hrtimer.c 46.4 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
35
#include <linux/export.h>
36 37 38 39
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46
#include <linux/sched/signal.h>
47
#include <linux/sched/sysctl.h>
48
#include <linux/sched/rt.h>
49
#include <linux/sched/deadline.h>
50
#include <linux/sched/nohz.h>
51
#include <linux/sched/debug.h>
52
#include <linux/timer.h>
53
#include <linux/freezer.h>
54
#include <linux/compat.h>
55

56
#include <linux/uaccess.h>
57

58 59
#include <trace/events/timer.h>

60
#include "tick-internal.h"
61

62 63
/*
 * The timer bases:
64
 *
Z
Zhen Lei 已提交
65
 * There are more clockids than hrtimer bases. Thus, we index
66 67 68
 * into the timer bases by the hrtimer_base_type enum. When trying
 * to reach a base using a clockid, hrtimer_clockid_to_base()
 * is used to convert from clockid to the proper hrtimer_base_type.
69
 */
70
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
71
{
72
	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
73
	.seq = SEQCNT_ZERO(hrtimer_bases.seq),
74
	.clock_base =
75
	{
76
		{
77 78
			.index = HRTIMER_BASE_MONOTONIC,
			.clockid = CLOCK_MONOTONIC,
79 80
			.get_time = &ktime_get,
		},
T
Thomas Gleixner 已提交
81 82 83 84 85
		{
			.index = HRTIMER_BASE_REALTIME,
			.clockid = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
		},
86
		{
87 88
			.index = HRTIMER_BASE_BOOTTIME,
			.clockid = CLOCK_BOOTTIME,
89 90
			.get_time = &ktime_get_boottime,
		},
91 92 93 94 95
		{
			.index = HRTIMER_BASE_TAI,
			.clockid = CLOCK_TAI,
			.get_time = &ktime_get_clocktai,
		},
96
	}
97 98
};

99
static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
100 101 102
	/* Make sure we catch unsupported clockids */
	[0 ... MAX_CLOCKS - 1]	= HRTIMER_MAX_CLOCK_BASES,

103 104 105
	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
106
	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
107
};
108

109 110 111 112 113 114
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

115 116 117 118 119 120 121 122 123 124 125 126
/*
 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
 * such that hrtimer_callback_running() can unconditionally dereference
 * timer->base->cpu_base
 */
static struct hrtimer_cpu_base migration_cpu_base = {
	.seq = SEQCNT_ZERO(migration_cpu_base),
	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
};

#define migration_base	migration_cpu_base.clock_base[0]

127 128 129 130 131 132 133 134 135
/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
136 137
 * possible to set timer->base = &migration_base and drop the lock: the timer
 * remains locked.
138
 */
139 140 141
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
142
{
143
	struct hrtimer_clock_base *base;
144 145 146

	for (;;) {
		base = timer->base;
147
		if (likely(base != &migration_base)) {
148
			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
149 150 151
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
152
			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
153 154 155 156 157
		}
		cpu_relax();
	}
}

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
/*
 * With HIGHRES=y we do not migrate the timer when it is expiring
 * before the next event on the target cpu because we cannot reprogram
 * the target cpu hardware and we would cause it to fire late.
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	ktime_t expires;

	if (!new_base->cpu_base->hres_active)
		return 0;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
T
Thomas Gleixner 已提交
175
	return expires <= new_base->cpu_base->expires_next;
176 177 178 179 180
#else
	return 0;
#endif
}

181
#ifdef CONFIG_NO_HZ_COMMON
182 183 184 185 186
static inline
struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
					 int pinned)
{
	if (pinned || !base->migration_enabled)
187
		return base;
188 189 190 191 192 193 194
	return &per_cpu(hrtimer_bases, get_nohz_timer_target());
}
#else
static inline
struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
					 int pinned)
{
195
	return base;
196 197 198
}
#endif

199
/*
200 201 202 203 204 205 206 207 208 209
 * We switch the timer base to a power-optimized selected CPU target,
 * if:
 *	- NO_HZ_COMMON is enabled
 *	- timer migration is enabled
 *	- the timer callback is not running
 *	- the timer is not the first expiring timer on the new target
 *
 * If one of the above requirements is not fulfilled we move the timer
 * to the current CPU or leave it on the previously assigned CPU if
 * the timer callback is currently running.
210
 */
211
static inline struct hrtimer_clock_base *
212 213
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
214
{
215
	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
216
	struct hrtimer_clock_base *new_base;
217
	int basenum = base->index;
218

219 220
	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
	new_cpu_base = get_target_base(this_cpu_base, pinned);
221
again:
222
	new_base = &new_cpu_base->clock_base[basenum];
223 224 225

	if (base != new_base) {
		/*
226
		 * We are trying to move timer to new_base.
227 228 229 230 231 232 233
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
234
		if (unlikely(hrtimer_callback_running(timer)))
235 236
			return base;

237 238
		/* See the comment in lock_hrtimer_base() */
		timer->base = &migration_base;
239 240
		raw_spin_unlock(&base->cpu_base->lock);
		raw_spin_lock(&new_base->cpu_base->lock);
241

242
		if (new_cpu_base != this_cpu_base &&
243
		    hrtimer_check_target(timer, new_base)) {
244 245
			raw_spin_unlock(&new_base->cpu_base->lock);
			raw_spin_lock(&base->cpu_base->lock);
246
			new_cpu_base = this_cpu_base;
247 248
			timer->base = base;
			goto again;
249
		}
250
		timer->base = new_base;
251
	} else {
252
		if (new_cpu_base != this_cpu_base &&
253
		    hrtimer_check_target(timer, new_base)) {
254
			new_cpu_base = this_cpu_base;
255 256
			goto again;
		}
257 258 259 260 261 262
	}
	return new_base;
}

#else /* CONFIG_SMP */

263
static inline struct hrtimer_clock_base *
264 265
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
266
	struct hrtimer_clock_base *base = timer->base;
267

268
	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
269 270 271 272

	return base;
}

273
# define switch_hrtimer_base(t, b, p)	(b)
274 275 276 277 278 279 280 281 282 283 284

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
/*
 * Divide a ktime value by a nanosecond value
 */
285
s64 __ktime_divns(const ktime_t kt, s64 div)
286 287
{
	int sft = 0;
288 289
	s64 dclc;
	u64 tmp;
290

291
	dclc = ktime_to_ns(kt);
292 293
	tmp = dclc < 0 ? -dclc : dclc;

294 295 296 297 298
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
299 300 301
	tmp >>= sft;
	do_div(tmp, (unsigned long) div);
	return dclc < 0 ? -tmp : tmp;
302
}
303
EXPORT_SYMBOL_GPL(__ktime_divns);
304 305
#endif /* BITS_PER_LONG >= 64 */

306 307 308 309 310
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
311
	ktime_t res = ktime_add_unsafe(lhs, rhs);
312 313 314 315 316

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
T
Thomas Gleixner 已提交
317
	if (res < 0 || res < lhs || res < rhs)
318 319 320 321 322
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

323 324
EXPORT_SYMBOL_GPL(ktime_add_safe);

325 326 327 328
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

329 330 331 332 333
static void *hrtimer_debug_hint(void *addr)
{
	return ((struct hrtimer *) addr)->function;
}

334 335 336 337
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
338
static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
339 340 341 342 343 344 345
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
346
		return true;
347
	default:
348
		return false;
349 350 351 352 353 354
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
355
 * - an unknown non-static object is activated
356
 */
357
static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
358 359 360 361 362 363
{
	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
364
		return false;
365 366 367 368 369 370 371
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
372
static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
373 374 375 376 377 378 379
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
380
		return true;
381
	default:
382
		return false;
383 384 385 386 387
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
388
	.debug_hint	= hrtimer_debug_hint,
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}
S
Stephen Hemminger 已提交
423
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
424 425 426 427 428

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}
429
EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
430 431 432 433 434 435 436

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
	   enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	trace_hrtimer_init(timer, clockid, mode);
}

static inline void debug_activate(struct hrtimer *timer)
{
	debug_hrtimer_activate(timer);
	trace_hrtimer_start(timer);
}

static inline void debug_deactivate(struct hrtimer *timer)
{
	debug_hrtimer_deactivate(timer);
	trace_hrtimer_cancel(timer);
}

457
#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
458 459 460 461 462 463 464 465
static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
					     struct hrtimer *timer)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	cpu_base->next_timer = timer;
#endif
}

466
static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
467 468
{
	struct hrtimer_clock_base *base = cpu_base->clock_base;
469
	unsigned int active = cpu_base->active_bases;
T
Thomas Gleixner 已提交
470
	ktime_t expires, expires_next = KTIME_MAX;
471

472
	hrtimer_update_next_timer(cpu_base, NULL);
473
	for (; active; base++, active >>= 1) {
474 475 476
		struct timerqueue_node *next;
		struct hrtimer *timer;

477
		if (!(active & 0x01))
478 479
			continue;

480
		next = timerqueue_getnext(&base->active);
481 482
		timer = container_of(next, struct hrtimer, node);
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
T
Thomas Gleixner 已提交
483
		if (expires < expires_next) {
484
			expires_next = expires;
485 486
			hrtimer_update_next_timer(cpu_base, timer);
		}
487 488 489 490 491 492
	}
	/*
	 * clock_was_set() might have changed base->offset of any of
	 * the clock bases so the result might be negative. Fix it up
	 * to prevent a false positive in clockevents_program_event().
	 */
T
Thomas Gleixner 已提交
493 494
	if (expires_next < 0)
		expires_next = 0;
495 496 497 498
	return expires_next;
}
#endif

499 500 501 502 503 504
static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
{
	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;

505 506
	return ktime_get_update_offsets_now(&base->clock_was_set_seq,
					    offs_real, offs_boot, offs_tai);
507 508
}

509 510 511 512 513 514
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
515
static bool hrtimer_hres_enabled __read_mostly  = true;
516 517
unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
EXPORT_SYMBOL_GPL(hrtimer_resolution);
518 519 520 521 522 523

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
524
	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
540 541 542 543 544
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
{
	return cpu_base->hres_active;
}

545 546
static inline int hrtimer_hres_active(void)
{
547
	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
548 549 550 551 552 553 554
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
555 556
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
557
{
558 559 560 561 562 563
	ktime_t expires_next;

	if (!cpu_base->hres_active)
		return;

	expires_next = __hrtimer_get_next_event(cpu_base);
564

T
Thomas Gleixner 已提交
565
	if (skip_equal && expires_next == cpu_base->expires_next)
566 567
		return;

T
Thomas Gleixner 已提交
568
	cpu_base->expires_next = expires_next;
569

570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * leave the hang delay active in the hardware. We want the
	 * system to make progress. That also prevents the following
	 * scenario:
	 * T1 expires 50ms from now
	 * T2 expires 5s from now
	 *
	 * T1 is removed, so this code is called and would reprogram
	 * the hardware to 5s from now. Any hrtimer_start after that
	 * will not reprogram the hardware due to hang_detected being
	 * set. So we'd effectivly block all timers until the T2 event
	 * fires.
	 */
	if (cpu_base->hang_detected)
		return;

587
	tick_program_event(cpu_base->expires_next, 1);
588 589 590 591 592 593 594 595 596
}

/*
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
597 598
static void hrtimer_reprogram(struct hrtimer *timer,
			      struct hrtimer_clock_base *base)
599
{
600
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
601
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
602

603
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
604

605
	/*
606 607
	 * If the timer is not on the current cpu, we cannot reprogram
	 * the other cpus clock event device.
608
	 */
609 610 611 612 613 614 615 616 617 618 619 620
	if (base->cpu_base != cpu_base)
		return;

	/*
	 * If the hrtimer interrupt is running, then it will
	 * reevaluate the clock bases and reprogram the clock event
	 * device. The callbacks are always executed in hard interrupt
	 * context so we don't need an extra check for a running
	 * callback.
	 */
	if (cpu_base->in_hrtirq)
		return;
621

622 623
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
624
	 * expiry time which is less than base->offset. Set it to 0.
625
	 */
T
Thomas Gleixner 已提交
626 627
	if (expires < 0)
		expires = 0;
628

T
Thomas Gleixner 已提交
629
	if (expires >= cpu_base->expires_next)
630
		return;
631

632
	/* Update the pointer to the next expiring timer */
633
	cpu_base->next_timer = timer;
634

635 636 637 638 639 640 641
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * do not schedule a timer which is earlier than the expiry
	 * which we enforced in the hang detection. We want the system
	 * to make progress.
	 */
	if (cpu_base->hang_detected)
642
		return;
643 644

	/*
645 646
	 * Program the timer hardware. We enforce the expiry for
	 * events which are already in the past.
647
	 */
648 649
	cpu_base->expires_next = expires;
	tick_program_event(expires, 1);
650 651 652 653 654 655 656
}

/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
T
Thomas Gleixner 已提交
657
	base->expires_next = KTIME_MAX;
658 659 660
	base->hres_active = 0;
}

661 662 663 664 665 666 667
/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
668
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
669

670
	if (!base->hres_active)
671 672 673
		return;

	raw_spin_lock(&base->lock);
674
	hrtimer_update_base(base);
675 676 677
	hrtimer_force_reprogram(base, 0);
	raw_spin_unlock(&base->lock);
}
678

679 680 681
/*
 * Switch to high resolution mode
 */
682
static void hrtimer_switch_to_hres(void)
683
{
684
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
685 686

	if (tick_init_highres()) {
I
Ingo Molnar 已提交
687
		printk(KERN_WARNING "Could not switch to high resolution "
688
				    "mode on CPU %d\n", base->cpu);
689
		return;
690 691
	}
	base->hres_active = 1;
692
	hrtimer_resolution = HIGH_RES_NSEC;
693 694 695 696 697 698

	tick_setup_sched_timer();
	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
}

699 700 701 702 703 704 705
static void clock_was_set_work(struct work_struct *work)
{
	clock_was_set();
}

static DECLARE_WORK(hrtimer_work, clock_was_set_work);

706
/*
P
Pratyush Patel 已提交
707
 * Called from timekeeping and resume code to reprogram the hrtimer
708
 * interrupt device on all cpus.
709 710 711
 */
void clock_was_set_delayed(void)
{
712
	schedule_work(&hrtimer_work);
713 714
}

715 716
#else

717
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
718 719
static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
720
static inline void hrtimer_switch_to_hres(void) { }
721 722
static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
723 724
static inline int hrtimer_reprogram(struct hrtimer *timer,
				    struct hrtimer_clock_base *base)
725 726 727 728
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
729
static inline void retrigger_next_event(void *arg) { }
730 731 732

#endif /* CONFIG_HIGH_RES_TIMERS */

733 734 735 736 737 738 739 740 741 742 743 744 745
/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
746
#ifdef CONFIG_HIGH_RES_TIMERS
747 748
	/* Retrigger the CPU local events everywhere */
	on_each_cpu(retrigger_next_event, NULL, 1);
749 750
#endif
	timerfd_clock_was_set();
751 752 753 754
}

/*
 * During resume we might have to reprogram the high resolution timer
755 756
 * interrupt on all online CPUs.  However, all other CPUs will be
 * stopped with IRQs interrupts disabled so the clock_was_set() call
757
 * must be deferred.
758 759 760
 */
void hrtimers_resume(void)
{
761
	lockdep_assert_irqs_disabled();
762
	/* Retrigger on the local CPU */
763
	retrigger_next_event(NULL);
764 765
	/* And schedule a retrigger for all others */
	clock_was_set_delayed();
766 767
}

768
/*
769
 * Counterpart to lock_hrtimer_base above:
770 771 772 773
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
774
	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
775 776 777 778 779
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
780
 * @now:	forward past this time
781 782 783
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
784
 * Returns the number of overruns.
785 786 787 788 789 790 791 792
 *
 * Can be safely called from the callback function of @timer. If
 * called from other contexts @timer must neither be enqueued nor
 * running the callback and the caller needs to take care of
 * serialization.
 *
 * Note: This only updates the timer expiry value and does not requeue
 * the timer.
793
 */
D
Davide Libenzi 已提交
794
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
795
{
D
Davide Libenzi 已提交
796
	u64 orun = 1;
797
	ktime_t delta;
798

799
	delta = ktime_sub(now, hrtimer_get_expires(timer));
800

T
Thomas Gleixner 已提交
801
	if (delta < 0)
802 803
		return 0;

804 805 806
	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
		return 0;

T
Thomas Gleixner 已提交
807 808
	if (interval < hrtimer_resolution)
		interval = hrtimer_resolution;
809

T
Thomas Gleixner 已提交
810
	if (unlikely(delta >= interval)) {
811
		s64 incr = ktime_to_ns(interval);
812 813

		orun = ktime_divns(delta, incr);
814
		hrtimer_add_expires_ns(timer, incr * orun);
T
Thomas Gleixner 已提交
815
		if (hrtimer_get_expires_tv64(timer) > now)
816 817 818 819 820 821 822
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
823
	hrtimer_add_expires(timer, interval);
824 825 826

	return orun;
}
S
Stas Sergeev 已提交
827
EXPORT_SYMBOL_GPL(hrtimer_forward);
828 829 830 831 832 833

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
834 835
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
836
 */
837 838
static int enqueue_hrtimer(struct hrtimer *timer,
			   struct hrtimer_clock_base *base)
839
{
840
	debug_activate(timer);
841

842
	base->cpu_base->active_bases |= 1 << base->index;
843

844
	timer->state = HRTIMER_STATE_ENQUEUED;
845

846
	return timerqueue_add(&base->active, &timer->node);
847
}
848 849 850 851 852

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
853 854 855 856 857
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
858
 */
859
static void __remove_hrtimer(struct hrtimer *timer,
860
			     struct hrtimer_clock_base *base,
861
			     u8 newstate, int reprogram)
862
{
863
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
864
	u8 state = timer->state;
865

866 867 868
	timer->state = newstate;
	if (!(state & HRTIMER_STATE_ENQUEUED))
		return;
869

870
	if (!timerqueue_del(&base->active, &timer->node))
871
		cpu_base->active_bases &= ~(1 << base->index);
872 873

#ifdef CONFIG_HIGH_RES_TIMERS
874 875 876 877 878 879 880 881 882 883
	/*
	 * Note: If reprogram is false we do not update
	 * cpu_base->next_timer. This happens when we remove the first
	 * timer on a remote cpu. No harm as we never dereference
	 * cpu_base->next_timer. So the worst thing what can happen is
	 * an superflous call to hrtimer_force_reprogram() on the
	 * remote cpu later on if the same timer gets enqueued again.
	 */
	if (reprogram && timer == cpu_base->next_timer)
		hrtimer_force_reprogram(cpu_base, 1);
884
#endif
885 886 887 888 889 890
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
891
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
892
{
893
	if (hrtimer_is_queued(timer)) {
894
		u8 state = timer->state;
895 896 897 898 899 900 901 902 903 904
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
905
		debug_deactivate(timer);
906
		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
907

908 909 910
		if (!restart)
			state = HRTIMER_STATE_INACTIVE;

911
		__remove_hrtimer(timer, base, state, reprogram);
912 913 914 915 916
		return 1;
	}
	return 0;
}

917 918 919 920 921 922 923 924 925 926 927
static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
					    const enum hrtimer_mode mode)
{
#ifdef CONFIG_TIME_LOW_RES
	/*
	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
	 * granular time values. For relative timers we add hrtimer_resolution
	 * (i.e. one jiffie) to prevent short timeouts.
	 */
	timer->is_rel = mode & HRTIMER_MODE_REL;
	if (timer->is_rel)
T
Thomas Gleixner 已提交
928
		tim = ktime_add_safe(tim, hrtimer_resolution);
929 930 931 932
#endif
	return tim;
}

933 934 935 936 937 938 939 940
/**
 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
 * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL)
 */
941
void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
942
			    u64 delta_ns, const enum hrtimer_mode mode)
943
{
944
	struct hrtimer_clock_base *base, *new_base;
945
	unsigned long flags;
946
	int leftmost;
947 948 949 950

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
951
	remove_hrtimer(timer, base, true);
952

953
	if (mode & HRTIMER_MODE_REL)
954
		tim = ktime_add_safe(tim, base->get_time());
955 956

	tim = hrtimer_update_lowres(timer, tim, mode);
957

958
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
959

960 961 962
	/* Switch the timer base, if necessary: */
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);

963
	leftmost = enqueue_hrtimer(timer, new_base);
964 965
	if (!leftmost)
		goto unlock;
966 967 968 969 970 971

	if (!hrtimer_is_hres_active(timer)) {
		/*
		 * Kick to reschedule the next tick to handle the new timer
		 * on dynticks target.
		 */
972 973
		if (new_base->cpu_base->nohz_active)
			wake_up_nohz_cpu(new_base->cpu_base->cpu);
974 975
	} else {
		hrtimer_reprogram(timer, new_base);
976
	}
977
unlock:
978
	unlock_hrtimer_base(timer, &flags);
979
}
980 981
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

982 983 984 985 986 987 988
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
989
 * -1 when the timer is currently executing the callback function and
990
 *    cannot be stopped
991 992 993
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
994
	struct hrtimer_clock_base *base;
995 996 997
	unsigned long flags;
	int ret = -1;

998 999 1000 1001 1002 1003 1004 1005 1006
	/*
	 * Check lockless first. If the timer is not active (neither
	 * enqueued nor running the callback, nothing to do here.  The
	 * base lock does not serialize against a concurrent enqueue,
	 * so we can avoid taking it.
	 */
	if (!hrtimer_active(timer))
		return 0;

1007 1008
	base = lock_hrtimer_base(timer, &flags);

1009
	if (!hrtimer_callback_running(timer))
1010
		ret = remove_hrtimer(timer, base, false);
1011 1012 1013 1014 1015 1016

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1017
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1034
		cpu_relax();
1035 1036
	}
}
1037
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1038 1039 1040 1041

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
1042
 * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1043
 */
1044
ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1045 1046 1047 1048
{
	unsigned long flags;
	ktime_t rem;

1049
	lock_hrtimer_base(timer, &flags);
1050 1051 1052 1053
	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
		rem = hrtimer_expires_remaining_adjusted(timer);
	else
		rem = hrtimer_expires_remaining(timer);
1054 1055 1056 1057
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1058
EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1059

1060
#ifdef CONFIG_NO_HZ_COMMON
1061 1062 1063
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
1064
 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1065
 */
1066
u64 hrtimer_get_next_event(void)
1067
{
1068
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1069
	u64 expires = KTIME_MAX;
1070 1071
	unsigned long flags;

1072
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1073

1074
	if (!__hrtimer_hres_active(cpu_base))
T
Thomas Gleixner 已提交
1075
		expires = __hrtimer_get_next_event(cpu_base);
1076

1077
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1078

1079
	return expires;
1080 1081 1082
}
#endif

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
static inline int hrtimer_clockid_to_base(clockid_t clock_id)
{
	if (likely(clock_id < MAX_CLOCKS)) {
		int base = hrtimer_clock_to_base_table[clock_id];

		if (likely(base != HRTIMER_MAX_CLOCK_BASES))
			return base;
	}
	WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
	return HRTIMER_BASE_MONOTONIC;
}

1095 1096
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1097
{
1098
	struct hrtimer_cpu_base *cpu_base;
1099
	int base;
1100

1101 1102
	memset(timer, 0, sizeof(struct hrtimer));

1103
	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1104

1105
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1106 1107
		clock_id = CLOCK_MONOTONIC;

1108 1109
	base = hrtimer_clockid_to_base(clock_id);
	timer->base = &cpu_base->clock_base[base];
1110
	timerqueue_init(&timer->node);
1111
}
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
 * @mode:	timer mode abs/rel
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
1122
	debug_init(timer, clock_id, mode);
1123 1124
	__hrtimer_init(timer, clock_id, mode);
}
1125
EXPORT_SYMBOL_GPL(hrtimer_init);
1126

1127 1128 1129 1130
/*
 * A timer is active, when it is enqueued into the rbtree or the
 * callback function is running or it's in the state of being migrated
 * to another cpu.
1131
 *
1132
 * It is important for this function to not return a false negative.
1133
 */
1134
bool hrtimer_active(const struct hrtimer *timer)
1135
{
1136
	struct hrtimer_cpu_base *cpu_base;
1137
	unsigned int seq;
1138

1139 1140 1141
	do {
		cpu_base = READ_ONCE(timer->base->cpu_base);
		seq = raw_read_seqcount_begin(&cpu_base->seq);
1142

1143 1144 1145 1146 1147 1148 1149 1150
		if (timer->state != HRTIMER_STATE_INACTIVE ||
		    cpu_base->running == timer)
			return true;

	} while (read_seqcount_retry(&cpu_base->seq, seq) ||
		 cpu_base != READ_ONCE(timer->base->cpu_base));

	return false;
1151
}
1152
EXPORT_SYMBOL_GPL(hrtimer_active);
1153

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
/*
 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
 * distinct sections:
 *
 *  - queued:	the timer is queued
 *  - callback:	the timer is being ran
 *  - post:	the timer is inactive or (re)queued
 *
 * On the read side we ensure we observe timer->state and cpu_base->running
 * from the same section, if anything changed while we looked at it, we retry.
 * This includes timer->base changing because sequence numbers alone are
 * insufficient for that.
 *
 * The sequence numbers are required because otherwise we could still observe
 * a false negative if the read side got smeared over multiple consequtive
 * __run_hrtimer() invocations.
 */

1172 1173 1174
static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
			  struct hrtimer_clock_base *base,
			  struct hrtimer *timer, ktime_t *now)
1175 1176 1177 1178
{
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1179
	lockdep_assert_held(&cpu_base->lock);
1180

1181
	debug_deactivate(timer);
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
	cpu_base->running = timer;

	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
	 * timer->state == INACTIVE.
	 */
	raw_write_seqcount_barrier(&cpu_base->seq);

	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1194
	fn = timer->function;
1195

1196 1197 1198 1199 1200 1201 1202 1203
	/*
	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
	 * timer is restarted with a period then it becomes an absolute
	 * timer. If its not restarted it does not matter.
	 */
	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
		timer->is_rel = false;

1204 1205 1206 1207 1208
	/*
	 * Because we run timers from hardirq context, there is no chance
	 * they get migrated to another cpu, therefore its safe to unlock
	 * the timer base.
	 */
1209
	raw_spin_unlock(&cpu_base->lock);
1210
	trace_hrtimer_expire_entry(timer, now);
1211
	restart = fn(timer);
1212
	trace_hrtimer_expire_exit(timer);
1213
	raw_spin_lock(&cpu_base->lock);
1214 1215

	/*
1216
	 * Note: We clear the running state after enqueue_hrtimer and
P
Pratyush Patel 已提交
1217
	 * we do not reprogram the event hardware. Happens either in
T
Thomas Gleixner 已提交
1218
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1219 1220 1221 1222
	 *
	 * Note: Because we dropped the cpu_base->lock above,
	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
	 * for us already.
1223
	 */
1224 1225
	if (restart != HRTIMER_NORESTART &&
	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1226
		enqueue_hrtimer(timer, base);
1227

1228 1229 1230 1231 1232 1233 1234 1235
	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
	 * timer->state == INACTIVE.
	 */
	raw_write_seqcount_barrier(&cpu_base->seq);
1236

1237 1238
	WARN_ON_ONCE(cpu_base->running != timer);
	cpu_base->running = NULL;
1239 1240
}

1241
static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1242
{
1243 1244
	struct hrtimer_clock_base *base = cpu_base->clock_base;
	unsigned int active = cpu_base->active_bases;
1245

1246
	for (; active; base++, active >>= 1) {
1247
		struct timerqueue_node *node;
1248 1249
		ktime_t basenow;

1250
		if (!(active & 0x01))
1251
			continue;
1252 1253 1254

		basenow = ktime_add(now, base->offset);

1255
		while ((node = timerqueue_getnext(&base->active))) {
1256 1257
			struct hrtimer *timer;

1258
			timer = container_of(node, struct hrtimer, node);
1259

1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */
T
Thomas Gleixner 已提交
1272
			if (basenow < hrtimer_get_softexpires_tv64(timer))
1273 1274
				break;

1275
			__run_hrtimer(cpu_base, base, timer, &basenow);
1276 1277
		}
	}
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
}

#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
	ktime_t expires_next, now, entry_time, delta;
	int retries = 0;

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
T
Thomas Gleixner 已提交
1294
	dev->next_event = KTIME_MAX;
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306

	raw_spin_lock(&cpu_base->lock);
	entry_time = now = hrtimer_update_base(cpu_base);
retry:
	cpu_base->in_hrtirq = 1;
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
T
Thomas Gleixner 已提交
1307
	cpu_base->expires_next = KTIME_MAX;
1308 1309 1310

	__hrtimer_run_queues(cpu_base, now);

1311 1312
	/* Reevaluate the clock bases for the next expiry */
	expires_next = __hrtimer_get_next_event(cpu_base);
1313 1314 1315 1316
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1317
	cpu_base->expires_next = expires_next;
1318
	cpu_base->in_hrtirq = 0;
1319
	raw_spin_unlock(&cpu_base->lock);
1320 1321

	/* Reprogramming necessary ? */
1322
	if (!tick_program_event(expires_next, 0)) {
1323 1324
		cpu_base->hang_detected = 0;
		return;
1325
	}
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335

	/*
	 * The next timer was already expired due to:
	 * - tracing
	 * - long lasting callbacks
	 * - being scheduled away when running in a VM
	 *
	 * We need to prevent that we loop forever in the hrtimer
	 * interrupt routine. We give it 3 attempts to avoid
	 * overreacting on some spurious event.
1336 1337 1338
	 *
	 * Acquire base lock for updating the offsets and retrieving
	 * the current time.
1339
	 */
1340
	raw_spin_lock(&cpu_base->lock);
1341
	now = hrtimer_update_base(cpu_base);
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
	cpu_base->nr_retries++;
	if (++retries < 3)
		goto retry;
	/*
	 * Give the system a chance to do something else than looping
	 * here. We stored the entry time, so we know exactly how long
	 * we spent here. We schedule the next event this amount of
	 * time away.
	 */
	cpu_base->nr_hangs++;
	cpu_base->hang_detected = 1;
1353
	raw_spin_unlock(&cpu_base->lock);
1354
	delta = ktime_sub(now, entry_time);
T
Thomas Gleixner 已提交
1355 1356
	if ((unsigned int)delta > cpu_base->max_hang_time)
		cpu_base->max_hang_time = (unsigned int) delta;
1357 1358 1359 1360
	/*
	 * Limit it to a sensible value as we enforce a longer
	 * delay. Give the CPU at least 100ms to catch up.
	 */
T
Thomas Gleixner 已提交
1361
	if (delta > 100 * NSEC_PER_MSEC)
1362 1363 1364 1365 1366 1367
		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
	else
		expires_next = ktime_add(now, delta);
	tick_program_event(expires_next, 1);
	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
		    ktime_to_ns(delta));
1368 1369
}

1370
/* called with interrupts disabled */
1371
static inline void __hrtimer_peek_ahead_timers(void)
1372 1373 1374 1375 1376 1377
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

1378
	td = this_cpu_ptr(&tick_cpu_device);
1379 1380 1381 1382
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1383 1384 1385 1386 1387
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1388

1389
/*
1390
 * Called from run_local_timers in hardirq context every jiffy
1391
 */
1392
void hrtimer_run_queues(void)
1393
{
1394
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1395
	ktime_t now;
1396

1397
	if (__hrtimer_hres_active(cpu_base))
1398
		return;
1399

1400
	/*
1401 1402 1403 1404 1405
	 * This _is_ ugly: We have to check periodically, whether we
	 * can switch to highres and / or nohz mode. The clocksource
	 * switch happens with xtime_lock held. Notification from
	 * there only sets the check bit in the tick_oneshot code,
	 * otherwise we might deadlock vs. xtime_lock.
1406
	 */
1407
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1408
		hrtimer_switch_to_hres();
1409
		return;
1410
	}
1411

1412 1413 1414 1415
	raw_spin_lock(&cpu_base->lock);
	now = hrtimer_update_base(cpu_base);
	__hrtimer_run_queues(cpu_base, now);
	raw_spin_unlock(&cpu_base->lock);
1416 1417
}

1418 1419 1420
/*
 * Sleep related functions:
 */
1421
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1434
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1435 1436 1437 1438
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}
S
Stephen Hemminger 已提交
1439
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1440

1441
int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1442 1443 1444 1445
{
	switch(restart->nanosleep.type) {
#ifdef CONFIG_COMPAT
	case TT_COMPAT:
1446
		if (compat_put_timespec64(ts, restart->nanosleep.compat_rmtp))
1447 1448 1449 1450
			return -EFAULT;
		break;
#endif
	case TT_NATIVE:
1451
		if (put_timespec64(ts, restart->nanosleep.rmtp))
1452 1453 1454 1455 1456 1457 1458 1459
			return -EFAULT;
		break;
	default:
		BUG();
	}
	return -ERESTART_RESTARTBLOCK;
}

1460
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1461
{
1462 1463
	struct restart_block *restart;

1464
	hrtimer_init_sleeper(t, current);
1465

1466 1467
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1468
		hrtimer_start_expires(&t->timer, mode);
1469

1470
		if (likely(t->task))
1471
			freezable_schedule();
1472

1473
		hrtimer_cancel(&t->timer);
1474
		mode = HRTIMER_MODE_ABS;
1475 1476

	} while (t->task && !signal_pending(current));
1477

1478 1479
	__set_current_state(TASK_RUNNING);

1480
	if (!t->task)
1481 1482
		return 0;

1483 1484
	restart = &current->restart_block;
	if (restart->nanosleep.type != TT_NONE) {
1485
		ktime_t rem = hrtimer_expires_remaining(&t->timer);
1486
		struct timespec64 rmt;
1487

1488 1489
		if (rem <= 0)
			return 0;
1490
		rmt = ktime_to_timespec64(rem);
1491

1492
		return nanosleep_copyout(restart, &rmt);
1493 1494
	}
	return -ERESTART_RESTARTBLOCK;
1495 1496
}

A
Al Viro 已提交
1497
static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1498
{
1499
	struct hrtimer_sleeper t;
1500
	int ret;
1501

1502
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1503
				HRTIMER_MODE_ABS);
1504
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1505

1506
	ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1507 1508
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1509 1510
}

1511
long hrtimer_nanosleep(const struct timespec64 *rqtp,
1512 1513
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
1514
	struct restart_block *restart;
1515
	struct hrtimer_sleeper t;
1516
	int ret = 0;
1517
	u64 slack;
1518 1519

	slack = current->timer_slack_ns;
1520
	if (dl_task(current) || rt_task(current))
1521
		slack = 0;
1522

1523
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1524
	hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
1525 1526
	ret = do_nanosleep(&t, mode);
	if (ret != -ERESTART_RESTARTBLOCK)
1527
		goto out;
1528

1529
	/* Absolute timers do not update the rmtp value and restart: */
1530 1531 1532 1533
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1534

1535
	restart = &current->restart_block;
1536
	restart->fn = hrtimer_nanosleep_restart;
1537
	restart->nanosleep.clockid = t.timer.base->clockid;
1538
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1539 1540 1541
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1542 1543
}

1544 1545
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1546
{
1547
	struct timespec64 tu;
1548

1549
	if (get_timespec64(&tu, rqtp))
1550 1551
		return -EFAULT;

1552
	if (!timespec64_valid(&tu))
1553 1554
		return -EINVAL;

1555
	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1556
	current->restart_block.nanosleep.rmtp = rmtp;
1557
	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1558 1559
}

1560 1561 1562 1563 1564
#ifdef CONFIG_COMPAT

COMPAT_SYSCALL_DEFINE2(nanosleep, struct compat_timespec __user *, rqtp,
		       struct compat_timespec __user *, rmtp)
{
1565
	struct timespec64 tu;
1566

1567
	if (compat_get_timespec64(&tu, rqtp))
1568 1569
		return -EFAULT;

1570
	if (!timespec64_valid(&tu))
1571 1572 1573 1574
		return -EINVAL;

	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
	current->restart_block.nanosleep.compat_rmtp = rmtp;
1575
	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1576 1577 1578
}
#endif

1579 1580 1581
/*
 * Functions related to boot-time initialization:
 */
1582
int hrtimers_prepare_cpu(unsigned int cpu)
1583
{
1584
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1585 1586
	int i;

1587
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1588
		cpu_base->clock_base[i].cpu_base = cpu_base;
1589 1590
		timerqueue_init_head(&cpu_base->clock_base[i].active);
	}
1591

1592
	cpu_base->cpu = cpu;
1593
	hrtimer_init_hres(cpu_base);
1594
	return 0;
1595 1596 1597 1598
}

#ifdef CONFIG_HOTPLUG_CPU

1599
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1600
				struct hrtimer_clock_base *new_base)
1601 1602
{
	struct hrtimer *timer;
1603
	struct timerqueue_node *node;
1604

1605 1606
	while ((node = timerqueue_getnext(&old_base->active))) {
		timer = container_of(node, struct hrtimer, node);
1607
		BUG_ON(hrtimer_callback_running(timer));
1608
		debug_deactivate(timer);
T
Thomas Gleixner 已提交
1609 1610

		/*
1611
		 * Mark it as ENQUEUED not INACTIVE otherwise the
T
Thomas Gleixner 已提交
1612 1613 1614
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
1615
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1616
		timer->base = new_base;
1617
		/*
T
Thomas Gleixner 已提交
1618 1619 1620 1621 1622 1623
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1624
		 */
1625
		enqueue_hrtimer(timer, new_base);
1626 1627 1628
	}
}

1629
int hrtimers_dead_cpu(unsigned int scpu)
1630
{
1631
	struct hrtimer_cpu_base *old_base, *new_base;
1632
	int i;
1633

1634 1635
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1636 1637 1638

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
1639
	new_base = this_cpu_ptr(&hrtimer_bases);
1640 1641 1642 1643
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1644 1645
	raw_spin_lock(&new_base->lock);
	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1646

1647
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1648
		migrate_hrtimer_list(&old_base->clock_base[i],
1649
				     &new_base->clock_base[i]);
1650 1651
	}

1652 1653
	raw_spin_unlock(&old_base->lock);
	raw_spin_unlock(&new_base->lock);
1654

1655 1656 1657
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1658
	return 0;
1659
}
1660

1661 1662 1663 1664
#endif /* CONFIG_HOTPLUG_CPU */

void __init hrtimers_init(void)
{
1665
	hrtimers_prepare_cpu(smp_processor_id());
1666 1667
}

1668
/**
1669
 * schedule_hrtimeout_range_clock - sleep until timeout
1670
 * @expires:	timeout value (ktime_t)
1671
 * @delta:	slack in expires timeout (ktime_t)
1672
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1673
 * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1674
 */
1675
int __sched
1676
schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1677
			       const enum hrtimer_mode mode, int clock)
1678 1679 1680 1681 1682 1683 1684
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
T
Thomas Gleixner 已提交
1685
	if (expires && *expires == 0) {
1686 1687 1688 1689 1690
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
N
Namhyung Kim 已提交
1691
	 * A NULL parameter means "infinite"
1692 1693 1694 1695 1696 1697
	 */
	if (!expires) {
		schedule();
		return -EINTR;
	}

1698
	hrtimer_init_on_stack(&t.timer, clock, mode);
1699
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1700 1701 1702

	hrtimer_init_sleeper(&t, current);

1703
	hrtimer_start_expires(&t.timer, mode);
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733

/**
 * schedule_hrtimeout_range - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @delta:	slack in expires timeout (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1734 1735
 * pass before the routine returns unless the current task is explicitly
 * woken up, (e.g. by wake_up_process()).
1736 1737
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1738 1739
 * delivered to the current task or the current task is explicitly woken
 * up.
1740 1741 1742 1743
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
1744 1745 1746
 * Returns 0 when the timer has expired. If the task was woken before the
 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
 * by an explicit wakeup, it returns -EINTR.
1747
 */
1748
int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1749 1750 1751 1752 1753
				     const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range_clock(expires, delta, mode,
					      CLOCK_MONOTONIC);
}
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1768 1769
 * pass before the routine returns unless the current task is explicitly
 * woken up, (e.g. by wake_up_process()).
1770 1771
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1772 1773
 * delivered to the current task or the current task is explicitly woken
 * up.
1774 1775 1776 1777
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
1778 1779 1780
 * Returns 0 when the timer has expired. If the task was woken before the
 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
 * by an explicit wakeup, it returns -EINTR.
1781 1782 1783 1784 1785 1786
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1787
EXPORT_SYMBOL_GPL(schedule_hrtimeout);