hrtimer.c 46.9 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
35
#include <linux/export.h>
36 37 38 39
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46
#include <linux/sched/signal.h>
47
#include <linux/sched/sysctl.h>
48
#include <linux/sched/rt.h>
49
#include <linux/sched/deadline.h>
50
#include <linux/sched/nohz.h>
51
#include <linux/sched/debug.h>
52
#include <linux/timer.h>
53
#include <linux/freezer.h>
54
#include <linux/compat.h>
55

56
#include <linux/uaccess.h>
57

58 59
#include <trace/events/timer.h>

60
#include "tick-internal.h"
61

62 63
/*
 * The timer bases:
64
 *
Z
Zhen Lei 已提交
65
 * There are more clockids than hrtimer bases. Thus, we index
66 67 68
 * into the timer bases by the hrtimer_base_type enum. When trying
 * to reach a base using a clockid, hrtimer_clockid_to_base()
 * is used to convert from clockid to the proper hrtimer_base_type.
69
 */
70
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
71
{
72
	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
73
	.clock_base =
74
	{
75
		{
76 77
			.index = HRTIMER_BASE_MONOTONIC,
			.clockid = CLOCK_MONOTONIC,
78 79
			.get_time = &ktime_get,
		},
T
Thomas Gleixner 已提交
80 81 82 83 84
		{
			.index = HRTIMER_BASE_REALTIME,
			.clockid = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
		},
85
		{
86 87
			.index = HRTIMER_BASE_BOOTTIME,
			.clockid = CLOCK_BOOTTIME,
88 89
			.get_time = &ktime_get_boottime,
		},
90 91 92 93 94
		{
			.index = HRTIMER_BASE_TAI,
			.clockid = CLOCK_TAI,
			.get_time = &ktime_get_clocktai,
		},
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
		{
			.index = HRTIMER_BASE_MONOTONIC_SOFT,
			.clockid = CLOCK_MONOTONIC,
			.get_time = &ktime_get,
		},
		{
			.index = HRTIMER_BASE_REALTIME_SOFT,
			.clockid = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
		},
		{
			.index = HRTIMER_BASE_BOOTTIME_SOFT,
			.clockid = CLOCK_BOOTTIME,
			.get_time = &ktime_get_boottime,
		},
		{
			.index = HRTIMER_BASE_TAI_SOFT,
			.clockid = CLOCK_TAI,
			.get_time = &ktime_get_clocktai,
		},
115
	}
116 117
};

118
static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
119 120 121
	/* Make sure we catch unsupported clockids */
	[0 ... MAX_CLOCKS - 1]	= HRTIMER_MAX_CLOCK_BASES,

122 123 124
	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
125
	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
126
};
127

128 129 130 131 132 133
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

134 135 136 137 138 139 140 141 142 143 144
/*
 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
 * such that hrtimer_callback_running() can unconditionally dereference
 * timer->base->cpu_base
 */
static struct hrtimer_cpu_base migration_cpu_base = {
	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
};

#define migration_base	migration_cpu_base.clock_base[0]

145 146 147 148 149 150 151 152 153
/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
154 155
 * possible to set timer->base = &migration_base and drop the lock: the timer
 * remains locked.
156
 */
157 158 159
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
160
{
161
	struct hrtimer_clock_base *base;
162 163 164

	for (;;) {
		base = timer->base;
165
		if (likely(base != &migration_base)) {
166
			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
167 168 169
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
170
			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
171 172 173 174 175
		}
		cpu_relax();
	}
}

176
/*
177 178 179 180 181
 * We do not migrate the timer when it is expiring before the next
 * event on the target cpu. When high resolution is enabled, we cannot
 * reprogram the target cpu hardware and we would cause it to fire
 * late. To keep it simple, we handle the high resolution enabled and
 * disabled case similar.
182 183 184 185 186 187 188 189 190
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
	ktime_t expires;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
191
	return expires < new_base->cpu_base->expires_next;
192 193
}

194 195 196 197
static inline
struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
					 int pinned)
{
198 199 200 201
#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
	if (static_branch_likely(&timers_migration_enabled) && !pinned)
		return &per_cpu(hrtimer_bases, get_nohz_timer_target());
#endif
202
	return base;
203 204
}

205
/*
206 207 208 209 210 211 212 213 214 215
 * We switch the timer base to a power-optimized selected CPU target,
 * if:
 *	- NO_HZ_COMMON is enabled
 *	- timer migration is enabled
 *	- the timer callback is not running
 *	- the timer is not the first expiring timer on the new target
 *
 * If one of the above requirements is not fulfilled we move the timer
 * to the current CPU or leave it on the previously assigned CPU if
 * the timer callback is currently running.
216
 */
217
static inline struct hrtimer_clock_base *
218 219
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
220
{
221
	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
222
	struct hrtimer_clock_base *new_base;
223
	int basenum = base->index;
224

225 226
	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
	new_cpu_base = get_target_base(this_cpu_base, pinned);
227
again:
228
	new_base = &new_cpu_base->clock_base[basenum];
229 230 231

	if (base != new_base) {
		/*
232
		 * We are trying to move timer to new_base.
233 234 235 236 237 238 239
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
240
		if (unlikely(hrtimer_callback_running(timer)))
241 242
			return base;

243 244
		/* See the comment in lock_hrtimer_base() */
		timer->base = &migration_base;
245 246
		raw_spin_unlock(&base->cpu_base->lock);
		raw_spin_lock(&new_base->cpu_base->lock);
247

248
		if (new_cpu_base != this_cpu_base &&
249
		    hrtimer_check_target(timer, new_base)) {
250 251
			raw_spin_unlock(&new_base->cpu_base->lock);
			raw_spin_lock(&base->cpu_base->lock);
252
			new_cpu_base = this_cpu_base;
253 254
			timer->base = base;
			goto again;
255
		}
256
		timer->base = new_base;
257
	} else {
258
		if (new_cpu_base != this_cpu_base &&
259
		    hrtimer_check_target(timer, new_base)) {
260
			new_cpu_base = this_cpu_base;
261 262
			goto again;
		}
263 264 265 266 267 268
	}
	return new_base;
}

#else /* CONFIG_SMP */

269
static inline struct hrtimer_clock_base *
270 271
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
272
	struct hrtimer_clock_base *base = timer->base;
273

274
	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
275 276 277 278

	return base;
}

279
# define switch_hrtimer_base(t, b, p)	(b)
280 281 282 283 284 285 286 287 288 289 290

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
/*
 * Divide a ktime value by a nanosecond value
 */
291
s64 __ktime_divns(const ktime_t kt, s64 div)
292 293
{
	int sft = 0;
294 295
	s64 dclc;
	u64 tmp;
296

297
	dclc = ktime_to_ns(kt);
298 299
	tmp = dclc < 0 ? -dclc : dclc;

300 301 302 303 304
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
305 306 307
	tmp >>= sft;
	do_div(tmp, (unsigned long) div);
	return dclc < 0 ? -tmp : tmp;
308
}
309
EXPORT_SYMBOL_GPL(__ktime_divns);
310 311
#endif /* BITS_PER_LONG >= 64 */

312 313 314 315 316
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
317
	ktime_t res = ktime_add_unsafe(lhs, rhs);
318 319 320 321 322

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
T
Thomas Gleixner 已提交
323
	if (res < 0 || res < lhs || res < rhs)
324 325 326 327 328
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

329 330
EXPORT_SYMBOL_GPL(ktime_add_safe);

331 332 333 334
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

335 336 337 338 339
static void *hrtimer_debug_hint(void *addr)
{
	return ((struct hrtimer *) addr)->function;
}

340 341 342 343
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
344
static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
345 346 347 348 349 350 351
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
352
		return true;
353
	default:
354
		return false;
355 356 357 358 359 360
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
361
 * - an unknown non-static object is activated
362
 */
363
static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
364 365 366 367 368 369
{
	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
370
		return false;
371 372 373 374 375 376 377
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
378
static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
379 380 381 382 383 384 385
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
386
		return true;
387
	default:
388
		return false;
389 390 391 392 393
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
394
	.debug_hint	= hrtimer_debug_hint,
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}
S
Stephen Hemminger 已提交
429
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
430 431 432 433 434

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}
435
EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
436 437 438 439 440 441 442

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

443 444 445 446 447 448 449 450
static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
	   enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	trace_hrtimer_init(timer, clockid, mode);
}

451 452
static inline void debug_activate(struct hrtimer *timer,
				  enum hrtimer_mode mode)
453 454
{
	debug_hrtimer_activate(timer);
455
	trace_hrtimer_start(timer, mode);
456 457 458 459 460 461 462 463
}

static inline void debug_deactivate(struct hrtimer *timer)
{
	debug_hrtimer_deactivate(timer);
	trace_hrtimer_cancel(timer);
}

464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
static struct hrtimer_clock_base *
__next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
{
	unsigned int idx;

	if (!*active)
		return NULL;

	idx = __ffs(*active);
	*active &= ~(1U << idx);

	return &cpu_base->clock_base[idx];
}

#define for_each_active_base(base, cpu_base, active)	\
	while ((base = __next_base((cpu_base), &(active))))

481 482 483
static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
					 unsigned int active,
					 ktime_t expires_next)
484
{
485
	struct hrtimer_clock_base *base;
486
	ktime_t expires;
487

488
	for_each_active_base(base, cpu_base, active) {
489 490 491
		struct timerqueue_node *next;
		struct hrtimer *timer;

492
		next = timerqueue_getnext(&base->active);
493 494
		timer = container_of(next, struct hrtimer, node);
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
T
Thomas Gleixner 已提交
495
		if (expires < expires_next) {
496
			expires_next = expires;
497
			cpu_base->next_timer = timer;
498
		}
499 500 501 502 503 504
	}
	/*
	 * clock_was_set() might have changed base->offset of any of
	 * the clock bases so the result might be negative. Fix it up
	 * to prevent a false positive in clockevents_program_event().
	 */
T
Thomas Gleixner 已提交
505 506
	if (expires_next < 0)
		expires_next = 0;
507 508 509
	return expires_next;
}

510 511 512 513 514 515 516 517 518 519 520 521
static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
{
	unsigned int active = cpu_base->active_bases;
	ktime_t expires_next = KTIME_MAX;

	cpu_base->next_timer = NULL;

	expires_next = __hrtimer_next_event_base(cpu_base, active, expires_next);

	return expires_next;
}

522 523 524 525 526 527
static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
{
	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;

528 529
	return ktime_get_update_offsets_now(&base->clock_was_set_seq,
					    offs_real, offs_boot, offs_tai);
530 531
}

532 533 534 535 536 537 538 539 540 541 542 543 544 545
/*
 * Is the high resolution mode active ?
 */
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
{
	return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
		cpu_base->hres_active : 0;
}

static inline int hrtimer_hres_active(void)
{
	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
}

546 547 548 549 550
/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
551 552
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
553
{
554 555 556
	ktime_t expires_next;

	expires_next = __hrtimer_get_next_event(cpu_base);
557

T
Thomas Gleixner 已提交
558
	if (skip_equal && expires_next == cpu_base->expires_next)
559 560
		return;

T
Thomas Gleixner 已提交
561
	cpu_base->expires_next = expires_next;
562

563
	/*
564 565 566
	 * If hres is not active, hardware does not have to be
	 * reprogrammed yet.
	 *
567 568 569 570 571 572 573 574 575 576 577 578 579
	 * If a hang was detected in the last timer interrupt then we
	 * leave the hang delay active in the hardware. We want the
	 * system to make progress. That also prevents the following
	 * scenario:
	 * T1 expires 50ms from now
	 * T2 expires 5s from now
	 *
	 * T1 is removed, so this code is called and would reprogram
	 * the hardware to 5s from now. Any hrtimer_start after that
	 * will not reprogram the hardware due to hang_detected being
	 * set. So we'd effectivly block all timers until the T2 event
	 * fires.
	 */
580
	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
581 582
		return;

583
	tick_program_event(cpu_base->expires_next, 1);
584 585
}

586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static bool hrtimer_hres_enabled __read_mostly  = true;
unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
EXPORT_SYMBOL_GPL(hrtimer_resolution);

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

614 615 616 617 618 619 620
/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
621
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
622

623
	if (!__hrtimer_hres_active(base))
624 625 626
		return;

	raw_spin_lock(&base->lock);
627
	hrtimer_update_base(base);
628 629 630
	hrtimer_force_reprogram(base, 0);
	raw_spin_unlock(&base->lock);
}
631

632 633 634
/*
 * Switch to high resolution mode
 */
635
static void hrtimer_switch_to_hres(void)
636
{
637
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
638 639

	if (tick_init_highres()) {
I
Ingo Molnar 已提交
640
		printk(KERN_WARNING "Could not switch to high resolution "
641
				    "mode on CPU %d\n", base->cpu);
642
		return;
643 644
	}
	base->hres_active = 1;
645
	hrtimer_resolution = HIGH_RES_NSEC;
646 647 648 649 650 651

	tick_setup_sched_timer();
	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
}

652 653 654 655 656 657 658
static void clock_was_set_work(struct work_struct *work)
{
	clock_was_set();
}

static DECLARE_WORK(hrtimer_work, clock_was_set_work);

659
/*
P
Pratyush Patel 已提交
660
 * Called from timekeeping and resume code to reprogram the hrtimer
661
 * interrupt device on all cpus.
662 663 664
 */
void clock_was_set_delayed(void)
{
665
	schedule_work(&hrtimer_work);
666 667
}

668 669 670
#else

static inline int hrtimer_is_hres_enabled(void) { return 0; }
671
static inline void hrtimer_switch_to_hres(void) { }
672
static inline void retrigger_next_event(void *arg) { }
673 674 675

#endif /* CONFIG_HIGH_RES_TIMERS */

676 677 678 679 680 681 682
/*
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
683
static void hrtimer_reprogram(struct hrtimer *timer)
684 685
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
686
	struct hrtimer_clock_base *base = timer->base;
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);

	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);

	/*
	 * If the timer is not on the current cpu, we cannot reprogram
	 * the other cpus clock event device.
	 */
	if (base->cpu_base != cpu_base)
		return;

	/*
	 * If the hrtimer interrupt is running, then it will
	 * reevaluate the clock bases and reprogram the clock event
	 * device. The callbacks are always executed in hard interrupt
	 * context so we don't need an extra check for a running
	 * callback.
	 */
	if (cpu_base->in_hrtirq)
		return;

	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
	 * expiry time which is less than base->offset. Set it to 0.
	 */
	if (expires < 0)
		expires = 0;

	if (expires >= cpu_base->expires_next)
		return;

	/* Update the pointer to the next expiring timer */
	cpu_base->next_timer = timer;
720
	cpu_base->expires_next = expires;
721 722

	/*
723 724 725
	 * If hres is not active, hardware does not have to be
	 * programmed yet.
	 *
726 727 728 729 730
	 * If a hang was detected in the last timer interrupt then we
	 * do not schedule a timer which is earlier than the expiry
	 * which we enforced in the hang detection. We want the system
	 * to make progress.
	 */
731
	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
732 733 734 735 736 737 738 739 740
		return;

	/*
	 * Program the timer hardware. We enforce the expiry for
	 * events which are already in the past.
	 */
	tick_program_event(expires, 1);
}

741 742 743 744 745 746 747 748 749 750 751 752 753
/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
754
#ifdef CONFIG_HIGH_RES_TIMERS
755 756
	/* Retrigger the CPU local events everywhere */
	on_each_cpu(retrigger_next_event, NULL, 1);
757 758
#endif
	timerfd_clock_was_set();
759 760 761 762
}

/*
 * During resume we might have to reprogram the high resolution timer
763 764
 * interrupt on all online CPUs.  However, all other CPUs will be
 * stopped with IRQs interrupts disabled so the clock_was_set() call
765
 * must be deferred.
766 767 768
 */
void hrtimers_resume(void)
{
769
	lockdep_assert_irqs_disabled();
770
	/* Retrigger on the local CPU */
771
	retrigger_next_event(NULL);
772 773
	/* And schedule a retrigger for all others */
	clock_was_set_delayed();
774 775
}

776
/*
777
 * Counterpart to lock_hrtimer_base above:
778 779 780 781
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
782
	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
783 784 785 786 787
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
788
 * @now:	forward past this time
789 790 791
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
792
 * Returns the number of overruns.
793 794 795 796 797 798 799 800
 *
 * Can be safely called from the callback function of @timer. If
 * called from other contexts @timer must neither be enqueued nor
 * running the callback and the caller needs to take care of
 * serialization.
 *
 * Note: This only updates the timer expiry value and does not requeue
 * the timer.
801
 */
D
Davide Libenzi 已提交
802
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
803
{
D
Davide Libenzi 已提交
804
	u64 orun = 1;
805
	ktime_t delta;
806

807
	delta = ktime_sub(now, hrtimer_get_expires(timer));
808

T
Thomas Gleixner 已提交
809
	if (delta < 0)
810 811
		return 0;

812 813 814
	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
		return 0;

T
Thomas Gleixner 已提交
815 816
	if (interval < hrtimer_resolution)
		interval = hrtimer_resolution;
817

T
Thomas Gleixner 已提交
818
	if (unlikely(delta >= interval)) {
819
		s64 incr = ktime_to_ns(interval);
820 821

		orun = ktime_divns(delta, incr);
822
		hrtimer_add_expires_ns(timer, incr * orun);
T
Thomas Gleixner 已提交
823
		if (hrtimer_get_expires_tv64(timer) > now)
824 825 826 827 828 829 830
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
831
	hrtimer_add_expires(timer, interval);
832 833 834

	return orun;
}
S
Stas Sergeev 已提交
835
EXPORT_SYMBOL_GPL(hrtimer_forward);
836 837 838 839 840 841

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
842 843
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
844
 */
845
static int enqueue_hrtimer(struct hrtimer *timer,
846 847
			   struct hrtimer_clock_base *base,
			   enum hrtimer_mode mode)
848
{
849
	debug_activate(timer, mode);
850

851
	base->cpu_base->active_bases |= 1 << base->index;
852

853
	timer->state = HRTIMER_STATE_ENQUEUED;
854

855
	return timerqueue_add(&base->active, &timer->node);
856
}
857 858 859 860 861

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
862 863 864 865 866
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
867
 */
868
static void __remove_hrtimer(struct hrtimer *timer,
869
			     struct hrtimer_clock_base *base,
870
			     u8 newstate, int reprogram)
871
{
872
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
873
	u8 state = timer->state;
874

875 876 877
	timer->state = newstate;
	if (!(state & HRTIMER_STATE_ENQUEUED))
		return;
878

879
	if (!timerqueue_del(&base->active, &timer->node))
880
		cpu_base->active_bases &= ~(1 << base->index);
881

882 883 884 885 886 887 888 889 890 891
	/*
	 * Note: If reprogram is false we do not update
	 * cpu_base->next_timer. This happens when we remove the first
	 * timer on a remote cpu. No harm as we never dereference
	 * cpu_base->next_timer. So the worst thing what can happen is
	 * an superflous call to hrtimer_force_reprogram() on the
	 * remote cpu later on if the same timer gets enqueued again.
	 */
	if (reprogram && timer == cpu_base->next_timer)
		hrtimer_force_reprogram(cpu_base, 1);
892 893 894 895 896 897
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
898
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
899
{
900
	if (hrtimer_is_queued(timer)) {
901
		u8 state = timer->state;
902 903 904 905 906 907 908 909 910 911
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
912
		debug_deactivate(timer);
913
		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
914

915 916 917
		if (!restart)
			state = HRTIMER_STATE_INACTIVE;

918
		__remove_hrtimer(timer, base, state, reprogram);
919 920 921 922 923
		return 1;
	}
	return 0;
}

924 925 926 927 928 929 930 931 932 933 934
static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
					    const enum hrtimer_mode mode)
{
#ifdef CONFIG_TIME_LOW_RES
	/*
	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
	 * granular time values. For relative timers we add hrtimer_resolution
	 * (i.e. one jiffie) to prevent short timeouts.
	 */
	timer->is_rel = mode & HRTIMER_MODE_REL;
	if (timer->is_rel)
T
Thomas Gleixner 已提交
935
		tim = ktime_add_safe(tim, hrtimer_resolution);
936 937 938 939
#endif
	return tim;
}

940 941 942
static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
				    u64 delta_ns, const enum hrtimer_mode mode,
				    struct hrtimer_clock_base *base)
943
{
944
	struct hrtimer_clock_base *new_base;
945 946

	/* Remove an active timer from the queue: */
947
	remove_hrtimer(timer, base, true);
948

949
	if (mode & HRTIMER_MODE_REL)
950
		tim = ktime_add_safe(tim, base->get_time());
951 952

	tim = hrtimer_update_lowres(timer, tim, mode);
953

954
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
955

956 957 958
	/* Switch the timer base, if necessary: */
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);

959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
	return enqueue_hrtimer(timer, new_base, mode);
}
/**
 * hrtimer_start_range_ns - (re)start an hrtimer
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
 * @mode:	timer mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED)
 */
void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
			    u64 delta_ns, const enum hrtimer_mode mode)
{
	struct hrtimer_clock_base *base;
	unsigned long flags;

	base = lock_hrtimer_base(timer, &flags);

	if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
		hrtimer_reprogram(timer);
979

980
	unlock_hrtimer_base(timer, &flags);
981
}
982 983
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

984 985 986 987 988 989 990
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
991
 * -1 when the timer is currently executing the callback function and
992
 *    cannot be stopped
993 994 995
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
996
	struct hrtimer_clock_base *base;
997 998 999
	unsigned long flags;
	int ret = -1;

1000 1001 1002 1003 1004 1005 1006 1007 1008
	/*
	 * Check lockless first. If the timer is not active (neither
	 * enqueued nor running the callback, nothing to do here.  The
	 * base lock does not serialize against a concurrent enqueue,
	 * so we can avoid taking it.
	 */
	if (!hrtimer_active(timer))
		return 0;

1009 1010
	base = lock_hrtimer_base(timer, &flags);

1011
	if (!hrtimer_callback_running(timer))
1012
		ret = remove_hrtimer(timer, base, false);
1013 1014 1015 1016 1017 1018

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1019
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1036
		cpu_relax();
1037 1038
	}
}
1039
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1040 1041 1042 1043

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
1044
 * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1045
 */
1046
ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1047 1048 1049 1050
{
	unsigned long flags;
	ktime_t rem;

1051
	lock_hrtimer_base(timer, &flags);
1052 1053 1054 1055
	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
		rem = hrtimer_expires_remaining_adjusted(timer);
	else
		rem = hrtimer_expires_remaining(timer);
1056 1057 1058 1059
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1060
EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1061

1062
#ifdef CONFIG_NO_HZ_COMMON
1063 1064 1065
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
1066
 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1067
 */
1068
u64 hrtimer_get_next_event(void)
1069
{
1070
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1071
	u64 expires = KTIME_MAX;
1072 1073
	unsigned long flags;

1074
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1075

1076
	if (!__hrtimer_hres_active(cpu_base))
T
Thomas Gleixner 已提交
1077
		expires = __hrtimer_get_next_event(cpu_base);
1078

1079
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1080

1081
	return expires;
1082 1083 1084
}
#endif

1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
static inline int hrtimer_clockid_to_base(clockid_t clock_id)
{
	if (likely(clock_id < MAX_CLOCKS)) {
		int base = hrtimer_clock_to_base_table[clock_id];

		if (likely(base != HRTIMER_MAX_CLOCK_BASES))
			return base;
	}
	WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
	return HRTIMER_BASE_MONOTONIC;
}

1097 1098
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1099
{
1100
	struct hrtimer_cpu_base *cpu_base;
1101
	int base;
1102

1103 1104
	memset(timer, 0, sizeof(struct hrtimer));

1105
	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1106

1107 1108 1109 1110 1111 1112
	/*
	 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
	 * clock modifications, so they needs to become CLOCK_MONOTONIC to
	 * ensure POSIX compliance.
	 */
	if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1113 1114
		clock_id = CLOCK_MONOTONIC;

1115 1116
	base = hrtimer_clockid_to_base(clock_id);
	timer->base = &cpu_base->clock_base[base];
1117
	timerqueue_init(&timer->node);
1118
}
1119 1120 1121 1122 1123

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
1124 1125
 * @mode:	timer mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL); pinned is not considered here!
1126 1127 1128 1129
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
1130
	debug_init(timer, clock_id, mode);
1131 1132
	__hrtimer_init(timer, clock_id, mode);
}
1133
EXPORT_SYMBOL_GPL(hrtimer_init);
1134

1135 1136 1137 1138
/*
 * A timer is active, when it is enqueued into the rbtree or the
 * callback function is running or it's in the state of being migrated
 * to another cpu.
1139
 *
1140
 * It is important for this function to not return a false negative.
1141
 */
1142
bool hrtimer_active(const struct hrtimer *timer)
1143
{
1144
	struct hrtimer_clock_base *base;
1145
	unsigned int seq;
1146

1147
	do {
1148 1149
		base = READ_ONCE(timer->base);
		seq = raw_read_seqcount_begin(&base->seq);
1150

1151
		if (timer->state != HRTIMER_STATE_INACTIVE ||
1152
		    base->running == timer)
1153 1154
			return true;

1155 1156
	} while (read_seqcount_retry(&base->seq, seq) ||
		 base != READ_ONCE(timer->base));
1157 1158

	return false;
1159
}
1160
EXPORT_SYMBOL_GPL(hrtimer_active);
1161

1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
/*
 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
 * distinct sections:
 *
 *  - queued:	the timer is queued
 *  - callback:	the timer is being ran
 *  - post:	the timer is inactive or (re)queued
 *
 * On the read side we ensure we observe timer->state and cpu_base->running
 * from the same section, if anything changed while we looked at it, we retry.
 * This includes timer->base changing because sequence numbers alone are
 * insufficient for that.
 *
 * The sequence numbers are required because otherwise we could still observe
 * a false negative if the read side got smeared over multiple consequtive
 * __run_hrtimer() invocations.
 */

1180 1181
static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
			  struct hrtimer_clock_base *base,
1182 1183
			  struct hrtimer *timer, ktime_t *now,
			  unsigned long flags)
1184 1185 1186 1187
{
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1188
	lockdep_assert_held(&cpu_base->lock);
1189

1190
	debug_deactivate(timer);
1191
	base->running = timer;
1192 1193 1194 1195 1196

	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
1197
	 * hrtimer_active() cannot observe base->running == NULL &&
1198 1199
	 * timer->state == INACTIVE.
	 */
1200
	raw_write_seqcount_barrier(&base->seq);
1201 1202

	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1203
	fn = timer->function;
1204

1205 1206 1207 1208 1209 1210 1211 1212
	/*
	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
	 * timer is restarted with a period then it becomes an absolute
	 * timer. If its not restarted it does not matter.
	 */
	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
		timer->is_rel = false;

1213
	/*
1214 1215 1216
	 * The timer is marked as running in the CPU base, so it is
	 * protected against migration to a different CPU even if the lock
	 * is dropped.
1217
	 */
1218
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1219
	trace_hrtimer_expire_entry(timer, now);
1220
	restart = fn(timer);
1221
	trace_hrtimer_expire_exit(timer);
1222
	raw_spin_lock_irq(&cpu_base->lock);
1223 1224

	/*
1225
	 * Note: We clear the running state after enqueue_hrtimer and
P
Pratyush Patel 已提交
1226
	 * we do not reprogram the event hardware. Happens either in
T
Thomas Gleixner 已提交
1227
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1228 1229 1230 1231
	 *
	 * Note: Because we dropped the cpu_base->lock above,
	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
	 * for us already.
1232
	 */
1233 1234
	if (restart != HRTIMER_NORESTART &&
	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1235
		enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1236

1237 1238 1239 1240
	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
1241
	 * hrtimer_active() cannot observe base->running.timer == NULL &&
1242 1243
	 * timer->state == INACTIVE.
	 */
1244
	raw_write_seqcount_barrier(&base->seq);
1245

1246 1247
	WARN_ON_ONCE(base->running != timer);
	base->running = NULL;
1248 1249
}

1250 1251
static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
				 unsigned long flags)
1252
{
1253
	struct hrtimer_clock_base *base;
1254
	unsigned int active = cpu_base->active_bases;
1255

1256
	for_each_active_base(base, cpu_base, active) {
1257
		struct timerqueue_node *node;
1258 1259
		ktime_t basenow;

1260 1261
		basenow = ktime_add(now, base->offset);

1262
		while ((node = timerqueue_getnext(&base->active))) {
1263 1264
			struct hrtimer *timer;

1265
			timer = container_of(node, struct hrtimer, node);
1266

1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */
T
Thomas Gleixner 已提交
1279
			if (basenow < hrtimer_get_softexpires_tv64(timer))
1280 1281
				break;

1282
			__run_hrtimer(cpu_base, base, timer, &basenow, flags);
1283 1284
		}
	}
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
}

#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
	ktime_t expires_next, now, entry_time, delta;
1297
	unsigned long flags;
1298 1299 1300 1301
	int retries = 0;

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
T
Thomas Gleixner 已提交
1302
	dev->next_event = KTIME_MAX;
1303

1304
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
	entry_time = now = hrtimer_update_base(cpu_base);
retry:
	cpu_base->in_hrtirq = 1;
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
T
Thomas Gleixner 已提交
1315
	cpu_base->expires_next = KTIME_MAX;
1316

1317
	__hrtimer_run_queues(cpu_base, now, flags);
1318

1319 1320
	/* Reevaluate the clock bases for the next expiry */
	expires_next = __hrtimer_get_next_event(cpu_base);
1321 1322 1323 1324
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1325
	cpu_base->expires_next = expires_next;
1326
	cpu_base->in_hrtirq = 0;
1327
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1328 1329

	/* Reprogramming necessary ? */
1330
	if (!tick_program_event(expires_next, 0)) {
1331 1332
		cpu_base->hang_detected = 0;
		return;
1333
	}
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

	/*
	 * The next timer was already expired due to:
	 * - tracing
	 * - long lasting callbacks
	 * - being scheduled away when running in a VM
	 *
	 * We need to prevent that we loop forever in the hrtimer
	 * interrupt routine. We give it 3 attempts to avoid
	 * overreacting on some spurious event.
1344 1345 1346
	 *
	 * Acquire base lock for updating the offsets and retrieving
	 * the current time.
1347
	 */
1348
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1349
	now = hrtimer_update_base(cpu_base);
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
	cpu_base->nr_retries++;
	if (++retries < 3)
		goto retry;
	/*
	 * Give the system a chance to do something else than looping
	 * here. We stored the entry time, so we know exactly how long
	 * we spent here. We schedule the next event this amount of
	 * time away.
	 */
	cpu_base->nr_hangs++;
	cpu_base->hang_detected = 1;
1361 1362
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);

1363
	delta = ktime_sub(now, entry_time);
T
Thomas Gleixner 已提交
1364 1365
	if ((unsigned int)delta > cpu_base->max_hang_time)
		cpu_base->max_hang_time = (unsigned int) delta;
1366 1367 1368 1369
	/*
	 * Limit it to a sensible value as we enforce a longer
	 * delay. Give the CPU at least 100ms to catch up.
	 */
T
Thomas Gleixner 已提交
1370
	if (delta > 100 * NSEC_PER_MSEC)
1371 1372 1373 1374 1375 1376
		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
	else
		expires_next = ktime_add(now, delta);
	tick_program_event(expires_next, 1);
	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
		    ktime_to_ns(delta));
1377 1378
}

1379
/* called with interrupts disabled */
1380
static inline void __hrtimer_peek_ahead_timers(void)
1381 1382 1383 1384 1385 1386
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

1387
	td = this_cpu_ptr(&tick_cpu_device);
1388 1389 1390 1391
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1392 1393 1394 1395 1396
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1397

1398
/*
1399
 * Called from run_local_timers in hardirq context every jiffy
1400
 */
1401
void hrtimer_run_queues(void)
1402
{
1403
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1404
	unsigned long flags;
1405
	ktime_t now;
1406

1407
	if (__hrtimer_hres_active(cpu_base))
1408
		return;
1409

1410
	/*
1411 1412 1413 1414 1415
	 * This _is_ ugly: We have to check periodically, whether we
	 * can switch to highres and / or nohz mode. The clocksource
	 * switch happens with xtime_lock held. Notification from
	 * there only sets the check bit in the tick_oneshot code,
	 * otherwise we might deadlock vs. xtime_lock.
1416
	 */
1417
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1418
		hrtimer_switch_to_hres();
1419
		return;
1420
	}
1421

1422
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1423
	now = hrtimer_update_base(cpu_base);
1424 1425
	__hrtimer_run_queues(cpu_base, now, flags);
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1426 1427
}

1428 1429 1430
/*
 * Sleep related functions:
 */
1431
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1444
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1445 1446 1447 1448
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}
S
Stephen Hemminger 已提交
1449
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1450

1451
int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1452 1453 1454 1455
{
	switch(restart->nanosleep.type) {
#ifdef CONFIG_COMPAT
	case TT_COMPAT:
1456
		if (compat_put_timespec64(ts, restart->nanosleep.compat_rmtp))
1457 1458 1459 1460
			return -EFAULT;
		break;
#endif
	case TT_NATIVE:
1461
		if (put_timespec64(ts, restart->nanosleep.rmtp))
1462 1463 1464 1465 1466 1467 1468 1469
			return -EFAULT;
		break;
	default:
		BUG();
	}
	return -ERESTART_RESTARTBLOCK;
}

1470
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1471
{
1472 1473
	struct restart_block *restart;

1474
	hrtimer_init_sleeper(t, current);
1475

1476 1477
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1478
		hrtimer_start_expires(&t->timer, mode);
1479

1480
		if (likely(t->task))
1481
			freezable_schedule();
1482

1483
		hrtimer_cancel(&t->timer);
1484
		mode = HRTIMER_MODE_ABS;
1485 1486

	} while (t->task && !signal_pending(current));
1487

1488 1489
	__set_current_state(TASK_RUNNING);

1490
	if (!t->task)
1491 1492
		return 0;

1493 1494
	restart = &current->restart_block;
	if (restart->nanosleep.type != TT_NONE) {
1495
		ktime_t rem = hrtimer_expires_remaining(&t->timer);
1496
		struct timespec64 rmt;
1497

1498 1499
		if (rem <= 0)
			return 0;
1500
		rmt = ktime_to_timespec64(rem);
1501

1502
		return nanosleep_copyout(restart, &rmt);
1503 1504
	}
	return -ERESTART_RESTARTBLOCK;
1505 1506
}

A
Al Viro 已提交
1507
static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1508
{
1509
	struct hrtimer_sleeper t;
1510
	int ret;
1511

1512
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1513
				HRTIMER_MODE_ABS);
1514
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1515

1516
	ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1517 1518
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1519 1520
}

1521
long hrtimer_nanosleep(const struct timespec64 *rqtp,
1522 1523
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
1524
	struct restart_block *restart;
1525
	struct hrtimer_sleeper t;
1526
	int ret = 0;
1527
	u64 slack;
1528 1529

	slack = current->timer_slack_ns;
1530
	if (dl_task(current) || rt_task(current))
1531
		slack = 0;
1532

1533
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1534
	hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
1535 1536
	ret = do_nanosleep(&t, mode);
	if (ret != -ERESTART_RESTARTBLOCK)
1537
		goto out;
1538

1539
	/* Absolute timers do not update the rmtp value and restart: */
1540 1541 1542 1543
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1544

1545
	restart = &current->restart_block;
1546
	restart->fn = hrtimer_nanosleep_restart;
1547
	restart->nanosleep.clockid = t.timer.base->clockid;
1548
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1549 1550 1551
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1552 1553
}

1554 1555
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1556
{
1557
	struct timespec64 tu;
1558

1559
	if (get_timespec64(&tu, rqtp))
1560 1561
		return -EFAULT;

1562
	if (!timespec64_valid(&tu))
1563 1564
		return -EINVAL;

1565
	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1566
	current->restart_block.nanosleep.rmtp = rmtp;
1567
	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1568 1569
}

1570 1571 1572 1573 1574
#ifdef CONFIG_COMPAT

COMPAT_SYSCALL_DEFINE2(nanosleep, struct compat_timespec __user *, rqtp,
		       struct compat_timespec __user *, rmtp)
{
1575
	struct timespec64 tu;
1576

1577
	if (compat_get_timespec64(&tu, rqtp))
1578 1579
		return -EFAULT;

1580
	if (!timespec64_valid(&tu))
1581 1582 1583 1584
		return -EINVAL;

	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
	current->restart_block.nanosleep.compat_rmtp = rmtp;
1585
	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1586 1587 1588
}
#endif

1589 1590 1591
/*
 * Functions related to boot-time initialization:
 */
1592
int hrtimers_prepare_cpu(unsigned int cpu)
1593
{
1594
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1595 1596
	int i;

1597
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1598
		cpu_base->clock_base[i].cpu_base = cpu_base;
1599 1600
		timerqueue_init_head(&cpu_base->clock_base[i].active);
	}
1601

1602
	cpu_base->cpu = cpu;
1603
	cpu_base->hres_active = 0;
1604
	cpu_base->expires_next = KTIME_MAX;
1605
	return 0;
1606 1607 1608 1609
}

#ifdef CONFIG_HOTPLUG_CPU

1610
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1611
				struct hrtimer_clock_base *new_base)
1612 1613
{
	struct hrtimer *timer;
1614
	struct timerqueue_node *node;
1615

1616 1617
	while ((node = timerqueue_getnext(&old_base->active))) {
		timer = container_of(node, struct hrtimer, node);
1618
		BUG_ON(hrtimer_callback_running(timer));
1619
		debug_deactivate(timer);
T
Thomas Gleixner 已提交
1620 1621

		/*
1622
		 * Mark it as ENQUEUED not INACTIVE otherwise the
T
Thomas Gleixner 已提交
1623 1624 1625
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
1626
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1627
		timer->base = new_base;
1628
		/*
T
Thomas Gleixner 已提交
1629 1630 1631 1632 1633 1634
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1635
		 */
1636
		enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
1637 1638 1639
	}
}

1640
int hrtimers_dead_cpu(unsigned int scpu)
1641
{
1642
	struct hrtimer_cpu_base *old_base, *new_base;
1643
	int i;
1644

1645 1646
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1647 1648 1649

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
1650
	new_base = this_cpu_ptr(&hrtimer_bases);
1651 1652 1653 1654
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1655 1656
	raw_spin_lock(&new_base->lock);
	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1657

1658
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1659
		migrate_hrtimer_list(&old_base->clock_base[i],
1660
				     &new_base->clock_base[i]);
1661 1662
	}

1663 1664
	raw_spin_unlock(&old_base->lock);
	raw_spin_unlock(&new_base->lock);
1665

1666 1667 1668
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1669
	return 0;
1670
}
1671

1672 1673 1674 1675
#endif /* CONFIG_HOTPLUG_CPU */

void __init hrtimers_init(void)
{
1676
	hrtimers_prepare_cpu(smp_processor_id());
1677 1678
}

1679
/**
1680
 * schedule_hrtimeout_range_clock - sleep until timeout
1681
 * @expires:	timeout value (ktime_t)
1682
 * @delta:	slack in expires timeout (ktime_t)
1683 1684
 * @mode:	timer mode
 * @clock_id:	timer clock to be used
1685
 */
1686
int __sched
1687
schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1688
			       const enum hrtimer_mode mode, clockid_t clock_id)
1689 1690 1691 1692 1693 1694 1695
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
T
Thomas Gleixner 已提交
1696
	if (expires && *expires == 0) {
1697 1698 1699 1700 1701
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
N
Namhyung Kim 已提交
1702
	 * A NULL parameter means "infinite"
1703 1704 1705 1706 1707 1708
	 */
	if (!expires) {
		schedule();
		return -EINTR;
	}

1709
	hrtimer_init_on_stack(&t.timer, clock_id, mode);
1710
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1711 1712 1713

	hrtimer_init_sleeper(&t, current);

1714
	hrtimer_start_expires(&t.timer, mode);
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1726 1727 1728 1729 1730

/**
 * schedule_hrtimeout_range - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @delta:	slack in expires timeout (ktime_t)
1731
 * @mode:	timer mode
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1745 1746
 * pass before the routine returns unless the current task is explicitly
 * woken up, (e.g. by wake_up_process()).
1747 1748
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1749 1750
 * delivered to the current task or the current task is explicitly woken
 * up.
1751 1752 1753 1754
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
1755 1756 1757
 * Returns 0 when the timer has expired. If the task was woken before the
 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
 * by an explicit wakeup, it returns -EINTR.
1758
 */
1759
int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1760 1761 1762 1763 1764
				     const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range_clock(expires, delta, mode,
					      CLOCK_MONOTONIC);
}
1765 1766 1767 1768 1769
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
1770
 * @mode:	timer mode
1771 1772 1773 1774 1775 1776 1777 1778
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1779 1780
 * pass before the routine returns unless the current task is explicitly
 * woken up, (e.g. by wake_up_process()).
1781 1782
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1783 1784
 * delivered to the current task or the current task is explicitly woken
 * up.
1785 1786 1787 1788
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
1789 1790 1791
 * Returns 0 when the timer has expired. If the task was woken before the
 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
 * by an explicit wakeup, it returns -EINTR.
1792 1793 1794 1795 1796 1797
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1798
EXPORT_SYMBOL_GPL(schedule_hrtimeout);