hrtimer.c 43.3 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
35
#include <linux/export.h>
36 37 38 39
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46
#include <linux/sched.h>
47
#include <linux/sched/sysctl.h>
48
#include <linux/sched/rt.h>
49
#include <linux/sched/deadline.h>
50
#include <linux/timer.h>
51
#include <linux/freezer.h>
52 53 54

#include <asm/uaccess.h>

55 56
#include <trace/events/timer.h>

57
#include "tick-internal.h"
58

59 60
/*
 * The timer bases:
61
 *
62 63 64 65
 * There are more clockids then hrtimer bases. Thus, we index
 * into the timer bases by the hrtimer_base_type enum. When trying
 * to reach a base using a clockid, hrtimer_clockid_to_base()
 * is used to convert from clockid to the proper hrtimer_base_type.
66
 */
67
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
68
{
69
	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
70
	.clock_base =
71
	{
72
		{
73 74
			.index = HRTIMER_BASE_MONOTONIC,
			.clockid = CLOCK_MONOTONIC,
75 76
			.get_time = &ktime_get,
		},
T
Thomas Gleixner 已提交
77 78 79 80 81
		{
			.index = HRTIMER_BASE_REALTIME,
			.clockid = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
		},
82
		{
83 84
			.index = HRTIMER_BASE_BOOTTIME,
			.clockid = CLOCK_BOOTTIME,
85 86
			.get_time = &ktime_get_boottime,
		},
87 88 89 90 91
		{
			.index = HRTIMER_BASE_TAI,
			.clockid = CLOCK_TAI,
			.get_time = &ktime_get_clocktai,
		},
92
	}
93 94
};

95
static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
96 97 98
	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
99
	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
100
};
101 102 103 104 105 106

static inline int hrtimer_clockid_to_base(clockid_t clock_id)
{
	return hrtimer_clock_to_base_table[clock_id];
}

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
125 126 127
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
128
{
129
	struct hrtimer_clock_base *base;
130 131 132 133

	for (;;) {
		base = timer->base;
		if (likely(base != NULL)) {
134
			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
135 136 137
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
138
			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
139 140 141 142 143
		}
		cpu_relax();
	}
}

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
/*
 * With HIGHRES=y we do not migrate the timer when it is expiring
 * before the next event on the target cpu because we cannot reprogram
 * the target cpu hardware and we would cause it to fire late.
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	ktime_t expires;

	if (!new_base->cpu_base->hres_active)
		return 0;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
#else
	return 0;
#endif
}

167 168 169
/*
 * Switch the timer base to the current CPU when possible.
 */
170
static inline struct hrtimer_clock_base *
171 172
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
173
{
174 175
	struct hrtimer_clock_base *new_base;
	struct hrtimer_cpu_base *new_cpu_base;
176
	int this_cpu = smp_processor_id();
177
	int cpu = get_nohz_timer_target(pinned);
178
	int basenum = base->index;
179

180 181
again:
	new_cpu_base = &per_cpu(hrtimer_bases, cpu);
182
	new_base = &new_cpu_base->clock_base[basenum];
183 184 185

	if (base != new_base) {
		/*
186
		 * We are trying to move timer to new_base.
187 188 189 190 191 192 193
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
194
		if (unlikely(hrtimer_callback_running(timer)))
195 196 197 198
			return base;

		/* See the comment in lock_timer_base() */
		timer->base = NULL;
199 200
		raw_spin_unlock(&base->cpu_base->lock);
		raw_spin_lock(&new_base->cpu_base->lock);
201

202 203
		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
			cpu = this_cpu;
204 205
			raw_spin_unlock(&new_base->cpu_base->lock);
			raw_spin_lock(&base->cpu_base->lock);
206 207
			timer->base = base;
			goto again;
208
		}
209
		timer->base = new_base;
210 211 212 213 214
	} else {
		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
			cpu = this_cpu;
			goto again;
		}
215 216 217 218 219 220
	}
	return new_base;
}

#else /* CONFIG_SMP */

221
static inline struct hrtimer_clock_base *
222 223
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
224
	struct hrtimer_clock_base *base = timer->base;
225

226
	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
227 228 229 230

	return base;
}

231
# define switch_hrtimer_base(t, b, p)	(b)
232 233 234 235 236 237 238 239 240 241 242

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
/*
 * Divide a ktime value by a nanosecond value
 */
243
u64 __ktime_divns(const ktime_t kt, s64 div)
244
{
245
	u64 dclc;
246 247
	int sft = 0;

248
	dclc = ktime_to_ns(kt);
249 250 251 252 253 254 255 256
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
	dclc >>= sft;
	do_div(dclc, (unsigned long) div);

D
Davide Libenzi 已提交
257
	return dclc;
258
}
259
EXPORT_SYMBOL_GPL(__ktime_divns);
260 261
#endif /* BITS_PER_LONG >= 64 */

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
	ktime_t res = ktime_add(lhs, rhs);

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

279 280
EXPORT_SYMBOL_GPL(ktime_add_safe);

281 282 283 284
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

285 286 287 288 289
static void *hrtimer_debug_hint(void *addr)
{
	return ((struct hrtimer *) addr)->function;
}

290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
{
	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
349
	.debug_hint	= hrtimer_debug_hint,
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}
S
Stephen Hemminger 已提交
384
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
385 386 387 388 389 390 391 392 393 394 395 396

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
	   enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	trace_hrtimer_init(timer, clockid, mode);
}

static inline void debug_activate(struct hrtimer *timer)
{
	debug_hrtimer_activate(timer);
	trace_hrtimer_start(timer);
}

static inline void debug_deactivate(struct hrtimer *timer)
{
	debug_hrtimer_deactivate(timer);
	trace_hrtimer_cancel(timer);
}

417
#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
418 419 420 421 422 423 424 425
static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
					     struct hrtimer *timer)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	cpu_base->next_timer = timer;
#endif
}

426
static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
427 428 429
{
	struct hrtimer_clock_base *base = cpu_base->clock_base;
	ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
430
	unsigned int active = cpu_base->active_bases;
431

432
	hrtimer_update_next_timer(cpu_base, NULL);
433
	for (; active; base++, active >>= 1) {
434 435 436
		struct timerqueue_node *next;
		struct hrtimer *timer;

437
		if (!(active & 0x01))
438 439
			continue;

440
		next = timerqueue_getnext(&base->active);
441 442
		timer = container_of(next, struct hrtimer, node);
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
443
		if (expires.tv64 < expires_next.tv64) {
444
			expires_next = expires;
445 446
			hrtimer_update_next_timer(cpu_base, timer);
		}
447 448 449 450 451 452 453 454 455 456 457 458
	}
	/*
	 * clock_was_set() might have changed base->offset of any of
	 * the clock bases so the result might be negative. Fix it up
	 * to prevent a false positive in clockevents_program_event().
	 */
	if (expires_next.tv64 < 0)
		expires_next.tv64 = 0;
	return expires_next;
}
#endif

459 460 461 462 463 464
static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
{
	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;

465 466
	return ktime_get_update_offsets_now(&base->clock_was_set_seq,
					    offs_real, offs_boot, offs_tai);
467 468
}

469 470 471 472 473 474 475
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static int hrtimer_hres_enabled __read_mostly  = 1;
476 477
unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
EXPORT_SYMBOL_GPL(hrtimer_resolution);
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	if (!strcmp(str, "off"))
		hrtimer_hres_enabled = 0;
	else if (!strcmp(str, "on"))
		hrtimer_hres_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
506 507 508 509 510
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
{
	return cpu_base->hres_active;
}

511 512
static inline int hrtimer_hres_active(void)
{
513
	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
514 515 516 517 518 519 520
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
521 522
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
523
{
524 525 526 527 528 529
	ktime_t expires_next;

	if (!cpu_base->hres_active)
		return;

	expires_next = __hrtimer_get_next_event(cpu_base);
530

531 532 533 534 535
	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
		return;

	cpu_base->expires_next.tv64 = expires_next.tv64;

536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * leave the hang delay active in the hardware. We want the
	 * system to make progress. That also prevents the following
	 * scenario:
	 * T1 expires 50ms from now
	 * T2 expires 5s from now
	 *
	 * T1 is removed, so this code is called and would reprogram
	 * the hardware to 5s from now. Any hrtimer_start after that
	 * will not reprogram the hardware due to hang_detected being
	 * set. So we'd effectivly block all timers until the T2 event
	 * fires.
	 */
	if (cpu_base->hang_detected)
		return;

553
	tick_program_event(cpu_base->expires_next, 1);
554 555 556 557 558 559 560 561 562
}

/*
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
563 564
static void hrtimer_reprogram(struct hrtimer *timer,
			      struct hrtimer_clock_base *base)
565
{
566
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
567
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
568

569
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
570

571
	/*
572 573
	 * If the timer is not on the current cpu, we cannot reprogram
	 * the other cpus clock event device.
574
	 */
575 576 577 578 579 580 581 582 583 584 585 586
	if (base->cpu_base != cpu_base)
		return;

	/*
	 * If the hrtimer interrupt is running, then it will
	 * reevaluate the clock bases and reprogram the clock event
	 * device. The callbacks are always executed in hard interrupt
	 * context so we don't need an extra check for a running
	 * callback.
	 */
	if (cpu_base->in_hrtirq)
		return;
587

588 589
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
590
	 * expiry time which is less than base->offset. Set it to 0.
591 592
	 */
	if (expires.tv64 < 0)
593
		expires.tv64 = 0;
594

595
	if (expires.tv64 >= cpu_base->expires_next.tv64)
596
		return;
597

598
	/* Update the pointer to the next expiring timer */
599 600
	cpu_base->next_timer = timer;

601 602 603 604 605 606 607
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * do not schedule a timer which is earlier than the expiry
	 * which we enforced in the hang detection. We want the system
	 * to make progress.
	 */
	if (cpu_base->hang_detected)
608
		return;
609 610

	/*
611 612
	 * Program the timer hardware. We enforce the expiry for
	 * events which are already in the past.
613
	 */
614 615
	cpu_base->expires_next = expires;
	tick_program_event(expires, 1);
616 617 618 619 620 621 622 623 624 625 626
}

/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
	base->expires_next.tv64 = KTIME_MAX;
	base->hres_active = 0;
}

627 628 629 630 631 632 633
/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
634
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
635

636
	if (!base->hres_active)
637 638 639
		return;

	raw_spin_lock(&base->lock);
640
	hrtimer_update_base(base);
641 642 643
	hrtimer_force_reprogram(base, 0);
	raw_spin_unlock(&base->lock);
}
644

645 646 647
/*
 * Switch to high resolution mode
 */
648
static int hrtimer_switch_to_hres(void)
649
{
650
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
651 652

	if (tick_init_highres()) {
I
Ingo Molnar 已提交
653
		printk(KERN_WARNING "Could not switch to high resolution "
654
				    "mode on CPU %d\n", base->cpu);
655
		return 0;
656 657
	}
	base->hres_active = 1;
658
	hrtimer_resolution = HIGH_RES_NSEC;
659 660 661 662

	tick_setup_sched_timer();
	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
663
	return 1;
664 665
}

666 667 668 669 670 671 672
static void clock_was_set_work(struct work_struct *work)
{
	clock_was_set();
}

static DECLARE_WORK(hrtimer_work, clock_was_set_work);

673
/*
674 675
 * Called from timekeeping and resume code to reprogramm the hrtimer
 * interrupt device on all cpus.
676 677 678
 */
void clock_was_set_delayed(void)
{
679
	schedule_work(&hrtimer_work);
680 681
}

682 683
#else

684
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
685 686
static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
687
static inline int hrtimer_switch_to_hres(void) { return 0; }
688 689
static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
690 691
static inline int hrtimer_reprogram(struct hrtimer *timer,
				    struct hrtimer_clock_base *base)
692 693 694 695
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
696
static inline void retrigger_next_event(void *arg) { }
697 698 699

#endif /* CONFIG_HIGH_RES_TIMERS */

700 701 702 703 704 705 706 707 708 709 710 711 712
/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
713
#ifdef CONFIG_HIGH_RES_TIMERS
714 715
	/* Retrigger the CPU local events everywhere */
	on_each_cpu(retrigger_next_event, NULL, 1);
716 717
#endif
	timerfd_clock_was_set();
718 719 720 721
}

/*
 * During resume we might have to reprogram the high resolution timer
722 723
 * interrupt on all online CPUs.  However, all other CPUs will be
 * stopped with IRQs interrupts disabled so the clock_was_set() call
724
 * must be deferred.
725 726 727 728 729 730
 */
void hrtimers_resume(void)
{
	WARN_ONCE(!irqs_disabled(),
		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");

731
	/* Retrigger on the local CPU */
732
	retrigger_next_event(NULL);
733 734
	/* And schedule a retrigger for all others */
	clock_was_set_delayed();
735 736
}

737
static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
738
{
739
#ifdef CONFIG_TIMER_STATS
740 741
	if (timer->start_site)
		return;
742
	timer->start_site = __builtin_return_address(0);
743 744
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
745 746 747 748 749 750 751 752
#endif
}

static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
#endif
753
}
754 755 756 757 758 759 760 761

static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	if (likely(!timer_stats_active))
		return;
	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
				 timer->function, timer->start_comm, 0);
762
#endif
763
}
764

765
/*
766
 * Counterpart to lock_hrtimer_base above:
767 768 769 770
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
771
	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
772 773 774 775 776
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
777
 * @now:	forward past this time
778 779 780
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
781
 * Returns the number of overruns.
782 783 784 785 786 787 788 789
 *
 * Can be safely called from the callback function of @timer. If
 * called from other contexts @timer must neither be enqueued nor
 * running the callback and the caller needs to take care of
 * serialization.
 *
 * Note: This only updates the timer expiry value and does not requeue
 * the timer.
790
 */
D
Davide Libenzi 已提交
791
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
792
{
D
Davide Libenzi 已提交
793
	u64 orun = 1;
794
	ktime_t delta;
795

796
	delta = ktime_sub(now, hrtimer_get_expires(timer));
797 798 799 800

	if (delta.tv64 < 0)
		return 0;

801 802 803
	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
		return 0;

804 805
	if (interval.tv64 < hrtimer_resolution)
		interval.tv64 = hrtimer_resolution;
806

807
	if (unlikely(delta.tv64 >= interval.tv64)) {
808
		s64 incr = ktime_to_ns(interval);
809 810

		orun = ktime_divns(delta, incr);
811 812
		hrtimer_add_expires_ns(timer, incr * orun);
		if (hrtimer_get_expires_tv64(timer) > now.tv64)
813 814 815 816 817 818 819
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
820
	hrtimer_add_expires(timer, interval);
821 822 823

	return orun;
}
S
Stas Sergeev 已提交
824
EXPORT_SYMBOL_GPL(hrtimer_forward);
825 826 827 828 829 830

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
831 832
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
833
 */
834 835
static int enqueue_hrtimer(struct hrtimer *timer,
			   struct hrtimer_clock_base *base)
836
{
837
	debug_activate(timer);
838

839
	base->cpu_base->active_bases |= 1 << base->index;
840

841 842 843 844 845
	/*
	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
	 * state of a possibly running callback.
	 */
	timer->state |= HRTIMER_STATE_ENQUEUED;
846

847
	return timerqueue_add(&base->active, &timer->node);
848
}
849 850 851 852 853

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
854 855 856 857 858
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
859
 */
860
static void __remove_hrtimer(struct hrtimer *timer,
861
			     struct hrtimer_clock_base *base,
862
			     unsigned long newstate, int reprogram)
863
{
864
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
865
	unsigned int state = timer->state;
866

867 868 869
	timer->state = newstate;
	if (!(state & HRTIMER_STATE_ENQUEUED))
		return;
870

871
	if (!timerqueue_del(&base->active, &timer->node))
872
		cpu_base->active_bases &= ~(1 << base->index);
873

874
#ifdef CONFIG_HIGH_RES_TIMERS
875 876 877 878 879 880 881 882 883 884
	/*
	 * Note: If reprogram is false we do not update
	 * cpu_base->next_timer. This happens when we remove the first
	 * timer on a remote cpu. No harm as we never dereference
	 * cpu_base->next_timer. So the worst thing what can happen is
	 * an superflous call to hrtimer_force_reprogram() on the
	 * remote cpu later on if the same timer gets enqueued again.
	 */
	if (reprogram && timer == cpu_base->next_timer)
		hrtimer_force_reprogram(cpu_base, 1);
885
#endif
886 887 888 889 890 891
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
892
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
893
{
894
	if (hrtimer_is_queued(timer)) {
895
		unsigned long state;
896 897 898 899 900 901 902 903 904 905
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
906
		debug_deactivate(timer);
907
		timer_stats_hrtimer_clear_start_info(timer);
908
		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
909 910 911 912 913 914 915
		/*
		 * We must preserve the CALLBACK state flag here,
		 * otherwise we could move the timer base in
		 * switch_hrtimer_base.
		 */
		state = timer->state & HRTIMER_STATE_CALLBACK;
		__remove_hrtimer(timer, base, state, reprogram);
916 917 918 919 920
		return 1;
	}
	return 0;
}

921 922 923 924 925 926 927 928
/**
 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
 * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL)
 */
929 930
void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
			    unsigned long delta_ns, const enum hrtimer_mode mode)
931
{
932
	struct hrtimer_clock_base *base, *new_base;
933
	unsigned long flags;
934
	int leftmost;
935 936 937 938

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
939
	remove_hrtimer(timer, base);
940

941
	if (mode & HRTIMER_MODE_REL) {
942
		tim = ktime_add_safe(tim, base->get_time());
943 944 945 946 947 948 949 950
		/*
		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
		 * to signal that they simply return xtime in
		 * do_gettimeoffset(). In this case we want to round up by
		 * resolution when starting a relative timer, to avoid short
		 * timeouts. This will go away with the GTOD framework.
		 */
#ifdef CONFIG_TIME_LOW_RES
951
		tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution));
952 953
#endif
	}
954

955
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
956

957 958 959
	/* Switch the timer base, if necessary: */
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);

960 961
	timer_stats_hrtimer_set_start_info(timer);

962
	leftmost = enqueue_hrtimer(timer, new_base);
963 964
	if (!leftmost)
		goto unlock;
965 966 967 968 969 970 971

	if (!hrtimer_is_hres_active(timer)) {
		/*
		 * Kick to reschedule the next tick to handle the new timer
		 * on dynticks target.
		 */
		wake_up_nohz_cpu(new_base->cpu_base->cpu);
972 973
	} else {
		hrtimer_reprogram(timer, new_base);
974
	}
975
unlock:
976 977
	unlock_hrtimer_base(timer, &flags);
}
978 979
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

980 981 982 983 984 985 986 987
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
988
 *    cannot be stopped
989 990 991
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
992
	struct hrtimer_clock_base *base;
993 994 995
	unsigned long flags;
	int ret = -1;

996 997 998 999 1000 1001 1002 1003 1004
	/*
	 * Check lockless first. If the timer is not active (neither
	 * enqueued nor running the callback, nothing to do here.  The
	 * base lock does not serialize against a concurrent enqueue,
	 * so we can avoid taking it.
	 */
	if (!hrtimer_active(timer))
		return 0;

1005 1006
	base = lock_hrtimer_base(timer, &flags);

1007
	if (!hrtimer_callback_running(timer))
1008 1009 1010 1011 1012 1013 1014
		ret = remove_hrtimer(timer, base);

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1015
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1032
		cpu_relax();
1033 1034
	}
}
1035
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
 */
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
{
	unsigned long flags;
	ktime_t rem;

1046
	lock_hrtimer_base(timer, &flags);
1047
	rem = hrtimer_expires_remaining(timer);
1048 1049 1050 1051
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1052
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1053

1054
#ifdef CONFIG_NO_HZ_COMMON
1055 1056 1057
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
1058
 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1059
 */
1060
u64 hrtimer_get_next_event(void)
1061
{
1062
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1063
	u64 expires = KTIME_MAX;
1064 1065
	unsigned long flags;

1066
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1067

1068
	if (!__hrtimer_hres_active(cpu_base))
1069
		expires = __hrtimer_get_next_event(cpu_base).tv64;
1070

1071
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1072

1073
	return expires;
1074 1075 1076
}
#endif

1077 1078
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1079
{
1080
	struct hrtimer_cpu_base *cpu_base;
1081
	int base;
1082

1083 1084
	memset(timer, 0, sizeof(struct hrtimer));

1085
	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1086

1087
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1088 1089
		clock_id = CLOCK_MONOTONIC;

1090 1091
	base = hrtimer_clockid_to_base(clock_id);
	timer->base = &cpu_base->clock_base[base];
1092
	timerqueue_init(&timer->node);
1093 1094 1095 1096 1097 1098

#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
1099
}
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
 * @mode:	timer mode abs/rel
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
1110
	debug_init(timer, clock_id, mode);
1111 1112
	__hrtimer_init(timer, clock_id, mode);
}
1113
EXPORT_SYMBOL_GPL(hrtimer_init);
1114

1115 1116 1117
static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
			  struct hrtimer_clock_base *base,
			  struct hrtimer *timer, ktime_t *now)
1118 1119 1120 1121
{
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1122 1123
	WARN_ON(!irqs_disabled());

1124
	debug_deactivate(timer);
1125 1126 1127
	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
	timer_stats_account_hrtimer(timer);
	fn = timer->function;
1128 1129 1130 1131 1132 1133

	/*
	 * Because we run timers from hardirq context, there is no chance
	 * they get migrated to another cpu, therefore its safe to unlock
	 * the timer base.
	 */
1134
	raw_spin_unlock(&cpu_base->lock);
1135
	trace_hrtimer_expire_entry(timer, now);
1136
	restart = fn(timer);
1137
	trace_hrtimer_expire_exit(timer);
1138
	raw_spin_lock(&cpu_base->lock);
1139 1140

	/*
T
Thomas Gleixner 已提交
1141 1142 1143
	 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
	 * we do not reprogramm the event hardware. Happens either in
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1144 1145 1146 1147
	 *
	 * Note: Because we dropped the cpu_base->lock above,
	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
	 * for us already.
1148
	 */
1149 1150
	if (restart != HRTIMER_NORESTART &&
	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1151
		enqueue_hrtimer(timer, base);
1152 1153 1154

	WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));

1155 1156 1157
	timer->state &= ~HRTIMER_STATE_CALLBACK;
}

1158
static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1159
{
1160 1161
	struct hrtimer_clock_base *base = cpu_base->clock_base;
	unsigned int active = cpu_base->active_bases;
1162

1163
	for (; active; base++, active >>= 1) {
1164
		struct timerqueue_node *node;
1165 1166
		ktime_t basenow;

1167
		if (!(active & 0x01))
1168
			continue;
1169 1170 1171

		basenow = ktime_add(now, base->offset);

1172
		while ((node = timerqueue_getnext(&base->active))) {
1173 1174
			struct hrtimer *timer;

1175
			timer = container_of(node, struct hrtimer, node);
1176

1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */
1189
			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
1190 1191
				break;

1192
			__run_hrtimer(cpu_base, base, timer, &basenow);
1193 1194
		}
	}
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
}

#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
	ktime_t expires_next, now, entry_time, delta;
	int retries = 0;

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event.tv64 = KTIME_MAX;

	raw_spin_lock(&cpu_base->lock);
	entry_time = now = hrtimer_update_base(cpu_base);
retry:
	cpu_base->in_hrtirq = 1;
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
	cpu_base->expires_next.tv64 = KTIME_MAX;

	__hrtimer_run_queues(cpu_base, now);

1228 1229
	/* Reevaluate the clock bases for the next expiry */
	expires_next = __hrtimer_get_next_event(cpu_base);
1230 1231 1232 1233
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1234
	cpu_base->expires_next = expires_next;
1235
	cpu_base->in_hrtirq = 0;
1236
	raw_spin_unlock(&cpu_base->lock);
1237 1238

	/* Reprogramming necessary ? */
1239
	if (!tick_program_event(expires_next, 0)) {
1240 1241
		cpu_base->hang_detected = 0;
		return;
1242
	}
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252

	/*
	 * The next timer was already expired due to:
	 * - tracing
	 * - long lasting callbacks
	 * - being scheduled away when running in a VM
	 *
	 * We need to prevent that we loop forever in the hrtimer
	 * interrupt routine. We give it 3 attempts to avoid
	 * overreacting on some spurious event.
1253 1254 1255
	 *
	 * Acquire base lock for updating the offsets and retrieving
	 * the current time.
1256
	 */
1257
	raw_spin_lock(&cpu_base->lock);
1258
	now = hrtimer_update_base(cpu_base);
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
	cpu_base->nr_retries++;
	if (++retries < 3)
		goto retry;
	/*
	 * Give the system a chance to do something else than looping
	 * here. We stored the entry time, so we know exactly how long
	 * we spent here. We schedule the next event this amount of
	 * time away.
	 */
	cpu_base->nr_hangs++;
	cpu_base->hang_detected = 1;
1270
	raw_spin_unlock(&cpu_base->lock);
1271
	delta = ktime_sub(now, entry_time);
1272 1273
	if ((unsigned int)delta.tv64 > cpu_base->max_hang_time)
		cpu_base->max_hang_time = (unsigned int) delta.tv64;
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
	/*
	 * Limit it to a sensible value as we enforce a longer
	 * delay. Give the CPU at least 100ms to catch up.
	 */
	if (delta.tv64 > 100 * NSEC_PER_MSEC)
		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
	else
		expires_next = ktime_add(now, delta);
	tick_program_event(expires_next, 1);
	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
		    ktime_to_ns(delta));
1285 1286
}

1287 1288 1289 1290
/*
 * local version of hrtimer_peek_ahead_timers() called with interrupts
 * disabled.
 */
1291
static inline void __hrtimer_peek_ahead_timers(void)
1292 1293 1294 1295 1296 1297
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

1298
	td = this_cpu_ptr(&tick_cpu_device);
1299 1300 1301 1302
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1303 1304 1305 1306 1307
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1308

1309
/*
1310
 * Called from run_local_timers in hardirq context every jiffy
1311
 */
1312
void hrtimer_run_queues(void)
1313
{
1314
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1315
	ktime_t now;
1316

1317
	if (__hrtimer_hres_active(cpu_base))
1318 1319
		return;

1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
	/*
	 * This _is_ ugly: We have to check periodically, whether we
	 * can switch to highres and / or nohz mode. The clocksource
	 * switch happens with xtime_lock held. Notification from
	 * there only sets the check bit in the tick_oneshot code,
	 * otherwise we might deadlock vs. xtime_lock.
	 */
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
		hrtimer_switch_to_hres();
		return;
	}

1332 1333 1334 1335
	raw_spin_lock(&cpu_base->lock);
	now = hrtimer_update_base(cpu_base);
	__hrtimer_run_queues(cpu_base, now);
	raw_spin_unlock(&cpu_base->lock);
1336 1337
}

1338 1339 1340
/*
 * Sleep related functions:
 */
1341
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1354
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1355 1356 1357 1358
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}
S
Stephen Hemminger 已提交
1359
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1360

1361
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1362
{
1363
	hrtimer_init_sleeper(t, current);
1364

1365 1366
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1367
		hrtimer_start_expires(&t->timer, mode);
1368

1369
		if (likely(t->task))
1370
			freezable_schedule();
1371

1372
		hrtimer_cancel(&t->timer);
1373
		mode = HRTIMER_MODE_ABS;
1374 1375

	} while (t->task && !signal_pending(current));
1376

1377 1378
	__set_current_state(TASK_RUNNING);

1379
	return t->task == NULL;
1380 1381
}

1382 1383 1384 1385 1386
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

1387
	rem = hrtimer_expires_remaining(timer);
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
	if (rem.tv64 <= 0)
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;
}

1398
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1399
{
1400
	struct hrtimer_sleeper t;
1401
	struct timespec __user  *rmtp;
1402
	int ret = 0;
1403

1404
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1405
				HRTIMER_MODE_ABS);
1406
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1407

1408
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1409
		goto out;
1410

1411
	rmtp = restart->nanosleep.rmtp;
1412
	if (rmtp) {
1413
		ret = update_rmtp(&t.timer, rmtp);
1414
		if (ret <= 0)
1415
			goto out;
1416
	}
1417 1418

	/* The other values in restart are already filled in */
1419 1420 1421 1422
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1423 1424
}

1425
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1426 1427 1428
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1429
	struct hrtimer_sleeper t;
1430
	int ret = 0;
1431 1432 1433
	unsigned long slack;

	slack = current->timer_slack_ns;
1434
	if (dl_task(current) || rt_task(current))
1435
		slack = 0;
1436

1437
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1438
	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1439
	if (do_nanosleep(&t, mode))
1440
		goto out;
1441

1442
	/* Absolute timers do not update the rmtp value and restart: */
1443 1444 1445 1446
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1447

1448
	if (rmtp) {
1449
		ret = update_rmtp(&t.timer, rmtp);
1450
		if (ret <= 0)
1451
			goto out;
1452
	}
1453

1454
	restart = &current->restart_block;
1455
	restart->fn = hrtimer_nanosleep_restart;
1456
	restart->nanosleep.clockid = t.timer.base->clockid;
1457
	restart->nanosleep.rmtp = rmtp;
1458
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1459

1460 1461 1462 1463
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1464 1465
}

1466 1467
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1468
{
1469
	struct timespec tu;
1470 1471 1472 1473 1474 1475 1476

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1477
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1478 1479
}

1480 1481 1482
/*
 * Functions related to boot-time initialization:
 */
1483
static void init_hrtimers_cpu(int cpu)
1484
{
1485
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1486 1487
	int i;

1488
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1489
		cpu_base->clock_base[i].cpu_base = cpu_base;
1490 1491
		timerqueue_init_head(&cpu_base->clock_base[i].active);
	}
1492

1493
	cpu_base->cpu = cpu;
1494
	hrtimer_init_hres(cpu_base);
1495 1496 1497 1498
}

#ifdef CONFIG_HOTPLUG_CPU

1499
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1500
				struct hrtimer_clock_base *new_base)
1501 1502
{
	struct hrtimer *timer;
1503
	struct timerqueue_node *node;
1504

1505 1506
	while ((node = timerqueue_getnext(&old_base->active))) {
		timer = container_of(node, struct hrtimer, node);
1507
		BUG_ON(hrtimer_callback_running(timer));
1508
		debug_deactivate(timer);
T
Thomas Gleixner 已提交
1509 1510 1511 1512 1513 1514 1515

		/*
		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1516
		timer->base = new_base;
1517
		/*
T
Thomas Gleixner 已提交
1518 1519 1520 1521 1522 1523
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1524
		 */
1525
		enqueue_hrtimer(timer, new_base);
1526

T
Thomas Gleixner 已提交
1527 1528
		/* Clear the migration state bit */
		timer->state &= ~HRTIMER_STATE_MIGRATE;
1529 1530 1531
	}
}

1532
static void migrate_hrtimers(int scpu)
1533
{
1534
	struct hrtimer_cpu_base *old_base, *new_base;
1535
	int i;
1536

1537 1538
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1539 1540 1541

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
1542
	new_base = this_cpu_ptr(&hrtimer_bases);
1543 1544 1545 1546
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1547 1548
	raw_spin_lock(&new_base->lock);
	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1549

1550
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1551
		migrate_hrtimer_list(&old_base->clock_base[i],
1552
				     &new_base->clock_base[i]);
1553 1554
	}

1555 1556
	raw_spin_unlock(&old_base->lock);
	raw_spin_unlock(&new_base->lock);
1557

1558 1559 1560
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1561
}
1562

1563 1564
#endif /* CONFIG_HOTPLUG_CPU */

1565
static int hrtimer_cpu_notify(struct notifier_block *self,
1566 1567
					unsigned long action, void *hcpu)
{
1568
	int scpu = (long)hcpu;
1569 1570 1571 1572

	switch (action) {

	case CPU_UP_PREPARE:
1573
	case CPU_UP_PREPARE_FROZEN:
1574
		init_hrtimers_cpu(scpu);
1575 1576 1577 1578
		break;

#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
1579
	case CPU_DEAD_FROZEN:
1580
		migrate_hrtimers(scpu);
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
		break;
#endif

	default:
		break;
	}

	return NOTIFY_OK;
}

1591
static struct notifier_block hrtimers_nb = {
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
	.notifier_call = hrtimer_cpu_notify,
};

void __init hrtimers_init(void)
{
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
			  (void *)(long)smp_processor_id());
	register_cpu_notifier(&hrtimers_nb);
}

1602
/**
1603
 * schedule_hrtimeout_range_clock - sleep until timeout
1604
 * @expires:	timeout value (ktime_t)
1605
 * @delta:	slack in expires timeout (ktime_t)
1606
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1607
 * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1608
 */
1609 1610 1611
int __sched
schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
			       const enum hrtimer_mode mode, int clock)
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
	if (expires && !expires->tv64) {
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
N
Namhyung Kim 已提交
1625
	 * A NULL parameter means "infinite"
1626 1627 1628 1629 1630 1631
	 */
	if (!expires) {
		schedule();
		return -EINTR;
	}

1632
	hrtimer_init_on_stack(&t.timer, clock, mode);
1633
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1634 1635 1636

	hrtimer_init_sleeper(&t, current);

1637
	hrtimer_start_expires(&t.timer, mode);
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683

/**
 * schedule_hrtimeout_range - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @delta:	slack in expires timeout (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
				     const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range_clock(expires, delta, mode,
					      CLOCK_MONOTONIC);
}
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1713
EXPORT_SYMBOL_GPL(schedule_hrtimeout);