hrtimer.c 46.4 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
35
#include <linux/export.h>
36 37 38 39
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46
#include <linux/sched/signal.h>
47
#include <linux/sched/sysctl.h>
48
#include <linux/sched/rt.h>
49
#include <linux/sched/deadline.h>
50
#include <linux/sched/nohz.h>
51
#include <linux/sched/debug.h>
52
#include <linux/timer.h>
53
#include <linux/freezer.h>
54
#include <linux/compat.h>
55

56
#include <linux/uaccess.h>
57

58 59
#include <trace/events/timer.h>

60
#include "tick-internal.h"
61

62 63
/*
 * The timer bases:
64
 *
Z
Zhen Lei 已提交
65
 * There are more clockids than hrtimer bases. Thus, we index
66 67 68
 * into the timer bases by the hrtimer_base_type enum. When trying
 * to reach a base using a clockid, hrtimer_clockid_to_base()
 * is used to convert from clockid to the proper hrtimer_base_type.
69
 */
70
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
71
{
72
	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
73
	.seq = SEQCNT_ZERO(hrtimer_bases.seq),
74
	.clock_base =
75
	{
76
		{
77 78
			.index = HRTIMER_BASE_MONOTONIC,
			.clockid = CLOCK_MONOTONIC,
79 80
			.get_time = &ktime_get,
		},
T
Thomas Gleixner 已提交
81 82 83 84 85
		{
			.index = HRTIMER_BASE_REALTIME,
			.clockid = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
		},
86
		{
87 88
			.index = HRTIMER_BASE_BOOTTIME,
			.clockid = CLOCK_BOOTTIME,
89 90
			.get_time = &ktime_get_boottime,
		},
91 92 93 94 95
		{
			.index = HRTIMER_BASE_TAI,
			.clockid = CLOCK_TAI,
			.get_time = &ktime_get_clocktai,
		},
96
	}
97 98
};

99
static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
100 101 102
	/* Make sure we catch unsupported clockids */
	[0 ... MAX_CLOCKS - 1]	= HRTIMER_MAX_CLOCK_BASES,

103 104 105
	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
106
	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
107
};
108

109 110 111 112 113 114
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

115 116 117 118 119 120 121 122 123 124 125 126
/*
 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
 * such that hrtimer_callback_running() can unconditionally dereference
 * timer->base->cpu_base
 */
static struct hrtimer_cpu_base migration_cpu_base = {
	.seq = SEQCNT_ZERO(migration_cpu_base),
	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
};

#define migration_base	migration_cpu_base.clock_base[0]

127 128 129 130 131 132 133 134 135
/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
136 137
 * possible to set timer->base = &migration_base and drop the lock: the timer
 * remains locked.
138
 */
139 140 141
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
142
{
143
	struct hrtimer_clock_base *base;
144 145 146

	for (;;) {
		base = timer->base;
147
		if (likely(base != &migration_base)) {
148
			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
149 150 151
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
152
			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
153 154 155 156 157
		}
		cpu_relax();
	}
}

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
/*
 * With HIGHRES=y we do not migrate the timer when it is expiring
 * before the next event on the target cpu because we cannot reprogram
 * the target cpu hardware and we would cause it to fire late.
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	ktime_t expires;

	if (!new_base->cpu_base->hres_active)
		return 0;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
T
Thomas Gleixner 已提交
175
	return expires <= new_base->cpu_base->expires_next;
176 177 178 179 180
#else
	return 0;
#endif
}

181 182 183 184
static inline
struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
					 int pinned)
{
185 186 187 188
#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
	if (static_branch_likely(&timers_migration_enabled) && !pinned)
		return &per_cpu(hrtimer_bases, get_nohz_timer_target());
#endif
189
	return base;
190 191
}

192
/*
193 194 195 196 197 198 199 200 201 202
 * We switch the timer base to a power-optimized selected CPU target,
 * if:
 *	- NO_HZ_COMMON is enabled
 *	- timer migration is enabled
 *	- the timer callback is not running
 *	- the timer is not the first expiring timer on the new target
 *
 * If one of the above requirements is not fulfilled we move the timer
 * to the current CPU or leave it on the previously assigned CPU if
 * the timer callback is currently running.
203
 */
204
static inline struct hrtimer_clock_base *
205 206
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
207
{
208
	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
209
	struct hrtimer_clock_base *new_base;
210
	int basenum = base->index;
211

212 213
	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
	new_cpu_base = get_target_base(this_cpu_base, pinned);
214
again:
215
	new_base = &new_cpu_base->clock_base[basenum];
216 217 218

	if (base != new_base) {
		/*
219
		 * We are trying to move timer to new_base.
220 221 222 223 224 225 226
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
227
		if (unlikely(hrtimer_callback_running(timer)))
228 229
			return base;

230 231
		/* See the comment in lock_hrtimer_base() */
		timer->base = &migration_base;
232 233
		raw_spin_unlock(&base->cpu_base->lock);
		raw_spin_lock(&new_base->cpu_base->lock);
234

235
		if (new_cpu_base != this_cpu_base &&
236
		    hrtimer_check_target(timer, new_base)) {
237 238
			raw_spin_unlock(&new_base->cpu_base->lock);
			raw_spin_lock(&base->cpu_base->lock);
239
			new_cpu_base = this_cpu_base;
240 241
			timer->base = base;
			goto again;
242
		}
243
		timer->base = new_base;
244
	} else {
245
		if (new_cpu_base != this_cpu_base &&
246
		    hrtimer_check_target(timer, new_base)) {
247
			new_cpu_base = this_cpu_base;
248 249
			goto again;
		}
250 251 252 253 254 255
	}
	return new_base;
}

#else /* CONFIG_SMP */

256
static inline struct hrtimer_clock_base *
257 258
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
259
	struct hrtimer_clock_base *base = timer->base;
260

261
	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
262 263 264 265

	return base;
}

266
# define switch_hrtimer_base(t, b, p)	(b)
267 268 269 270 271 272 273 274 275 276 277

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
/*
 * Divide a ktime value by a nanosecond value
 */
278
s64 __ktime_divns(const ktime_t kt, s64 div)
279 280
{
	int sft = 0;
281 282
	s64 dclc;
	u64 tmp;
283

284
	dclc = ktime_to_ns(kt);
285 286
	tmp = dclc < 0 ? -dclc : dclc;

287 288 289 290 291
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
292 293 294
	tmp >>= sft;
	do_div(tmp, (unsigned long) div);
	return dclc < 0 ? -tmp : tmp;
295
}
296
EXPORT_SYMBOL_GPL(__ktime_divns);
297 298
#endif /* BITS_PER_LONG >= 64 */

299 300 301 302 303
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
304
	ktime_t res = ktime_add_unsafe(lhs, rhs);
305 306 307 308 309

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
T
Thomas Gleixner 已提交
310
	if (res < 0 || res < lhs || res < rhs)
311 312 313 314 315
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

316 317
EXPORT_SYMBOL_GPL(ktime_add_safe);

318 319 320 321
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

322 323 324 325 326
static void *hrtimer_debug_hint(void *addr)
{
	return ((struct hrtimer *) addr)->function;
}

327 328 329 330
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
331
static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
332 333 334 335 336 337 338
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
339
		return true;
340
	default:
341
		return false;
342 343 344 345 346 347
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
348
 * - an unknown non-static object is activated
349
 */
350
static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
351 352 353 354 355 356
{
	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
357
		return false;
358 359 360 361 362 363 364
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
365
static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
366 367 368 369 370 371 372
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
373
		return true;
374
	default:
375
		return false;
376 377 378 379 380
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
381
	.debug_hint	= hrtimer_debug_hint,
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}
S
Stephen Hemminger 已提交
416
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
417 418 419 420 421

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}
422
EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
423 424 425 426 427 428 429

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
	   enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	trace_hrtimer_init(timer, clockid, mode);
}

static inline void debug_activate(struct hrtimer *timer)
{
	debug_hrtimer_activate(timer);
	trace_hrtimer_start(timer);
}

static inline void debug_deactivate(struct hrtimer *timer)
{
	debug_hrtimer_deactivate(timer);
	trace_hrtimer_cancel(timer);
}

450
#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
451 452 453 454 455 456 457 458
static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
					     struct hrtimer *timer)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	cpu_base->next_timer = timer;
#endif
}

459
static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
460 461
{
	struct hrtimer_clock_base *base = cpu_base->clock_base;
462
	unsigned int active = cpu_base->active_bases;
T
Thomas Gleixner 已提交
463
	ktime_t expires, expires_next = KTIME_MAX;
464

465
	hrtimer_update_next_timer(cpu_base, NULL);
466
	for (; active; base++, active >>= 1) {
467 468 469
		struct timerqueue_node *next;
		struct hrtimer *timer;

470
		if (!(active & 0x01))
471 472
			continue;

473
		next = timerqueue_getnext(&base->active);
474 475
		timer = container_of(next, struct hrtimer, node);
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
T
Thomas Gleixner 已提交
476
		if (expires < expires_next) {
477
			expires_next = expires;
478 479
			hrtimer_update_next_timer(cpu_base, timer);
		}
480 481 482 483 484 485
	}
	/*
	 * clock_was_set() might have changed base->offset of any of
	 * the clock bases so the result might be negative. Fix it up
	 * to prevent a false positive in clockevents_program_event().
	 */
T
Thomas Gleixner 已提交
486 487
	if (expires_next < 0)
		expires_next = 0;
488 489 490 491
	return expires_next;
}
#endif

492 493 494 495 496 497
static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
{
	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;

498 499
	return ktime_get_update_offsets_now(&base->clock_was_set_seq,
					    offs_real, offs_boot, offs_tai);
500 501
}

502 503 504 505 506 507
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
508
static bool hrtimer_hres_enabled __read_mostly  = true;
509 510
unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
EXPORT_SYMBOL_GPL(hrtimer_resolution);
511 512 513 514 515 516

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
517
	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
533 534 535 536 537
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
{
	return cpu_base->hres_active;
}

538 539
static inline int hrtimer_hres_active(void)
{
540
	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
541 542 543 544 545 546 547
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
548 549
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
550
{
551 552 553 554 555 556
	ktime_t expires_next;

	if (!cpu_base->hres_active)
		return;

	expires_next = __hrtimer_get_next_event(cpu_base);
557

T
Thomas Gleixner 已提交
558
	if (skip_equal && expires_next == cpu_base->expires_next)
559 560
		return;

T
Thomas Gleixner 已提交
561
	cpu_base->expires_next = expires_next;
562

563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * leave the hang delay active in the hardware. We want the
	 * system to make progress. That also prevents the following
	 * scenario:
	 * T1 expires 50ms from now
	 * T2 expires 5s from now
	 *
	 * T1 is removed, so this code is called and would reprogram
	 * the hardware to 5s from now. Any hrtimer_start after that
	 * will not reprogram the hardware due to hang_detected being
	 * set. So we'd effectivly block all timers until the T2 event
	 * fires.
	 */
	if (cpu_base->hang_detected)
		return;

580
	tick_program_event(cpu_base->expires_next, 1);
581 582 583 584 585 586 587 588 589
}

/*
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
590 591
static void hrtimer_reprogram(struct hrtimer *timer,
			      struct hrtimer_clock_base *base)
592
{
593
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
594
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
595

596
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
597

598
	/*
599 600
	 * If the timer is not on the current cpu, we cannot reprogram
	 * the other cpus clock event device.
601
	 */
602 603 604 605 606 607 608 609 610 611 612 613
	if (base->cpu_base != cpu_base)
		return;

	/*
	 * If the hrtimer interrupt is running, then it will
	 * reevaluate the clock bases and reprogram the clock event
	 * device. The callbacks are always executed in hard interrupt
	 * context so we don't need an extra check for a running
	 * callback.
	 */
	if (cpu_base->in_hrtirq)
		return;
614

615 616
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
617
	 * expiry time which is less than base->offset. Set it to 0.
618
	 */
T
Thomas Gleixner 已提交
619 620
	if (expires < 0)
		expires = 0;
621

T
Thomas Gleixner 已提交
622
	if (expires >= cpu_base->expires_next)
623
		return;
624

625
	/* Update the pointer to the next expiring timer */
626
	cpu_base->next_timer = timer;
627

628 629 630 631 632 633 634
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * do not schedule a timer which is earlier than the expiry
	 * which we enforced in the hang detection. We want the system
	 * to make progress.
	 */
	if (cpu_base->hang_detected)
635
		return;
636 637

	/*
638 639
	 * Program the timer hardware. We enforce the expiry for
	 * events which are already in the past.
640
	 */
641 642
	cpu_base->expires_next = expires;
	tick_program_event(expires, 1);
643 644 645 646 647 648 649
}

/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
T
Thomas Gleixner 已提交
650
	base->expires_next = KTIME_MAX;
651 652 653
	base->hres_active = 0;
}

654 655 656 657 658 659 660
/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
661
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
662

663
	if (!base->hres_active)
664 665 666
		return;

	raw_spin_lock(&base->lock);
667
	hrtimer_update_base(base);
668 669 670
	hrtimer_force_reprogram(base, 0);
	raw_spin_unlock(&base->lock);
}
671

672 673 674
/*
 * Switch to high resolution mode
 */
675
static void hrtimer_switch_to_hres(void)
676
{
677
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
678 679

	if (tick_init_highres()) {
I
Ingo Molnar 已提交
680
		printk(KERN_WARNING "Could not switch to high resolution "
681
				    "mode on CPU %d\n", base->cpu);
682
		return;
683 684
	}
	base->hres_active = 1;
685
	hrtimer_resolution = HIGH_RES_NSEC;
686 687 688 689 690 691

	tick_setup_sched_timer();
	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
}

692 693 694 695 696 697 698
static void clock_was_set_work(struct work_struct *work)
{
	clock_was_set();
}

static DECLARE_WORK(hrtimer_work, clock_was_set_work);

699
/*
P
Pratyush Patel 已提交
700
 * Called from timekeeping and resume code to reprogram the hrtimer
701
 * interrupt device on all cpus.
702 703 704
 */
void clock_was_set_delayed(void)
{
705
	schedule_work(&hrtimer_work);
706 707
}

708 709
#else

710
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
711 712
static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
713
static inline void hrtimer_switch_to_hres(void) { }
714 715
static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
716 717
static inline int hrtimer_reprogram(struct hrtimer *timer,
				    struct hrtimer_clock_base *base)
718 719 720 721
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
722
static inline void retrigger_next_event(void *arg) { }
723 724 725

#endif /* CONFIG_HIGH_RES_TIMERS */

726 727 728 729 730 731 732 733 734 735 736 737 738
/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
739
#ifdef CONFIG_HIGH_RES_TIMERS
740 741
	/* Retrigger the CPU local events everywhere */
	on_each_cpu(retrigger_next_event, NULL, 1);
742 743
#endif
	timerfd_clock_was_set();
744 745 746 747
}

/*
 * During resume we might have to reprogram the high resolution timer
748 749
 * interrupt on all online CPUs.  However, all other CPUs will be
 * stopped with IRQs interrupts disabled so the clock_was_set() call
750
 * must be deferred.
751 752 753
 */
void hrtimers_resume(void)
{
754
	lockdep_assert_irqs_disabled();
755
	/* Retrigger on the local CPU */
756
	retrigger_next_event(NULL);
757 758
	/* And schedule a retrigger for all others */
	clock_was_set_delayed();
759 760
}

761
/*
762
 * Counterpart to lock_hrtimer_base above:
763 764 765 766
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
767
	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
768 769 770 771 772
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
773
 * @now:	forward past this time
774 775 776
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
777
 * Returns the number of overruns.
778 779 780 781 782 783 784 785
 *
 * Can be safely called from the callback function of @timer. If
 * called from other contexts @timer must neither be enqueued nor
 * running the callback and the caller needs to take care of
 * serialization.
 *
 * Note: This only updates the timer expiry value and does not requeue
 * the timer.
786
 */
D
Davide Libenzi 已提交
787
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
788
{
D
Davide Libenzi 已提交
789
	u64 orun = 1;
790
	ktime_t delta;
791

792
	delta = ktime_sub(now, hrtimer_get_expires(timer));
793

T
Thomas Gleixner 已提交
794
	if (delta < 0)
795 796
		return 0;

797 798 799
	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
		return 0;

T
Thomas Gleixner 已提交
800 801
	if (interval < hrtimer_resolution)
		interval = hrtimer_resolution;
802

T
Thomas Gleixner 已提交
803
	if (unlikely(delta >= interval)) {
804
		s64 incr = ktime_to_ns(interval);
805 806

		orun = ktime_divns(delta, incr);
807
		hrtimer_add_expires_ns(timer, incr * orun);
T
Thomas Gleixner 已提交
808
		if (hrtimer_get_expires_tv64(timer) > now)
809 810 811 812 813 814 815
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
816
	hrtimer_add_expires(timer, interval);
817 818 819

	return orun;
}
S
Stas Sergeev 已提交
820
EXPORT_SYMBOL_GPL(hrtimer_forward);
821 822 823 824 825 826

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
827 828
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
829
 */
830 831
static int enqueue_hrtimer(struct hrtimer *timer,
			   struct hrtimer_clock_base *base)
832
{
833
	debug_activate(timer);
834

835
	base->cpu_base->active_bases |= 1 << base->index;
836

837
	timer->state = HRTIMER_STATE_ENQUEUED;
838

839
	return timerqueue_add(&base->active, &timer->node);
840
}
841 842 843 844 845

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
846 847 848 849 850
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
851
 */
852
static void __remove_hrtimer(struct hrtimer *timer,
853
			     struct hrtimer_clock_base *base,
854
			     u8 newstate, int reprogram)
855
{
856
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
857
	u8 state = timer->state;
858

859 860 861
	timer->state = newstate;
	if (!(state & HRTIMER_STATE_ENQUEUED))
		return;
862

863
	if (!timerqueue_del(&base->active, &timer->node))
864
		cpu_base->active_bases &= ~(1 << base->index);
865 866

#ifdef CONFIG_HIGH_RES_TIMERS
867 868 869 870 871 872 873 874 875 876
	/*
	 * Note: If reprogram is false we do not update
	 * cpu_base->next_timer. This happens when we remove the first
	 * timer on a remote cpu. No harm as we never dereference
	 * cpu_base->next_timer. So the worst thing what can happen is
	 * an superflous call to hrtimer_force_reprogram() on the
	 * remote cpu later on if the same timer gets enqueued again.
	 */
	if (reprogram && timer == cpu_base->next_timer)
		hrtimer_force_reprogram(cpu_base, 1);
877
#endif
878 879 880 881 882 883
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
884
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
885
{
886
	if (hrtimer_is_queued(timer)) {
887
		u8 state = timer->state;
888 889 890 891 892 893 894 895 896 897
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
898
		debug_deactivate(timer);
899
		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
900

901 902 903
		if (!restart)
			state = HRTIMER_STATE_INACTIVE;

904
		__remove_hrtimer(timer, base, state, reprogram);
905 906 907 908 909
		return 1;
	}
	return 0;
}

910 911 912 913 914 915 916 917 918 919 920
static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
					    const enum hrtimer_mode mode)
{
#ifdef CONFIG_TIME_LOW_RES
	/*
	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
	 * granular time values. For relative timers we add hrtimer_resolution
	 * (i.e. one jiffie) to prevent short timeouts.
	 */
	timer->is_rel = mode & HRTIMER_MODE_REL;
	if (timer->is_rel)
T
Thomas Gleixner 已提交
921
		tim = ktime_add_safe(tim, hrtimer_resolution);
922 923 924 925
#endif
	return tim;
}

926 927 928 929 930 931 932 933
/**
 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
 * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL)
 */
934
void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
935
			    u64 delta_ns, const enum hrtimer_mode mode)
936
{
937
	struct hrtimer_clock_base *base, *new_base;
938
	unsigned long flags;
939
	int leftmost;
940 941 942 943

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
944
	remove_hrtimer(timer, base, true);
945

946
	if (mode & HRTIMER_MODE_REL)
947
		tim = ktime_add_safe(tim, base->get_time());
948 949

	tim = hrtimer_update_lowres(timer, tim, mode);
950

951
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
952

953 954 955
	/* Switch the timer base, if necessary: */
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);

956
	leftmost = enqueue_hrtimer(timer, new_base);
957 958
	if (!leftmost)
		goto unlock;
959 960 961 962 963 964

	if (!hrtimer_is_hres_active(timer)) {
		/*
		 * Kick to reschedule the next tick to handle the new timer
		 * on dynticks target.
		 */
965
		if (is_timers_nohz_active())
966
			wake_up_nohz_cpu(new_base->cpu_base->cpu);
967 968
	} else {
		hrtimer_reprogram(timer, new_base);
969
	}
970
unlock:
971
	unlock_hrtimer_base(timer, &flags);
972
}
973 974
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

975 976 977 978 979 980 981
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
982
 * -1 when the timer is currently executing the callback function and
983
 *    cannot be stopped
984 985 986
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
987
	struct hrtimer_clock_base *base;
988 989 990
	unsigned long flags;
	int ret = -1;

991 992 993 994 995 996 997 998 999
	/*
	 * Check lockless first. If the timer is not active (neither
	 * enqueued nor running the callback, nothing to do here.  The
	 * base lock does not serialize against a concurrent enqueue,
	 * so we can avoid taking it.
	 */
	if (!hrtimer_active(timer))
		return 0;

1000 1001
	base = lock_hrtimer_base(timer, &flags);

1002
	if (!hrtimer_callback_running(timer))
1003
		ret = remove_hrtimer(timer, base, false);
1004 1005 1006 1007 1008 1009

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1010
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1027
		cpu_relax();
1028 1029
	}
}
1030
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1031 1032 1033 1034

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
1035
 * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1036
 */
1037
ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1038 1039 1040 1041
{
	unsigned long flags;
	ktime_t rem;

1042
	lock_hrtimer_base(timer, &flags);
1043 1044 1045 1046
	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
		rem = hrtimer_expires_remaining_adjusted(timer);
	else
		rem = hrtimer_expires_remaining(timer);
1047 1048 1049 1050
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1051
EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1052

1053
#ifdef CONFIG_NO_HZ_COMMON
1054 1055 1056
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
1057
 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1058
 */
1059
u64 hrtimer_get_next_event(void)
1060
{
1061
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1062
	u64 expires = KTIME_MAX;
1063 1064
	unsigned long flags;

1065
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1066

1067
	if (!__hrtimer_hres_active(cpu_base))
T
Thomas Gleixner 已提交
1068
		expires = __hrtimer_get_next_event(cpu_base);
1069

1070
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1071

1072
	return expires;
1073 1074 1075
}
#endif

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
static inline int hrtimer_clockid_to_base(clockid_t clock_id)
{
	if (likely(clock_id < MAX_CLOCKS)) {
		int base = hrtimer_clock_to_base_table[clock_id];

		if (likely(base != HRTIMER_MAX_CLOCK_BASES))
			return base;
	}
	WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
	return HRTIMER_BASE_MONOTONIC;
}

1088 1089
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1090
{
1091
	struct hrtimer_cpu_base *cpu_base;
1092
	int base;
1093

1094 1095
	memset(timer, 0, sizeof(struct hrtimer));

1096
	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1097

1098
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1099 1100
		clock_id = CLOCK_MONOTONIC;

1101 1102
	base = hrtimer_clockid_to_base(clock_id);
	timer->base = &cpu_base->clock_base[base];
1103
	timerqueue_init(&timer->node);
1104
}
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
 * @mode:	timer mode abs/rel
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
1115
	debug_init(timer, clock_id, mode);
1116 1117
	__hrtimer_init(timer, clock_id, mode);
}
1118
EXPORT_SYMBOL_GPL(hrtimer_init);
1119

1120 1121 1122 1123
/*
 * A timer is active, when it is enqueued into the rbtree or the
 * callback function is running or it's in the state of being migrated
 * to another cpu.
1124
 *
1125
 * It is important for this function to not return a false negative.
1126
 */
1127
bool hrtimer_active(const struct hrtimer *timer)
1128
{
1129
	struct hrtimer_cpu_base *cpu_base;
1130
	unsigned int seq;
1131

1132 1133 1134
	do {
		cpu_base = READ_ONCE(timer->base->cpu_base);
		seq = raw_read_seqcount_begin(&cpu_base->seq);
1135

1136 1137 1138 1139 1140 1141 1142 1143
		if (timer->state != HRTIMER_STATE_INACTIVE ||
		    cpu_base->running == timer)
			return true;

	} while (read_seqcount_retry(&cpu_base->seq, seq) ||
		 cpu_base != READ_ONCE(timer->base->cpu_base));

	return false;
1144
}
1145
EXPORT_SYMBOL_GPL(hrtimer_active);
1146

1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
/*
 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
 * distinct sections:
 *
 *  - queued:	the timer is queued
 *  - callback:	the timer is being ran
 *  - post:	the timer is inactive or (re)queued
 *
 * On the read side we ensure we observe timer->state and cpu_base->running
 * from the same section, if anything changed while we looked at it, we retry.
 * This includes timer->base changing because sequence numbers alone are
 * insufficient for that.
 *
 * The sequence numbers are required because otherwise we could still observe
 * a false negative if the read side got smeared over multiple consequtive
 * __run_hrtimer() invocations.
 */

1165 1166 1167
static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
			  struct hrtimer_clock_base *base,
			  struct hrtimer *timer, ktime_t *now)
1168 1169 1170 1171
{
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1172
	lockdep_assert_held(&cpu_base->lock);
1173

1174
	debug_deactivate(timer);
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
	cpu_base->running = timer;

	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
	 * timer->state == INACTIVE.
	 */
	raw_write_seqcount_barrier(&cpu_base->seq);

	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1187
	fn = timer->function;
1188

1189 1190 1191 1192 1193 1194 1195 1196
	/*
	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
	 * timer is restarted with a period then it becomes an absolute
	 * timer. If its not restarted it does not matter.
	 */
	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
		timer->is_rel = false;

1197 1198 1199 1200 1201
	/*
	 * Because we run timers from hardirq context, there is no chance
	 * they get migrated to another cpu, therefore its safe to unlock
	 * the timer base.
	 */
1202
	raw_spin_unlock(&cpu_base->lock);
1203
	trace_hrtimer_expire_entry(timer, now);
1204
	restart = fn(timer);
1205
	trace_hrtimer_expire_exit(timer);
1206
	raw_spin_lock(&cpu_base->lock);
1207 1208

	/*
1209
	 * Note: We clear the running state after enqueue_hrtimer and
P
Pratyush Patel 已提交
1210
	 * we do not reprogram the event hardware. Happens either in
T
Thomas Gleixner 已提交
1211
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1212 1213 1214 1215
	 *
	 * Note: Because we dropped the cpu_base->lock above,
	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
	 * for us already.
1216
	 */
1217 1218
	if (restart != HRTIMER_NORESTART &&
	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1219
		enqueue_hrtimer(timer, base);
1220

1221 1222 1223 1224 1225 1226 1227 1228
	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
	 * timer->state == INACTIVE.
	 */
	raw_write_seqcount_barrier(&cpu_base->seq);
1229

1230 1231
	WARN_ON_ONCE(cpu_base->running != timer);
	cpu_base->running = NULL;
1232 1233
}

1234
static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1235
{
1236 1237
	struct hrtimer_clock_base *base = cpu_base->clock_base;
	unsigned int active = cpu_base->active_bases;
1238

1239
	for (; active; base++, active >>= 1) {
1240
		struct timerqueue_node *node;
1241 1242
		ktime_t basenow;

1243
		if (!(active & 0x01))
1244
			continue;
1245 1246 1247

		basenow = ktime_add(now, base->offset);

1248
		while ((node = timerqueue_getnext(&base->active))) {
1249 1250
			struct hrtimer *timer;

1251
			timer = container_of(node, struct hrtimer, node);
1252

1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */
T
Thomas Gleixner 已提交
1265
			if (basenow < hrtimer_get_softexpires_tv64(timer))
1266 1267
				break;

1268
			__run_hrtimer(cpu_base, base, timer, &basenow);
1269 1270
		}
	}
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
}

#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
	ktime_t expires_next, now, entry_time, delta;
	int retries = 0;

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
T
Thomas Gleixner 已提交
1287
	dev->next_event = KTIME_MAX;
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299

	raw_spin_lock(&cpu_base->lock);
	entry_time = now = hrtimer_update_base(cpu_base);
retry:
	cpu_base->in_hrtirq = 1;
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
T
Thomas Gleixner 已提交
1300
	cpu_base->expires_next = KTIME_MAX;
1301 1302 1303

	__hrtimer_run_queues(cpu_base, now);

1304 1305
	/* Reevaluate the clock bases for the next expiry */
	expires_next = __hrtimer_get_next_event(cpu_base);
1306 1307 1308 1309
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1310
	cpu_base->expires_next = expires_next;
1311
	cpu_base->in_hrtirq = 0;
1312
	raw_spin_unlock(&cpu_base->lock);
1313 1314

	/* Reprogramming necessary ? */
1315
	if (!tick_program_event(expires_next, 0)) {
1316 1317
		cpu_base->hang_detected = 0;
		return;
1318
	}
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328

	/*
	 * The next timer was already expired due to:
	 * - tracing
	 * - long lasting callbacks
	 * - being scheduled away when running in a VM
	 *
	 * We need to prevent that we loop forever in the hrtimer
	 * interrupt routine. We give it 3 attempts to avoid
	 * overreacting on some spurious event.
1329 1330 1331
	 *
	 * Acquire base lock for updating the offsets and retrieving
	 * the current time.
1332
	 */
1333
	raw_spin_lock(&cpu_base->lock);
1334
	now = hrtimer_update_base(cpu_base);
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
	cpu_base->nr_retries++;
	if (++retries < 3)
		goto retry;
	/*
	 * Give the system a chance to do something else than looping
	 * here. We stored the entry time, so we know exactly how long
	 * we spent here. We schedule the next event this amount of
	 * time away.
	 */
	cpu_base->nr_hangs++;
	cpu_base->hang_detected = 1;
1346
	raw_spin_unlock(&cpu_base->lock);
1347
	delta = ktime_sub(now, entry_time);
T
Thomas Gleixner 已提交
1348 1349
	if ((unsigned int)delta > cpu_base->max_hang_time)
		cpu_base->max_hang_time = (unsigned int) delta;
1350 1351 1352 1353
	/*
	 * Limit it to a sensible value as we enforce a longer
	 * delay. Give the CPU at least 100ms to catch up.
	 */
T
Thomas Gleixner 已提交
1354
	if (delta > 100 * NSEC_PER_MSEC)
1355 1356 1357 1358 1359 1360
		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
	else
		expires_next = ktime_add(now, delta);
	tick_program_event(expires_next, 1);
	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
		    ktime_to_ns(delta));
1361 1362
}

1363
/* called with interrupts disabled */
1364
static inline void __hrtimer_peek_ahead_timers(void)
1365 1366 1367 1368 1369 1370
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

1371
	td = this_cpu_ptr(&tick_cpu_device);
1372 1373 1374 1375
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1376 1377 1378 1379 1380
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1381

1382
/*
1383
 * Called from run_local_timers in hardirq context every jiffy
1384
 */
1385
void hrtimer_run_queues(void)
1386
{
1387
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1388
	ktime_t now;
1389

1390
	if (__hrtimer_hres_active(cpu_base))
1391
		return;
1392

1393
	/*
1394 1395 1396 1397 1398
	 * This _is_ ugly: We have to check periodically, whether we
	 * can switch to highres and / or nohz mode. The clocksource
	 * switch happens with xtime_lock held. Notification from
	 * there only sets the check bit in the tick_oneshot code,
	 * otherwise we might deadlock vs. xtime_lock.
1399
	 */
1400
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1401
		hrtimer_switch_to_hres();
1402
		return;
1403
	}
1404

1405 1406 1407 1408
	raw_spin_lock(&cpu_base->lock);
	now = hrtimer_update_base(cpu_base);
	__hrtimer_run_queues(cpu_base, now);
	raw_spin_unlock(&cpu_base->lock);
1409 1410
}

1411 1412 1413
/*
 * Sleep related functions:
 */
1414
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1427
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1428 1429 1430 1431
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}
S
Stephen Hemminger 已提交
1432
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1433

1434
int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1435 1436 1437 1438
{
	switch(restart->nanosleep.type) {
#ifdef CONFIG_COMPAT
	case TT_COMPAT:
1439
		if (compat_put_timespec64(ts, restart->nanosleep.compat_rmtp))
1440 1441 1442 1443
			return -EFAULT;
		break;
#endif
	case TT_NATIVE:
1444
		if (put_timespec64(ts, restart->nanosleep.rmtp))
1445 1446 1447 1448 1449 1450 1451 1452
			return -EFAULT;
		break;
	default:
		BUG();
	}
	return -ERESTART_RESTARTBLOCK;
}

1453
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1454
{
1455 1456
	struct restart_block *restart;

1457
	hrtimer_init_sleeper(t, current);
1458

1459 1460
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1461
		hrtimer_start_expires(&t->timer, mode);
1462

1463
		if (likely(t->task))
1464
			freezable_schedule();
1465

1466
		hrtimer_cancel(&t->timer);
1467
		mode = HRTIMER_MODE_ABS;
1468 1469

	} while (t->task && !signal_pending(current));
1470

1471 1472
	__set_current_state(TASK_RUNNING);

1473
	if (!t->task)
1474 1475
		return 0;

1476 1477
	restart = &current->restart_block;
	if (restart->nanosleep.type != TT_NONE) {
1478
		ktime_t rem = hrtimer_expires_remaining(&t->timer);
1479
		struct timespec64 rmt;
1480

1481 1482
		if (rem <= 0)
			return 0;
1483
		rmt = ktime_to_timespec64(rem);
1484

1485
		return nanosleep_copyout(restart, &rmt);
1486 1487
	}
	return -ERESTART_RESTARTBLOCK;
1488 1489
}

A
Al Viro 已提交
1490
static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1491
{
1492
	struct hrtimer_sleeper t;
1493
	int ret;
1494

1495
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1496
				HRTIMER_MODE_ABS);
1497
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1498

1499
	ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1500 1501
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1502 1503
}

1504
long hrtimer_nanosleep(const struct timespec64 *rqtp,
1505 1506
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
1507
	struct restart_block *restart;
1508
	struct hrtimer_sleeper t;
1509
	int ret = 0;
1510
	u64 slack;
1511 1512

	slack = current->timer_slack_ns;
1513
	if (dl_task(current) || rt_task(current))
1514
		slack = 0;
1515

1516
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1517
	hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
1518 1519
	ret = do_nanosleep(&t, mode);
	if (ret != -ERESTART_RESTARTBLOCK)
1520
		goto out;
1521

1522
	/* Absolute timers do not update the rmtp value and restart: */
1523 1524 1525 1526
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1527

1528
	restart = &current->restart_block;
1529
	restart->fn = hrtimer_nanosleep_restart;
1530
	restart->nanosleep.clockid = t.timer.base->clockid;
1531
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1532 1533 1534
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1535 1536
}

1537 1538
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1539
{
1540
	struct timespec64 tu;
1541

1542
	if (get_timespec64(&tu, rqtp))
1543 1544
		return -EFAULT;

1545
	if (!timespec64_valid(&tu))
1546 1547
		return -EINVAL;

1548
	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1549
	current->restart_block.nanosleep.rmtp = rmtp;
1550
	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1551 1552
}

1553 1554 1555 1556 1557
#ifdef CONFIG_COMPAT

COMPAT_SYSCALL_DEFINE2(nanosleep, struct compat_timespec __user *, rqtp,
		       struct compat_timespec __user *, rmtp)
{
1558
	struct timespec64 tu;
1559

1560
	if (compat_get_timespec64(&tu, rqtp))
1561 1562
		return -EFAULT;

1563
	if (!timespec64_valid(&tu))
1564 1565 1566 1567
		return -EINVAL;

	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
	current->restart_block.nanosleep.compat_rmtp = rmtp;
1568
	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1569 1570 1571
}
#endif

1572 1573 1574
/*
 * Functions related to boot-time initialization:
 */
1575
int hrtimers_prepare_cpu(unsigned int cpu)
1576
{
1577
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1578 1579
	int i;

1580
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1581
		cpu_base->clock_base[i].cpu_base = cpu_base;
1582 1583
		timerqueue_init_head(&cpu_base->clock_base[i].active);
	}
1584

1585
	cpu_base->cpu = cpu;
1586
	hrtimer_init_hres(cpu_base);
1587
	return 0;
1588 1589 1590 1591
}

#ifdef CONFIG_HOTPLUG_CPU

1592
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1593
				struct hrtimer_clock_base *new_base)
1594 1595
{
	struct hrtimer *timer;
1596
	struct timerqueue_node *node;
1597

1598 1599
	while ((node = timerqueue_getnext(&old_base->active))) {
		timer = container_of(node, struct hrtimer, node);
1600
		BUG_ON(hrtimer_callback_running(timer));
1601
		debug_deactivate(timer);
T
Thomas Gleixner 已提交
1602 1603

		/*
1604
		 * Mark it as ENQUEUED not INACTIVE otherwise the
T
Thomas Gleixner 已提交
1605 1606 1607
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
1608
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1609
		timer->base = new_base;
1610
		/*
T
Thomas Gleixner 已提交
1611 1612 1613 1614 1615 1616
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1617
		 */
1618
		enqueue_hrtimer(timer, new_base);
1619 1620 1621
	}
}

1622
int hrtimers_dead_cpu(unsigned int scpu)
1623
{
1624
	struct hrtimer_cpu_base *old_base, *new_base;
1625
	int i;
1626

1627 1628
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1629 1630 1631

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
1632
	new_base = this_cpu_ptr(&hrtimer_bases);
1633 1634 1635 1636
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1637 1638
	raw_spin_lock(&new_base->lock);
	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1639

1640
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1641
		migrate_hrtimer_list(&old_base->clock_base[i],
1642
				     &new_base->clock_base[i]);
1643 1644
	}

1645 1646
	raw_spin_unlock(&old_base->lock);
	raw_spin_unlock(&new_base->lock);
1647

1648 1649 1650
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1651
	return 0;
1652
}
1653

1654 1655 1656 1657
#endif /* CONFIG_HOTPLUG_CPU */

void __init hrtimers_init(void)
{
1658
	hrtimers_prepare_cpu(smp_processor_id());
1659 1660
}

1661
/**
1662
 * schedule_hrtimeout_range_clock - sleep until timeout
1663
 * @expires:	timeout value (ktime_t)
1664
 * @delta:	slack in expires timeout (ktime_t)
1665
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1666
 * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1667
 */
1668
int __sched
1669
schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1670
			       const enum hrtimer_mode mode, int clock)
1671 1672 1673 1674 1675 1676 1677
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
T
Thomas Gleixner 已提交
1678
	if (expires && *expires == 0) {
1679 1680 1681 1682 1683
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
N
Namhyung Kim 已提交
1684
	 * A NULL parameter means "infinite"
1685 1686 1687 1688 1689 1690
	 */
	if (!expires) {
		schedule();
		return -EINTR;
	}

1691
	hrtimer_init_on_stack(&t.timer, clock, mode);
1692
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1693 1694 1695

	hrtimer_init_sleeper(&t, current);

1696
	hrtimer_start_expires(&t.timer, mode);
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726

/**
 * schedule_hrtimeout_range - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @delta:	slack in expires timeout (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1727 1728
 * pass before the routine returns unless the current task is explicitly
 * woken up, (e.g. by wake_up_process()).
1729 1730
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1731 1732
 * delivered to the current task or the current task is explicitly woken
 * up.
1733 1734 1735 1736
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
1737 1738 1739
 * Returns 0 when the timer has expired. If the task was woken before the
 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
 * by an explicit wakeup, it returns -EINTR.
1740
 */
1741
int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1742 1743 1744 1745 1746
				     const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range_clock(expires, delta, mode,
					      CLOCK_MONOTONIC);
}
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1761 1762
 * pass before the routine returns unless the current task is explicitly
 * woken up, (e.g. by wake_up_process()).
1763 1764
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1765 1766
 * delivered to the current task or the current task is explicitly woken
 * up.
1767 1768 1769 1770
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
1771 1772 1773
 * Returns 0 when the timer has expired. If the task was woken before the
 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
 * by an explicit wakeup, it returns -EINTR.
1774 1775 1776 1777 1778 1779
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1780
EXPORT_SYMBOL_GPL(schedule_hrtimeout);