hrtimer.c 54.0 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
35
#include <linux/export.h>
36 37 38 39 40
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
#include <linux/interrupt.h>
41
#include <linux/tick.h>
42 43
#include <linux/seq_file.h>
#include <linux/err.h>
44
#include <linux/debugobjects.h>
45
#include <linux/sched/signal.h>
46
#include <linux/sched/sysctl.h>
47
#include <linux/sched/rt.h>
48
#include <linux/sched/deadline.h>
49
#include <linux/sched/nohz.h>
50
#include <linux/sched/debug.h>
51
#include <linux/timer.h>
52
#include <linux/freezer.h>
53
#include <linux/compat.h>
54

55
#include <linux/uaccess.h>
56

57 58
#include <trace/events/timer.h>

59
#include "tick-internal.h"
60

61 62 63 64 65 66 67 68 69
/*
 * Masks for selecting the soft and hard context timers from
 * cpu_base->active
 */
#define MASK_SHIFT		(HRTIMER_BASE_MONOTONIC_SOFT)
#define HRTIMER_ACTIVE_HARD	((1U << MASK_SHIFT) - 1)
#define HRTIMER_ACTIVE_SOFT	(HRTIMER_ACTIVE_HARD << MASK_SHIFT)
#define HRTIMER_ACTIVE_ALL	(HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)

70 71
/*
 * The timer bases:
72
 *
Z
Zhen Lei 已提交
73
 * There are more clockids than hrtimer bases. Thus, we index
74 75 76
 * into the timer bases by the hrtimer_base_type enum. When trying
 * to reach a base using a clockid, hrtimer_clockid_to_base()
 * is used to convert from clockid to the proper hrtimer_base_type.
77
 */
78
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
79
{
80
	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
81
	.clock_base =
82
	{
83
		{
84 85
			.index = HRTIMER_BASE_MONOTONIC,
			.clockid = CLOCK_MONOTONIC,
86 87
			.get_time = &ktime_get,
		},
T
Thomas Gleixner 已提交
88 89 90 91 92
		{
			.index = HRTIMER_BASE_REALTIME,
			.clockid = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
		},
93
		{
94 95
			.index = HRTIMER_BASE_BOOTTIME,
			.clockid = CLOCK_BOOTTIME,
96 97
			.get_time = &ktime_get_boottime,
		},
98 99 100 101 102
		{
			.index = HRTIMER_BASE_TAI,
			.clockid = CLOCK_TAI,
			.get_time = &ktime_get_clocktai,
		},
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
		{
			.index = HRTIMER_BASE_MONOTONIC_SOFT,
			.clockid = CLOCK_MONOTONIC,
			.get_time = &ktime_get,
		},
		{
			.index = HRTIMER_BASE_REALTIME_SOFT,
			.clockid = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
		},
		{
			.index = HRTIMER_BASE_BOOTTIME_SOFT,
			.clockid = CLOCK_BOOTTIME,
			.get_time = &ktime_get_boottime,
		},
		{
			.index = HRTIMER_BASE_TAI_SOFT,
			.clockid = CLOCK_TAI,
			.get_time = &ktime_get_clocktai,
		},
123
	}
124 125
};

126
static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
127 128 129
	/* Make sure we catch unsupported clockids */
	[0 ... MAX_CLOCKS - 1]	= HRTIMER_MAX_CLOCK_BASES,

130 131 132
	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
133
	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
134
};
135

136 137 138 139 140 141
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

142 143 144 145 146 147 148 149 150 151 152
/*
 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
 * such that hrtimer_callback_running() can unconditionally dereference
 * timer->base->cpu_base
 */
static struct hrtimer_cpu_base migration_cpu_base = {
	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
};

#define migration_base	migration_cpu_base.clock_base[0]

153 154 155 156 157 158 159 160 161
/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
162 163
 * possible to set timer->base = &migration_base and drop the lock: the timer
 * remains locked.
164
 */
165 166 167
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
168
{
169
	struct hrtimer_clock_base *base;
170 171 172

	for (;;) {
		base = timer->base;
173
		if (likely(base != &migration_base)) {
174
			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
175 176 177
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
178
			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
179 180 181 182 183
		}
		cpu_relax();
	}
}

184
/*
185 186 187 188 189
 * We do not migrate the timer when it is expiring before the next
 * event on the target cpu. When high resolution is enabled, we cannot
 * reprogram the target cpu hardware and we would cause it to fire
 * late. To keep it simple, we handle the high resolution enabled and
 * disabled case similar.
190 191 192 193 194 195 196 197 198
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
	ktime_t expires;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
199
	return expires < new_base->cpu_base->expires_next;
200 201
}

202 203 204 205
static inline
struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
					 int pinned)
{
206 207 208 209
#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
	if (static_branch_likely(&timers_migration_enabled) && !pinned)
		return &per_cpu(hrtimer_bases, get_nohz_timer_target());
#endif
210
	return base;
211 212
}

213
/*
214 215 216 217 218 219 220 221 222 223
 * We switch the timer base to a power-optimized selected CPU target,
 * if:
 *	- NO_HZ_COMMON is enabled
 *	- timer migration is enabled
 *	- the timer callback is not running
 *	- the timer is not the first expiring timer on the new target
 *
 * If one of the above requirements is not fulfilled we move the timer
 * to the current CPU or leave it on the previously assigned CPU if
 * the timer callback is currently running.
224
 */
225
static inline struct hrtimer_clock_base *
226 227
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
228
{
229
	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
230
	struct hrtimer_clock_base *new_base;
231
	int basenum = base->index;
232

233 234
	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
	new_cpu_base = get_target_base(this_cpu_base, pinned);
235
again:
236
	new_base = &new_cpu_base->clock_base[basenum];
237 238 239

	if (base != new_base) {
		/*
240
		 * We are trying to move timer to new_base.
241 242 243 244 245 246 247
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
248
		if (unlikely(hrtimer_callback_running(timer)))
249 250
			return base;

251 252
		/* See the comment in lock_hrtimer_base() */
		timer->base = &migration_base;
253 254
		raw_spin_unlock(&base->cpu_base->lock);
		raw_spin_lock(&new_base->cpu_base->lock);
255

256
		if (new_cpu_base != this_cpu_base &&
257
		    hrtimer_check_target(timer, new_base)) {
258 259
			raw_spin_unlock(&new_base->cpu_base->lock);
			raw_spin_lock(&base->cpu_base->lock);
260
			new_cpu_base = this_cpu_base;
261 262
			timer->base = base;
			goto again;
263
		}
264
		timer->base = new_base;
265
	} else {
266
		if (new_cpu_base != this_cpu_base &&
267
		    hrtimer_check_target(timer, new_base)) {
268
			new_cpu_base = this_cpu_base;
269 270
			goto again;
		}
271 272 273 274 275 276
	}
	return new_base;
}

#else /* CONFIG_SMP */

277
static inline struct hrtimer_clock_base *
278 279
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
280
	struct hrtimer_clock_base *base = timer->base;
281

282
	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
283 284 285 286

	return base;
}

287
# define switch_hrtimer_base(t, b, p)	(b)
288 289 290 291 292 293 294 295 296 297 298

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
/*
 * Divide a ktime value by a nanosecond value
 */
299
s64 __ktime_divns(const ktime_t kt, s64 div)
300 301
{
	int sft = 0;
302 303
	s64 dclc;
	u64 tmp;
304

305
	dclc = ktime_to_ns(kt);
306 307
	tmp = dclc < 0 ? -dclc : dclc;

308 309 310 311 312
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
313 314 315
	tmp >>= sft;
	do_div(tmp, (unsigned long) div);
	return dclc < 0 ? -tmp : tmp;
316
}
317
EXPORT_SYMBOL_GPL(__ktime_divns);
318 319
#endif /* BITS_PER_LONG >= 64 */

320 321 322 323 324
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
325
	ktime_t res = ktime_add_unsafe(lhs, rhs);
326 327 328 329 330

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
T
Thomas Gleixner 已提交
331
	if (res < 0 || res < lhs || res < rhs)
332 333 334 335 336
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

337 338
EXPORT_SYMBOL_GPL(ktime_add_safe);

339 340 341 342
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

343 344 345 346 347
static void *hrtimer_debug_hint(void *addr)
{
	return ((struct hrtimer *) addr)->function;
}

348 349 350 351
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
352
static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
353 354 355 356 357 358 359
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
360
		return true;
361
	default:
362
		return false;
363 364 365 366 367 368
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
369
 * - an unknown non-static object is activated
370
 */
371
static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
372 373 374 375 376 377
{
	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
378
		return false;
379 380 381 382 383 384 385
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
386
static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
387 388 389 390 391 392 393
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
394
		return true;
395
	default:
396
		return false;
397 398 399 400 401
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
402
	.debug_hint	= hrtimer_debug_hint,
403 404 405 406 407 408 409 410 411 412
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

413 414
static inline void debug_hrtimer_activate(struct hrtimer *timer,
					  enum hrtimer_mode mode)
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}
S
Stephen Hemminger 已提交
438
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
439 440 441 442 443

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}
444
EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
445 446

#else
447

448
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
449 450
static inline void debug_hrtimer_activate(struct hrtimer *timer,
					  enum hrtimer_mode mode) { }
451 452 453
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

454 455 456 457 458 459 460 461
static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
	   enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	trace_hrtimer_init(timer, clockid, mode);
}

462 463
static inline void debug_activate(struct hrtimer *timer,
				  enum hrtimer_mode mode)
464
{
465
	debug_hrtimer_activate(timer, mode);
466
	trace_hrtimer_start(timer, mode);
467 468 469 470 471 472 473 474
}

static inline void debug_deactivate(struct hrtimer *timer)
{
	debug_hrtimer_deactivate(timer);
	trace_hrtimer_cancel(timer);
}

475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
static struct hrtimer_clock_base *
__next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
{
	unsigned int idx;

	if (!*active)
		return NULL;

	idx = __ffs(*active);
	*active &= ~(1U << idx);

	return &cpu_base->clock_base[idx];
}

#define for_each_active_base(base, cpu_base, active)	\
	while ((base = __next_base((cpu_base), &(active))))

492
static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
493
					 const struct hrtimer *exclude,
494 495
					 unsigned int active,
					 ktime_t expires_next)
496
{
497
	struct hrtimer_clock_base *base;
498
	ktime_t expires;
499

500
	for_each_active_base(base, cpu_base, active) {
501 502 503
		struct timerqueue_node *next;
		struct hrtimer *timer;

504
		next = timerqueue_getnext(&base->active);
505
		timer = container_of(next, struct hrtimer, node);
506 507 508 509 510 511 512 513 514 515
		if (timer == exclude) {
			/* Get to the next timer in the queue. */
			struct rb_node *rbn = rb_next(&next->node);

			next = rb_entry_safe(rbn, struct timerqueue_node, node);
			if (!next)
				continue;

			timer = container_of(next, struct hrtimer, node);
		}
516
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
T
Thomas Gleixner 已提交
517
		if (expires < expires_next) {
518
			expires_next = expires;
519 520 521 522 523

			/* Skip cpu_base update if a timer is being excluded. */
			if (exclude)
				continue;

524 525 526 527
			if (timer->is_soft)
				cpu_base->softirq_next_timer = timer;
			else
				cpu_base->next_timer = timer;
528
		}
529 530 531 532 533 534
	}
	/*
	 * clock_was_set() might have changed base->offset of any of
	 * the clock bases so the result might be negative. Fix it up
	 * to prevent a false positive in clockevents_program_event().
	 */
T
Thomas Gleixner 已提交
535 536
	if (expires_next < 0)
		expires_next = 0;
537 538 539
	return expires_next;
}

540 541 542 543
/*
 * Recomputes cpu_base::*next_timer and returns the earliest expires_next but
 * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram.
 *
544 545 546 547 548 549 550 551
 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
 * those timers will get run whenever the softirq gets handled, at the end of
 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
 *
 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
 *
552
 * @active_mask must be one of:
553
 *  - HRTIMER_ACTIVE_ALL,
554 555 556
 *  - HRTIMER_ACTIVE_SOFT, or
 *  - HRTIMER_ACTIVE_HARD.
 */
557 558
static ktime_t
__hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
559
{
560
	unsigned int active;
561
	struct hrtimer *next_timer = NULL;
562 563
	ktime_t expires_next = KTIME_MAX;

564 565 566
	if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
		active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
		cpu_base->softirq_next_timer = NULL;
567 568
		expires_next = __hrtimer_next_event_base(cpu_base, NULL,
							 active, KTIME_MAX);
569 570 571

		next_timer = cpu_base->softirq_next_timer;
	}
572

573 574 575
	if (active_mask & HRTIMER_ACTIVE_HARD) {
		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
		cpu_base->next_timer = next_timer;
576 577
		expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
							 expires_next);
578
	}
579 580 581 582

	return expires_next;
}

583 584 585 586 587 588
static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
{
	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;

589
	ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
590
					    offs_real, offs_boot, offs_tai);
591 592 593 594 595 596

	base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
	base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
	base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;

	return now;
597 598
}

599 600 601 602 603 604 605 606 607 608 609 610 611 612
/*
 * Is the high resolution mode active ?
 */
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
{
	return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
		cpu_base->hres_active : 0;
}

static inline int hrtimer_hres_active(void)
{
	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
}

613 614 615 616 617
/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
618 619
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
620
{
621 622
	ktime_t expires_next;

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
	/*
	 * Find the current next expiration time.
	 */
	expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);

	if (cpu_base->next_timer && cpu_base->next_timer->is_soft) {
		/*
		 * When the softirq is activated, hrtimer has to be
		 * programmed with the first hard hrtimer because soft
		 * timer interrupt could occur too late.
		 */
		if (cpu_base->softirq_activated)
			expires_next = __hrtimer_get_next_event(cpu_base,
								HRTIMER_ACTIVE_HARD);
		else
			cpu_base->softirq_expires_next = expires_next;
	}
640

T
Thomas Gleixner 已提交
641
	if (skip_equal && expires_next == cpu_base->expires_next)
642 643
		return;

T
Thomas Gleixner 已提交
644
	cpu_base->expires_next = expires_next;
645

646
	/*
647 648 649
	 * If hres is not active, hardware does not have to be
	 * reprogrammed yet.
	 *
650 651 652 653 654 655 656 657 658 659 660 661 662
	 * If a hang was detected in the last timer interrupt then we
	 * leave the hang delay active in the hardware. We want the
	 * system to make progress. That also prevents the following
	 * scenario:
	 * T1 expires 50ms from now
	 * T2 expires 5s from now
	 *
	 * T1 is removed, so this code is called and would reprogram
	 * the hardware to 5s from now. Any hrtimer_start after that
	 * will not reprogram the hardware due to hang_detected being
	 * set. So we'd effectivly block all timers until the T2 event
	 * fires.
	 */
663
	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
664 665
		return;

666
	tick_program_event(cpu_base->expires_next, 1);
667 668
}

669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static bool hrtimer_hres_enabled __read_mostly  = true;
unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
EXPORT_SYMBOL_GPL(hrtimer_resolution);

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

697 698 699 700 701 702 703
/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
704
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
705

706
	if (!__hrtimer_hres_active(base))
707 708 709
		return;

	raw_spin_lock(&base->lock);
710
	hrtimer_update_base(base);
711 712 713
	hrtimer_force_reprogram(base, 0);
	raw_spin_unlock(&base->lock);
}
714

715 716 717
/*
 * Switch to high resolution mode
 */
718
static void hrtimer_switch_to_hres(void)
719
{
720
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
721 722

	if (tick_init_highres()) {
I
Ingo Molnar 已提交
723
		printk(KERN_WARNING "Could not switch to high resolution "
724
				    "mode on CPU %d\n", base->cpu);
725
		return;
726 727
	}
	base->hres_active = 1;
728
	hrtimer_resolution = HIGH_RES_NSEC;
729 730 731 732 733 734

	tick_setup_sched_timer();
	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
}

735 736 737 738 739 740 741
static void clock_was_set_work(struct work_struct *work)
{
	clock_was_set();
}

static DECLARE_WORK(hrtimer_work, clock_was_set_work);

742
/*
P
Pratyush Patel 已提交
743
 * Called from timekeeping and resume code to reprogram the hrtimer
744
 * interrupt device on all cpus.
745 746 747
 */
void clock_was_set_delayed(void)
{
748
	schedule_work(&hrtimer_work);
749 750
}

751 752 753
#else

static inline int hrtimer_is_hres_enabled(void) { return 0; }
754
static inline void hrtimer_switch_to_hres(void) { }
755
static inline void retrigger_next_event(void *arg) { }
756 757 758

#endif /* CONFIG_HIGH_RES_TIMERS */

759 760 761 762 763 764 765
/*
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
766
static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
767 768
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
769
	struct hrtimer_clock_base *base = timer->base;
770 771 772 773
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);

	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);

774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
	 * expiry time which is less than base->offset. Set it to 0.
	 */
	if (expires < 0)
		expires = 0;

	if (timer->is_soft) {
		/*
		 * soft hrtimer could be started on a remote CPU. In this
		 * case softirq_expires_next needs to be updated on the
		 * remote CPU. The soft hrtimer will not expire before the
		 * first hard hrtimer on the remote CPU -
		 * hrtimer_check_target() prevents this case.
		 */
		struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;

		if (timer_cpu_base->softirq_activated)
			return;

		if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
			return;

		timer_cpu_base->softirq_next_timer = timer;
		timer_cpu_base->softirq_expires_next = expires;

		if (!ktime_before(expires, timer_cpu_base->expires_next) ||
		    !reprogram)
			return;
	}

805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
	/*
	 * If the timer is not on the current cpu, we cannot reprogram
	 * the other cpus clock event device.
	 */
	if (base->cpu_base != cpu_base)
		return;

	/*
	 * If the hrtimer interrupt is running, then it will
	 * reevaluate the clock bases and reprogram the clock event
	 * device. The callbacks are always executed in hard interrupt
	 * context so we don't need an extra check for a running
	 * callback.
	 */
	if (cpu_base->in_hrtirq)
		return;

	if (expires >= cpu_base->expires_next)
		return;

	/* Update the pointer to the next expiring timer */
	cpu_base->next_timer = timer;
827
	cpu_base->expires_next = expires;
828 829

	/*
830 831 832
	 * If hres is not active, hardware does not have to be
	 * programmed yet.
	 *
833 834 835 836 837
	 * If a hang was detected in the last timer interrupt then we
	 * do not schedule a timer which is earlier than the expiry
	 * which we enforced in the hang detection. We want the system
	 * to make progress.
	 */
838
	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
839 840 841 842 843 844 845 846 847
		return;

	/*
	 * Program the timer hardware. We enforce the expiry for
	 * events which are already in the past.
	 */
	tick_program_event(expires, 1);
}

848 849 850 851 852 853 854 855 856 857 858 859 860
/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
861
#ifdef CONFIG_HIGH_RES_TIMERS
862 863
	/* Retrigger the CPU local events everywhere */
	on_each_cpu(retrigger_next_event, NULL, 1);
864 865
#endif
	timerfd_clock_was_set();
866 867 868 869
}

/*
 * During resume we might have to reprogram the high resolution timer
870 871
 * interrupt on all online CPUs.  However, all other CPUs will be
 * stopped with IRQs interrupts disabled so the clock_was_set() call
872
 * must be deferred.
873 874 875
 */
void hrtimers_resume(void)
{
876
	lockdep_assert_irqs_disabled();
877
	/* Retrigger on the local CPU */
878
	retrigger_next_event(NULL);
879 880
	/* And schedule a retrigger for all others */
	clock_was_set_delayed();
881 882
}

883
/*
884
 * Counterpart to lock_hrtimer_base above:
885 886 887 888
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
889
	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
890 891 892 893 894
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
895
 * @now:	forward past this time
896 897 898
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
899
 * Returns the number of overruns.
900 901 902 903 904 905 906 907
 *
 * Can be safely called from the callback function of @timer. If
 * called from other contexts @timer must neither be enqueued nor
 * running the callback and the caller needs to take care of
 * serialization.
 *
 * Note: This only updates the timer expiry value and does not requeue
 * the timer.
908
 */
D
Davide Libenzi 已提交
909
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
910
{
D
Davide Libenzi 已提交
911
	u64 orun = 1;
912
	ktime_t delta;
913

914
	delta = ktime_sub(now, hrtimer_get_expires(timer));
915

T
Thomas Gleixner 已提交
916
	if (delta < 0)
917 918
		return 0;

919 920 921
	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
		return 0;

T
Thomas Gleixner 已提交
922 923
	if (interval < hrtimer_resolution)
		interval = hrtimer_resolution;
924

T
Thomas Gleixner 已提交
925
	if (unlikely(delta >= interval)) {
926
		s64 incr = ktime_to_ns(interval);
927 928

		orun = ktime_divns(delta, incr);
929
		hrtimer_add_expires_ns(timer, incr * orun);
T
Thomas Gleixner 已提交
930
		if (hrtimer_get_expires_tv64(timer) > now)
931 932 933 934 935 936 937
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
938
	hrtimer_add_expires(timer, interval);
939 940 941

	return orun;
}
S
Stas Sergeev 已提交
942
EXPORT_SYMBOL_GPL(hrtimer_forward);
943 944 945 946 947 948

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
949 950
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
951
 */
952
static int enqueue_hrtimer(struct hrtimer *timer,
953 954
			   struct hrtimer_clock_base *base,
			   enum hrtimer_mode mode)
955
{
956
	debug_activate(timer, mode);
957

958
	base->cpu_base->active_bases |= 1 << base->index;
959

960
	timer->state = HRTIMER_STATE_ENQUEUED;
961

962
	return timerqueue_add(&base->active, &timer->node);
963
}
964 965 966 967 968

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
969 970 971 972 973
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
974
 */
975
static void __remove_hrtimer(struct hrtimer *timer,
976
			     struct hrtimer_clock_base *base,
977
			     u8 newstate, int reprogram)
978
{
979
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
980
	u8 state = timer->state;
981

982 983 984
	timer->state = newstate;
	if (!(state & HRTIMER_STATE_ENQUEUED))
		return;
985

986
	if (!timerqueue_del(&base->active, &timer->node))
987
		cpu_base->active_bases &= ~(1 << base->index);
988

989 990 991 992 993 994 995 996 997 998
	/*
	 * Note: If reprogram is false we do not update
	 * cpu_base->next_timer. This happens when we remove the first
	 * timer on a remote cpu. No harm as we never dereference
	 * cpu_base->next_timer. So the worst thing what can happen is
	 * an superflous call to hrtimer_force_reprogram() on the
	 * remote cpu later on if the same timer gets enqueued again.
	 */
	if (reprogram && timer == cpu_base->next_timer)
		hrtimer_force_reprogram(cpu_base, 1);
999 1000 1001 1002 1003 1004
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
1005
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
1006
{
1007
	if (hrtimer_is_queued(timer)) {
1008
		u8 state = timer->state;
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
1019
		debug_deactivate(timer);
1020
		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1021

1022 1023 1024
		if (!restart)
			state = HRTIMER_STATE_INACTIVE;

1025
		__remove_hrtimer(timer, base, state, reprogram);
1026 1027 1028 1029 1030
		return 1;
	}
	return 0;
}

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
					    const enum hrtimer_mode mode)
{
#ifdef CONFIG_TIME_LOW_RES
	/*
	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
	 * granular time values. For relative timers we add hrtimer_resolution
	 * (i.e. one jiffie) to prevent short timeouts.
	 */
	timer->is_rel = mode & HRTIMER_MODE_REL;
	if (timer->is_rel)
T
Thomas Gleixner 已提交
1042
		tim = ktime_add_safe(tim, hrtimer_resolution);
1043 1044 1045 1046
#endif
	return tim;
}

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
static void
hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
{
	ktime_t expires;

	/*
	 * Find the next SOFT expiration.
	 */
	expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);

	/*
	 * reprogramming needs to be triggered, even if the next soft
	 * hrtimer expires at the same time than the next hard
	 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
	 */
	if (expires == KTIME_MAX)
		return;

	/*
	 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
	 * cpu_base->*expires_next is only set by hrtimer_reprogram()
	 */
	hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
}

1072 1073 1074
static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
				    u64 delta_ns, const enum hrtimer_mode mode,
				    struct hrtimer_clock_base *base)
1075
{
1076
	struct hrtimer_clock_base *new_base;
1077 1078

	/* Remove an active timer from the queue: */
1079
	remove_hrtimer(timer, base, true);
1080

1081
	if (mode & HRTIMER_MODE_REL)
1082
		tim = ktime_add_safe(tim, base->get_time());
1083 1084

	tim = hrtimer_update_lowres(timer, tim, mode);
1085

1086
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1087

1088 1089 1090
	/* Switch the timer base, if necessary: */
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);

1091 1092
	return enqueue_hrtimer(timer, new_base, mode);
}
1093

1094 1095 1096 1097 1098 1099
/**
 * hrtimer_start_range_ns - (re)start an hrtimer
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
 * @mode:	timer mode: absolute (HRTIMER_MODE_ABS) or
1100 1101
 *		relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
 *		softirq based mode is considered for debug purpose only!
1102 1103 1104 1105 1106 1107 1108
 */
void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
			    u64 delta_ns, const enum hrtimer_mode mode)
{
	struct hrtimer_clock_base *base;
	unsigned long flags;

1109 1110 1111 1112 1113 1114
	/*
	 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
	 * match.
	 */
	WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);

1115 1116 1117
	base = lock_hrtimer_base(timer, &flags);

	if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1118
		hrtimer_reprogram(timer, true);
1119

1120
	unlock_hrtimer_base(timer, &flags);
1121
}
1122 1123
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

1124 1125 1126 1127 1128 1129 1130
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
1131
 * -1 when the timer is currently executing the callback function and
1132
 *    cannot be stopped
1133 1134 1135
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
1136
	struct hrtimer_clock_base *base;
1137 1138 1139
	unsigned long flags;
	int ret = -1;

1140 1141 1142 1143 1144 1145 1146 1147 1148
	/*
	 * Check lockless first. If the timer is not active (neither
	 * enqueued nor running the callback, nothing to do here.  The
	 * base lock does not serialize against a concurrent enqueue,
	 * so we can avoid taking it.
	 */
	if (!hrtimer_active(timer))
		return 0;

1149 1150
	base = lock_hrtimer_base(timer, &flags);

1151
	if (!hrtimer_callback_running(timer))
1152
		ret = remove_hrtimer(timer, base, false);
1153 1154 1155 1156 1157 1158

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1159
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1176
		cpu_relax();
1177 1178
	}
}
1179
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1180 1181 1182 1183

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
1184
 * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1185
 */
1186
ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1187 1188 1189 1190
{
	unsigned long flags;
	ktime_t rem;

1191
	lock_hrtimer_base(timer, &flags);
1192 1193 1194 1195
	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
		rem = hrtimer_expires_remaining_adjusted(timer);
	else
		rem = hrtimer_expires_remaining(timer);
1196 1197 1198 1199
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1200
EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1201

1202
#ifdef CONFIG_NO_HZ_COMMON
1203 1204 1205
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
1206
 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1207
 */
1208
u64 hrtimer_get_next_event(void)
1209
{
1210
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1211
	u64 expires = KTIME_MAX;
1212 1213
	unsigned long flags;

1214
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1215

1216
	if (!__hrtimer_hres_active(cpu_base))
1217
		expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1218

1219
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1220

1221
	return expires;
1222
}
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255

/**
 * hrtimer_next_event_without - time until next expiry event w/o one timer
 * @exclude:	timer to exclude
 *
 * Returns the next expiry time over all timers except for the @exclude one or
 * KTIME_MAX if none of them is pending.
 */
u64 hrtimer_next_event_without(const struct hrtimer *exclude)
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
	u64 expires = KTIME_MAX;
	unsigned long flags;

	raw_spin_lock_irqsave(&cpu_base->lock, flags);

	if (__hrtimer_hres_active(cpu_base)) {
		unsigned int active;

		if (!cpu_base->softirq_activated) {
			active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
			expires = __hrtimer_next_event_base(cpu_base, exclude,
							    active, KTIME_MAX);
		}
		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
		expires = __hrtimer_next_event_base(cpu_base, exclude, active,
						    expires);
	}

	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);

	return expires;
}
1256 1257
#endif

1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
static inline int hrtimer_clockid_to_base(clockid_t clock_id)
{
	if (likely(clock_id < MAX_CLOCKS)) {
		int base = hrtimer_clock_to_base_table[clock_id];

		if (likely(base != HRTIMER_MAX_CLOCK_BASES))
			return base;
	}
	WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
	return HRTIMER_BASE_MONOTONIC;
}

1270 1271
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1272
{
1273 1274
	bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
	int base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1275
	struct hrtimer_cpu_base *cpu_base;
1276

1277 1278
	memset(timer, 0, sizeof(struct hrtimer));

1279
	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1280

1281 1282 1283 1284 1285 1286
	/*
	 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
	 * clock modifications, so they needs to become CLOCK_MONOTONIC to
	 * ensure POSIX compliance.
	 */
	if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1287 1288
		clock_id = CLOCK_MONOTONIC;

1289 1290
	base += hrtimer_clockid_to_base(clock_id);
	timer->is_soft = softtimer;
1291
	timer->base = &cpu_base->clock_base[base];
1292
	timerqueue_init(&timer->node);
1293
}
1294 1295 1296 1297 1298

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
1299 1300 1301 1302 1303 1304 1305
 * @mode:       The modes which are relevant for intitialization:
 *              HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
 *              HRTIMER_MODE_REL_SOFT
 *
 *              The PINNED variants of the above can be handed in,
 *              but the PINNED bit is ignored as pinning happens
 *              when the hrtimer is started
1306 1307 1308 1309
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
1310
	debug_init(timer, clock_id, mode);
1311 1312
	__hrtimer_init(timer, clock_id, mode);
}
1313
EXPORT_SYMBOL_GPL(hrtimer_init);
1314

1315 1316 1317 1318
/*
 * A timer is active, when it is enqueued into the rbtree or the
 * callback function is running or it's in the state of being migrated
 * to another cpu.
1319
 *
1320
 * It is important for this function to not return a false negative.
1321
 */
1322
bool hrtimer_active(const struct hrtimer *timer)
1323
{
1324
	struct hrtimer_clock_base *base;
1325
	unsigned int seq;
1326

1327
	do {
1328 1329
		base = READ_ONCE(timer->base);
		seq = raw_read_seqcount_begin(&base->seq);
1330

1331
		if (timer->state != HRTIMER_STATE_INACTIVE ||
1332
		    base->running == timer)
1333 1334
			return true;

1335 1336
	} while (read_seqcount_retry(&base->seq, seq) ||
		 base != READ_ONCE(timer->base));
1337 1338

	return false;
1339
}
1340
EXPORT_SYMBOL_GPL(hrtimer_active);
1341

1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
/*
 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
 * distinct sections:
 *
 *  - queued:	the timer is queued
 *  - callback:	the timer is being ran
 *  - post:	the timer is inactive or (re)queued
 *
 * On the read side we ensure we observe timer->state and cpu_base->running
 * from the same section, if anything changed while we looked at it, we retry.
 * This includes timer->base changing because sequence numbers alone are
 * insufficient for that.
 *
 * The sequence numbers are required because otherwise we could still observe
 * a false negative if the read side got smeared over multiple consequtive
 * __run_hrtimer() invocations.
 */

1360 1361
static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
			  struct hrtimer_clock_base *base,
1362 1363
			  struct hrtimer *timer, ktime_t *now,
			  unsigned long flags)
1364 1365 1366 1367
{
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1368
	lockdep_assert_held(&cpu_base->lock);
1369

1370
	debug_deactivate(timer);
1371
	base->running = timer;
1372 1373 1374 1375 1376

	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
1377
	 * hrtimer_active() cannot observe base->running == NULL &&
1378 1379
	 * timer->state == INACTIVE.
	 */
1380
	raw_write_seqcount_barrier(&base->seq);
1381 1382

	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1383
	fn = timer->function;
1384

1385 1386 1387 1388 1389 1390 1391 1392
	/*
	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
	 * timer is restarted with a period then it becomes an absolute
	 * timer. If its not restarted it does not matter.
	 */
	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
		timer->is_rel = false;

1393
	/*
1394 1395 1396
	 * The timer is marked as running in the CPU base, so it is
	 * protected against migration to a different CPU even if the lock
	 * is dropped.
1397
	 */
1398
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1399
	trace_hrtimer_expire_entry(timer, now);
1400
	restart = fn(timer);
1401
	trace_hrtimer_expire_exit(timer);
1402
	raw_spin_lock_irq(&cpu_base->lock);
1403 1404

	/*
1405
	 * Note: We clear the running state after enqueue_hrtimer and
P
Pratyush Patel 已提交
1406
	 * we do not reprogram the event hardware. Happens either in
T
Thomas Gleixner 已提交
1407
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1408 1409 1410 1411
	 *
	 * Note: Because we dropped the cpu_base->lock above,
	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
	 * for us already.
1412
	 */
1413 1414
	if (restart != HRTIMER_NORESTART &&
	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1415
		enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1416

1417 1418 1419 1420
	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
1421
	 * hrtimer_active() cannot observe base->running.timer == NULL &&
1422 1423
	 * timer->state == INACTIVE.
	 */
1424
	raw_write_seqcount_barrier(&base->seq);
1425

1426 1427
	WARN_ON_ONCE(base->running != timer);
	base->running = NULL;
1428 1429
}

1430
static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1431
				 unsigned long flags, unsigned int active_mask)
1432
{
1433
	struct hrtimer_clock_base *base;
1434
	unsigned int active = cpu_base->active_bases & active_mask;
1435

1436
	for_each_active_base(base, cpu_base, active) {
1437
		struct timerqueue_node *node;
1438 1439
		ktime_t basenow;

1440 1441
		basenow = ktime_add(now, base->offset);

1442
		while ((node = timerqueue_getnext(&base->active))) {
1443 1444
			struct hrtimer *timer;

1445
			timer = container_of(node, struct hrtimer, node);
1446

1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */
T
Thomas Gleixner 已提交
1459
			if (basenow < hrtimer_get_softexpires_tv64(timer))
1460 1461
				break;

1462
			__run_hrtimer(cpu_base, base, timer, &basenow, flags);
1463 1464
		}
	}
1465 1466
}

1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
	unsigned long flags;
	ktime_t now;

	raw_spin_lock_irqsave(&cpu_base->lock, flags);

	now = hrtimer_update_base(cpu_base);
	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);

	cpu_base->softirq_activated = 0;
	hrtimer_update_softirq_timer(cpu_base, true);

	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
}

1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
	ktime_t expires_next, now, entry_time, delta;
1494
	unsigned long flags;
1495 1496 1497 1498
	int retries = 0;

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
T
Thomas Gleixner 已提交
1499
	dev->next_event = KTIME_MAX;
1500

1501
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
	entry_time = now = hrtimer_update_base(cpu_base);
retry:
	cpu_base->in_hrtirq = 1;
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
T
Thomas Gleixner 已提交
1512
	cpu_base->expires_next = KTIME_MAX;
1513

1514 1515 1516 1517 1518 1519
	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
		cpu_base->softirq_expires_next = KTIME_MAX;
		cpu_base->softirq_activated = 1;
		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
	}

1520
	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1521

1522
	/* Reevaluate the clock bases for the next expiry */
1523
	expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1524 1525 1526 1527
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1528
	cpu_base->expires_next = expires_next;
1529
	cpu_base->in_hrtirq = 0;
1530
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1531 1532

	/* Reprogramming necessary ? */
1533
	if (!tick_program_event(expires_next, 0)) {
1534 1535
		cpu_base->hang_detected = 0;
		return;
1536
	}
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546

	/*
	 * The next timer was already expired due to:
	 * - tracing
	 * - long lasting callbacks
	 * - being scheduled away when running in a VM
	 *
	 * We need to prevent that we loop forever in the hrtimer
	 * interrupt routine. We give it 3 attempts to avoid
	 * overreacting on some spurious event.
1547 1548 1549
	 *
	 * Acquire base lock for updating the offsets and retrieving
	 * the current time.
1550
	 */
1551
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1552
	now = hrtimer_update_base(cpu_base);
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
	cpu_base->nr_retries++;
	if (++retries < 3)
		goto retry;
	/*
	 * Give the system a chance to do something else than looping
	 * here. We stored the entry time, so we know exactly how long
	 * we spent here. We schedule the next event this amount of
	 * time away.
	 */
	cpu_base->nr_hangs++;
	cpu_base->hang_detected = 1;
1564 1565
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);

1566
	delta = ktime_sub(now, entry_time);
T
Thomas Gleixner 已提交
1567 1568
	if ((unsigned int)delta > cpu_base->max_hang_time)
		cpu_base->max_hang_time = (unsigned int) delta;
1569 1570 1571 1572
	/*
	 * Limit it to a sensible value as we enforce a longer
	 * delay. Give the CPU at least 100ms to catch up.
	 */
T
Thomas Gleixner 已提交
1573
	if (delta > 100 * NSEC_PER_MSEC)
1574 1575 1576 1577 1578 1579
		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
	else
		expires_next = ktime_add(now, delta);
	tick_program_event(expires_next, 1);
	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
		    ktime_to_ns(delta));
1580 1581
}

1582
/* called with interrupts disabled */
1583
static inline void __hrtimer_peek_ahead_timers(void)
1584 1585 1586 1587 1588 1589
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

1590
	td = this_cpu_ptr(&tick_cpu_device);
1591 1592 1593 1594
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1595 1596 1597 1598 1599
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1600

1601
/*
1602
 * Called from run_local_timers in hardirq context every jiffy
1603
 */
1604
void hrtimer_run_queues(void)
1605
{
1606
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1607
	unsigned long flags;
1608
	ktime_t now;
1609

1610
	if (__hrtimer_hres_active(cpu_base))
1611
		return;
1612

1613
	/*
1614 1615 1616 1617 1618
	 * This _is_ ugly: We have to check periodically, whether we
	 * can switch to highres and / or nohz mode. The clocksource
	 * switch happens with xtime_lock held. Notification from
	 * there only sets the check bit in the tick_oneshot code,
	 * otherwise we might deadlock vs. xtime_lock.
1619
	 */
1620
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1621
		hrtimer_switch_to_hres();
1622
		return;
1623
	}
1624

1625
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1626
	now = hrtimer_update_base(cpu_base);
1627 1628 1629 1630 1631 1632 1633

	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
		cpu_base->softirq_expires_next = KTIME_MAX;
		cpu_base->softirq_activated = 1;
		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
	}

1634
	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1635
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1636 1637
}

1638 1639 1640
/*
 * Sleep related functions:
 */
1641
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1654
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1655 1656 1657 1658
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}
S
Stephen Hemminger 已提交
1659
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1660

1661
int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1662 1663 1664 1665
{
	switch(restart->nanosleep.type) {
#ifdef CONFIG_COMPAT
	case TT_COMPAT:
1666
		if (compat_put_timespec64(ts, restart->nanosleep.compat_rmtp))
1667 1668 1669 1670
			return -EFAULT;
		break;
#endif
	case TT_NATIVE:
1671
		if (put_timespec64(ts, restart->nanosleep.rmtp))
1672 1673 1674 1675 1676 1677 1678 1679
			return -EFAULT;
		break;
	default:
		BUG();
	}
	return -ERESTART_RESTARTBLOCK;
}

1680
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1681
{
1682 1683
	struct restart_block *restart;

1684
	hrtimer_init_sleeper(t, current);
1685

1686 1687
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1688
		hrtimer_start_expires(&t->timer, mode);
1689

1690
		if (likely(t->task))
1691
			freezable_schedule();
1692

1693
		hrtimer_cancel(&t->timer);
1694
		mode = HRTIMER_MODE_ABS;
1695 1696

	} while (t->task && !signal_pending(current));
1697

1698 1699
	__set_current_state(TASK_RUNNING);

1700
	if (!t->task)
1701 1702
		return 0;

1703 1704
	restart = &current->restart_block;
	if (restart->nanosleep.type != TT_NONE) {
1705
		ktime_t rem = hrtimer_expires_remaining(&t->timer);
1706
		struct timespec64 rmt;
1707

1708 1709
		if (rem <= 0)
			return 0;
1710
		rmt = ktime_to_timespec64(rem);
1711

1712
		return nanosleep_copyout(restart, &rmt);
1713 1714
	}
	return -ERESTART_RESTARTBLOCK;
1715 1716
}

A
Al Viro 已提交
1717
static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1718
{
1719
	struct hrtimer_sleeper t;
1720
	int ret;
1721

1722
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1723
				HRTIMER_MODE_ABS);
1724
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1725

1726
	ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1727 1728
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1729 1730
}

1731
long hrtimer_nanosleep(const struct timespec64 *rqtp,
1732 1733
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
1734
	struct restart_block *restart;
1735
	struct hrtimer_sleeper t;
1736
	int ret = 0;
1737
	u64 slack;
1738 1739

	slack = current->timer_slack_ns;
1740
	if (dl_task(current) || rt_task(current))
1741
		slack = 0;
1742

1743
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1744
	hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
1745 1746
	ret = do_nanosleep(&t, mode);
	if (ret != -ERESTART_RESTARTBLOCK)
1747
		goto out;
1748

1749
	/* Absolute timers do not update the rmtp value and restart: */
1750 1751 1752 1753
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1754

1755
	restart = &current->restart_block;
1756
	restart->fn = hrtimer_nanosleep_restart;
1757
	restart->nanosleep.clockid = t.timer.base->clockid;
1758
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1759 1760 1761
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1762 1763
}

1764 1765
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1766
{
1767
	struct timespec64 tu;
1768

1769
	if (get_timespec64(&tu, rqtp))
1770 1771
		return -EFAULT;

1772
	if (!timespec64_valid(&tu))
1773 1774
		return -EINVAL;

1775
	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1776
	current->restart_block.nanosleep.rmtp = rmtp;
1777
	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1778 1779
}

1780 1781 1782 1783 1784
#ifdef CONFIG_COMPAT

COMPAT_SYSCALL_DEFINE2(nanosleep, struct compat_timespec __user *, rqtp,
		       struct compat_timespec __user *, rmtp)
{
1785
	struct timespec64 tu;
1786

1787
	if (compat_get_timespec64(&tu, rqtp))
1788 1789
		return -EFAULT;

1790
	if (!timespec64_valid(&tu))
1791 1792 1793 1794
		return -EINVAL;

	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
	current->restart_block.nanosleep.compat_rmtp = rmtp;
1795
	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1796 1797 1798
}
#endif

1799 1800 1801
/*
 * Functions related to boot-time initialization:
 */
1802
int hrtimers_prepare_cpu(unsigned int cpu)
1803
{
1804
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1805 1806
	int i;

1807
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1808
		cpu_base->clock_base[i].cpu_base = cpu_base;
1809 1810
		timerqueue_init_head(&cpu_base->clock_base[i].active);
	}
1811

1812
	cpu_base->cpu = cpu;
1813
	cpu_base->active_bases = 0;
1814
	cpu_base->hres_active = 0;
1815 1816 1817
	cpu_base->hang_detected = 0;
	cpu_base->next_timer = NULL;
	cpu_base->softirq_next_timer = NULL;
1818
	cpu_base->expires_next = KTIME_MAX;
1819
	cpu_base->softirq_expires_next = KTIME_MAX;
1820
	return 0;
1821 1822 1823 1824
}

#ifdef CONFIG_HOTPLUG_CPU

1825
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1826
				struct hrtimer_clock_base *new_base)
1827 1828
{
	struct hrtimer *timer;
1829
	struct timerqueue_node *node;
1830

1831 1832
	while ((node = timerqueue_getnext(&old_base->active))) {
		timer = container_of(node, struct hrtimer, node);
1833
		BUG_ON(hrtimer_callback_running(timer));
1834
		debug_deactivate(timer);
T
Thomas Gleixner 已提交
1835 1836

		/*
1837
		 * Mark it as ENQUEUED not INACTIVE otherwise the
T
Thomas Gleixner 已提交
1838 1839 1840
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
1841
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1842
		timer->base = new_base;
1843
		/*
T
Thomas Gleixner 已提交
1844 1845 1846 1847 1848 1849
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1850
		 */
1851
		enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
1852 1853 1854
	}
}

1855
int hrtimers_dead_cpu(unsigned int scpu)
1856
{
1857
	struct hrtimer_cpu_base *old_base, *new_base;
1858
	int i;
1859

1860 1861
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1862

1863 1864 1865 1866 1867 1868
	/*
	 * this BH disable ensures that raise_softirq_irqoff() does
	 * not wakeup ksoftirqd (and acquire the pi-lock) while
	 * holding the cpu_base lock
	 */
	local_bh_disable();
1869 1870
	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
1871
	new_base = this_cpu_ptr(&hrtimer_bases);
1872 1873 1874 1875
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1876 1877
	raw_spin_lock(&new_base->lock);
	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1878

1879
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1880
		migrate_hrtimer_list(&old_base->clock_base[i],
1881
				     &new_base->clock_base[i]);
1882 1883
	}

1884 1885 1886 1887 1888 1889
	/*
	 * The migration might have changed the first expiring softirq
	 * timer on this CPU. Update it.
	 */
	hrtimer_update_softirq_timer(new_base, false);

1890 1891
	raw_spin_unlock(&old_base->lock);
	raw_spin_unlock(&new_base->lock);
1892

1893 1894 1895
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1896
	local_bh_enable();
1897
	return 0;
1898
}
1899

1900 1901 1902 1903
#endif /* CONFIG_HOTPLUG_CPU */

void __init hrtimers_init(void)
{
1904
	hrtimers_prepare_cpu(smp_processor_id());
1905
	open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
1906 1907
}

1908
/**
1909
 * schedule_hrtimeout_range_clock - sleep until timeout
1910
 * @expires:	timeout value (ktime_t)
1911
 * @delta:	slack in expires timeout (ktime_t)
1912 1913
 * @mode:	timer mode
 * @clock_id:	timer clock to be used
1914
 */
1915
int __sched
1916
schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1917
			       const enum hrtimer_mode mode, clockid_t clock_id)
1918 1919 1920 1921 1922 1923 1924
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
T
Thomas Gleixner 已提交
1925
	if (expires && *expires == 0) {
1926 1927 1928 1929 1930
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
N
Namhyung Kim 已提交
1931
	 * A NULL parameter means "infinite"
1932 1933 1934 1935 1936 1937
	 */
	if (!expires) {
		schedule();
		return -EINTR;
	}

1938
	hrtimer_init_on_stack(&t.timer, clock_id, mode);
1939
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1940 1941 1942

	hrtimer_init_sleeper(&t, current);

1943
	hrtimer_start_expires(&t.timer, mode);
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1955 1956 1957 1958 1959

/**
 * schedule_hrtimeout_range - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @delta:	slack in expires timeout (ktime_t)
1960
 * @mode:	timer mode
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1974 1975
 * pass before the routine returns unless the current task is explicitly
 * woken up, (e.g. by wake_up_process()).
1976 1977
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1978 1979
 * delivered to the current task or the current task is explicitly woken
 * up.
1980 1981 1982 1983
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
1984 1985 1986
 * Returns 0 when the timer has expired. If the task was woken before the
 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
 * by an explicit wakeup, it returns -EINTR.
1987
 */
1988
int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1989 1990 1991 1992 1993
				     const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range_clock(expires, delta, mode,
					      CLOCK_MONOTONIC);
}
1994 1995 1996 1997 1998
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
1999
 * @mode:	timer mode
2000 2001 2002 2003 2004 2005 2006 2007
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2008 2009
 * pass before the routine returns unless the current task is explicitly
 * woken up, (e.g. by wake_up_process()).
2010 2011
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2012 2013
 * delivered to the current task or the current task is explicitly woken
 * up.
2014 2015 2016 2017
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
2018 2019 2020
 * Returns 0 when the timer has expired. If the task was woken before the
 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
 * by an explicit wakeup, it returns -EINTR.
2021 2022 2023 2024 2025 2026
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
2027
EXPORT_SYMBOL_GPL(schedule_hrtimeout);