timer;
1768
	struct timerqueue_node *node;
1769

1770 1771
	while ((node = timerqueue_getnext(&old_base->active))) {
		timer = container_of(node, struct hrtimer, node);
1772
		BUG_ON(hrtimer_callback_running(timer));
1773
		debug_deactivate(timer);
T
Thomas Gleixner 已提交
1774 1775

		/*
1776
		 * Mark it as ENQUEUED not INACTIVE otherwise the
T
Thomas Gleixner 已提交
1777 1778 1779
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
1780
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1781
		timer->base = new_base;
1782
		/*
T
Thomas Gleixner 已提交
1783 1784 1785 1786 1787 1788
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1789
		 */
1790
		enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
1791 1792 1793
	}
}

1794
int hrtimers_dead_cpu(unsigned int scpu)
1795
{
1796
	struct hrtimer_cpu_base *old_base, *new_base;
1797
	int i;
1798

1799 1800
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1801

1802 1803 1804 1805 1806 1807
	/*
	 * this BH disable ensures that raise_softirq_irqoff() does
	 * not wakeup ksoftirqd (and acquire the pi-lock) while
	 * holding the cpu_base lock
	 */
	local_bh_disable();
1808 1809
	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
1810
	new_base = this_cpu_ptr(&hrtimer_bases);
1811 1812 1813 1814
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1815 1816
	raw_spin_lock(&new_base->lock);
	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1817

1818
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1819
		migrate_hrtimer_list(&old_base->clock_base[i],
1820
				     &new_base->clock_base[i]);
1821 1822
	}

1823 1824 1825 1826 1827 1828
	/*
	 * The migration might have changed the first expiring softirq
	 * timer on this CPU. Update it.
	 */
	hrtimer_update_softirq_timer(new_base, false);

1829 1830
	raw_spin_unlock(&old_base->lock);
	raw_spin_unlock(&new_base->lock);
1831

1832 1833 1834
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1835
	local_bh_enable();
1836
	return 0;
1837
}
1838

1839 1840 1841 1842
#endif /* CONFIG_HOTPLUG_CPU */

void __init hrtimers_init(void)
{
1843
	hrtimers_prepare_cpu(smp_processor_id());
1844
	open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
1845 1846
}

1847
/**
1848
 * schedule_hrtimeout_range_clock - sleep until timeout
1849
 * @expires:	timeout value (ktime_t)
1850
 * @delta:	slack in expires timeout (ktime_t)
1851 1852
 * @mode:	timer mode
 * @clock_id:	timer clock to be used
1853
 */
1854
int __sched
1855
schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1856
			       const enum hrtimer_mode mode, clockid_t clock_id)
1857 1858 1859 1860 1861 1862 1863
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
T
Thomas Gleixner 已提交
1864
	if (expires && *expires == 0) {
1865 1866 1867 1868 1869
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
N
Namhyung Kim 已提交
1870
	 * A NULL parameter means "infinite"
1871 1872 1873 1874 1875 1876
	 */
	if (!expires) {
		schedule();
		return -EINTR;
	}

1877
	hrtimer_init_on_stack(&t.timer, clock_id, mode);
1878
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1879 1880 1881

	hrtimer_init_sleeper(&t, current);

1882
	hrtimer_start_expires(&t.timer, mode);
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1894 1895 1896 1897 1898

/**
 * schedule_hrtimeout_range - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @delta:	slack in expires timeout (ktime_t)
1899
 * @mode:	timer mode
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1913 1914
 * pass before the routine returns unless the current task is explicitly
 * woken up, (e.g. by wake_up_process()).
1915 1916
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1917 1918
 * delivered to the current task or the current task is explicitly woken
 * up.
1919 1920 1921 1922
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
1923 1924 1925
 * Returns 0 when the timer has expired. If the task was woken before the
 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
 * by an explicit wakeup, it returns -EINTR.
1926
 */
1927
int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1928 1929 1930 1931 1932
				     const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range_clock(expires, delta, mode,
					      CLOCK_MONOTONIC);
}
1933 1934 1935 1936 1937
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
1938
 * @mode:	timer mode
1939 1940 1941 1942 1943 1944 1945 1946
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1947 1948
 * pass before the routine returns unless the current task is explicitly
 * woken up, (e.g. by wake_up_process()).
1949 1950
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1951 1952
 * delivered to the current task or the current task is explicitly woken
 * up.
1953 1954 1955 1956
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
1957 1958 1959
 * Returns 0 when the timer has expired. If the task was woken before the
 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
 * by an explicit wakeup, it returns -EINTR.
1960 1961 1962 1963 1964 1965
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1966
EXPORT_SYMBOL_GPL(schedule_hrtimeout);