hrtimer.c 46.6 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
35
#include <linux/export.h>
36 37 38 39
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46
#include <linux/sched/signal.h>
47
#include <linux/sched/sysctl.h>
48
#include <linux/sched/rt.h>
49
#include <linux/sched/deadline.h>
50
#include <linux/sched/nohz.h>
51
#include <linux/sched/debug.h>
52
#include <linux/timer.h>
53
#include <linux/freezer.h>
54
#include <linux/compat.h>
55

56
#include <linux/uaccess.h>
57

58 59
#include <trace/events/timer.h>

60
#include "tick-internal.h"
61

62 63
/*
 * The timer bases:
64
 *
Z
Zhen Lei 已提交
65
 * There are more clockids than hrtimer bases. Thus, we index
66 67 68
 * into the timer bases by the hrtimer_base_type enum. When trying
 * to reach a base using a clockid, hrtimer_clockid_to_base()
 * is used to convert from clockid to the proper hrtimer_base_type.
69
 */
70
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
71
{
72
	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
73
	.seq = SEQCNT_ZERO(hrtimer_bases.seq),
74
	.clock_base =
75
	{
76
		{
77 78
			.index = HRTIMER_BASE_MONOTONIC,
			.clockid = CLOCK_MONOTONIC,
79 80
			.get_time = &ktime_get,
		},
T
Thomas Gleixner 已提交
81 82 83 84 85
		{
			.index = HRTIMER_BASE_REALTIME,
			.clockid = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
		},
86
		{
87 88
			.index = HRTIMER_BASE_BOOTTIME,
			.clockid = CLOCK_BOOTTIME,
89 90
			.get_time = &ktime_get_boottime,
		},
91 92 93 94 95
		{
			.index = HRTIMER_BASE_TAI,
			.clockid = CLOCK_TAI,
			.get_time = &ktime_get_clocktai,
		},
96
	}
97 98
};

99
static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
100 101 102
	/* Make sure we catch unsupported clockids */
	[0 ... MAX_CLOCKS - 1]	= HRTIMER_MAX_CLOCK_BASES,

103 104 105
	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
106
	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
107
};
108

109 110 111 112 113 114
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

115 116 117 118 119 120 121 122 123 124 125 126
/*
 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
 * such that hrtimer_callback_running() can unconditionally dereference
 * timer->base->cpu_base
 */
static struct hrtimer_cpu_base migration_cpu_base = {
	.seq = SEQCNT_ZERO(migration_cpu_base),
	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
};

#define migration_base	migration_cpu_base.clock_base[0]

127 128 129 130 131 132 133 134 135
/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
136 137
 * possible to set timer->base = &migration_base and drop the lock: the timer
 * remains locked.
138
 */
139 140 141
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
142
{
143
	struct hrtimer_clock_base *base;
144 145 146

	for (;;) {
		base = timer->base;
147
		if (likely(base != &migration_base)) {
148
			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
149 150 151
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
152
			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
153 154 155 156 157
		}
		cpu_relax();
	}
}

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
/*
 * With HIGHRES=y we do not migrate the timer when it is expiring
 * before the next event on the target cpu because we cannot reprogram
 * the target cpu hardware and we would cause it to fire late.
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	ktime_t expires;

	if (!new_base->cpu_base->hres_active)
		return 0;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
T
Thomas Gleixner 已提交
175
	return expires <= new_base->cpu_base->expires_next;
176 177 178 179 180
#else
	return 0;
#endif
}

181 182 183 184
static inline
struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
					 int pinned)
{
185 186 187 188
#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
	if (static_branch_likely(&timers_migration_enabled) && !pinned)
		return &per_cpu(hrtimer_bases, get_nohz_timer_target());
#endif
189
	return base;
190 191
}

192
/*
193 194 195 196 197 198 199 200 201 202
 * We switch the timer base to a power-optimized selected CPU target,
 * if:
 *	- NO_HZ_COMMON is enabled
 *	- timer migration is enabled
 *	- the timer callback is not running
 *	- the timer is not the first expiring timer on the new target
 *
 * If one of the above requirements is not fulfilled we move the timer
 * to the current CPU or leave it on the previously assigned CPU if
 * the timer callback is currently running.
203
 */
204
static inline struct hrtimer_clock_base *
205 206
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
207
{
208
	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
209
	struct hrtimer_clock_base *new_base;
210
	int basenum = base->index;
211

212 213
	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
	new_cpu_base = get_target_base(this_cpu_base, pinned);
214
again:
215
	new_base = &new_cpu_base->clock_base[basenum];
216 217 218

	if (base != new_base) {
		/*
219
		 * We are trying to move timer to new_base.
220 221 222 223 224 225 226
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
227
		if (unlikely(hrtimer_callback_running(timer)))
228 229
			return base;

230 231
		/* See the comment in lock_hrtimer_base() */
		timer->base = &migration_base;
232 233
		raw_spin_unlock(&base->cpu_base->lock);
		raw_spin_lock(&new_base->cpu_base->lock);
234

235
		if (new_cpu_base != this_cpu_base &&
236
		    hrtimer_check_target(timer, new_base)) {
237 238
			raw_spin_unlock(&new_base->cpu_base->lock);
			raw_spin_lock(&base->cpu_base->lock);
239
			new_cpu_base = this_cpu_base;
240 241
			timer->base = base;
			goto again;
242
		}
243
		timer->base = new_base;
244
	} else {
245
		if (new_cpu_base != this_cpu_base &&
246
		    hrtimer_check_target(timer, new_base)) {
247
			new_cpu_base = this_cpu_base;
248 249
			goto again;
		}
250 251 252 253 254 255
	}
	return new_base;
}

#else /* CONFIG_SMP */

256
static inline struct hrtimer_clock_base *
257 258
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
259
	struct hrtimer_clock_base *base = timer->base;
260

261
	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
262 263 264 265

	return base;
}

266
# define switch_hrtimer_base(t, b, p)	(b)
267 268 269 270 271 272 273 274 275 276 277

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
/*
 * Divide a ktime value by a nanosecond value
 */
278
s64 __ktime_divns(const ktime_t kt, s64 div)
279 280
{
	int sft = 0;
281 282
	s64 dclc;
	u64 tmp;
283

284
	dclc = ktime_to_ns(kt);
285 286
	tmp = dclc < 0 ? -dclc : dclc;

287 288 289 290 291
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
292 293 294
	tmp >>= sft;
	do_div(tmp, (unsigned long) div);
	return dclc < 0 ? -tmp : tmp;
295
}
296
EXPORT_SYMBOL_GPL(__ktime_divns);
297 298
#endif /* BITS_PER_LONG >= 64 */

299 300 301 302 303
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
304
	ktime_t res = ktime_add_unsafe(lhs, rhs);
305 306 307 308 309

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
T
Thomas Gleixner 已提交
310
	if (res < 0 || res < lhs || res < rhs)
311 312 313 314 315
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

316 317
EXPORT_SYMBOL_GPL(ktime_add_safe);

318 319 320 321
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

322 323 324 325 326
static void *hrtimer_debug_hint(void *addr)
{
	return ((struct hrtimer *) addr)->function;
}

327 328 329 330
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
331
static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
332 333 334 335 336 337 338
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
339
		return true;
340
	default:
341
		return false;
342 343 344 345 346 347
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
348
 * - an unknown non-static object is activated
349
 */
350
static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
351 352 353 354 355 356
{
	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
357
		return false;
358 359 360 361 362 363 364
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
365
static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
366 367 368 369 370 371 372
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
373
		return true;
374
	default:
375
		return false;
376 377 378 379 380
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
381
	.debug_hint	= hrtimer_debug_hint,
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}
S
Stephen Hemminger 已提交
416
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
417 418 419 420 421

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}
422
EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
423 424 425 426 427 428 429

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

430 431 432 433 434 435 436 437
static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
	   enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	trace_hrtimer_init(timer, clockid, mode);
}

438 439
static inline void debug_activate(struct hrtimer *timer,
				  enum hrtimer_mode mode)
440 441
{
	debug_hrtimer_activate(timer);
442
	trace_hrtimer_start(timer, mode);
443 444 445 446 447 448 449 450
}

static inline void debug_deactivate(struct hrtimer *timer)
{
	debug_hrtimer_deactivate(timer);
	trace_hrtimer_cancel(timer);
}

451
#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
452 453 454 455 456 457 458 459
static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
					     struct hrtimer *timer)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	cpu_base->next_timer = timer;
#endif
}

460
static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
461 462
{
	struct hrtimer_clock_base *base = cpu_base->clock_base;
463
	unsigned int active = cpu_base->active_bases;
T
Thomas Gleixner 已提交
464
	ktime_t expires, expires_next = KTIME_MAX;
465

466
	hrtimer_update_next_timer(cpu_base, NULL);
467
	for (; active; base++, active >>= 1) {
468 469 470
		struct timerqueue_node *next;
		struct hrtimer *timer;

471
		if (!(active & 0x01))
472 473
			continue;

474
		next = timerqueue_getnext(&base->active);
475 476
		timer = container_of(next, struct hrtimer, node);
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
T
Thomas Gleixner 已提交
477
		if (expires < expires_next) {
478
			expires_next = expires;
479 480
			hrtimer_update_next_timer(cpu_base, timer);
		}
481 482 483 484 485 486
	}
	/*
	 * clock_was_set() might have changed base->offset of any of
	 * the clock bases so the result might be negative. Fix it up
	 * to prevent a false positive in clockevents_program_event().
	 */
T
Thomas Gleixner 已提交
487 488
	if (expires_next < 0)
		expires_next = 0;
489 490 491 492
	return expires_next;
}
#endif

493 494 495 496 497 498
static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
{
	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;

499 500
	return ktime_get_update_offsets_now(&base->clock_was_set_seq,
					    offs_real, offs_boot, offs_tai);
501 502
}

503 504 505 506 507 508
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
509
static bool hrtimer_hres_enabled __read_mostly  = true;
510 511
unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
EXPORT_SYMBOL_GPL(hrtimer_resolution);
512 513 514 515 516 517

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
518
	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
534 535 536 537 538
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
{
	return cpu_base->hres_active;
}

539 540
static inline int hrtimer_hres_active(void)
{
541
	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
542 543 544 545 546 547 548
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
549 550
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
551
{
552 553 554 555 556 557
	ktime_t expires_next;

	if (!cpu_base->hres_active)
		return;

	expires_next = __hrtimer_get_next_event(cpu_base);
558

T
Thomas Gleixner 已提交
559
	if (skip_equal && expires_next == cpu_base->expires_next)
560 561
		return;

T
Thomas Gleixner 已提交
562
	cpu_base->expires_next = expires_next;
563

564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * leave the hang delay active in the hardware. We want the
	 * system to make progress. That also prevents the following
	 * scenario:
	 * T1 expires 50ms from now
	 * T2 expires 5s from now
	 *
	 * T1 is removed, so this code is called and would reprogram
	 * the hardware to 5s from now. Any hrtimer_start after that
	 * will not reprogram the hardware due to hang_detected being
	 * set. So we'd effectivly block all timers until the T2 event
	 * fires.
	 */
	if (cpu_base->hang_detected)
		return;

581
	tick_program_event(cpu_base->expires_next, 1);
582 583 584 585 586 587 588 589 590
}

/*
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
591 592
static void hrtimer_reprogram(struct hrtimer *timer,
			      struct hrtimer_clock_base *base)
593
{
594
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
595
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
596

597
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
598

599
	/*
600 601
	 * If the timer is not on the current cpu, we cannot reprogram
	 * the other cpus clock event device.
602
	 */
603 604 605 606 607 608 609 610 611 612 613 614
	if (base->cpu_base != cpu_base)
		return;

	/*
	 * If the hrtimer interrupt is running, then it will
	 * reevaluate the clock bases and reprogram the clock event
	 * device. The callbacks are always executed in hard interrupt
	 * context so we don't need an extra check for a running
	 * callback.
	 */
	if (cpu_base->in_hrtirq)
		return;
615

616 617
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
618
	 * expiry time which is less than base->offset. Set it to 0.
619
	 */
T
Thomas Gleixner 已提交
620 621
	if (expires < 0)
		expires = 0;
622

T
Thomas Gleixner 已提交
623
	if (expires >= cpu_base->expires_next)
624
		return;
625

626
	/* Update the pointer to the next expiring timer */
627
	cpu_base->next_timer = timer;
628

629 630 631 632 633 634 635
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * do not schedule a timer which is earlier than the expiry
	 * which we enforced in the hang detection. We want the system
	 * to make progress.
	 */
	if (cpu_base->hang_detected)
636
		return;
637 638

	/*
639 640
	 * Program the timer hardware. We enforce the expiry for
	 * events which are already in the past.
641
	 */
642 643
	cpu_base->expires_next = expires;
	tick_program_event(expires, 1);
644 645 646 647 648 649 650
}

/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
T
Thomas Gleixner 已提交
651
	base->expires_next = KTIME_MAX;
652 653 654
	base->hres_active = 0;
}

655 656 657 658 659 660 661
/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
662
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
663

664
	if (!base->hres_active)
665 666 667
		return;

	raw_spin_lock(&base->lock);
668
	hrtimer_update_base(base);
669 670 671
	hrtimer_force_reprogram(base, 0);
	raw_spin_unlock(&base->lock);
}
672

673 674 675
/*
 * Switch to high resolution mode
 */
676
static void hrtimer_switch_to_hres(void)
677
{
678
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
679 680

	if (tick_init_highres()) {
I
Ingo Molnar 已提交
681
		printk(KERN_WARNING "Could not switch to high resolution "
682
				    "mode on CPU %d\n", base->cpu);
683
		return;
684 685
	}
	base->hres_active = 1;
686
	hrtimer_resolution = HIGH_RES_NSEC;
687 688 689 690 691 692

	tick_setup_sched_timer();
	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
}

693 694 695 696 697 698 699
static void clock_was_set_work(struct work_struct *work)
{
	clock_was_set();
}

static DECLARE_WORK(hrtimer_work, clock_was_set_work);

700
/*
P
Pratyush Patel 已提交
701
 * Called from timekeeping and resume code to reprogram the hrtimer
702
 * interrupt device on all cpus.
703 704 705
 */
void clock_was_set_delayed(void)
{
706
	schedule_work(&hrtimer_work);
707 708
}

709 710
#else

711
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
712 713
static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
714
static inline void hrtimer_switch_to_hres(void) { }
715 716
static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
717 718
static inline int hrtimer_reprogram(struct hrtimer *timer,
				    struct hrtimer_clock_base *base)
719 720 721 722
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
723
static inline void retrigger_next_event(void *arg) { }
724 725 726

#endif /* CONFIG_HIGH_RES_TIMERS */

727 728 729 730 731 732 733 734 735 736 737 738 739
/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
740
#ifdef CONFIG_HIGH_RES_TIMERS
741 742
	/* Retrigger the CPU local events everywhere */
	on_each_cpu(retrigger_next_event, NULL, 1);
743 744
#endif
	timerfd_clock_was_set();
745 746 747 748
}

/*
 * During resume we might have to reprogram the high resolution timer
749 750
 * interrupt on all online CPUs.  However, all other CPUs will be
 * stopped with IRQs interrupts disabled so the clock_was_set() call
751
 * must be deferred.
752 753 754
 */
void hrtimers_resume(void)
{
755
	lockdep_assert_irqs_disabled();
756
	/* Retrigger on the local CPU */
757
	retrigger_next_event(NULL);
758 759
	/* And schedule a retrigger for all others */
	clock_was_set_delayed();
760 761
}

762
/*
763
 * Counterpart to lock_hrtimer_base above:
764 765 766 767
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
768
	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
769 770 771 772 773
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
774
 * @now:	forward past this time
775 776 777
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
778
 * Returns the number of overruns.
779 780 781 782 783 784 785 786
 *
 * Can be safely called from the callback function of @timer. If
 * called from other contexts @timer must neither be enqueued nor
 * running the callback and the caller needs to take care of
 * serialization.
 *
 * Note: This only updates the timer expiry value and does not requeue
 * the timer.
787
 */
D
Davide Libenzi 已提交
788
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
789
{
D
Davide Libenzi 已提交
790
	u64 orun = 1;
791
	ktime_t delta;
792

793
	delta = ktime_sub(now, hrtimer_get_expires(timer));
794

T
Thomas Gleixner 已提交
795
	if (delta < 0)
796 797
		return 0;

798 799 800
	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
		return 0;

T
Thomas Gleixner 已提交
801 802
	if (interval < hrtimer_resolution)
		interval = hrtimer_resolution;
803

T
Thomas Gleixner 已提交
804
	if (unlikely(delta >= interval)) {
805
		s64 incr = ktime_to_ns(interval);
806 807

		orun = ktime_divns(delta, incr);
808
		hrtimer_add_expires_ns(timer, incr * orun);
T
Thomas Gleixner 已提交
809
		if (hrtimer_get_expires_tv64(timer) > now)
810 811 812 813 814 815 816
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
817
	hrtimer_add_expires(timer, interval);
818 819 820

	return orun;
}
S
Stas Sergeev 已提交
821
EXPORT_SYMBOL_GPL(hrtimer_forward);
822 823 824 825 826 827

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
828 829
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
830
 */
831
static int enqueue_hrtimer(struct hrtimer *timer,
832 833
			   struct hrtimer_clock_base *base,
			   enum hrtimer_mode mode)
834
{
835
	debug_activate(timer, mode);
836

837
	base->cpu_base->active_bases |= 1 << base->index;
838

839
	timer->state = HRTIMER_STATE_ENQUEUED;
840

841
	return timerqueue_add(&base->active, &timer->node);
842
}
843 844 845 846 847

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
848 849 850 851 852
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
853
 */
854
static void __remove_hrtimer(struct hrtimer *timer,
855
			     struct hrtimer_clock_base *base,
856
			     u8 newstate, int reprogram)
857
{
858
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
859
	u8 state = timer->state;
860

861 862 863
	timer->state = newstate;
	if (!(state & HRTIMER_STATE_ENQUEUED))
		return;
864

865
	if (!timerqueue_del(&base->active, &timer->node))
866
		cpu_base->active_bases &= ~(1 << base->index);
867 868

#ifdef CONFIG_HIGH_RES_TIMERS
869 870 871 872 873 874 875 876 877 878
	/*
	 * Note: If reprogram is false we do not update
	 * cpu_base->next_timer. This happens when we remove the first
	 * timer on a remote cpu. No harm as we never dereference
	 * cpu_base->next_timer. So the worst thing what can happen is
	 * an superflous call to hrtimer_force_reprogram() on the
	 * remote cpu later on if the same timer gets enqueued again.
	 */
	if (reprogram && timer == cpu_base->next_timer)
		hrtimer_force_reprogram(cpu_base, 1);
879
#endif
880 881 882 883 884 885
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
886
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
887
{
888
	if (hrtimer_is_queued(timer)) {
889
		u8 state = timer->state;
890 891 892 893 894 895 896 897 898 899
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
900
		debug_deactivate(timer);
901
		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
902

903 904 905
		if (!restart)
			state = HRTIMER_STATE_INACTIVE;

906
		__remove_hrtimer(timer, base, state, reprogram);
907 908 909 910 911
		return 1;
	}
	return 0;
}

912 913 914 915 916 917 918 919 920 921 922
static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
					    const enum hrtimer_mode mode)
{
#ifdef CONFIG_TIME_LOW_RES
	/*
	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
	 * granular time values. For relative timers we add hrtimer_resolution
	 * (i.e. one jiffie) to prevent short timeouts.
	 */
	timer->is_rel = mode & HRTIMER_MODE_REL;
	if (timer->is_rel)
T
Thomas Gleixner 已提交
923
		tim = ktime_add_safe(tim, hrtimer_resolution);
924 925 926 927
#endif
	return tim;
}

928
/**
929
 * hrtimer_start_range_ns - (re)start an hrtimer
930 931 932
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
933 934
 * @mode:	timer mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED)
935
 */
936
void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
937
			    u64 delta_ns, const enum hrtimer_mode mode)
938
{
939
	struct hrtimer_clock_base *base, *new_base;
940
	unsigned long flags;
941
	int leftmost;
942 943 944 945

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
946
	remove_hrtimer(timer, base, true);
947

948
	if (mode & HRTIMER_MODE_REL)
949
		tim = ktime_add_safe(tim, base->get_time());
950 951

	tim = hrtimer_update_lowres(timer, tim, mode);
952

953
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
954

955 956 957
	/* Switch the timer base, if necessary: */
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);

958
	leftmost = enqueue_hrtimer(timer, new_base, mode);
959 960
	if (!leftmost)
		goto unlock;
961 962 963 964 965 966

	if (!hrtimer_is_hres_active(timer)) {
		/*
		 * Kick to reschedule the next tick to handle the new timer
		 * on dynticks target.
		 */
967
		if (is_timers_nohz_active())
968
			wake_up_nohz_cpu(new_base->cpu_base->cpu);
969 970
	} else {
		hrtimer_reprogram(timer, new_base);
971
	}
972
unlock:
973
	unlock_hrtimer_base(timer, &flags);
974
}
975 976
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

977 978 979 980 981 982 983
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
984
 * -1 when the timer is currently executing the callback function and
985
 *    cannot be stopped
986 987 988
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
989
	struct hrtimer_clock_base *base;
990 991 992
	unsigned long flags;
	int ret = -1;

993 994 995 996 997 998 999 1000 1001
	/*
	 * Check lockless first. If the timer is not active (neither
	 * enqueued nor running the callback, nothing to do here.  The
	 * base lock does not serialize against a concurrent enqueue,
	 * so we can avoid taking it.
	 */
	if (!hrtimer_active(timer))
		return 0;

1002 1003
	base = lock_hrtimer_base(timer, &flags);

1004
	if (!hrtimer_callback_running(timer))
1005
		ret = remove_hrtimer(timer, base, false);
1006 1007 1008 1009 1010 1011

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1012
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1029
		cpu_relax();
1030 1031
	}
}
1032
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1033 1034 1035 1036

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
1037
 * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1038
 */
1039
ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1040 1041 1042 1043
{
	unsigned long flags;
	ktime_t rem;

1044
	lock_hrtimer_base(timer, &flags);
1045 1046 1047 1048
	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
		rem = hrtimer_expires_remaining_adjusted(timer);
	else
		rem = hrtimer_expires_remaining(timer);
1049 1050 1051 1052
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1053
EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1054

1055
#ifdef CONFIG_NO_HZ_COMMON
1056 1057 1058
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
1059
 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1060
 */
1061
u64 hrtimer_get_next_event(void)
1062
{
1063
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1064
	u64 expires = KTIME_MAX;
1065 1066
	unsigned long flags;

1067
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1068

1069
	if (!__hrtimer_hres_active(cpu_base))
T
Thomas Gleixner 已提交
1070
		expires = __hrtimer_get_next_event(cpu_base);
1071

1072
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1073

1074
	return expires;
1075 1076 1077
}
#endif

1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
static inline int hrtimer_clockid_to_base(clockid_t clock_id)
{
	if (likely(clock_id < MAX_CLOCKS)) {
		int base = hrtimer_clock_to_base_table[clock_id];

		if (likely(base != HRTIMER_MAX_CLOCK_BASES))
			return base;
	}
	WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
	return HRTIMER_BASE_MONOTONIC;
}

1090 1091
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1092
{
1093
	struct hrtimer_cpu_base *cpu_base;
1094
	int base;
1095

1096 1097
	memset(timer, 0, sizeof(struct hrtimer));

1098
	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1099

1100 1101 1102 1103 1104 1105
	/*
	 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
	 * clock modifications, so they needs to become CLOCK_MONOTONIC to
	 * ensure POSIX compliance.
	 */
	if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1106 1107
		clock_id = CLOCK_MONOTONIC;

1108 1109
	base = hrtimer_clockid_to_base(clock_id);
	timer->base = &cpu_base->clock_base[base];
1110
	timerqueue_init(&timer->node);
1111
}
1112 1113 1114 1115 1116

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
1117 1118
 * @mode:	timer mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL); pinned is not considered here!
1119 1120 1121 1122
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
1123
	debug_init(timer, clock_id, mode);
1124 1125
	__hrtimer_init(timer, clock_id, mode);
}
1126
EXPORT_SYMBOL_GPL(hrtimer_init);
1127

1128 1129 1130 1131
/*
 * A timer is active, when it is enqueued into the rbtree or the
 * callback function is running or it's in the state of being migrated
 * to another cpu.
1132
 *
1133
 * It is important for this function to not return a false negative.
1134
 */
1135
bool hrtimer_active(const struct hrtimer *timer)
1136
{
1137
	struct hrtimer_cpu_base *cpu_base;
1138
	unsigned int seq;
1139

1140 1141 1142
	do {
		cpu_base = READ_ONCE(timer->base->cpu_base);
		seq = raw_read_seqcount_begin(&cpu_base->seq);
1143

1144 1145 1146 1147 1148 1149 1150 1151
		if (timer->state != HRTIMER_STATE_INACTIVE ||
		    cpu_base->running == timer)
			return true;

	} while (read_seqcount_retry(&cpu_base->seq, seq) ||
		 cpu_base != READ_ONCE(timer->base->cpu_base));

	return false;
1152
}
1153
EXPORT_SYMBOL_GPL(hrtimer_active);
1154

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
/*
 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
 * distinct sections:
 *
 *  - queued:	the timer is queued
 *  - callback:	the timer is being ran
 *  - post:	the timer is inactive or (re)queued
 *
 * On the read side we ensure we observe timer->state and cpu_base->running
 * from the same section, if anything changed while we looked at it, we retry.
 * This includes timer->base changing because sequence numbers alone are
 * insufficient for that.
 *
 * The sequence numbers are required because otherwise we could still observe
 * a false negative if the read side got smeared over multiple consequtive
 * __run_hrtimer() invocations.
 */

1173 1174 1175
static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
			  struct hrtimer_clock_base *base,
			  struct hrtimer *timer, ktime_t *now)
1176 1177 1178 1179
{
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1180
	lockdep_assert_held(&cpu_base->lock);
1181

1182
	debug_deactivate(timer);
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
	cpu_base->running = timer;

	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
	 * timer->state == INACTIVE.
	 */
	raw_write_seqcount_barrier(&cpu_base->seq);

	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1195
	fn = timer->function;
1196

1197 1198 1199 1200 1201 1202 1203 1204
	/*
	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
	 * timer is restarted with a period then it becomes an absolute
	 * timer. If its not restarted it does not matter.
	 */
	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
		timer->is_rel = false;

1205
	/*
1206 1207 1208
	 * The timer is marked as running in the CPU base, so it is
	 * protected against migration to a different CPU even if the lock
	 * is dropped.
1209
	 */
1210
	raw_spin_unlock(&cpu_base->lock);
1211
	trace_hrtimer_expire_entry(timer, now);
1212
	restart = fn(timer);
1213
	trace_hrtimer_expire_exit(timer);
1214
	raw_spin_lock(&cpu_base->lock);
1215 1216

	/*
1217
	 * Note: We clear the running state after enqueue_hrtimer and
P
Pratyush Patel 已提交
1218
	 * we do not reprogram the event hardware. Happens either in
T
Thomas Gleixner 已提交
1219
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1220 1221 1222 1223
	 *
	 * Note: Because we dropped the cpu_base->lock above,
	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
	 * for us already.
1224
	 */
1225 1226
	if (restart != HRTIMER_NORESTART &&
	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1227
		enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1228

1229 1230 1231 1232 1233 1234 1235 1236
	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
	 * timer->state == INACTIVE.
	 */
	raw_write_seqcount_barrier(&cpu_base->seq);
1237

1238 1239
	WARN_ON_ONCE(cpu_base->running != timer);
	cpu_base->running = NULL;
1240 1241
}

1242
static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1243
{
1244 1245
	struct hrtimer_clock_base *base = cpu_base->clock_base;
	unsigned int active = cpu_base->active_bases;
1246

1247
	for (; active; base++, active >>= 1) {
1248
		struct timerqueue_node *node;
1249 1250
		ktime_t basenow;

1251
		if (!(active & 0x01))
1252
			continue;
1253 1254 1255

		basenow = ktime_add(now, base->offset);

1256
		while ((node = timerqueue_getnext(&base->active))) {
1257 1258
			struct hrtimer *timer;

1259
			timer = container_of(node, struct hrtimer, node);
1260

1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */
T
Thomas Gleixner 已提交
1273
			if (basenow < hrtimer_get_softexpires_tv64(timer))
1274 1275
				break;

1276
			__run_hrtimer(cpu_base, base, timer, &basenow);
1277 1278
		}
	}
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
}

#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
	ktime_t expires_next, now, entry_time, delta;
	int retries = 0;

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
T
Thomas Gleixner 已提交
1295
	dev->next_event = KTIME_MAX;
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307

	raw_spin_lock(&cpu_base->lock);
	entry_time = now = hrtimer_update_base(cpu_base);
retry:
	cpu_base->in_hrtirq = 1;
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
T
Thomas Gleixner 已提交
1308
	cpu_base->expires_next = KTIME_MAX;
1309 1310 1311

	__hrtimer_run_queues(cpu_base, now);

1312 1313
	/* Reevaluate the clock bases for the next expiry */
	expires_next = __hrtimer_get_next_event(cpu_base);
1314 1315 1316 1317
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1318
	cpu_base->expires_next = expires_next;
1319
	cpu_base->in_hrtirq = 0;
1320
	raw_spin_unlock(&cpu_base->lock);
1321 1322

	/* Reprogramming necessary ? */
1323
	if (!tick_program_event(expires_next, 0)) {
1324 1325
		cpu_base->hang_detected = 0;
		return;
1326
	}
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336

	/*
	 * The next timer was already expired due to:
	 * - tracing
	 * - long lasting callbacks
	 * - being scheduled away when running in a VM
	 *
	 * We need to prevent that we loop forever in the hrtimer
	 * interrupt routine. We give it 3 attempts to avoid
	 * overreacting on some spurious event.
1337 1338 1339
	 *
	 * Acquire base lock for updating the offsets and retrieving
	 * the current time.
1340
	 */
1341
	raw_spin_lock(&cpu_base->lock);
1342
	now = hrtimer_update_base(cpu_base);
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
	cpu_base->nr_retries++;
	if (++retries < 3)
		goto retry;
	/*
	 * Give the system a chance to do something else than looping
	 * here. We stored the entry time, so we know exactly how long
	 * we spent here. We schedule the next event this amount of
	 * time away.
	 */
	cpu_base->nr_hangs++;
	cpu_base->hang_detected = 1;
1354
	raw_spin_unlock(&cpu_base->lock);
1355
	delta = ktime_sub(now, entry_time);
T
Thomas Gleixner 已提交
1356 1357
	if ((unsigned int)delta > cpu_base->max_hang_time)
		cpu_base->max_hang_time = (unsigned int) delta;
1358 1359 1360 1361
	/*
	 * Limit it to a sensible value as we enforce a longer
	 * delay. Give the CPU at least 100ms to catch up.
	 */
T
Thomas Gleixner 已提交
1362
	if (delta > 100 * NSEC_PER_MSEC)
1363 1364 1365 1366 1367 1368
		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
	else
		expires_next = ktime_add(now, delta);
	tick_program_event(expires_next, 1);
	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
		    ktime_to_ns(delta));
1369 1370
}

1371
/* called with interrupts disabled */
1372
static inline void __hrtimer_peek_ahead_timers(void)
1373 1374 1375 1376 1377 1378
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

1379
	td = this_cpu_ptr(&tick_cpu_device);
1380 1381 1382 1383
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1384 1385 1386 1387 1388
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1389

1390
/*
1391
 * Called from run_local_timers in hardirq context every jiffy
1392
 */
1393
void hrtimer_run_queues(void)
1394
{
1395
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1396
	ktime_t now;
1397

1398
	if (__hrtimer_hres_active(cpu_base))
1399
		return;
1400

1401
	/*
1402 1403 1404 1405 1406
	 * This _is_ ugly: We have to check periodically, whether we
	 * can switch to highres and / or nohz mode. The clocksource
	 * switch happens with xtime_lock held. Notification from
	 * there only sets the check bit in the tick_oneshot code,
	 * otherwise we might deadlock vs. xtime_lock.
1407
	 */
1408
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1409
		hrtimer_switch_to_hres();
1410
		return;
1411
	}
1412

1413 1414 1415 1416
	raw_spin_lock(&cpu_base->lock);
	now = hrtimer_update_base(cpu_base);
	__hrtimer_run_queues(cpu_base, now);
	raw_spin_unlock(&cpu_base->lock);
1417 1418
}

1419 1420 1421
/*
 * Sleep related functions:
 */
1422
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1435
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1436 1437 1438 1439
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}
S
Stephen Hemminger 已提交
1440
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1441

1442
int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1443 1444 1445 1446
{
	switch(restart->nanosleep.type) {
#ifdef CONFIG_COMPAT
	case TT_COMPAT:
1447
		if (compat_put_timespec64(ts, restart->nanosleep.compat_rmtp))
1448 1449 1450 1451
			return -EFAULT;
		break;
#endif
	case TT_NATIVE:
1452
		if (put_timespec64(ts, restart->nanosleep.rmtp))
1453 1454 1455 1456 1457 1458 1459 1460
			return -EFAULT;
		break;
	default:
		BUG();
	}
	return -ERESTART_RESTARTBLOCK;
}

1461
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1462
{
1463 1464
	struct restart_block *restart;

1465
	hrtimer_init_sleeper(t, current);
1466

1467 1468
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1469
		hrtimer_start_expires(&t->timer, mode);
1470

1471
		if (likely(t->task))
1472
			freezable_schedule();
1473

1474
		hrtimer_cancel(&t->timer);
1475
		mode = HRTIMER_MODE_ABS;
1476 1477

	} while (t->task && !signal_pending(current));
1478

1479 1480
	__set_current_state(TASK_RUNNING);

1481
	if (!t->task)
1482 1483
		return 0;

1484 1485
	restart = &current->restart_block;
	if (restart->nanosleep.type != TT_NONE) {
1486
		ktime_t rem = hrtimer_expires_remaining(&t->timer);
1487
		struct timespec64 rmt;
1488

1489 1490
		if (rem <= 0)
			return 0;
1491
		rmt = ktime_to_timespec64(rem);
1492

1493
		return nanosleep_copyout(restart, &rmt);
1494 1495
	}
	return -ERESTART_RESTARTBLOCK;
1496 1497
}

A
Al Viro 已提交
1498
static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1499
{
1500
	struct hrtimer_sleeper t;
1501
	int ret;
1502

1503
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1504
				HRTIMER_MODE_ABS);
1505
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1506

1507
	ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1508 1509
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1510 1511
}

1512
long hrtimer_nanosleep(const struct timespec64 *rqtp,
1513 1514
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
1515
	struct restart_block *restart;
1516
	struct hrtimer_sleeper t;
1517
	int ret = 0;
1518
	u64 slack;
1519 1520

	slack = current->timer_slack_ns;
1521
	if (dl_task(current) || rt_task(current))
1522
		slack = 0;
1523

1524
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1525
	hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
1526 1527
	ret = do_nanosleep(&t, mode);
	if (ret != -ERESTART_RESTARTBLOCK)
1528
		goto out;
1529

1530
	/* Absolute timers do not update the rmtp value and restart: */
1531 1532 1533 1534
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1535

1536
	restart = &current->restart_block;
1537
	restart->fn = hrtimer_nanosleep_restart;
1538
	restart->nanosleep.clockid = t.timer.base->clockid;
1539
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1540 1541 1542
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1543 1544
}

1545 1546
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1547
{
1548
	struct timespec64 tu;
1549

1550
	if (get_timespec64(&tu, rqtp))
1551 1552
		return -EFAULT;

1553
	if (!timespec64_valid(&tu))
1554 1555
		return -EINVAL;

1556
	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1557
	current->restart_block.nanosleep.rmtp = rmtp;
1558
	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1559 1560
}

1561 1562 1563 1564 1565
#ifdef CONFIG_COMPAT

COMPAT_SYSCALL_DEFINE2(nanosleep, struct compat_timespec __user *, rqtp,
		       struct compat_timespec __user *, rmtp)
{
1566
	struct timespec64 tu;
1567

1568
	if (compat_get_timespec64(&tu, rqtp))
1569 1570
		return -EFAULT;

1571
	if (!timespec64_valid(&tu))
1572 1573 1574 1575
		return -EINVAL;

	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
	current->restart_block.nanosleep.compat_rmtp = rmtp;
1576
	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1577 1578 1579
}
#endif

1580 1581 1582
/*
 * Functions related to boot-time initialization:
 */
1583
int hrtimers_prepare_cpu(unsigned int cpu)
1584
{
1585
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1586 1587
	int i;

1588
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1589
		cpu_base->clock_base[i].cpu_base = cpu_base;
1590 1591
		timerqueue_init_head(&cpu_base->clock_base[i].active);
	}
1592

1593
	cpu_base->cpu = cpu;
1594
	hrtimer_init_hres(cpu_base);
1595
	return 0;
1596 1597 1598 1599
}

#ifdef CONFIG_HOTPLUG_CPU

1600
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1601
				struct hrtimer_clock_base *new_base)
1602 1603
{
	struct hrtimer *timer;
1604
	struct timerqueue_node *node;
1605

1606 1607
	while ((node = timerqueue_getnext(&old_base->active))) {
		timer = container_of(node, struct hrtimer, node);
1608
		BUG_ON(hrtimer_callback_running(timer));
1609
		debug_deactivate(timer);
T
Thomas Gleixner 已提交
1610 1611

		/*
1612
		 * Mark it as ENQUEUED not INACTIVE otherwise the
T
Thomas Gleixner 已提交
1613 1614 1615
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
1616
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1617
		timer->base = new_base;
1618
		/*
T
Thomas Gleixner 已提交
1619 1620 1621 1622 1623 1624
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1625
		 */
1626
		enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
1627 1628 1629
	}
}

1630
int hrtimers_dead_cpu(unsigned int scpu)
1631
{
1632
	struct hrtimer_cpu_base *old_base, *new_base;
1633
	int i;
1634

1635 1636
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1637 1638 1639

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
1640
	new_base = this_cpu_ptr(&hrtimer_bases);
1641 1642 1643 1644
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1645 1646
	raw_spin_lock(&new_base->lock);
	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1647

1648
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1649
		migrate_hrtimer_list(&old_base->clock_base[i],
1650
				     &new_base->clock_base[i]);
1651 1652
	}

1653 1654
	raw_spin_unlock(&old_base->lock);
	raw_spin_unlock(&new_base->lock);
1655

1656 1657 1658
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1659
	return 0;
1660
}
1661

1662 1663 1664 1665
#endif /* CONFIG_HOTPLUG_CPU */

void __init hrtimers_init(void)
{
1666
	hrtimers_prepare_cpu(smp_processor_id());
1667 1668
}

1669
/**
1670
 * schedule_hrtimeout_range_clock - sleep until timeout
1671
 * @expires:	timeout value (ktime_t)
1672
 * @delta:	slack in expires timeout (ktime_t)
1673 1674
 * @mode:	timer mode
 * @clock_id:	timer clock to be used
1675
 */
1676
int __sched
1677
schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1678
			       const enum hrtimer_mode mode, clockid_t clock_id)
1679 1680 1681 1682 1683 1684 1685
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
T
Thomas Gleixner 已提交
1686
	if (expires && *expires == 0) {
1687 1688 1689 1690 1691
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
N
Namhyung Kim 已提交
1692
	 * A NULL parameter means "infinite"
1693 1694 1695 1696 1697 1698
	 */
	if (!expires) {
		schedule();
		return -EINTR;
	}

1699
	hrtimer_init_on_stack(&t.timer, clock_id, mode);
1700
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1701 1702 1703

	hrtimer_init_sleeper(&t, current);

1704
	hrtimer_start_expires(&t.timer, mode);
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1716 1717 1718 1719 1720

/**
 * schedule_hrtimeout_range - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @delta:	slack in expires timeout (ktime_t)
1721
 * @mode:	timer mode
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1735 1736
 * pass before the routine returns unless the current task is explicitly
 * woken up, (e.g. by wake_up_process()).
1737 1738
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1739 1740
 * delivered to the current task or the current task is explicitly woken
 * up.
1741 1742 1743 1744
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
1745 1746 1747
 * Returns 0 when the timer has expired. If the task was woken before the
 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
 * by an explicit wakeup, it returns -EINTR.
1748
 */
1749
int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1750 1751 1752 1753 1754
				     const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range_clock(expires, delta, mode,
					      CLOCK_MONOTONIC);
}
1755 1756 1757 1758 1759
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
1760
 * @mode:	timer mode
1761 1762 1763 1764 1765 1766 1767 1768
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1769 1770
 * pass before the routine returns unless the current task is explicitly
 * woken up, (e.g. by wake_up_process()).
1771 1772
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1773 1774
 * delivered to the current task or the current task is explicitly woken
 * up.
1775 1776 1777 1778
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
1779 1780 1781
 * Returns 0 when the timer has expired. If the task was woken before the
 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
 * by an explicit wakeup, it returns -EINTR.
1782 1783 1784 1785 1786 1787
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1788
EXPORT_SYMBOL_GPL(schedule_hrtimeout);