hrtimer.c 47.2 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
35
#include <linux/export.h>
36 37 38 39
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46
#include <linux/sched.h>
47
#include <linux/sched/sysctl.h>
48
#include <linux/sched/rt.h>
49
#include <linux/sched/deadline.h>
50
#include <linux/timer.h>
51
#include <linux/freezer.h>
52 53 54

#include <asm/uaccess.h>

55 56
#include <trace/events/timer.h>

57
#include "tick-internal.h"
58

59 60
/*
 * The timer bases:
61
 *
62 63 64 65
 * There are more clockids then hrtimer bases. Thus, we index
 * into the timer bases by the hrtimer_base_type enum. When trying
 * to reach a base using a clockid, hrtimer_clockid_to_base()
 * is used to convert from clockid to the proper hrtimer_base_type.
66
 */
67
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
68
{
69

70
	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
71
	.clock_base =
72
	{
73
		{
74 75
			.index = HRTIMER_BASE_MONOTONIC,
			.clockid = CLOCK_MONOTONIC,
76
			.get_time = &ktime_get,
77
			.resolution = KTIME_LOW_RES,
78
		},
T
Thomas Gleixner 已提交
79 80 81 82 83 84
		{
			.index = HRTIMER_BASE_REALTIME,
			.clockid = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
			.resolution = KTIME_LOW_RES,
		},
85
		{
86 87
			.index = HRTIMER_BASE_BOOTTIME,
			.clockid = CLOCK_BOOTTIME,
88 89 90
			.get_time = &ktime_get_boottime,
			.resolution = KTIME_LOW_RES,
		},
91 92 93 94 95 96
		{
			.index = HRTIMER_BASE_TAI,
			.clockid = CLOCK_TAI,
			.get_time = &ktime_get_clocktai,
			.resolution = KTIME_LOW_RES,
		},
97
	}
98 99
};

100
static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
101 102 103
	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
104
	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
105
};
106 107 108 109 110 111 112

static inline int hrtimer_clockid_to_base(clockid_t clock_id)
{
	return hrtimer_clock_to_base_table[clock_id];
}


113 114 115 116
/*
 * Get the coarse grained time at the softirq based on xtime and
 * wall_to_monotonic.
 */
117
static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
118
{
119 120
	ktime_t xtim, mono, boot, tai;
	ktime_t off_real, off_boot, off_tai;
121

122 123 124
	mono = ktime_get_update_offsets_tick(&off_real, &off_boot, &off_tai);
	boot = ktime_add(mono, off_boot);
	xtim = ktime_add(mono, off_real);
125
	tai = ktime_add(mono, off_tai);
126

127
	base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
128 129
	base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
	base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
130
	base->clock_base[HRTIMER_BASE_TAI].softirq_time = tai;
131 132
}

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
151 152 153
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
154
{
155
	struct hrtimer_clock_base *base;
156 157 158 159

	for (;;) {
		base = timer->base;
		if (likely(base != NULL)) {
160
			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
161 162 163
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
164
			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
165 166 167 168 169
		}
		cpu_relax();
	}
}

170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
/*
 * With HIGHRES=y we do not migrate the timer when it is expiring
 * before the next event on the target cpu because we cannot reprogram
 * the target cpu hardware and we would cause it to fire late.
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	ktime_t expires;

	if (!new_base->cpu_base->hres_active)
		return 0;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
#else
	return 0;
#endif
}

193 194 195
/*
 * Switch the timer base to the current CPU when possible.
 */
196
static inline struct hrtimer_clock_base *
197 198
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
199
{
200 201
	struct hrtimer_clock_base *new_base;
	struct hrtimer_cpu_base *new_cpu_base;
202
	int this_cpu = smp_processor_id();
203
	int cpu = get_nohz_timer_target(pinned);
204
	int basenum = base->index;
205

206 207
again:
	new_cpu_base = &per_cpu(hrtimer_bases, cpu);
208
	new_base = &new_cpu_base->clock_base[basenum];
209 210 211

	if (base != new_base) {
		/*
212
		 * We are trying to move timer to new_base.
213 214 215 216 217 218 219
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
220
		if (unlikely(hrtimer_callback_running(timer)))
221 222 223 224
			return base;

		/* See the comment in lock_timer_base() */
		timer->base = NULL;
225 226
		raw_spin_unlock(&base->cpu_base->lock);
		raw_spin_lock(&new_base->cpu_base->lock);
227

228 229
		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
			cpu = this_cpu;
230 231
			raw_spin_unlock(&new_base->cpu_base->lock);
			raw_spin_lock(&base->cpu_base->lock);
232 233
			timer->base = base;
			goto again;
234
		}
235
		timer->base = new_base;
236 237 238 239 240
	} else {
		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
			cpu = this_cpu;
			goto again;
		}
241 242 243 244 245 246
	}
	return new_base;
}

#else /* CONFIG_SMP */

247
static inline struct hrtimer_clock_base *
248 249
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
250
	struct hrtimer_clock_base *base = timer->base;
251

252
	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
253 254 255 256

	return base;
}

257
# define switch_hrtimer_base(t, b, p)	(b)
258 259 260 261 262 263 264 265 266 267 268

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
/*
 * Divide a ktime value by a nanosecond value
 */
269
u64 __ktime_divns(const ktime_t kt, s64 div)
270
{
271
	u64 dclc;
272 273
	int sft = 0;

274
	dclc = ktime_to_ns(kt);
275 276 277 278 279 280 281 282
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
	dclc >>= sft;
	do_div(dclc, (unsigned long) div);

D
Davide Libenzi 已提交
283
	return dclc;
284
}
285
EXPORT_SYMBOL_GPL(__ktime_divns);
286 287
#endif /* BITS_PER_LONG >= 64 */

288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
	ktime_t res = ktime_add(lhs, rhs);

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

305 306
EXPORT_SYMBOL_GPL(ktime_add_safe);

307 308 309 310
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

311 312 313 314 315
static void *hrtimer_debug_hint(void *addr)
{
	return ((struct hrtimer *) addr)->function;
}

316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
{
	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
375
	.debug_hint	= hrtimer_debug_hint,
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}
S
Stephen Hemminger 已提交
410
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
411 412 413 414 415 416 417 418 419 420 421 422

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
	   enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	trace_hrtimer_init(timer, clockid, mode);
}

static inline void debug_activate(struct hrtimer *timer)
{
	debug_hrtimer_activate(timer);
	trace_hrtimer_start(timer);
}

static inline void debug_deactivate(struct hrtimer *timer)
{
	debug_hrtimer_deactivate(timer);
	trace_hrtimer_cancel(timer);
}

443
#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
444
static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
{
	struct hrtimer_clock_base *base = cpu_base->clock_base;
	ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
	int i;

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
		struct timerqueue_node *next;
		struct hrtimer *timer;

		next = timerqueue_getnext(&base->active);
		if (!next)
			continue;

		timer = container_of(next, struct hrtimer, node);
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
		if (expires.tv64 < expires_next.tv64)
			expires_next = expires;
	}
	/*
	 * clock_was_set() might have changed base->offset of any of
	 * the clock bases so the result might be negative. Fix it up
	 * to prevent a false positive in clockevents_program_event().
	 */
	if (expires_next.tv64 < 0)
		expires_next.tv64 = 0;
	return expires_next;
}
#endif

474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static int hrtimer_hres_enabled __read_mostly  = 1;

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	if (!strcmp(str, "off"))
		hrtimer_hres_enabled = 0;
	else if (!strcmp(str, "on"))
		hrtimer_hres_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
static inline int hrtimer_hres_active(void)
{
511
	return __this_cpu_read(hrtimer_bases.hres_active);
512 513 514 515 516 517 518
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
519 520
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
521
{
522
	ktime_t expires_next = __hrtimer_get_next_event(cpu_base);
523

524 525 526 527 528
	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
		return;

	cpu_base->expires_next.tv64 = expires_next.tv64;

529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * leave the hang delay active in the hardware. We want the
	 * system to make progress. That also prevents the following
	 * scenario:
	 * T1 expires 50ms from now
	 * T2 expires 5s from now
	 *
	 * T1 is removed, so this code is called and would reprogram
	 * the hardware to 5s from now. Any hrtimer_start after that
	 * will not reprogram the hardware due to hang_detected being
	 * set. So we'd effectivly block all timers until the T2 event
	 * fires.
	 */
	if (cpu_base->hang_detected)
		return;

546 547 548 549 550 551 552 553 554 555 556
	if (cpu_base->expires_next.tv64 != KTIME_MAX)
		tick_program_event(cpu_base->expires_next, 1);
}

/*
 * Shared reprogramming for clock_realtime and clock_monotonic
 *
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
557 558 559 560 561
 * Note, that in case the state has HRTIMER_STATE_CALLBACK set, no reprogramming
 * and no expiry check happens. The timer gets enqueued into the rbtree. The
 * reprogramming and expiry check is done in the hrtimer_interrupt or in the
 * softirq.
 *
562 563 564 565 566
 * Called with interrupts disabled and base->cpu_base.lock held
 */
static int hrtimer_reprogram(struct hrtimer *timer,
			     struct hrtimer_clock_base *base)
{
567
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
568
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
569 570
	int res;

571
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
572

573 574 575
	/*
	 * When the callback is running, we do not reprogram the clock event
	 * device. The timer callback is either running on a different CPU or
576
	 * the callback is executed in the hrtimer_interrupt context. The
577 578 579 580 581 582
	 * reprogramming is handled either by the softirq, which called the
	 * callback or at the end of the hrtimer_interrupt.
	 */
	if (hrtimer_callback_running(timer))
		return 0;

583 584 585 586 587 588 589 590 591
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
	 * expiry time which is less than base->offset. Nothing wrong
	 * about that, just avoid to call into the tick code, which
	 * has now objections against negative expiry values.
	 */
	if (expires.tv64 < 0)
		return -ETIME;

592 593 594
	if (expires.tv64 >= cpu_base->expires_next.tv64)
		return 0;

595 596 597 598 599 600 601 602 603
	/*
	 * When the target cpu of the timer is currently executing
	 * hrtimer_interrupt(), then we do not touch the clock event
	 * device. hrtimer_interrupt() will reevaluate all clock bases
	 * before reprogramming the device.
	 */
	if (cpu_base->in_hrtirq)
		return 0;

604 605 606 607 608 609 610
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * do not schedule a timer which is earlier than the expiry
	 * which we enforced in the hang detection. We want the system
	 * to make progress.
	 */
	if (cpu_base->hang_detected)
611 612 613 614 615 616 617
		return 0;

	/*
	 * Clockevents returns -ETIME, when the event was in the past.
	 */
	res = tick_program_event(expires, 0);
	if (!IS_ERR_VALUE(res))
618
		cpu_base->expires_next = expires;
619 620 621 622 623 624 625 626 627 628 629 630
	return res;
}

/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
	base->expires_next.tv64 = KTIME_MAX;
	base->hres_active = 0;
}

631 632 633 634
static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
{
	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
635
	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
636

637
	return ktime_get_update_offsets_now(offs_real, offs_boot, offs_tai);
638 639
}

640 641 642 643 644 645 646
/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
647
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
648 649 650 651 652

	if (!hrtimer_hres_active())
		return;

	raw_spin_lock(&base->lock);
653
	hrtimer_update_base(base);
654 655 656
	hrtimer_force_reprogram(base, 0);
	raw_spin_unlock(&base->lock);
}
657

658 659 660
/*
 * Switch to high resolution mode
 */
661
static int hrtimer_switch_to_hres(void)
662
{
663
	int i, cpu = smp_processor_id();
I
Ingo Molnar 已提交
664
	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
665 666 667
	unsigned long flags;

	if (base->hres_active)
668
		return 1;
669 670 671 672 673

	local_irq_save(flags);

	if (tick_init_highres()) {
		local_irq_restore(flags);
I
Ingo Molnar 已提交
674 675
		printk(KERN_WARNING "Could not switch to high resolution "
				    "mode on CPU %d\n", cpu);
676
		return 0;
677 678
	}
	base->hres_active = 1;
679 680
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
		base->clock_base[i].resolution = KTIME_HIGH_RES;
681 682 683 684 685

	tick_setup_sched_timer();
	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
	local_irq_restore(flags);
686
	return 1;
687 688
}

689 690 691 692 693 694 695
static void clock_was_set_work(struct work_struct *work)
{
	clock_was_set();
}

static DECLARE_WORK(hrtimer_work, clock_was_set_work);

696
/*
697 698
 * Called from timekeeping and resume code to reprogramm the hrtimer
 * interrupt device on all cpus.
699 700 701
 */
void clock_was_set_delayed(void)
{
702
	schedule_work(&hrtimer_work);
703 704
}

705 706 707 708
#else

static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
709
static inline int hrtimer_switch_to_hres(void) { return 0; }
710 711
static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
712 713
static inline int hrtimer_reprogram(struct hrtimer *timer,
				    struct hrtimer_clock_base *base)
714 715 716 717
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
718
static inline void retrigger_next_event(void *arg) { }
719 720 721

#endif /* CONFIG_HIGH_RES_TIMERS */

722 723 724 725 726 727 728 729 730 731 732 733 734
/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
735
#ifdef CONFIG_HIGH_RES_TIMERS
736 737
	/* Retrigger the CPU local events everywhere */
	on_each_cpu(retrigger_next_event, NULL, 1);
738 739
#endif
	timerfd_clock_was_set();
740 741 742 743
}

/*
 * During resume we might have to reprogram the high resolution timer
744 745
 * interrupt on all online CPUs.  However, all other CPUs will be
 * stopped with IRQs interrupts disabled so the clock_was_set() call
746
 * must be deferred.
747 748 749 750 751 752
 */
void hrtimers_resume(void)
{
	WARN_ONCE(!irqs_disabled(),
		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");

753
	/* Retrigger on the local CPU */
754
	retrigger_next_event(NULL);
755 756
	/* And schedule a retrigger for all others */
	clock_was_set_delayed();
757 758
}

759
static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
760
{
761
#ifdef CONFIG_TIMER_STATS
762 763
	if (timer->start_site)
		return;
764
	timer->start_site = __builtin_return_address(0);
765 766
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
767 768 769 770 771 772 773 774
#endif
}

static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
#endif
775
}
776 777 778 779 780 781 782 783

static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	if (likely(!timer_stats_active))
		return;
	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
				 timer->function, timer->start_comm, 0);
784
#endif
785
}
786

787
/*
788
 * Counterpart to lock_hrtimer_base above:
789 790 791 792
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
793
	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
794 795 796 797 798
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
799
 * @now:	forward past this time
800 801 802
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
803
 * Returns the number of overruns.
804 805 806 807 808 809 810 811
 *
 * Can be safely called from the callback function of @timer. If
 * called from other contexts @timer must neither be enqueued nor
 * running the callback and the caller needs to take care of
 * serialization.
 *
 * Note: This only updates the timer expiry value and does not requeue
 * the timer.
812
 */
D
Davide Libenzi 已提交
813
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
814
{
D
Davide Libenzi 已提交
815
	u64 orun = 1;
816
	ktime_t delta;
817

818
	delta = ktime_sub(now, hrtimer_get_expires(timer));
819 820 821 822

	if (delta.tv64 < 0)
		return 0;

823 824 825
	if (interval.tv64 < timer->base->resolution.tv64)
		interval.tv64 = timer->base->resolution.tv64;

826
	if (unlikely(delta.tv64 >= interval.tv64)) {
827
		s64 incr = ktime_to_ns(interval);
828 829

		orun = ktime_divns(delta, incr);
830 831
		hrtimer_add_expires_ns(timer, incr * orun);
		if (hrtimer_get_expires_tv64(timer) > now.tv64)
832 833 834 835 836 837 838
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
839
	hrtimer_add_expires(timer, interval);
840 841 842

	return orun;
}
S
Stas Sergeev 已提交
843
EXPORT_SYMBOL_GPL(hrtimer_forward);
844 845 846 847 848 849

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
850 851
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
852
 */
853 854
static int enqueue_hrtimer(struct hrtimer *timer,
			   struct hrtimer_clock_base *base)
855
{
856
	debug_activate(timer);
857

858
	timerqueue_add(&base->active, &timer->node);
859
	base->cpu_base->active_bases |= 1 << base->index;
860

861 862 863 864 865
	/*
	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
	 * state of a possibly running callback.
	 */
	timer->state |= HRTIMER_STATE_ENQUEUED;
866

867
	return (&timer->node == base->active.next);
868
}
869 870 871 872 873

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
874 875 876 877 878
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
879
 */
880
static void __remove_hrtimer(struct hrtimer *timer,
881
			     struct hrtimer_clock_base *base,
882
			     unsigned long newstate, int reprogram)
883
{
884
	struct timerqueue_node *next_timer;
885 886 887
	if (!(timer->state & HRTIMER_STATE_ENQUEUED))
		goto out;

888 889
	next_timer = timerqueue_getnext(&base->active);
	timerqueue_del(&base->active, &timer->node);
890 891 892
	if (!timerqueue_getnext(&base->active))
		base->cpu_base->active_bases &= ~(1 << base->index);

893
	if (&timer->node == next_timer) {
894 895 896 897 898 899 900 901 902
#ifdef CONFIG_HIGH_RES_TIMERS
		/* Reprogram the clock event device. if enabled */
		if (reprogram && hrtimer_hres_active()) {
			ktime_t expires;

			expires = ktime_sub(hrtimer_get_expires(timer),
					    base->offset);
			if (base->cpu_base->expires_next.tv64 == expires.tv64)
				hrtimer_force_reprogram(base->cpu_base, 1);
903
		}
904
#endif
905
	}
906
out:
907
	timer->state = newstate;
908 909 910 911 912 913
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
914
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
915
{
916
	if (hrtimer_is_queued(timer)) {
917
		unsigned long state;
918 919 920 921 922 923 924 925 926 927
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
928
		debug_deactivate(timer);
929
		timer_stats_hrtimer_clear_start_info(timer);
930
		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
931 932 933 934 935 936 937
		/*
		 * We must preserve the CALLBACK state flag here,
		 * otherwise we could move the timer base in
		 * switch_hrtimer_base.
		 */
		state = timer->state & HRTIMER_STATE_CALLBACK;
		__remove_hrtimer(timer, base, state, reprogram);
938 939 940 941 942
		return 1;
	}
	return 0;
}

943 944 945
int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode,
		int wakeup)
946
{
947
	struct hrtimer_clock_base *base, *new_base;
948
	unsigned long flags;
949
	int ret, leftmost;
950 951 952 953 954 955

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
	ret = remove_hrtimer(timer, base);

956
	if (mode & HRTIMER_MODE_REL) {
957
		tim = ktime_add_safe(tim, base->get_time());
958 959 960 961 962 963 964 965
		/*
		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
		 * to signal that they simply return xtime in
		 * do_gettimeoffset(). In this case we want to round up by
		 * resolution when starting a relative timer, to avoid short
		 * timeouts. This will go away with the GTOD framework.
		 */
#ifdef CONFIG_TIME_LOW_RES
966
		tim = ktime_add_safe(tim, base->resolution);
967 968
#endif
	}
969

970
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
971

972 973 974
	/* Switch the timer base, if necessary: */
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);

975 976
	timer_stats_hrtimer_set_start_info(timer);

977 978
	leftmost = enqueue_hrtimer(timer, new_base);

979 980 981 982 983 984 985 986 987 988 989
	if (!leftmost) {
		unlock_hrtimer_base(timer, &flags);
		return ret;
	}

	if (!hrtimer_is_hres_active(timer)) {
		/*
		 * Kick to reschedule the next tick to handle the new timer
		 * on dynticks target.
		 */
		wake_up_nohz_cpu(new_base->cpu_base->cpu);
990
	} else if (new_base->cpu_base == this_cpu_ptr(&hrtimer_bases) &&
991
			hrtimer_reprogram(timer, new_base)) {
992 993 994 995 996 997
		/*
		 * Only allow reprogramming if the new base is on this CPU.
		 * (it might still be on another CPU if the timer was pending)
		 *
		 * XXX send_remote_softirq() ?
		 */
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
		if (wakeup) {
			/*
			 * We need to drop cpu_base->lock to avoid a
			 * lock ordering issue vs. rq->lock.
			 */
			raw_spin_unlock(&new_base->cpu_base->lock);
			raise_softirq_irqoff(HRTIMER_SOFTIRQ);
			local_irq_restore(flags);
			return ret;
		} else {
			__raise_softirq_irqoff(HRTIMER_SOFTIRQ);
		}
	}
1011 1012 1013 1014 1015

	unlock_hrtimer_base(timer, &flags);

	return ret;
}
1016
EXPORT_SYMBOL_GPL(__hrtimer_start_range_ns);
1017 1018 1019 1020 1021 1022

/**
 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
1023 1024
 * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL)
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode)
{
	return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
}
1035 1036 1037
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

/**
T
Thomas Gleixner 已提交
1038
 * hrtimer_start - (re)start an hrtimer on the current CPU
1039 1040
 * @timer:	the timer to be added
 * @tim:	expiry time
1041 1042
 * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL)
1043 1044 1045 1046 1047 1048 1049 1050
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int
hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
{
1051
	return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1052
}
1053
EXPORT_SYMBOL_GPL(hrtimer_start);
1054

1055

1056 1057 1058 1059 1060 1061 1062 1063
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
1064
 *    cannot be stopped
1065 1066 1067
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
1068
	struct hrtimer_clock_base *base;
1069 1070 1071 1072 1073
	unsigned long flags;
	int ret = -1;

	base = lock_hrtimer_base(timer, &flags);

1074
	if (!hrtimer_callback_running(timer))
1075 1076 1077 1078 1079 1080 1081
		ret = remove_hrtimer(timer, base);

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1082
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1099
		cpu_relax();
1100 1101
	}
}
1102
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
 */
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
{
	unsigned long flags;
	ktime_t rem;

1113
	lock_hrtimer_base(timer, &flags);
1114
	rem = hrtimer_expires_remaining(timer);
1115 1116 1117 1118
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1119
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1120

1121
#ifdef CONFIG_NO_HZ_COMMON
1122 1123 1124 1125 1126 1127 1128 1129
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
 * Returns the delta to the next expiry event or KTIME_MAX if no timer
 * is pending.
 */
ktime_t hrtimer_get_next_event(void)
{
1130
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1131
	ktime_t mindelta = { .tv64 = KTIME_MAX };
1132 1133
	unsigned long flags;

1134
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1135

1136 1137 1138
	if (!hrtimer_hres_active())
		mindelta = ktime_sub(__hrtimer_get_next_event(cpu_base),
				     ktime_get());
1139

1140
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1141

1142 1143 1144 1145 1146 1147
	if (mindelta.tv64 < 0)
		mindelta.tv64 = 0;
	return mindelta;
}
#endif

1148 1149
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1150
{
1151
	struct hrtimer_cpu_base *cpu_base;
1152
	int base;
1153

1154 1155
	memset(timer, 0, sizeof(struct hrtimer));

1156
	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1157

1158
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1159 1160
		clock_id = CLOCK_MONOTONIC;

1161 1162
	base = hrtimer_clockid_to_base(clock_id);
	timer->base = &cpu_base->clock_base[base];
1163
	timerqueue_init(&timer->node);
1164 1165 1166 1167 1168 1169

#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
1170
}
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
 * @mode:	timer mode abs/rel
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
1181
	debug_init(timer, clock_id, mode);
1182 1183
	__hrtimer_init(timer, clock_id, mode);
}
1184
EXPORT_SYMBOL_GPL(hrtimer_init);
1185 1186 1187 1188 1189 1190

/**
 * hrtimer_get_res - get the timer resolution for a clock
 * @which_clock: which clock to query
 * @tp:		 pointer to timespec variable to store the resolution
 *
1191 1192
 * Store the resolution of the clock selected by @which_clock in the
 * variable pointed to by @tp.
1193 1194 1195
 */
int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
{
1196
	struct hrtimer_cpu_base *cpu_base;
1197
	int base = hrtimer_clockid_to_base(which_clock);
1198

1199
	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1200
	*tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
1201 1202 1203

	return 0;
}
1204
EXPORT_SYMBOL_GPL(hrtimer_get_res);
1205

1206
static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1207 1208 1209 1210 1211 1212
{
	struct hrtimer_clock_base *base = timer->base;
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1213 1214
	WARN_ON(!irqs_disabled());

1215
	debug_deactivate(timer);
1216 1217 1218
	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
	timer_stats_account_hrtimer(timer);
	fn = timer->function;
1219 1220 1221 1222 1223 1224

	/*
	 * Because we run timers from hardirq context, there is no chance
	 * they get migrated to another cpu, therefore its safe to unlock
	 * the timer base.
	 */
1225
	raw_spin_unlock(&cpu_base->lock);
1226
	trace_hrtimer_expire_entry(timer, now);
1227
	restart = fn(timer);
1228
	trace_hrtimer_expire_exit(timer);
1229
	raw_spin_lock(&cpu_base->lock);
1230 1231

	/*
T
Thomas Gleixner 已提交
1232 1233 1234
	 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
	 * we do not reprogramm the event hardware. Happens either in
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1235 1236 1237
	 */
	if (restart != HRTIMER_NORESTART) {
		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1238
		enqueue_hrtimer(timer, base);
1239
	}
1240 1241 1242

	WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));

1243 1244 1245
	timer->state &= ~HRTIMER_STATE_CALLBACK;
}

1246 1247 1248 1249 1250 1251 1252 1253
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
1254
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1255 1256
	ktime_t expires_next, now, entry_time, delta;
	int i, retries = 0;
1257 1258 1259 1260 1261

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event.tv64 = KTIME_MAX;

1262
	raw_spin_lock(&cpu_base->lock);
1263
	entry_time = now = hrtimer_update_base(cpu_base);
1264
retry:
1265
	cpu_base->in_hrtirq = 1;
1266 1267 1268 1269 1270 1271 1272 1273 1274
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
	cpu_base->expires_next.tv64 = KTIME_MAX;

1275
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1276
		struct hrtimer_clock_base *base;
1277
		struct timerqueue_node *node;
1278 1279 1280 1281
		ktime_t basenow;

		if (!(cpu_base->active_bases & (1 << i)))
			continue;
1282

1283
		base = cpu_base->clock_base + i;
1284 1285
		basenow = ktime_add(now, base->offset);

1286
		while ((node = timerqueue_getnext(&base->active))) {
1287 1288
			struct hrtimer *timer;

1289
			timer = container_of(node, struct hrtimer, node);
1290

1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */
1303
			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
1304 1305
				break;

1306
			__run_hrtimer(timer, &basenow);
1307 1308
		}
	}
1309 1310
	/* Reevaluate the clock bases for the next expiry */
	expires_next = __hrtimer_get_next_event(cpu_base);
1311 1312 1313 1314
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1315
	cpu_base->expires_next = expires_next;
1316
	cpu_base->in_hrtirq = 0;
1317
	raw_spin_unlock(&cpu_base->lock);
1318 1319

	/* Reprogramming necessary ? */
1320 1321 1322 1323
	if (expires_next.tv64 == KTIME_MAX ||
	    !tick_program_event(expires_next, 0)) {
		cpu_base->hang_detected = 0;
		return;
1324
	}
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334

	/*
	 * The next timer was already expired due to:
	 * - tracing
	 * - long lasting callbacks
	 * - being scheduled away when running in a VM
	 *
	 * We need to prevent that we loop forever in the hrtimer
	 * interrupt routine. We give it 3 attempts to avoid
	 * overreacting on some spurious event.
1335 1336 1337
	 *
	 * Acquire base lock for updating the offsets and retrieving
	 * the current time.
1338
	 */
1339
	raw_spin_lock(&cpu_base->lock);
1340
	now = hrtimer_update_base(cpu_base);
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
	cpu_base->nr_retries++;
	if (++retries < 3)
		goto retry;
	/*
	 * Give the system a chance to do something else than looping
	 * here. We stored the entry time, so we know exactly how long
	 * we spent here. We schedule the next event this amount of
	 * time away.
	 */
	cpu_base->nr_hangs++;
	cpu_base->hang_detected = 1;
1352
	raw_spin_unlock(&cpu_base->lock);
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
	delta = ktime_sub(now, entry_time);
	if (delta.tv64 > cpu_base->max_hang_time.tv64)
		cpu_base->max_hang_time = delta;
	/*
	 * Limit it to a sensible value as we enforce a longer
	 * delay. Give the CPU at least 100ms to catch up.
	 */
	if (delta.tv64 > 100 * NSEC_PER_MSEC)
		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
	else
		expires_next = ktime_add(now, delta);
	tick_program_event(expires_next, 1);
	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
		    ktime_to_ns(delta));
1367 1368
}

1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
/*
 * local version of hrtimer_peek_ahead_timers() called with interrupts
 * disabled.
 */
static void __hrtimer_peek_ahead_timers(void)
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

1380
	td = this_cpu_ptr(&tick_cpu_device);
1381 1382 1383 1384
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
/**
 * hrtimer_peek_ahead_timers -- run soft-expired timers now
 *
 * hrtimer_peek_ahead_timers will peek at the timer queue of
 * the current cpu and check if there are any timers for which
 * the soft expires time has passed. If any such timers exist,
 * they are run immediately and then removed from the timer queue.
 *
 */
void hrtimer_peek_ahead_timers(void)
{
1396
	unsigned long flags;
1397

1398
	local_irq_save(flags);
1399
	__hrtimer_peek_ahead_timers();
1400 1401 1402
	local_irq_restore(flags);
}

1403 1404 1405 1406 1407
static void run_hrtimer_softirq(struct softirq_action *h)
{
	hrtimer_peek_ahead_timers();
}

1408 1409 1410 1411 1412
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1413

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
/*
 * Called from timer softirq every jiffy, expire hrtimers:
 *
 * For HRT its the fall back code to run the softirq in the timer
 * softirq context in case the hrtimer initialization failed or has
 * not been done yet.
 */
void hrtimer_run_pending(void)
{
	if (hrtimer_hres_active())
		return;
1425

1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
	/*
	 * This _is_ ugly: We have to check in the softirq context,
	 * whether we can switch to highres and / or nohz mode. The
	 * clocksource switch happens in the timer interrupt with
	 * xtime_lock held. Notification from there only sets the
	 * check bit in the tick_oneshot code, otherwise we might
	 * deadlock vs. xtime_lock.
	 */
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
		hrtimer_switch_to_hres();
1436 1437
}

1438
/*
1439
 * Called from hardirq context every jiffy
1440
 */
1441
void hrtimer_run_queues(void)
1442
{
1443
	struct timerqueue_node *node;
1444
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1445 1446
	struct hrtimer_clock_base *base;
	int index, gettime = 1;
1447

1448
	if (hrtimer_hres_active())
1449 1450
		return;

1451 1452
	for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
		base = &cpu_base->clock_base[index];
1453
		if (!timerqueue_getnext(&base->active))
1454
			continue;
1455

1456
		if (gettime) {
1457 1458
			hrtimer_get_softirq_time(cpu_base);
			gettime = 0;
1459
		}
1460

1461
		raw_spin_lock(&cpu_base->lock);
1462

1463
		while ((node = timerqueue_getnext(&base->active))) {
1464
			struct hrtimer *timer;
1465

1466
			timer = container_of(node, struct hrtimer, node);
1467 1468
			if (base->softirq_time.tv64 <=
					hrtimer_get_expires_tv64(timer))
1469 1470
				break;

1471
			__run_hrtimer(timer, &base->softirq_time);
1472
		}
1473
		raw_spin_unlock(&cpu_base->lock);
1474
	}
1475 1476
}

1477 1478 1479
/*
 * Sleep related functions:
 */
1480
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1493
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1494 1495 1496 1497
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}
S
Stephen Hemminger 已提交
1498
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1499

1500
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1501
{
1502
	hrtimer_init_sleeper(t, current);
1503

1504 1505
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1506
		hrtimer_start_expires(&t->timer, mode);
P
Peter Zijlstra 已提交
1507 1508
		if (!hrtimer_active(&t->timer))
			t->task = NULL;
1509

1510
		if (likely(t->task))
1511
			freezable_schedule();
1512

1513
		hrtimer_cancel(&t->timer);
1514
		mode = HRTIMER_MODE_ABS;
1515 1516

	} while (t->task && !signal_pending(current));
1517

1518 1519
	__set_current_state(TASK_RUNNING);

1520
	return t->task == NULL;
1521 1522
}

1523 1524 1525 1526 1527
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

1528
	rem = hrtimer_expires_remaining(timer);
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
	if (rem.tv64 <= 0)
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;
}

1539
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1540
{
1541
	struct hrtimer_sleeper t;
1542
	struct timespec __user  *rmtp;
1543
	int ret = 0;
1544

1545
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1546
				HRTIMER_MODE_ABS);
1547
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1548

1549
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1550
		goto out;
1551

1552
	rmtp = restart->nanosleep.rmtp;
1553
	if (rmtp) {
1554
		ret = update_rmtp(&t.timer, rmtp);
1555
		if (ret <= 0)
1556
			goto out;
1557
	}
1558 1559

	/* The other values in restart are already filled in */
1560 1561 1562 1563
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1564 1565
}

1566
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1567 1568 1569
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1570
	struct hrtimer_sleeper t;
1571
	int ret = 0;
1572 1573 1574
	unsigned long slack;

	slack = current->timer_slack_ns;
1575
	if (dl_task(current) || rt_task(current))
1576
		slack = 0;
1577

1578
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1579
	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1580
	if (do_nanosleep(&t, mode))
1581
		goto out;
1582

1583
	/* Absolute timers do not update the rmtp value and restart: */
1584 1585 1586 1587
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1588

1589
	if (rmtp) {
1590
		ret = update_rmtp(&t.timer, rmtp);
1591
		if (ret <= 0)
1592
			goto out;
1593
	}
1594

1595
	restart = &current->restart_block;
1596
	restart->fn = hrtimer_nanosleep_restart;
1597
	restart->nanosleep.clockid = t.timer.base->clockid;
1598
	restart->nanosleep.rmtp = rmtp;
1599
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1600

1601 1602 1603 1604
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1605 1606
}

1607 1608
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1609
{
1610
	struct timespec tu;
1611 1612 1613 1614 1615 1616 1617

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1618
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1619 1620
}

1621 1622 1623
/*
 * Functions related to boot-time initialization:
 */
1624
static void init_hrtimers_cpu(int cpu)
1625
{
1626
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1627 1628
	int i;

1629
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1630
		cpu_base->clock_base[i].cpu_base = cpu_base;
1631 1632
		timerqueue_init_head(&cpu_base->clock_base[i].active);
	}
1633

1634
	cpu_base->cpu = cpu;
1635
	hrtimer_init_hres(cpu_base);
1636 1637 1638 1639
}

#ifdef CONFIG_HOTPLUG_CPU

1640
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1641
				struct hrtimer_clock_base *new_base)
1642 1643
{
	struct hrtimer *timer;
1644
	struct timerqueue_node *node;
1645

1646 1647
	while ((node = timerqueue_getnext(&old_base->active))) {
		timer = container_of(node, struct hrtimer, node);
1648
		BUG_ON(hrtimer_callback_running(timer));
1649
		debug_deactivate(timer);
T
Thomas Gleixner 已提交
1650 1651 1652 1653 1654 1655 1656

		/*
		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1657
		timer->base = new_base;
1658
		/*
T
Thomas Gleixner 已提交
1659 1660 1661 1662 1663 1664
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1665
		 */
1666
		enqueue_hrtimer(timer, new_base);
1667

T
Thomas Gleixner 已提交
1668 1669
		/* Clear the migration state bit */
		timer->state &= ~HRTIMER_STATE_MIGRATE;
1670 1671 1672
	}
}

1673
static void migrate_hrtimers(int scpu)
1674
{
1675
	struct hrtimer_cpu_base *old_base, *new_base;
1676
	int i;
1677

1678 1679
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1680 1681 1682

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
1683
	new_base = this_cpu_ptr(&hrtimer_bases);
1684 1685 1686 1687
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1688 1689
	raw_spin_lock(&new_base->lock);
	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1690

1691
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1692
		migrate_hrtimer_list(&old_base->clock_base[i],
1693
				     &new_base->clock_base[i]);
1694 1695
	}

1696 1697
	raw_spin_unlock(&old_base->lock);
	raw_spin_unlock(&new_base->lock);
1698

1699 1700 1701
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1702
}
1703

1704 1705
#endif /* CONFIG_HOTPLUG_CPU */

1706
static int hrtimer_cpu_notify(struct notifier_block *self,
1707 1708
					unsigned long action, void *hcpu)
{
1709
	int scpu = (long)hcpu;
1710 1711 1712 1713

	switch (action) {

	case CPU_UP_PREPARE:
1714
	case CPU_UP_PREPARE_FROZEN:
1715
		init_hrtimers_cpu(scpu);
1716 1717 1718 1719
		break;

#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
1720
	case CPU_DEAD_FROZEN:
1721
		migrate_hrtimers(scpu);
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
		break;
#endif

	default:
		break;
	}

	return NOTIFY_OK;
}

1732
static struct notifier_block hrtimers_nb = {
1733 1734 1735 1736 1737 1738 1739 1740
	.notifier_call = hrtimer_cpu_notify,
};

void __init hrtimers_init(void)
{
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
			  (void *)(long)smp_processor_id());
	register_cpu_notifier(&hrtimers_nb);
1741 1742 1743
#ifdef CONFIG_HIGH_RES_TIMERS
	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
#endif
1744 1745
}

1746
/**
1747
 * schedule_hrtimeout_range_clock - sleep until timeout
1748
 * @expires:	timeout value (ktime_t)
1749
 * @delta:	slack in expires timeout (ktime_t)
1750
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1751
 * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1752
 */
1753 1754 1755
int __sched
schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
			       const enum hrtimer_mode mode, int clock)
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
	if (expires && !expires->tv64) {
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
N
Namhyung Kim 已提交
1769
	 * A NULL parameter means "infinite"
1770 1771 1772 1773 1774 1775
	 */
	if (!expires) {
		schedule();
		return -EINTR;
	}

1776
	hrtimer_init_on_stack(&t.timer, clock, mode);
1777
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1778 1779 1780

	hrtimer_init_sleeper(&t, current);

1781
	hrtimer_start_expires(&t.timer, mode);
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
	if (!hrtimer_active(&t.timer))
		t.task = NULL;

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829

/**
 * schedule_hrtimeout_range - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @delta:	slack in expires timeout (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
				     const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range_clock(expires, delta, mode,
					      CLOCK_MONOTONIC);
}
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1859
EXPORT_SYMBOL_GPL(schedule_hrtimeout);