hrtimer.c 45.9 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
35
#include <linux/export.h>
36 37 38 39
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46
#include <linux/sched/signal.h>
47
#include <linux/sched/sysctl.h>
48
#include <linux/sched/rt.h>
49
#include <linux/sched/deadline.h>
50
#include <linux/sched/nohz.h>
51
#include <linux/sched/debug.h>
52
#include <linux/timer.h>
53
#include <linux/freezer.h>
54
#include <linux/compat.h>
55

56
#include <linux/uaccess.h>
57

58 59
#include <trace/events/timer.h>

60
#include "tick-internal.h"
61

62 63
/*
 * The timer bases:
64
 *
Z
Zhen Lei 已提交
65
 * There are more clockids than hrtimer bases. Thus, we index
66 67 68
 * into the timer bases by the hrtimer_base_type enum. When trying
 * to reach a base using a clockid, hrtimer_clockid_to_base()
 * is used to convert from clockid to the proper hrtimer_base_type.
69
 */
70
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
71
{
72
	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
73
	.clock_base =
74
	{
75
		{
76 77
			.index = HRTIMER_BASE_MONOTONIC,
			.clockid = CLOCK_MONOTONIC,
78 79
			.get_time = &ktime_get,
		},
T
Thomas Gleixner 已提交
80 81 82 83 84
		{
			.index = HRTIMER_BASE_REALTIME,
			.clockid = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
		},
85
		{
86 87
			.index = HRTIMER_BASE_BOOTTIME,
			.clockid = CLOCK_BOOTTIME,
88 89
			.get_time = &ktime_get_boottime,
		},
90 91 92 93 94
		{
			.index = HRTIMER_BASE_TAI,
			.clockid = CLOCK_TAI,
			.get_time = &ktime_get_clocktai,
		},
95
	}
96 97
};

98
static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
99 100 101
	/* Make sure we catch unsupported clockids */
	[0 ... MAX_CLOCKS - 1]	= HRTIMER_MAX_CLOCK_BASES,

102 103 104
	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
105
	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
106
};
107

108 109 110 111 112 113
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

114 115 116 117 118 119 120 121 122 123 124
/*
 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
 * such that hrtimer_callback_running() can unconditionally dereference
 * timer->base->cpu_base
 */
static struct hrtimer_cpu_base migration_cpu_base = {
	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
};

#define migration_base	migration_cpu_base.clock_base[0]

125 126 127 128 129 130 131 132 133
/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
134 135
 * possible to set timer->base = &migration_base and drop the lock: the timer
 * remains locked.
136
 */
137 138 139
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
140
{
141
	struct hrtimer_clock_base *base;
142 143 144

	for (;;) {
		base = timer->base;
145
		if (likely(base != &migration_base)) {
146
			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
147 148 149
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
150
			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
151 152 153 154 155
		}
		cpu_relax();
	}
}

156
/*
157 158 159 160 161
 * We do not migrate the timer when it is expiring before the next
 * event on the target cpu. When high resolution is enabled, we cannot
 * reprogram the target cpu hardware and we would cause it to fire
 * late. To keep it simple, we handle the high resolution enabled and
 * disabled case similar.
162 163 164 165 166 167 168 169 170
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
	ktime_t expires;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
T
Thomas Gleixner 已提交
171
	return expires <= new_base->cpu_base->expires_next;
172 173
}

174 175 176 177
static inline
struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
					 int pinned)
{
178 179 180 181
#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
	if (static_branch_likely(&timers_migration_enabled) && !pinned)
		return &per_cpu(hrtimer_bases, get_nohz_timer_target());
#endif
182
	return base;
183 184
}

185
/*
186 187 188 189 190 191 192 193 194 195
 * We switch the timer base to a power-optimized selected CPU target,
 * if:
 *	- NO_HZ_COMMON is enabled
 *	- timer migration is enabled
 *	- the timer callback is not running
 *	- the timer is not the first expiring timer on the new target
 *
 * If one of the above requirements is not fulfilled we move the timer
 * to the current CPU or leave it on the previously assigned CPU if
 * the timer callback is currently running.
196
 */
197
static inline struct hrtimer_clock_base *
198 199
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
200
{
201
	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
202
	struct hrtimer_clock_base *new_base;
203
	int basenum = base->index;
204

205 206
	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
	new_cpu_base = get_target_base(this_cpu_base, pinned);
207
again:
208
	new_base = &new_cpu_base->clock_base[basenum];
209 210 211

	if (base != new_base) {
		/*
212
		 * We are trying to move timer to new_base.
213 214 215 216 217 218 219
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
220
		if (unlikely(hrtimer_callback_running(timer)))
221 222
			return base;

223 224
		/* See the comment in lock_hrtimer_base() */
		timer->base = &migration_base;
225 226
		raw_spin_unlock(&base->cpu_base->lock);
		raw_spin_lock(&new_base->cpu_base->lock);
227

228
		if (new_cpu_base != this_cpu_base &&
229
		    hrtimer_check_target(timer, new_base)) {
230 231
			raw_spin_unlock(&new_base->cpu_base->lock);
			raw_spin_lock(&base->cpu_base->lock);
232
			new_cpu_base = this_cpu_base;
233 234
			timer->base = base;
			goto again;
235
		}
236
		timer->base = new_base;
237
	} else {
238
		if (new_cpu_base != this_cpu_base &&
239
		    hrtimer_check_target(timer, new_base)) {
240
			new_cpu_base = this_cpu_base;
241 242
			goto again;
		}
243 244 245 246 247 248
	}
	return new_base;
}

#else /* CONFIG_SMP */

249
static inline struct hrtimer_clock_base *
250 251
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
252
	struct hrtimer_clock_base *base = timer->base;
253

254
	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
255 256 257 258

	return base;
}

259
# define switch_hrtimer_base(t, b, p)	(b)
260 261 262 263 264 265 266 267 268 269 270

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
/*
 * Divide a ktime value by a nanosecond value
 */
271
s64 __ktime_divns(const ktime_t kt, s64 div)
272 273
{
	int sft = 0;
274 275
	s64 dclc;
	u64 tmp;
276

277
	dclc = ktime_to_ns(kt);
278 279
	tmp = dclc < 0 ? -dclc : dclc;

280 281 282 283 284
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
285 286 287
	tmp >>= sft;
	do_div(tmp, (unsigned long) div);
	return dclc < 0 ? -tmp : tmp;
288
}
289
EXPORT_SYMBOL_GPL(__ktime_divns);
290 291
#endif /* BITS_PER_LONG >= 64 */

292 293 294 295 296
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
297
	ktime_t res = ktime_add_unsafe(lhs, rhs);
298 299 300 301 302

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
T
Thomas Gleixner 已提交
303
	if (res < 0 || res < lhs || res < rhs)
304 305 306 307 308
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

309 310
EXPORT_SYMBOL_GPL(ktime_add_safe);

311 312 313 314
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

315 316 317 318 319
static void *hrtimer_debug_hint(void *addr)
{
	return ((struct hrtimer *) addr)->function;
}

320 321 322 323
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
324
static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
325 326 327 328 329 330 331
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
332
		return true;
333
	default:
334
		return false;
335 336 337 338 339 340
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
341
 * - an unknown non-static object is activated
342
 */
343
static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
344 345 346 347 348 349
{
	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
350
		return false;
351 352 353 354 355 356 357
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
358
static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
359 360 361 362 363 364 365
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
366
		return true;
367
	default:
368
		return false;
369 370 371 372 373
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
374
	.debug_hint	= hrtimer_debug_hint,
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}
S
Stephen Hemminger 已提交
409
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
410 411 412 413 414

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}
415
EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
416 417 418 419 420 421 422

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

423 424 425 426 427 428 429 430
static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
	   enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	trace_hrtimer_init(timer, clockid, mode);
}

431 432
static inline void debug_activate(struct hrtimer *timer,
				  enum hrtimer_mode mode)
433 434
{
	debug_hrtimer_activate(timer);
435
	trace_hrtimer_start(timer, mode);
436 437 438 439 440 441 442 443
}

static inline void debug_deactivate(struct hrtimer *timer)
{
	debug_hrtimer_deactivate(timer);
	trace_hrtimer_cancel(timer);
}

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
static struct hrtimer_clock_base *
__next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
{
	unsigned int idx;

	if (!*active)
		return NULL;

	idx = __ffs(*active);
	*active &= ~(1U << idx);

	return &cpu_base->clock_base[idx];
}

#define for_each_active_base(base, cpu_base, active)	\
	while ((base = __next_base((cpu_base), &(active))))

461
static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
462
{
463
	struct hrtimer_clock_base *base;
464
	unsigned int active = cpu_base->active_bases;
T
Thomas Gleixner 已提交
465
	ktime_t expires, expires_next = KTIME_MAX;
466

467
	cpu_base->next_timer = NULL;
468
	for_each_active_base(base, cpu_base, active) {
469 470 471
		struct timerqueue_node *next;
		struct hrtimer *timer;

472
		next = timerqueue_getnext(&base->active);
473 474
		timer = container_of(next, struct hrtimer, node);
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
T
Thomas Gleixner 已提交
475
		if (expires < expires_next) {
476
			expires_next = expires;
477
			cpu_base->next_timer = timer;
478
		}
479 480 481 482 483 484
	}
	/*
	 * clock_was_set() might have changed base->offset of any of
	 * the clock bases so the result might be negative. Fix it up
	 * to prevent a false positive in clockevents_program_event().
	 */
T
Thomas Gleixner 已提交
485 486
	if (expires_next < 0)
		expires_next = 0;
487 488 489
	return expires_next;
}

490 491 492 493 494 495
static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
{
	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;

496 497
	return ktime_get_update_offsets_now(&base->clock_was_set_seq,
					    offs_real, offs_boot, offs_tai);
498 499
}

500 501 502 503 504 505 506 507 508 509 510 511 512 513
/*
 * Is the high resolution mode active ?
 */
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
{
	return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
		cpu_base->hres_active : 0;
}

static inline int hrtimer_hres_active(void)
{
	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
}

514 515 516 517 518
/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
519 520
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
521
{
522 523 524
	ktime_t expires_next;

	expires_next = __hrtimer_get_next_event(cpu_base);
525

T
Thomas Gleixner 已提交
526
	if (skip_equal && expires_next == cpu_base->expires_next)
527 528
		return;

T
Thomas Gleixner 已提交
529
	cpu_base->expires_next = expires_next;
530

531
	/*
532 533 534
	 * If hres is not active, hardware does not have to be
	 * reprogrammed yet.
	 *
535 536 537 538 539 540 541 542 543 544 545 546 547
	 * If a hang was detected in the last timer interrupt then we
	 * leave the hang delay active in the hardware. We want the
	 * system to make progress. That also prevents the following
	 * scenario:
	 * T1 expires 50ms from now
	 * T2 expires 5s from now
	 *
	 * T1 is removed, so this code is called and would reprogram
	 * the hardware to 5s from now. Any hrtimer_start after that
	 * will not reprogram the hardware due to hang_detected being
	 * set. So we'd effectivly block all timers until the T2 event
	 * fires.
	 */
548
	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
549 550
		return;

551
	tick_program_event(cpu_base->expires_next, 1);
552 553
}

554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static bool hrtimer_hres_enabled __read_mostly  = true;
unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
EXPORT_SYMBOL_GPL(hrtimer_resolution);

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

582 583 584 585 586 587 588
/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
589
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
590

591
	if (!__hrtimer_hres_active(base))
592 593 594
		return;

	raw_spin_lock(&base->lock);
595
	hrtimer_update_base(base);
596 597 598
	hrtimer_force_reprogram(base, 0);
	raw_spin_unlock(&base->lock);
}
599

600 601 602
/*
 * Switch to high resolution mode
 */
603
static void hrtimer_switch_to_hres(void)
604
{
605
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
606 607

	if (tick_init_highres()) {
I
Ingo Molnar 已提交
608
		printk(KERN_WARNING "Could not switch to high resolution "
609
				    "mode on CPU %d\n", base->cpu);
610
		return;
611 612
	}
	base->hres_active = 1;
613
	hrtimer_resolution = HIGH_RES_NSEC;
614 615 616 617 618 619

	tick_setup_sched_timer();
	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
}

620 621 622 623 624 625 626
static void clock_was_set_work(struct work_struct *work)
{
	clock_was_set();
}

static DECLARE_WORK(hrtimer_work, clock_was_set_work);

627
/*
P
Pratyush Patel 已提交
628
 * Called from timekeeping and resume code to reprogram the hrtimer
629
 * interrupt device on all cpus.
630 631 632
 */
void clock_was_set_delayed(void)
{
633
	schedule_work(&hrtimer_work);
634 635
}

636 637 638
#else

static inline int hrtimer_is_hres_enabled(void) { return 0; }
639
static inline void hrtimer_switch_to_hres(void) { }
640
static inline void retrigger_next_event(void *arg) { }
641 642 643

#endif /* CONFIG_HIGH_RES_TIMERS */

644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
/*
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
static void hrtimer_reprogram(struct hrtimer *timer,
			      struct hrtimer_clock_base *base)
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);

	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);

	/*
	 * If the timer is not on the current cpu, we cannot reprogram
	 * the other cpus clock event device.
	 */
	if (base->cpu_base != cpu_base)
		return;

	/*
	 * If the hrtimer interrupt is running, then it will
	 * reevaluate the clock bases and reprogram the clock event
	 * device. The callbacks are always executed in hard interrupt
	 * context so we don't need an extra check for a running
	 * callback.
	 */
	if (cpu_base->in_hrtirq)
		return;

	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
	 * expiry time which is less than base->offset. Set it to 0.
	 */
	if (expires < 0)
		expires = 0;

	if (expires >= cpu_base->expires_next)
		return;

	/* Update the pointer to the next expiring timer */
	cpu_base->next_timer = timer;

	/*
	 * If a hang was detected in the last timer interrupt then we
	 * do not schedule a timer which is earlier than the expiry
	 * which we enforced in the hang detection. We want the system
	 * to make progress.
	 */
	if (cpu_base->hang_detected)
		return;

	/*
	 * Program the timer hardware. We enforce the expiry for
	 * events which are already in the past.
	 */
	cpu_base->expires_next = expires;
	tick_program_event(expires, 1);
}

706 707 708 709 710 711 712 713 714 715 716 717 718
/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
719
#ifdef CONFIG_HIGH_RES_TIMERS
720 721
	/* Retrigger the CPU local events everywhere */
	on_each_cpu(retrigger_next_event, NULL, 1);
722 723
#endif
	timerfd_clock_was_set();
724 725 726 727
}

/*
 * During resume we might have to reprogram the high resolution timer
728 729
 * interrupt on all online CPUs.  However, all other CPUs will be
 * stopped with IRQs interrupts disabled so the clock_was_set() call
730
 * must be deferred.
731 732 733
 */
void hrtimers_resume(void)
{
734
	lockdep_assert_irqs_disabled();
735
	/* Retrigger on the local CPU */
736
	retrigger_next_event(NULL);
737 738
	/* And schedule a retrigger for all others */
	clock_was_set_delayed();
739 740
}

741
/*
742
 * Counterpart to lock_hrtimer_base above:
743 744 745 746
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
747
	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
748 749 750 751 752
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
753
 * @now:	forward past this time
754 755 756
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
757
 * Returns the number of overruns.
758 759 760 761 762 763 764 765
 *
 * Can be safely called from the callback function of @timer. If
 * called from other contexts @timer must neither be enqueued nor
 * running the callback and the caller needs to take care of
 * serialization.
 *
 * Note: This only updates the timer expiry value and does not requeue
 * the timer.
766
 */
D
Davide Libenzi 已提交
767
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
768
{
D
Davide Libenzi 已提交
769
	u64 orun = 1;
770
	ktime_t delta;
771

772
	delta = ktime_sub(now, hrtimer_get_expires(timer));
773

T
Thomas Gleixner 已提交
774
	if (delta < 0)
775 776
		return 0;

777 778 779
	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
		return 0;

T
Thomas Gleixner 已提交
780 781
	if (interval < hrtimer_resolution)
		interval = hrtimer_resolution;
782

T
Thomas Gleixner 已提交
783
	if (unlikely(delta >= interval)) {
784
		s64 incr = ktime_to_ns(interval);
785 786

		orun = ktime_divns(delta, incr);
787
		hrtimer_add_expires_ns(timer, incr * orun);
T
Thomas Gleixner 已提交
788
		if (hrtimer_get_expires_tv64(timer) > now)
789 790 791 792 793 794 795
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
796
	hrtimer_add_expires(timer, interval);
797 798 799

	return orun;
}
S
Stas Sergeev 已提交
800
EXPORT_SYMBOL_GPL(hrtimer_forward);
801 802 803 804 805 806

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
807 808
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
809
 */
810
static int enqueue_hrtimer(struct hrtimer *timer,
811 812
			   struct hrtimer_clock_base *base,
			   enum hrtimer_mode mode)
813
{
814
	debug_activate(timer, mode);
815

816
	base->cpu_base->active_bases |= 1 << base->index;
817

818
	timer->state = HRTIMER_STATE_ENQUEUED;
819

820
	return timerqueue_add(&base->active, &timer->node);
821
}
822 823 824 825 826

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
827 828 829 830 831
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
832
 */
833
static void __remove_hrtimer(struct hrtimer *timer,
834
			     struct hrtimer_clock_base *base,
835
			     u8 newstate, int reprogram)
836
{
837
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
838
	u8 state = timer->state;
839

840 841 842
	timer->state = newstate;
	if (!(state & HRTIMER_STATE_ENQUEUED))
		return;
843

844
	if (!timerqueue_del(&base->active, &timer->node))
845
		cpu_base->active_bases &= ~(1 << base->index);
846

847 848 849 850 851 852 853 854 855 856
	/*
	 * Note: If reprogram is false we do not update
	 * cpu_base->next_timer. This happens when we remove the first
	 * timer on a remote cpu. No harm as we never dereference
	 * cpu_base->next_timer. So the worst thing what can happen is
	 * an superflous call to hrtimer_force_reprogram() on the
	 * remote cpu later on if the same timer gets enqueued again.
	 */
	if (reprogram && timer == cpu_base->next_timer)
		hrtimer_force_reprogram(cpu_base, 1);
857 858 859 860 861 862
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
863
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
864
{
865
	if (hrtimer_is_queued(timer)) {
866
		u8 state = timer->state;
867 868 869 870 871 872 873 874 875 876
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
877
		debug_deactivate(timer);
878
		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
879

880 881 882
		if (!restart)
			state = HRTIMER_STATE_INACTIVE;

883
		__remove_hrtimer(timer, base, state, reprogram);
884 885 886 887 888
		return 1;
	}
	return 0;
}

889 890 891 892 893 894 895 896 897 898 899
static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
					    const enum hrtimer_mode mode)
{
#ifdef CONFIG_TIME_LOW_RES
	/*
	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
	 * granular time values. For relative timers we add hrtimer_resolution
	 * (i.e. one jiffie) to prevent short timeouts.
	 */
	timer->is_rel = mode & HRTIMER_MODE_REL;
	if (timer->is_rel)
T
Thomas Gleixner 已提交
900
		tim = ktime_add_safe(tim, hrtimer_resolution);
901 902 903 904
#endif
	return tim;
}

905
/**
906
 * hrtimer_start_range_ns - (re)start an hrtimer
907 908 909
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
910 911
 * @mode:	timer mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED)
912
 */
913
void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
914
			    u64 delta_ns, const enum hrtimer_mode mode)
915
{
916
	struct hrtimer_clock_base *base, *new_base;
917
	unsigned long flags;
918
	int leftmost;
919 920 921 922

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
923
	remove_hrtimer(timer, base, true);
924

925
	if (mode & HRTIMER_MODE_REL)
926
		tim = ktime_add_safe(tim, base->get_time());
927 928

	tim = hrtimer_update_lowres(timer, tim, mode);
929

930
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
931

932 933 934
	/* Switch the timer base, if necessary: */
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);

935
	leftmost = enqueue_hrtimer(timer, new_base, mode);
936 937
	if (!leftmost)
		goto unlock;
938 939 940 941 942 943

	if (!hrtimer_is_hres_active(timer)) {
		/*
		 * Kick to reschedule the next tick to handle the new timer
		 * on dynticks target.
		 */
944
		if (is_timers_nohz_active())
945
			wake_up_nohz_cpu(new_base->cpu_base->cpu);
946 947
	} else {
		hrtimer_reprogram(timer, new_base);
948
	}
949
unlock:
950
	unlock_hrtimer_base(timer, &flags);
951
}
952 953
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

954 955 956 957 958 959 960
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
961
 * -1 when the timer is currently executing the callback function and
962
 *    cannot be stopped
963 964 965
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
966
	struct hrtimer_clock_base *base;
967 968 969
	unsigned long flags;
	int ret = -1;

970 971 972 973 974 975 976 977 978
	/*
	 * Check lockless first. If the timer is not active (neither
	 * enqueued nor running the callback, nothing to do here.  The
	 * base lock does not serialize against a concurrent enqueue,
	 * so we can avoid taking it.
	 */
	if (!hrtimer_active(timer))
		return 0;

979 980
	base = lock_hrtimer_base(timer, &flags);

981
	if (!hrtimer_callback_running(timer))
982
		ret = remove_hrtimer(timer, base, false);
983 984 985 986 987 988

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
989
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1006
		cpu_relax();
1007 1008
	}
}
1009
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1010 1011 1012 1013

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
1014
 * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1015
 */
1016
ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1017 1018 1019 1020
{
	unsigned long flags;
	ktime_t rem;

1021
	lock_hrtimer_base(timer, &flags);
1022 1023 1024 1025
	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
		rem = hrtimer_expires_remaining_adjusted(timer);
	else
		rem = hrtimer_expires_remaining(timer);
1026 1027 1028 1029
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1030
EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1031

1032
#ifdef CONFIG_NO_HZ_COMMON
1033 1034 1035
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
1036
 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1037
 */
1038
u64 hrtimer_get_next_event(void)
1039
{
1040
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1041
	u64 expires = KTIME_MAX;
1042 1043
	unsigned long flags;

1044
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1045

1046
	if (!__hrtimer_hres_active(cpu_base))
T
Thomas Gleixner 已提交
1047
		expires = __hrtimer_get_next_event(cpu_base);
1048

1049
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1050

1051
	return expires;
1052 1053 1054
}
#endif

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
static inline int hrtimer_clockid_to_base(clockid_t clock_id)
{
	if (likely(clock_id < MAX_CLOCKS)) {
		int base = hrtimer_clock_to_base_table[clock_id];

		if (likely(base != HRTIMER_MAX_CLOCK_BASES))
			return base;
	}
	WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
	return HRTIMER_BASE_MONOTONIC;
}

1067 1068
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1069
{
1070
	struct hrtimer_cpu_base *cpu_base;
1071
	int base;
1072

1073 1074
	memset(timer, 0, sizeof(struct hrtimer));

1075
	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1076

1077 1078 1079 1080 1081 1082
	/*
	 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
	 * clock modifications, so they needs to become CLOCK_MONOTONIC to
	 * ensure POSIX compliance.
	 */
	if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1083 1084
		clock_id = CLOCK_MONOTONIC;

1085 1086
	base = hrtimer_clockid_to_base(clock_id);
	timer->base = &cpu_base->clock_base[base];
1087
	timerqueue_init(&timer->node);
1088
}
1089 1090 1091 1092 1093

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
1094 1095
 * @mode:	timer mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL); pinned is not considered here!
1096 1097 1098 1099
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
1100
	debug_init(timer, clock_id, mode);
1101 1102
	__hrtimer_init(timer, clock_id, mode);
}
1103
EXPORT_SYMBOL_GPL(hrtimer_init);
1104

1105 1106 1107 1108
/*
 * A timer is active, when it is enqueued into the rbtree or the
 * callback function is running or it's in the state of being migrated
 * to another cpu.
1109
 *
1110
 * It is important for this function to not return a false negative.
1111
 */
1112
bool hrtimer_active(const struct hrtimer *timer)
1113
{
1114
	struct hrtimer_clock_base *base;
1115
	unsigned int seq;
1116

1117
	do {
1118 1119
		base = READ_ONCE(timer->base);
		seq = raw_read_seqcount_begin(&base->seq);
1120

1121
		if (timer->state != HRTIMER_STATE_INACTIVE ||
1122
		    base->running == timer)
1123 1124
			return true;

1125 1126
	} while (read_seqcount_retry(&base->seq, seq) ||
		 base != READ_ONCE(timer->base));
1127 1128

	return false;
1129
}
1130
EXPORT_SYMBOL_GPL(hrtimer_active);
1131

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
/*
 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
 * distinct sections:
 *
 *  - queued:	the timer is queued
 *  - callback:	the timer is being ran
 *  - post:	the timer is inactive or (re)queued
 *
 * On the read side we ensure we observe timer->state and cpu_base->running
 * from the same section, if anything changed while we looked at it, we retry.
 * This includes timer->base changing because sequence numbers alone are
 * insufficient for that.
 *
 * The sequence numbers are required because otherwise we could still observe
 * a false negative if the read side got smeared over multiple consequtive
 * __run_hrtimer() invocations.
 */

1150 1151 1152
static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
			  struct hrtimer_clock_base *base,
			  struct hrtimer *timer, ktime_t *now)
1153 1154 1155 1156
{
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1157
	lockdep_assert_held(&cpu_base->lock);
1158

1159
	debug_deactivate(timer);
1160
	base->running = timer;
1161 1162 1163 1164 1165

	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
1166
	 * hrtimer_active() cannot observe base->running == NULL &&
1167 1168
	 * timer->state == INACTIVE.
	 */
1169
	raw_write_seqcount_barrier(&base->seq);
1170 1171

	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1172
	fn = timer->function;
1173

1174 1175 1176 1177 1178 1179 1180 1181
	/*
	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
	 * timer is restarted with a period then it becomes an absolute
	 * timer. If its not restarted it does not matter.
	 */
	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
		timer->is_rel = false;

1182
	/*
1183 1184 1185
	 * The timer is marked as running in the CPU base, so it is
	 * protected against migration to a different CPU even if the lock
	 * is dropped.
1186
	 */
1187
	raw_spin_unlock(&cpu_base->lock);
1188
	trace_hrtimer_expire_entry(timer, now);
1189
	restart = fn(timer);
1190
	trace_hrtimer_expire_exit(timer);
1191
	raw_spin_lock(&cpu_base->lock);
1192 1193

	/*
1194
	 * Note: We clear the running state after enqueue_hrtimer and
P
Pratyush Patel 已提交
1195
	 * we do not reprogram the event hardware. Happens either in
T
Thomas Gleixner 已提交
1196
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1197 1198 1199 1200
	 *
	 * Note: Because we dropped the cpu_base->lock above,
	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
	 * for us already.
1201
	 */
1202 1203
	if (restart != HRTIMER_NORESTART &&
	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1204
		enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1205

1206 1207 1208 1209
	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
1210
	 * hrtimer_active() cannot observe base->running.timer == NULL &&
1211 1212
	 * timer->state == INACTIVE.
	 */
1213
	raw_write_seqcount_barrier(&base->seq);
1214

1215 1216
	WARN_ON_ONCE(base->running != timer);
	base->running = NULL;
1217 1218
}

1219
static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1220
{
1221
	struct hrtimer_clock_base *base;
1222
	unsigned int active = cpu_base->active_bases;
1223

1224
	for_each_active_base(base, cpu_base, active) {
1225
		struct timerqueue_node *node;
1226 1227
		ktime_t basenow;

1228 1229
		basenow = ktime_add(now, base->offset);

1230
		while ((node = timerqueue_getnext(&base->active))) {
1231 1232
			struct hrtimer *timer;

1233
			timer = container_of(node, struct hrtimer, node);
1234

1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */
T
Thomas Gleixner 已提交
1247
			if (basenow < hrtimer_get_softexpires_tv64(timer))
1248 1249
				break;

1250
			__run_hrtimer(cpu_base, base, timer, &basenow);
1251 1252
		}
	}
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
}

#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
	ktime_t expires_next, now, entry_time, delta;
	int retries = 0;

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
T
Thomas Gleixner 已提交
1269
	dev->next_event = KTIME_MAX;
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281

	raw_spin_lock(&cpu_base->lock);
	entry_time = now = hrtimer_update_base(cpu_base);
retry:
	cpu_base->in_hrtirq = 1;
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
T
Thomas Gleixner 已提交
1282
	cpu_base->expires_next = KTIME_MAX;
1283 1284 1285

	__hrtimer_run_queues(cpu_base, now);

1286 1287
	/* Reevaluate the clock bases for the next expiry */
	expires_next = __hrtimer_get_next_event(cpu_base);
1288 1289 1290 1291
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1292
	cpu_base->expires_next = expires_next;
1293
	cpu_base->in_hrtirq = 0;
1294
	raw_spin_unlock(&cpu_base->lock);
1295 1296

	/* Reprogramming necessary ? */
1297
	if (!tick_program_event(expires_next, 0)) {
1298 1299
		cpu_base->hang_detected = 0;
		return;
1300
	}
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310

	/*
	 * The next timer was already expired due to:
	 * - tracing
	 * - long lasting callbacks
	 * - being scheduled away when running in a VM
	 *
	 * We need to prevent that we loop forever in the hrtimer
	 * interrupt routine. We give it 3 attempts to avoid
	 * overreacting on some spurious event.
1311 1312 1313
	 *
	 * Acquire base lock for updating the offsets and retrieving
	 * the current time.
1314
	 */
1315
	raw_spin_lock(&cpu_base->lock);
1316
	now = hrtimer_update_base(cpu_base);
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
	cpu_base->nr_retries++;
	if (++retries < 3)
		goto retry;
	/*
	 * Give the system a chance to do something else than looping
	 * here. We stored the entry time, so we know exactly how long
	 * we spent here. We schedule the next event this amount of
	 * time away.
	 */
	cpu_base->nr_hangs++;
	cpu_base->hang_detected = 1;
1328
	raw_spin_unlock(&cpu_base->lock);
1329
	delta = ktime_sub(now, entry_time);
T
Thomas Gleixner 已提交
1330 1331
	if ((unsigned int)delta > cpu_base->max_hang_time)
		cpu_base->max_hang_time = (unsigned int) delta;
1332 1333 1334 1335
	/*
	 * Limit it to a sensible value as we enforce a longer
	 * delay. Give the CPU at least 100ms to catch up.
	 */
T
Thomas Gleixner 已提交
1336
	if (delta > 100 * NSEC_PER_MSEC)
1337 1338 1339 1340 1341 1342
		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
	else
		expires_next = ktime_add(now, delta);
	tick_program_event(expires_next, 1);
	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
		    ktime_to_ns(delta));
1343 1344
}

1345
/* called with interrupts disabled */
1346
static inline void __hrtimer_peek_ahead_timers(void)
1347 1348 1349 1350 1351 1352
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

1353
	td = this_cpu_ptr(&tick_cpu_device);
1354 1355 1356 1357
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1358 1359 1360 1361 1362
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1363

1364
/*
1365
 * Called from run_local_timers in hardirq context every jiffy
1366
 */
1367
void hrtimer_run_queues(void)
1368
{
1369
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1370
	ktime_t now;
1371

1372
	if (__hrtimer_hres_active(cpu_base))
1373
		return;
1374

1375
	/*
1376 1377 1378 1379 1380
	 * This _is_ ugly: We have to check periodically, whether we
	 * can switch to highres and / or nohz mode. The clocksource
	 * switch happens with xtime_lock held. Notification from
	 * there only sets the check bit in the tick_oneshot code,
	 * otherwise we might deadlock vs. xtime_lock.
1381
	 */
1382
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1383
		hrtimer_switch_to_hres();
1384
		return;
1385
	}
1386

1387 1388 1389 1390
	raw_spin_lock(&cpu_base->lock);
	now = hrtimer_update_base(cpu_base);
	__hrtimer_run_queues(cpu_base, now);
	raw_spin_unlock(&cpu_base->lock);
1391 1392
}

1393 1394 1395
/*
 * Sleep related functions:
 */
1396
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1409
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1410 1411 1412 1413
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}
S
Stephen Hemminger 已提交
1414
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1415

1416
int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1417 1418 1419 1420
{
	switch(restart->nanosleep.type) {
#ifdef CONFIG_COMPAT
	case TT_COMPAT:
1421
		if (compat_put_timespec64(ts, restart->nanosleep.compat_rmtp))
1422 1423 1424 1425
			return -EFAULT;
		break;
#endif
	case TT_NATIVE:
1426
		if (put_timespec64(ts, restart->nanosleep.rmtp))
1427 1428 1429 1430 1431 1432 1433 1434
			return -EFAULT;
		break;
	default:
		BUG();
	}
	return -ERESTART_RESTARTBLOCK;
}

1435
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1436
{
1437 1438
	struct restart_block *restart;

1439
	hrtimer_init_sleeper(t, current);
1440

1441 1442
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1443
		hrtimer_start_expires(&t->timer, mode);
1444

1445
		if (likely(t->task))
1446
			freezable_schedule();
1447

1448
		hrtimer_cancel(&t->timer);
1449
		mode = HRTIMER_MODE_ABS;
1450 1451

	} while (t->task && !signal_pending(current));
1452

1453 1454
	__set_current_state(TASK_RUNNING);

1455
	if (!t->task)
1456 1457
		return 0;

1458 1459
	restart = &current->restart_block;
	if (restart->nanosleep.type != TT_NONE) {
1460
		ktime_t rem = hrtimer_expires_remaining(&t->timer);
1461
		struct timespec64 rmt;
1462

1463 1464
		if (rem <= 0)
			return 0;
1465
		rmt = ktime_to_timespec64(rem);
1466

1467
		return nanosleep_copyout(restart, &rmt);
1468 1469
	}
	return -ERESTART_RESTARTBLOCK;
1470 1471
}

A
Al Viro 已提交
1472
static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1473
{
1474
	struct hrtimer_sleeper t;
1475
	int ret;
1476

1477
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1478
				HRTIMER_MODE_ABS);
1479
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1480

1481
	ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1482 1483
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1484 1485
}

1486
long hrtimer_nanosleep(const struct timespec64 *rqtp,
1487 1488
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
1489
	struct restart_block *restart;
1490
	struct hrtimer_sleeper t;
1491
	int ret = 0;
1492
	u64 slack;
1493 1494

	slack = current->timer_slack_ns;
1495
	if (dl_task(current) || rt_task(current))
1496
		slack = 0;
1497

1498
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1499
	hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
1500 1501
	ret = do_nanosleep(&t, mode);
	if (ret != -ERESTART_RESTARTBLOCK)
1502
		goto out;
1503

1504
	/* Absolute timers do not update the rmtp value and restart: */
1505 1506 1507 1508
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1509

1510
	restart = &current->restart_block;
1511
	restart->fn = hrtimer_nanosleep_restart;
1512
	restart->nanosleep.clockid = t.timer.base->clockid;
1513
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1514 1515 1516
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1517 1518
}

1519 1520
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1521
{
1522
	struct timespec64 tu;
1523

1524
	if (get_timespec64(&tu, rqtp))
1525 1526
		return -EFAULT;

1527
	if (!timespec64_valid(&tu))
1528 1529
		return -EINVAL;

1530
	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1531
	current->restart_block.nanosleep.rmtp = rmtp;
1532
	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1533 1534
}

1535 1536 1537 1538 1539
#ifdef CONFIG_COMPAT

COMPAT_SYSCALL_DEFINE2(nanosleep, struct compat_timespec __user *, rqtp,
		       struct compat_timespec __user *, rmtp)
{
1540
	struct timespec64 tu;
1541

1542
	if (compat_get_timespec64(&tu, rqtp))
1543 1544
		return -EFAULT;

1545
	if (!timespec64_valid(&tu))
1546 1547 1548 1549
		return -EINVAL;

	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
	current->restart_block.nanosleep.compat_rmtp = rmtp;
1550
	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1551 1552 1553
}
#endif

1554 1555 1556
/*
 * Functions related to boot-time initialization:
 */
1557
int hrtimers_prepare_cpu(unsigned int cpu)
1558
{
1559
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1560 1561
	int i;

1562
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1563
		cpu_base->clock_base[i].cpu_base = cpu_base;
1564 1565
		timerqueue_init_head(&cpu_base->clock_base[i].active);
	}
1566

1567
	cpu_base->cpu = cpu;
1568
	cpu_base->hres_active = 0;
1569
	cpu_base->expires_next = KTIME_MAX;
1570
	return 0;
1571 1572 1573 1574
}

#ifdef CONFIG_HOTPLUG_CPU

1575
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1576
				struct hrtimer_clock_base *new_base)
1577 1578
{
	struct hrtimer *timer;
1579
	struct timerqueue_node *node;
1580

1581 1582
	while ((node = timerqueue_getnext(&old_base->active))) {
		timer = container_of(node, struct hrtimer, node);
1583
		BUG_ON(hrtimer_callback_running(timer));
1584
		debug_deactivate(timer);
T
Thomas Gleixner 已提交
1585 1586

		/*
1587
		 * Mark it as ENQUEUED not INACTIVE otherwise the
T
Thomas Gleixner 已提交
1588 1589 1590
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
1591
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1592
		timer->base = new_base;
1593
		/*
T
Thomas Gleixner 已提交
1594 1595 1596 1597 1598 1599
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1600
		 */
1601
		enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
1602 1603 1604
	}
}

1605
int hrtimers_dead_cpu(unsigned int scpu)
1606
{
1607
	struct hrtimer_cpu_base *old_base, *new_base;
1608
	int i;
1609

1610 1611
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1612 1613 1614

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
1615
	new_base = this_cpu_ptr(&hrtimer_bases);
1616 1617 1618 1619
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1620 1621
	raw_spin_lock(&new_base->lock);
	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1622

1623
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1624
		migrate_hrtimer_list(&old_base->clock_base[i],
1625
				     &new_base->clock_base[i]);
1626 1627
	}

1628 1629
	raw_spin_unlock(&old_base->lock);
	raw_spin_unlock(&new_base->lock);
1630

1631 1632 1633
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1634
	return 0;
1635
}
1636

1637 1638 1639 1640
#endif /* CONFIG_HOTPLUG_CPU */

void __init hrtimers_init(void)
{
1641
	hrtimers_prepare_cpu(smp_processor_id());
1642 1643
}

1644
/**
1645
 * schedule_hrtimeout_range_clock - sleep until timeout
1646
 * @expires:	timeout value (ktime_t)
1647
 * @delta:	slack in expires timeout (ktime_t)
1648 1649
 * @mode:	timer mode
 * @clock_id:	timer clock to be used
1650
 */
1651
int __sched
1652
schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1653
			       const enum hrtimer_mode mode, clockid_t clock_id)
1654 1655 1656 1657 1658 1659 1660
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
T
Thomas Gleixner 已提交
1661
	if (expires && *expires == 0) {
1662 1663 1664 1665 1666
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
N
Namhyung Kim 已提交
1667
	 * A NULL parameter means "infinite"
1668 1669 1670 1671 1672 1673
	 */
	if (!expires) {
		schedule();
		return -EINTR;
	}

1674
	hrtimer_init_on_stack(&t.timer, clock_id, mode);
1675
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1676 1677 1678

	hrtimer_init_sleeper(&t, current);

1679
	hrtimer_start_expires(&t.timer, mode);
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1691 1692 1693 1694 1695

/**
 * schedule_hrtimeout_range - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @delta:	slack in expires timeout (ktime_t)
1696
 * @mode:	timer mode
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1710 1711
 * pass before the routine returns unless the current task is explicitly
 * woken up, (e.g. by wake_up_process()).
1712 1713
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1714 1715
 * delivered to the current task or the current task is explicitly woken
 * up.
1716 1717 1718 1719
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
1720 1721 1722
 * Returns 0 when the timer has expired. If the task was woken before the
 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
 * by an explicit wakeup, it returns -EINTR.
1723
 */
1724
int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1725 1726 1727 1728 1729
				     const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range_clock(expires, delta, mode,
					      CLOCK_MONOTONIC);
}
1730 1731 1732 1733 1734
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
1735
 * @mode:	timer mode
1736 1737 1738 1739 1740 1741 1742 1743
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1744 1745
 * pass before the routine returns unless the current task is explicitly
 * woken up, (e.g. by wake_up_process()).
1746 1747
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1748 1749
 * delivered to the current task or the current task is explicitly woken
 * up.
1750 1751 1752 1753
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
1754 1755 1756
 * Returns 0 when the timer has expired. If the task was woken before the
 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
 * by an explicit wakeup, it returns -EINTR.
1757 1758 1759 1760 1761 1762
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1763
EXPORT_SYMBOL_GPL(schedule_hrtimeout);