hrtimer.c 46.4 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
35
#include <linux/export.h>
36 37 38 39
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46
#include <linux/sched/signal.h>
47
#include <linux/sched/sysctl.h>
48
#include <linux/sched/rt.h>
49
#include <linux/sched/deadline.h>
50
#include <linux/sched/nohz.h>
51
#include <linux/sched/debug.h>
52
#include <linux/timer.h>
53
#include <linux/freezer.h>
54
#include <linux/compat.h>
55

56
#include <linux/uaccess.h>
57

58 59
#include <trace/events/timer.h>

60
#include "tick-internal.h"
61

62 63
/*
 * The timer bases:
64
 *
Z
Zhen Lei 已提交
65
 * There are more clockids than hrtimer bases. Thus, we index
66 67 68
 * into the timer bases by the hrtimer_base_type enum. When trying
 * to reach a base using a clockid, hrtimer_clockid_to_base()
 * is used to convert from clockid to the proper hrtimer_base_type.
69
 */
70
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
71
{
72
	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
73
	.seq = SEQCNT_ZERO(hrtimer_bases.seq),
74
	.clock_base =
75
	{
76
		{
77 78
			.index = HRTIMER_BASE_MONOTONIC,
			.clockid = CLOCK_MONOTONIC,
79 80
			.get_time = &ktime_get,
		},
T
Thomas Gleixner 已提交
81 82 83 84 85
		{
			.index = HRTIMER_BASE_REALTIME,
			.clockid = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
		},
86
		{
87 88
			.index = HRTIMER_BASE_BOOTTIME,
			.clockid = CLOCK_BOOTTIME,
89 90
			.get_time = &ktime_get_boottime,
		},
91 92 93 94 95
		{
			.index = HRTIMER_BASE_TAI,
			.clockid = CLOCK_TAI,
			.get_time = &ktime_get_clocktai,
		},
96
	}
97 98
};

99
static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
100 101 102
	/* Make sure we catch unsupported clockids */
	[0 ... MAX_CLOCKS - 1]	= HRTIMER_MAX_CLOCK_BASES,

103 104 105
	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
106
	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
107
};
108

109 110 111 112 113 114
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

115 116 117 118 119 120 121 122 123 124 125 126
/*
 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
 * such that hrtimer_callback_running() can unconditionally dereference
 * timer->base->cpu_base
 */
static struct hrtimer_cpu_base migration_cpu_base = {
	.seq = SEQCNT_ZERO(migration_cpu_base),
	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
};

#define migration_base	migration_cpu_base.clock_base[0]

127 128 129 130 131 132 133 134 135
/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
136 137
 * possible to set timer->base = &migration_base and drop the lock: the timer
 * remains locked.
138
 */
139 140 141
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
142
{
143
	struct hrtimer_clock_base *base;
144 145 146

	for (;;) {
		base = timer->base;
147
		if (likely(base != &migration_base)) {
148
			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
149 150 151
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
152
			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
153 154 155 156 157
		}
		cpu_relax();
	}
}

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
/*
 * With HIGHRES=y we do not migrate the timer when it is expiring
 * before the next event on the target cpu because we cannot reprogram
 * the target cpu hardware and we would cause it to fire late.
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	ktime_t expires;

	if (!new_base->cpu_base->hres_active)
		return 0;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
T
Thomas Gleixner 已提交
175
	return expires <= new_base->cpu_base->expires_next;
176 177 178 179 180
#else
	return 0;
#endif
}

181
#ifdef CONFIG_NO_HZ_COMMON
182 183 184 185 186
static inline
struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
					 int pinned)
{
	if (pinned || !base->migration_enabled)
187
		return base;
188 189 190 191 192 193 194
	return &per_cpu(hrtimer_bases, get_nohz_timer_target());
}
#else
static inline
struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
					 int pinned)
{
195
	return base;
196 197 198
}
#endif

199
/*
200 201 202 203 204 205 206 207 208 209
 * We switch the timer base to a power-optimized selected CPU target,
 * if:
 *	- NO_HZ_COMMON is enabled
 *	- timer migration is enabled
 *	- the timer callback is not running
 *	- the timer is not the first expiring timer on the new target
 *
 * If one of the above requirements is not fulfilled we move the timer
 * to the current CPU or leave it on the previously assigned CPU if
 * the timer callback is currently running.
210
 */
211
static inline struct hrtimer_clock_base *
212 213
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
214
{
215
	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
216
	struct hrtimer_clock_base *new_base;
217
	int basenum = base->index;
218

219 220
	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
	new_cpu_base = get_target_base(this_cpu_base, pinned);
221
again:
222
	new_base = &new_cpu_base->clock_base[basenum];
223 224 225

	if (base != new_base) {
		/*
226
		 * We are trying to move timer to new_base.
227 228 229 230 231 232 233
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
234
		if (unlikely(hrtimer_callback_running(timer)))
235 236
			return base;

237 238
		/* See the comment in lock_hrtimer_base() */
		timer->base = &migration_base;
239 240
		raw_spin_unlock(&base->cpu_base->lock);
		raw_spin_lock(&new_base->cpu_base->lock);
241

242
		if (new_cpu_base != this_cpu_base &&
243
		    hrtimer_check_target(timer, new_base)) {
244 245
			raw_spin_unlock(&new_base->cpu_base->lock);
			raw_spin_lock(&base->cpu_base->lock);
246
			new_cpu_base = this_cpu_base;
247 248
			timer->base = base;
			goto again;
249
		}
250
		timer->base = new_base;
251
	} else {
252
		if (new_cpu_base != this_cpu_base &&
253
		    hrtimer_check_target(timer, new_base)) {
254
			new_cpu_base = this_cpu_base;
255 256
			goto again;
		}
257 258 259 260 261 262
	}
	return new_base;
}

#else /* CONFIG_SMP */

263
static inline struct hrtimer_clock_base *
264 265
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
266
	struct hrtimer_clock_base *base = timer->base;
267

268
	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
269 270 271 272

	return base;
}

273
# define switch_hrtimer_base(t, b, p)	(b)
274 275 276 277 278 279 280 281 282 283 284

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
/*
 * Divide a ktime value by a nanosecond value
 */
285
s64 __ktime_divns(const ktime_t kt, s64 div)
286 287
{
	int sft = 0;
288 289
	s64 dclc;
	u64 tmp;
290

291
	dclc = ktime_to_ns(kt);
292 293
	tmp = dclc < 0 ? -dclc : dclc;

294 295 296 297 298
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
299 300 301
	tmp >>= sft;
	do_div(tmp, (unsigned long) div);
	return dclc < 0 ? -tmp : tmp;
302
}
303
EXPORT_SYMBOL_GPL(__ktime_divns);
304 305
#endif /* BITS_PER_LONG >= 64 */

306 307 308 309 310
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
311
	ktime_t res = ktime_add_unsafe(lhs, rhs);
312 313 314 315 316

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
T
Thomas Gleixner 已提交
317
	if (res < 0 || res < lhs || res < rhs)
318 319 320 321 322
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

323 324
EXPORT_SYMBOL_GPL(ktime_add_safe);

325 326 327 328
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

329 330 331 332 333
static void *hrtimer_debug_hint(void *addr)
{
	return ((struct hrtimer *) addr)->function;
}

334 335 336 337
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
338
static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
339 340 341 342 343 344 345
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
346
		return true;
347
	default:
348
		return false;
349 350 351 352 353 354
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
355
 * - an unknown non-static object is activated
356
 */
357
static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
358 359 360 361 362 363
{
	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
364
		return false;
365 366 367 368 369 370 371
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
372
static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
373 374 375 376 377 378 379
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
380
		return true;
381
	default:
382
		return false;
383 384 385 386 387
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
388
	.debug_hint	= hrtimer_debug_hint,
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}
S
Stephen Hemminger 已提交
423
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
424 425 426 427 428

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}
429
EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
430 431 432 433 434 435 436

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
	   enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	trace_hrtimer_init(timer, clockid, mode);
}

static inline void debug_activate(struct hrtimer *timer)
{
	debug_hrtimer_activate(timer);
	trace_hrtimer_start(timer);
}

static inline void debug_deactivate(struct hrtimer *timer)
{
	debug_hrtimer_deactivate(timer);
	trace_hrtimer_cancel(timer);
}

457
#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
458 459 460 461 462 463 464 465
static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
					     struct hrtimer *timer)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	cpu_base->next_timer = timer;
#endif
}

466
static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
467 468
{
	struct hrtimer_clock_base *base = cpu_base->clock_base;
469
	unsigned int active = cpu_base->active_bases;
T
Thomas Gleixner 已提交
470
	ktime_t expires, expires_next = KTIME_MAX;
471

472
	hrtimer_update_next_timer(cpu_base, NULL);
473
	for (; active; base++, active >>= 1) {
474 475 476
		struct timerqueue_node *next;
		struct hrtimer *timer;

477
		if (!(active & 0x01))
478 479
			continue;

480
		next = timerqueue_getnext(&base->active);
481 482
		timer = container_of(next, struct hrtimer, node);
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
T
Thomas Gleixner 已提交
483
		if (expires < expires_next) {
484
			expires_next = expires;
485 486
			hrtimer_update_next_timer(cpu_base, timer);
		}
487 488 489 490 491 492
	}
	/*
	 * clock_was_set() might have changed base->offset of any of
	 * the clock bases so the result might be negative. Fix it up
	 * to prevent a false positive in clockevents_program_event().
	 */
T
Thomas Gleixner 已提交
493 494
	if (expires_next < 0)
		expires_next = 0;
495 496 497 498
	return expires_next;
}
#endif

499 500 501 502 503 504
static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
{
	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;

505 506
	return ktime_get_update_offsets_now(&base->clock_was_set_seq,
					    offs_real, offs_boot, offs_tai);
507 508
}

509 510 511 512 513 514
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
515
static bool hrtimer_hres_enabled __read_mostly  = true;
516 517
unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
EXPORT_SYMBOL_GPL(hrtimer_resolution);
518 519 520 521 522 523

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
524
	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
540 541 542 543 544
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
{
	return cpu_base->hres_active;
}

545 546
static inline int hrtimer_hres_active(void)
{
547
	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
548 549 550 551 552 553 554
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
555 556
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
557
{
558 559 560 561 562 563
	ktime_t expires_next;

	if (!cpu_base->hres_active)
		return;

	expires_next = __hrtimer_get_next_event(cpu_base);
564

T
Thomas Gleixner 已提交
565
	if (skip_equal && expires_next == cpu_base->expires_next)
566 567
		return;

T
Thomas Gleixner 已提交
568
	cpu_base->expires_next = expires_next;
569

570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * leave the hang delay active in the hardware. We want the
	 * system to make progress. That also prevents the following
	 * scenario:
	 * T1 expires 50ms from now
	 * T2 expires 5s from now
	 *
	 * T1 is removed, so this code is called and would reprogram
	 * the hardware to 5s from now. Any hrtimer_start after that
	 * will not reprogram the hardware due to hang_detected being
	 * set. So we'd effectivly block all timers until the T2 event
	 * fires.
	 */
	if (cpu_base->hang_detected)
		return;

587
	tick_program_event(cpu_base->expires_next, 1);
588 589 590 591 592 593 594 595 596
}

/*
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
597 598
static void hrtimer_reprogram(struct hrtimer *timer,
			      struct hrtimer_clock_base *base)
599
{
600
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
601
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
602

603
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
604

605
	/*
606 607
	 * If the timer is not on the current cpu, we cannot reprogram
	 * the other cpus clock event device.
608
	 */
609 610 611 612 613 614 615 616 617 618 619 620
	if (base->cpu_base != cpu_base)
		return;

	/*
	 * If the hrtimer interrupt is running, then it will
	 * reevaluate the clock bases and reprogram the clock event
	 * device. The callbacks are always executed in hard interrupt
	 * context so we don't need an extra check for a running
	 * callback.
	 */
	if (cpu_base->in_hrtirq)
		return;
621

622 623
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
624
	 * expiry time which is less than base->offset. Set it to 0.
625
	 */
T
Thomas Gleixner 已提交
626 627
	if (expires < 0)
		expires = 0;
628

T
Thomas Gleixner 已提交
629
	if (expires >= cpu_base->expires_next)
630
		return;
631

632
	/* Update the pointer to the next expiring timer */
633
	cpu_base->next_timer = timer;
634

635 636 637 638 639 640 641
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * do not schedule a timer which is earlier than the expiry
	 * which we enforced in the hang detection. We want the system
	 * to make progress.
	 */
	if (cpu_base->hang_detected)
642
		return;
643 644

	/*
645 646
	 * Program the timer hardware. We enforce the expiry for
	 * events which are already in the past.
647
	 */
648 649
	cpu_base->expires_next = expires;
	tick_program_event(expires, 1);
650 651 652 653 654 655 656
}

/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
T
Thomas Gleixner 已提交
657
	base->expires_next = KTIME_MAX;
658 659 660
	base->hres_active = 0;
}

661 662 663 664 665 666 667
/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
668
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
669

670
	if (!base->hres_active)
671 672 673
		return;

	raw_spin_lock(&base->lock);
674
	hrtimer_update_base(base);
675 676 677
	hrtimer_force_reprogram(base, 0);
	raw_spin_unlock(&base->lock);
}
678

679 680 681
/*
 * Switch to high resolution mode
 */
682
static void hrtimer_switch_to_hres(void)
683
{
684
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
685 686

	if (tick_init_highres()) {
I
Ingo Molnar 已提交
687
		printk(KERN_WARNING "Could not switch to high resolution "
688
				    "mode on CPU %d\n", base->cpu);
689
		return;
690 691
	}
	base->hres_active = 1;
692
	hrtimer_resolution = HIGH_RES_NSEC;
693 694 695 696 697 698

	tick_setup_sched_timer();
	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
}

699 700 701 702 703 704 705
static void clock_was_set_work(struct work_struct *work)
{
	clock_was_set();
}

static DECLARE_WORK(hrtimer_work, clock_was_set_work);

706
/*
P
Pratyush Patel 已提交
707
 * Called from timekeeping and resume code to reprogram the hrtimer
708
 * interrupt device on all cpus.
709 710 711
 */
void clock_was_set_delayed(void)
{
712
	schedule_work(&hrtimer_work);
713 714
}

715 716
#else

717
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
718 719
static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
720
static inline void hrtimer_switch_to_hres(void) { }
721 722
static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
723 724
static inline int hrtimer_reprogram(struct hrtimer *timer,
				    struct hrtimer_clock_base *base)
725 726 727 728
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
729
static inline void retrigger_next_event(void *arg) { }
730 731 732

#endif /* CONFIG_HIGH_RES_TIMERS */

733 734 735 736 737 738 739 740 741 742 743 744 745
/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
746
#ifdef CONFIG_HIGH_RES_TIMERS
747 748
	/* Retrigger the CPU local events everywhere */
	on_each_cpu(retrigger_next_event, NULL, 1);
749 750
#endif
	timerfd_clock_was_set();
751 752 753 754
}

/*
 * During resume we might have to reprogram the high resolution timer
755 756
 * interrupt on all online CPUs.  However, all other CPUs will be
 * stopped with IRQs interrupts disabled so the clock_was_set() call
757
 * must be deferred.
758 759 760 761 762 763
 */
void hrtimers_resume(void)
{
	WARN_ONCE(!irqs_disabled(),
		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");

764
	/* Retrigger on the local CPU */
765
	retrigger_next_event(NULL);
766 767
	/* And schedule a retrigger for all others */
	clock_was_set_delayed();
768 769
}

770
/*
771
 * Counterpart to lock_hrtimer_base above:
772 773 774 775
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
776
	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
777 778 779 780 781
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
782
 * @now:	forward past this time
783 784 785
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
786
 * Returns the number of overruns.
787 788 789 790 791 792 793 794
 *
 * Can be safely called from the callback function of @timer. If
 * called from other contexts @timer must neither be enqueued nor
 * running the callback and the caller needs to take care of
 * serialization.
 *
 * Note: This only updates the timer expiry value and does not requeue
 * the timer.
795
 */
D
Davide Libenzi 已提交
796
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
797
{
D
Davide Libenzi 已提交
798
	u64 orun = 1;
799
	ktime_t delta;
800

801
	delta = ktime_sub(now, hrtimer_get_expires(timer));
802

T
Thomas Gleixner 已提交
803
	if (delta < 0)
804 805
		return 0;

806 807 808
	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
		return 0;

T
Thomas Gleixner 已提交
809 810
	if (interval < hrtimer_resolution)
		interval = hrtimer_resolution;
811

T
Thomas Gleixner 已提交
812
	if (unlikely(delta >= interval)) {
813
		s64 incr = ktime_to_ns(interval);
814 815

		orun = ktime_divns(delta, incr);
816
		hrtimer_add_expires_ns(timer, incr * orun);
T
Thomas Gleixner 已提交
817
		if (hrtimer_get_expires_tv64(timer) > now)
818 819 820 821 822 823 824
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
825
	hrtimer_add_expires(timer, interval);
826 827 828

	return orun;
}
S
Stas Sergeev 已提交
829
EXPORT_SYMBOL_GPL(hrtimer_forward);
830 831 832 833 834 835

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
836 837
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
838
 */
839 840
static int enqueue_hrtimer(struct hrtimer *timer,
			   struct hrtimer_clock_base *base)
841
{
842
	debug_activate(timer);
843

844
	base->cpu_base->active_bases |= 1 << base->index;
845

846
	timer->state = HRTIMER_STATE_ENQUEUED;
847

848
	return timerqueue_add(&base->active, &timer->node);
849
}
850 851 852 853 854

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
855 856 857 858 859
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
860
 */
861
static void __remove_hrtimer(struct hrtimer *timer,
862
			     struct hrtimer_clock_base *base,
863
			     u8 newstate, int reprogram)
864
{
865
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
866
	u8 state = timer->state;
867

868 869 870
	timer->state = newstate;
	if (!(state & HRTIMER_STATE_ENQUEUED))
		return;
871

872
	if (!timerqueue_del(&base->active, &timer->node))
873
		cpu_base->active_bases &= ~(1 << base->index);
874 875

#ifdef CONFIG_HIGH_RES_TIMERS
876 877 878 879 880 881 882 883 884 885
	/*
	 * Note: If reprogram is false we do not update
	 * cpu_base->next_timer. This happens when we remove the first
	 * timer on a remote cpu. No harm as we never dereference
	 * cpu_base->next_timer. So the worst thing what can happen is
	 * an superflous call to hrtimer_force_reprogram() on the
	 * remote cpu later on if the same timer gets enqueued again.
	 */
	if (reprogram && timer == cpu_base->next_timer)
		hrtimer_force_reprogram(cpu_base, 1);
886
#endif
887 888 889 890 891 892
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
893
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
894
{
895
	if (hrtimer_is_queued(timer)) {
896
		u8 state = timer->state;
897 898 899 900 901 902 903 904 905 906
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
907
		debug_deactivate(timer);
908
		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
909

910 911 912
		if (!restart)
			state = HRTIMER_STATE_INACTIVE;

913
		__remove_hrtimer(timer, base, state, reprogram);
914 915 916 917 918
		return 1;
	}
	return 0;
}

919 920 921 922 923 924 925 926 927 928 929
static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
					    const enum hrtimer_mode mode)
{
#ifdef CONFIG_TIME_LOW_RES
	/*
	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
	 * granular time values. For relative timers we add hrtimer_resolution
	 * (i.e. one jiffie) to prevent short timeouts.
	 */
	timer->is_rel = mode & HRTIMER_MODE_REL;
	if (timer->is_rel)
T
Thomas Gleixner 已提交
930
		tim = ktime_add_safe(tim, hrtimer_resolution);
931 932 933 934
#endif
	return tim;
}

935 936 937 938 939 940 941 942
/**
 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
 * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL)
 */
943
void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
944
			    u64 delta_ns, const enum hrtimer_mode mode)
945
{
946
	struct hrtimer_clock_base *base, *new_base;
947
	unsigned long flags;
948
	int leftmost;
949 950 951 952

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
953
	remove_hrtimer(timer, base, true);
954

955
	if (mode & HRTIMER_MODE_REL)
956
		tim = ktime_add_safe(tim, base->get_time());
957 958

	tim = hrtimer_update_lowres(timer, tim, mode);
959

960
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
961

962 963 964
	/* Switch the timer base, if necessary: */
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);

965
	leftmost = enqueue_hrtimer(timer, new_base);
966 967
	if (!leftmost)
		goto unlock;
968 969 970 971 972 973

	if (!hrtimer_is_hres_active(timer)) {
		/*
		 * Kick to reschedule the next tick to handle the new timer
		 * on dynticks target.
		 */
974 975
		if (new_base->cpu_base->nohz_active)
			wake_up_nohz_cpu(new_base->cpu_base->cpu);
976 977
	} else {
		hrtimer_reprogram(timer, new_base);
978
	}
979
unlock:
980
	unlock_hrtimer_base(timer, &flags);
981
}
982 983
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

984 985 986 987 988 989 990
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
991
 * -1 when the timer is currently executing the callback function and
992
 *    cannot be stopped
993 994 995
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
996
	struct hrtimer_clock_base *base;
997 998 999
	unsigned long flags;
	int ret = -1;

1000 1001 1002 1003 1004 1005 1006 1007 1008
	/*
	 * Check lockless first. If the timer is not active (neither
	 * enqueued nor running the callback, nothing to do here.  The
	 * base lock does not serialize against a concurrent enqueue,
	 * so we can avoid taking it.
	 */
	if (!hrtimer_active(timer))
		return 0;

1009 1010
	base = lock_hrtimer_base(timer, &flags);

1011
	if (!hrtimer_callback_running(timer))
1012
		ret = remove_hrtimer(timer, base, false);
1013 1014 1015 1016 1017 1018

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1019
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1036
		cpu_relax();
1037 1038
	}
}
1039
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1040 1041 1042 1043

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
1044
 * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1045
 */
1046
ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1047 1048 1049 1050
{
	unsigned long flags;
	ktime_t rem;

1051
	lock_hrtimer_base(timer, &flags);
1052 1053 1054 1055
	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
		rem = hrtimer_expires_remaining_adjusted(timer);
	else
		rem = hrtimer_expires_remaining(timer);
1056 1057 1058 1059
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1060
EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1061

1062
#ifdef CONFIG_NO_HZ_COMMON
1063 1064 1065
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
1066
 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1067
 */
1068
u64 hrtimer_get_next_event(void)
1069
{
1070
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1071
	u64 expires = KTIME_MAX;
1072 1073
	unsigned long flags;

1074
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1075

1076
	if (!__hrtimer_hres_active(cpu_base))
T
Thomas Gleixner 已提交
1077
		expires = __hrtimer_get_next_event(cpu_base);
1078

1079
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1080

1081
	return expires;
1082 1083 1084
}
#endif

1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
static inline int hrtimer_clockid_to_base(clockid_t clock_id)
{
	if (likely(clock_id < MAX_CLOCKS)) {
		int base = hrtimer_clock_to_base_table[clock_id];

		if (likely(base != HRTIMER_MAX_CLOCK_BASES))
			return base;
	}
	WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
	return HRTIMER_BASE_MONOTONIC;
}

1097 1098
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1099
{
1100
	struct hrtimer_cpu_base *cpu_base;
1101
	int base;
1102

1103 1104
	memset(timer, 0, sizeof(struct hrtimer));

1105
	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1106

1107
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1108 1109
		clock_id = CLOCK_MONOTONIC;

1110 1111
	base = hrtimer_clockid_to_base(clock_id);
	timer->base = &cpu_base->clock_base[base];
1112
	timerqueue_init(&timer->node);
1113
}
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
 * @mode:	timer mode abs/rel
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
1124
	debug_init(timer, clock_id, mode);
1125 1126
	__hrtimer_init(timer, clock_id, mode);
}
1127
EXPORT_SYMBOL_GPL(hrtimer_init);
1128

1129 1130 1131 1132
/*
 * A timer is active, when it is enqueued into the rbtree or the
 * callback function is running or it's in the state of being migrated
 * to another cpu.
1133
 *
1134
 * It is important for this function to not return a false negative.
1135
 */
1136
bool hrtimer_active(const struct hrtimer *timer)
1137
{
1138
	struct hrtimer_cpu_base *cpu_base;
1139
	unsigned int seq;
1140

1141 1142 1143
	do {
		cpu_base = READ_ONCE(timer->base->cpu_base);
		seq = raw_read_seqcount_begin(&cpu_base->seq);
1144

1145 1146 1147 1148 1149 1150 1151 1152
		if (timer->state != HRTIMER_STATE_INACTIVE ||
		    cpu_base->running == timer)
			return true;

	} while (read_seqcount_retry(&cpu_base->seq, seq) ||
		 cpu_base != READ_ONCE(timer->base->cpu_base));

	return false;
1153
}
1154
EXPORT_SYMBOL_GPL(hrtimer_active);
1155

1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
/*
 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
 * distinct sections:
 *
 *  - queued:	the timer is queued
 *  - callback:	the timer is being ran
 *  - post:	the timer is inactive or (re)queued
 *
 * On the read side we ensure we observe timer->state and cpu_base->running
 * from the same section, if anything changed while we looked at it, we retry.
 * This includes timer->base changing because sequence numbers alone are
 * insufficient for that.
 *
 * The sequence numbers are required because otherwise we could still observe
 * a false negative if the read side got smeared over multiple consequtive
 * __run_hrtimer() invocations.
 */

1174 1175 1176
static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
			  struct hrtimer_clock_base *base,
			  struct hrtimer *timer, ktime_t *now)
1177 1178 1179 1180
{
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1181
	lockdep_assert_held(&cpu_base->lock);
1182

1183
	debug_deactivate(timer);
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
	cpu_base->running = timer;

	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
	 * timer->state == INACTIVE.
	 */
	raw_write_seqcount_barrier(&cpu_base->seq);

	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1196
	fn = timer->function;
1197

1198 1199 1200 1201 1202 1203 1204 1205
	/*
	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
	 * timer is restarted with a period then it becomes an absolute
	 * timer. If its not restarted it does not matter.
	 */
	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
		timer->is_rel = false;

1206 1207 1208 1209 1210
	/*
	 * Because we run timers from hardirq context, there is no chance
	 * they get migrated to another cpu, therefore its safe to unlock
	 * the timer base.
	 */
1211
	raw_spin_unlock(&cpu_base->lock);
1212
	trace_hrtimer_expire_entry(timer, now);
1213
	restart = fn(timer);
1214
	trace_hrtimer_expire_exit(timer);
1215
	raw_spin_lock(&cpu_base->lock);
1216 1217

	/*
1218
	 * Note: We clear the running state after enqueue_hrtimer and
P
Pratyush Patel 已提交
1219
	 * we do not reprogram the event hardware. Happens either in
T
Thomas Gleixner 已提交
1220
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1221 1222 1223 1224
	 *
	 * Note: Because we dropped the cpu_base->lock above,
	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
	 * for us already.
1225
	 */
1226 1227
	if (restart != HRTIMER_NORESTART &&
	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1228
		enqueue_hrtimer(timer, base);
1229

1230 1231 1232 1233 1234 1235 1236 1237
	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
	 * timer->state == INACTIVE.
	 */
	raw_write_seqcount_barrier(&cpu_base->seq);
1238

1239 1240
	WARN_ON_ONCE(cpu_base->running != timer);
	cpu_base->running = NULL;
1241 1242
}

1243
static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1244
{
1245 1246
	struct hrtimer_clock_base *base = cpu_base->clock_base;
	unsigned int active = cpu_base->active_bases;
1247

1248
	for (; active; base++, active >>= 1) {
1249
		struct timerqueue_node *node;
1250 1251
		ktime_t basenow;

1252
		if (!(active & 0x01))
1253
			continue;
1254 1255 1256

		basenow = ktime_add(now, base->offset);

1257
		while ((node = timerqueue_getnext(&base->active))) {
1258 1259
			struct hrtimer *timer;

1260
			timer = container_of(node, struct hrtimer, node);
1261

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */
T
Thomas Gleixner 已提交
1274
			if (basenow < hrtimer_get_softexpires_tv64(timer))
1275 1276
				break;

1277
			__run_hrtimer(cpu_base, base, timer, &basenow);
1278 1279
		}
	}
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
}

#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
	ktime_t expires_next, now, entry_time, delta;
	int retries = 0;

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
T
Thomas Gleixner 已提交
1296
	dev->next_event = KTIME_MAX;
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308

	raw_spin_lock(&cpu_base->lock);
	entry_time = now = hrtimer_update_base(cpu_base);
retry:
	cpu_base->in_hrtirq = 1;
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
T
Thomas Gleixner 已提交
1309
	cpu_base->expires_next = KTIME_MAX;
1310 1311 1312

	__hrtimer_run_queues(cpu_base, now);

1313 1314
	/* Reevaluate the clock bases for the next expiry */
	expires_next = __hrtimer_get_next_event(cpu_base);
1315 1316 1317 1318
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1319
	cpu_base->expires_next = expires_next;
1320
	cpu_base->in_hrtirq = 0;
1321
	raw_spin_unlock(&cpu_base->lock);
1322 1323

	/* Reprogramming necessary ? */
1324
	if (!tick_program_event(expires_next, 0)) {
1325 1326
		cpu_base->hang_detected = 0;
		return;
1327
	}
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337

	/*
	 * The next timer was already expired due to:
	 * - tracing
	 * - long lasting callbacks
	 * - being scheduled away when running in a VM
	 *
	 * We need to prevent that we loop forever in the hrtimer
	 * interrupt routine. We give it 3 attempts to avoid
	 * overreacting on some spurious event.
1338 1339 1340
	 *
	 * Acquire base lock for updating the offsets and retrieving
	 * the current time.
1341
	 */
1342
	raw_spin_lock(&cpu_base->lock);
1343
	now = hrtimer_update_base(cpu_base);
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
	cpu_base->nr_retries++;
	if (++retries < 3)
		goto retry;
	/*
	 * Give the system a chance to do something else than looping
	 * here. We stored the entry time, so we know exactly how long
	 * we spent here. We schedule the next event this amount of
	 * time away.
	 */
	cpu_base->nr_hangs++;
	cpu_base->hang_detected = 1;
1355
	raw_spin_unlock(&cpu_base->lock);
1356
	delta = ktime_sub(now, entry_time);
T
Thomas Gleixner 已提交
1357 1358
	if ((unsigned int)delta > cpu_base->max_hang_time)
		cpu_base->max_hang_time = (unsigned int) delta;
1359 1360 1361 1362
	/*
	 * Limit it to a sensible value as we enforce a longer
	 * delay. Give the CPU at least 100ms to catch up.
	 */
T
Thomas Gleixner 已提交
1363
	if (delta > 100 * NSEC_PER_MSEC)
1364 1365 1366 1367 1368 1369
		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
	else
		expires_next = ktime_add(now, delta);
	tick_program_event(expires_next, 1);
	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
		    ktime_to_ns(delta));
1370 1371
}

1372
/* called with interrupts disabled */
1373
static inline void __hrtimer_peek_ahead_timers(void)
1374 1375 1376 1377 1378 1379
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

1380
	td = this_cpu_ptr(&tick_cpu_device);
1381 1382 1383 1384
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1385 1386 1387 1388 1389
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1390

1391
/*
1392
 * Called from run_local_timers in hardirq context every jiffy
1393
 */
1394
void hrtimer_run_queues(void)
1395
{
1396
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1397
	ktime_t now;
1398

1399
	if (__hrtimer_hres_active(cpu_base))
1400
		return;
1401

1402
	/*
1403 1404 1405 1406 1407
	 * This _is_ ugly: We have to check periodically, whether we
	 * can switch to highres and / or nohz mode. The clocksource
	 * switch happens with xtime_lock held. Notification from
	 * there only sets the check bit in the tick_oneshot code,
	 * otherwise we might deadlock vs. xtime_lock.
1408
	 */
1409
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1410
		hrtimer_switch_to_hres();
1411
		return;
1412
	}
1413

1414 1415 1416 1417
	raw_spin_lock(&cpu_base->lock);
	now = hrtimer_update_base(cpu_base);
	__hrtimer_run_queues(cpu_base, now);
	raw_spin_unlock(&cpu_base->lock);
1418 1419
}

1420 1421 1422
/*
 * Sleep related functions:
 */
1423
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1436
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1437 1438 1439 1440
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}
S
Stephen Hemminger 已提交
1441
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1442

1443
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1444
{
1445 1446
	struct restart_block *restart;

1447
	hrtimer_init_sleeper(t, current);
1448

1449 1450
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1451
		hrtimer_start_expires(&t->timer, mode);
1452

1453
		if (likely(t->task))
1454
			freezable_schedule();
1455

1456
		hrtimer_cancel(&t->timer);
1457
		mode = HRTIMER_MODE_ABS;
1458 1459

	} while (t->task && !signal_pending(current));
1460

1461 1462
	__set_current_state(TASK_RUNNING);

1463
	if (!t->task)
1464 1465
		return 0;

1466 1467
	restart = &current->restart_block;
	if (restart->nanosleep.type != TT_NONE) {
1468
		ktime_t rem = hrtimer_expires_remaining(&t->timer);
1469 1470
		struct timespec rmt;

1471 1472 1473 1474
		if (rem <= 0)
			return 0;
		rmt = ktime_to_timespec(rem);

1475 1476 1477 1478 1479 1480 1481 1482
#ifdef CONFIG_COMPAT
		if (restart->nanosleep.type == TT_COMPAT) {
			if (compat_put_timespec(&rmt,
						restart->nanosleep.compat_rmtp))
				return -EFAULT;
		} else
#endif
		if (copy_to_user(restart->nanosleep.rmtp, &rmt, sizeof(rmt)))
1483 1484 1485
			return -EFAULT;
	}
	return -ERESTART_RESTARTBLOCK;
1486 1487
}

1488
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1489
{
1490
	struct hrtimer_sleeper t;
1491
	int ret;
1492

1493
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1494
				HRTIMER_MODE_ABS);
1495
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1496

1497
	ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1498 1499
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1500 1501
}

1502
long hrtimer_nanosleep(struct timespec64 *rqtp,
1503 1504
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
1505
	struct restart_block *restart;
1506
	struct hrtimer_sleeper t;
1507
	int ret = 0;
1508
	u64 slack;
1509 1510

	slack = current->timer_slack_ns;
1511
	if (dl_task(current) || rt_task(current))
1512
		slack = 0;
1513

1514
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1515
	hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
1516 1517
	ret = do_nanosleep(&t, mode);
	if (ret != -ERESTART_RESTARTBLOCK)
1518
		goto out;
1519

1520
	/* Absolute timers do not update the rmtp value and restart: */
1521 1522 1523 1524
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1525

1526
	restart = &current->restart_block;
1527
	restart->fn = hrtimer_nanosleep_restart;
1528
	restart->nanosleep.clockid = t.timer.base->clockid;
1529
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1530 1531 1532
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1533 1534
}

1535 1536
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1537
{
1538
	struct timespec64 tu64;
1539
	struct timespec tu;
1540 1541 1542 1543

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

1544 1545
	tu64 = timespec_to_timespec64(tu);
	if (!timespec64_valid(&tu64))
1546 1547
		return -EINVAL;

1548
	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1549 1550
	current->restart_block.nanosleep.rmtp = rmtp;
	return hrtimer_nanosleep(&tu64, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1551 1552
}

1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
#ifdef CONFIG_COMPAT

COMPAT_SYSCALL_DEFINE2(nanosleep, struct compat_timespec __user *, rqtp,
		       struct compat_timespec __user *, rmtp)
{
	struct timespec64 tu64;
	struct timespec tu;

	if (compat_get_timespec(&tu, rqtp))
		return -EFAULT;

	tu64 = timespec_to_timespec64(tu);
	if (!timespec64_valid(&tu64))
		return -EINVAL;

	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
	current->restart_block.nanosleep.compat_rmtp = rmtp;
	return hrtimer_nanosleep(&tu64, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
}
#endif

1574 1575 1576
/*
 * Functions related to boot-time initialization:
 */
1577
int hrtimers_prepare_cpu(unsigned int cpu)
1578
{
1579
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1580 1581
	int i;

1582
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1583
		cpu_base->clock_base[i].cpu_base = cpu_base;
1584 1585
		timerqueue_init_head(&cpu_base->clock_base[i].active);
	}
1586

1587
	cpu_base->cpu = cpu;
1588
	hrtimer_init_hres(cpu_base);
1589
	return 0;
1590 1591 1592 1593
}

#ifdef CONFIG_HOTPLUG_CPU

1594
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1595
				struct hrtimer_clock_base *new_base)
1596 1597
{
	struct hrtimer *timer;
1598
	struct timerqueue_node *node;
1599

1600 1601
	while ((node = timerqueue_getnext(&old_base->active))) {
		timer = container_of(node, struct hrtimer, node);
1602
		BUG_ON(hrtimer_callback_running(timer));
1603
		debug_deactivate(timer);
T
Thomas Gleixner 已提交
1604 1605

		/*
1606
		 * Mark it as ENQUEUED not INACTIVE otherwise the
T
Thomas Gleixner 已提交
1607 1608 1609
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
1610
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1611
		timer->base = new_base;
1612
		/*
T
Thomas Gleixner 已提交
1613 1614 1615 1616 1617 1618
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1619
		 */
1620
		enqueue_hrtimer(timer, new_base);
1621 1622 1623
	}
}

1624
int hrtimers_dead_cpu(unsigned int scpu)
1625
{
1626
	struct hrtimer_cpu_base *old_base, *new_base;
1627
	int i;
1628

1629 1630
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1631 1632 1633

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
1634
	new_base = this_cpu_ptr(&hrtimer_bases);
1635 1636 1637 1638
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1639 1640
	raw_spin_lock(&new_base->lock);
	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1641

1642
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1643
		migrate_hrtimer_list(&old_base->clock_base[i],
1644
				     &new_base->clock_base[i]);
1645 1646
	}

1647 1648
	raw_spin_unlock(&old_base->lock);
	raw_spin_unlock(&new_base->lock);
1649

1650 1651 1652
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1653
	return 0;
1654
}
1655

1656 1657 1658 1659
#endif /* CONFIG_HOTPLUG_CPU */

void __init hrtimers_init(void)
{
1660
	hrtimers_prepare_cpu(smp_processor_id());
1661 1662
}

1663
/**
1664
 * schedule_hrtimeout_range_clock - sleep until timeout
1665
 * @expires:	timeout value (ktime_t)
1666
 * @delta:	slack in expires timeout (ktime_t)
1667
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1668
 * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1669
 */
1670
int __sched
1671
schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1672
			       const enum hrtimer_mode mode, int clock)
1673 1674 1675 1676 1677 1678 1679
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
T
Thomas Gleixner 已提交
1680
	if (expires && *expires == 0) {
1681 1682 1683 1684 1685
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
N
Namhyung Kim 已提交
1686
	 * A NULL parameter means "infinite"
1687 1688 1689 1690 1691 1692
	 */
	if (!expires) {
		schedule();
		return -EINTR;
	}

1693
	hrtimer_init_on_stack(&t.timer, clock, mode);
1694
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1695 1696 1697

	hrtimer_init_sleeper(&t, current);

1698
	hrtimer_start_expires(&t.timer, mode);
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728

/**
 * schedule_hrtimeout_range - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @delta:	slack in expires timeout (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1729 1730
 * pass before the routine returns unless the current task is explicitly
 * woken up, (e.g. by wake_up_process()).
1731 1732
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1733 1734
 * delivered to the current task or the current task is explicitly woken
 * up.
1735 1736 1737 1738
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
1739 1740 1741
 * Returns 0 when the timer has expired. If the task was woken before the
 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
 * by an explicit wakeup, it returns -EINTR.
1742
 */
1743
int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1744 1745 1746 1747 1748
				     const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range_clock(expires, delta, mode,
					      CLOCK_MONOTONIC);
}
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1763 1764
 * pass before the routine returns unless the current task is explicitly
 * woken up, (e.g. by wake_up_process()).
1765 1766
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1767 1768
 * delivered to the current task or the current task is explicitly woken
 * up.
1769 1770 1771 1772
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
1773 1774 1775
 * Returns 0 when the timer has expired. If the task was woken before the
 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
 * by an explicit wakeup, it returns -EINTR.
1776 1777 1778 1779 1780 1781
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1782
EXPORT_SYMBOL_GPL(schedule_hrtimeout);