hrtimer.c 46.9 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
35
#include <linux/export.h>
36 37 38 39
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46
#include <linux/sched/signal.h>
47
#include <linux/sched/sysctl.h>
48
#include <linux/sched/rt.h>
49
#include <linux/sched/deadline.h>
50
#include <linux/sched/nohz.h>
51
#include <linux/sched/debug.h>
52
#include <linux/timer.h>
53
#include <linux/freezer.h>
54
#include <linux/compat.h>
55

56
#include <linux/uaccess.h>
57

58 59
#include <trace/events/timer.h>

60
#include "tick-internal.h"
61

62 63
/*
 * The timer bases:
64
 *
Z
Zhen Lei 已提交
65
 * There are more clockids than hrtimer bases. Thus, we index
66 67 68
 * into the timer bases by the hrtimer_base_type enum. When trying
 * to reach a base using a clockid, hrtimer_clockid_to_base()
 * is used to convert from clockid to the proper hrtimer_base_type.
69
 */
70
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
71
{
72
	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
73
	.seq = SEQCNT_ZERO(hrtimer_bases.seq),
74
	.clock_base =
75
	{
76
		{
77 78
			.index = HRTIMER_BASE_MONOTONIC,
			.clockid = CLOCK_MONOTONIC,
79 80
			.get_time = &ktime_get,
		},
T
Thomas Gleixner 已提交
81 82 83 84 85
		{
			.index = HRTIMER_BASE_REALTIME,
			.clockid = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
		},
86
		{
87 88
			.index = HRTIMER_BASE_BOOTTIME,
			.clockid = CLOCK_BOOTTIME,
89 90
			.get_time = &ktime_get_boottime,
		},
91 92 93 94 95
		{
			.index = HRTIMER_BASE_TAI,
			.clockid = CLOCK_TAI,
			.get_time = &ktime_get_clocktai,
		},
96
	}
97 98
};

99
static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
100 101 102
	/* Make sure we catch unsupported clockids */
	[0 ... MAX_CLOCKS - 1]	= HRTIMER_MAX_CLOCK_BASES,

103 104 105
	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
106
	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
107
};
108

109 110 111 112 113 114
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

115 116 117 118 119 120 121 122 123 124 125 126
/*
 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
 * such that hrtimer_callback_running() can unconditionally dereference
 * timer->base->cpu_base
 */
static struct hrtimer_cpu_base migration_cpu_base = {
	.seq = SEQCNT_ZERO(migration_cpu_base),
	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
};

#define migration_base	migration_cpu_base.clock_base[0]

127 128 129 130 131 132 133 134 135
/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
136 137
 * possible to set timer->base = &migration_base and drop the lock: the timer
 * remains locked.
138
 */
139 140 141
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
142
{
143
	struct hrtimer_clock_base *base;
144 145 146

	for (;;) {
		base = timer->base;
147
		if (likely(base != &migration_base)) {
148
			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
149 150 151
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
152
			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
153 154 155 156 157
		}
		cpu_relax();
	}
}

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
/*
 * With HIGHRES=y we do not migrate the timer when it is expiring
 * before the next event on the target cpu because we cannot reprogram
 * the target cpu hardware and we would cause it to fire late.
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	ktime_t expires;

	if (!new_base->cpu_base->hres_active)
		return 0;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
T
Thomas Gleixner 已提交
175
	return expires <= new_base->cpu_base->expires_next;
176 177 178 179 180
#else
	return 0;
#endif
}

181 182 183 184
static inline
struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
					 int pinned)
{
185 186 187 188
#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
	if (static_branch_likely(&timers_migration_enabled) && !pinned)
		return &per_cpu(hrtimer_bases, get_nohz_timer_target());
#endif
189
	return base;
190 191
}

192
/*
193 194 195 196 197 198 199 200 201 202
 * We switch the timer base to a power-optimized selected CPU target,
 * if:
 *	- NO_HZ_COMMON is enabled
 *	- timer migration is enabled
 *	- the timer callback is not running
 *	- the timer is not the first expiring timer on the new target
 *
 * If one of the above requirements is not fulfilled we move the timer
 * to the current CPU or leave it on the previously assigned CPU if
 * the timer callback is currently running.
203
 */
204
static inline struct hrtimer_clock_base *
205 206
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
207
{
208
	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
209
	struct hrtimer_clock_base *new_base;
210
	int basenum = base->index;
211

212 213
	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
	new_cpu_base = get_target_base(this_cpu_base, pinned);
214
again:
215
	new_base = &new_cpu_base->clock_base[basenum];
216 217 218

	if (base != new_base) {
		/*
219
		 * We are trying to move timer to new_base.
220 221 222 223 224 225 226
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
227
		if (unlikely(hrtimer_callback_running(timer)))
228 229
			return base;

230 231
		/* See the comment in lock_hrtimer_base() */
		timer->base = &migration_base;
232 233
		raw_spin_unlock(&base->cpu_base->lock);
		raw_spin_lock(&new_base->cpu_base->lock);
234

235
		if (new_cpu_base != this_cpu_base &&
236
		    hrtimer_check_target(timer, new_base)) {
237 238
			raw_spin_unlock(&new_base->cpu_base->lock);
			raw_spin_lock(&base->cpu_base->lock);
239
			new_cpu_base = this_cpu_base;
240 241
			timer->base = base;
			goto again;
242
		}
243
		timer->base = new_base;
244
	} else {
245
		if (new_cpu_base != this_cpu_base &&
246
		    hrtimer_check_target(timer, new_base)) {
247
			new_cpu_base = this_cpu_base;
248 249
			goto again;
		}
250 251 252 253 254 255
	}
	return new_base;
}

#else /* CONFIG_SMP */

256
static inline struct hrtimer_clock_base *
257 258
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
259
	struct hrtimer_clock_base *base = timer->base;
260

261
	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
262 263 264 265

	return base;
}

266
# define switch_hrtimer_base(t, b, p)	(b)
267 268 269 270 271 272 273 274 275 276 277

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
/*
 * Divide a ktime value by a nanosecond value
 */
278
s64 __ktime_divns(const ktime_t kt, s64 div)
279 280
{
	int sft = 0;
281 282
	s64 dclc;
	u64 tmp;
283

284
	dclc = ktime_to_ns(kt);
285 286
	tmp = dclc < 0 ? -dclc : dclc;

287 288 289 290 291
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
292 293 294
	tmp >>= sft;
	do_div(tmp, (unsigned long) div);
	return dclc < 0 ? -tmp : tmp;
295
}
296
EXPORT_SYMBOL_GPL(__ktime_divns);
297 298
#endif /* BITS_PER_LONG >= 64 */

299 300 301 302 303
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
304
	ktime_t res = ktime_add_unsafe(lhs, rhs);
305 306 307 308 309

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
T
Thomas Gleixner 已提交
310
	if (res < 0 || res < lhs || res < rhs)
311 312 313 314 315
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

316 317
EXPORT_SYMBOL_GPL(ktime_add_safe);

318 319 320 321
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

322 323 324 325 326
static void *hrtimer_debug_hint(void *addr)
{
	return ((struct hrtimer *) addr)->function;
}

327 328 329 330
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
331
static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
332 333 334 335 336 337 338
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
339
		return true;
340
	default:
341
		return false;
342 343 344 345 346 347
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
348
 * - an unknown non-static object is activated
349
 */
350
static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
351 352 353 354 355 356
{
	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
357
		return false;
358 359 360 361 362 363 364
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
365
static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
366 367 368 369 370 371 372
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
373
		return true;
374
	default:
375
		return false;
376 377 378 379 380
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
381
	.debug_hint	= hrtimer_debug_hint,
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}
S
Stephen Hemminger 已提交
416
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
417 418 419 420 421

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}
422
EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
423 424 425 426 427 428 429

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

430 431 432 433 434 435 436 437
static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
	   enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	trace_hrtimer_init(timer, clockid, mode);
}

438 439
static inline void debug_activate(struct hrtimer *timer,
				  enum hrtimer_mode mode)
440 441
{
	debug_hrtimer_activate(timer);
442
	trace_hrtimer_start(timer, mode);
443 444 445 446 447 448 449 450
}

static inline void debug_deactivate(struct hrtimer *timer)
{
	debug_hrtimer_deactivate(timer);
	trace_hrtimer_cancel(timer);
}

451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
static struct hrtimer_clock_base *
__next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
{
	unsigned int idx;

	if (!*active)
		return NULL;

	idx = __ffs(*active);
	*active &= ~(1U << idx);

	return &cpu_base->clock_base[idx];
}

#define for_each_active_base(base, cpu_base, active)	\
	while ((base = __next_base((cpu_base), &(active))))

468
#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
469 470 471 472 473 474 475 476
static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
					     struct hrtimer *timer)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	cpu_base->next_timer = timer;
#endif
}

477
static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
478
{
479
	struct hrtimer_clock_base *base;
480
	unsigned int active = cpu_base->active_bases;
T
Thomas Gleixner 已提交
481
	ktime_t expires, expires_next = KTIME_MAX;
482

483
	hrtimer_update_next_timer(cpu_base, NULL);
484
	for_each_active_base(base, cpu_base, active) {
485 486 487
		struct timerqueue_node *next;
		struct hrtimer *timer;

488
		next = timerqueue_getnext(&base->active);
489 490
		timer = container_of(next, struct hrtimer, node);
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
T
Thomas Gleixner 已提交
491
		if (expires < expires_next) {
492
			expires_next = expires;
493 494
			hrtimer_update_next_timer(cpu_base, timer);
		}
495 496 497 498 499 500
	}
	/*
	 * clock_was_set() might have changed base->offset of any of
	 * the clock bases so the result might be negative. Fix it up
	 * to prevent a false positive in clockevents_program_event().
	 */
T
Thomas Gleixner 已提交
501 502
	if (expires_next < 0)
		expires_next = 0;
503 504 505 506
	return expires_next;
}
#endif

507 508 509 510 511 512
static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
{
	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;

513 514
	return ktime_get_update_offsets_now(&base->clock_was_set_seq,
					    offs_real, offs_boot, offs_tai);
515 516
}

517 518 519 520 521 522
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
523
static bool hrtimer_hres_enabled __read_mostly  = true;
524 525
unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
EXPORT_SYMBOL_GPL(hrtimer_resolution);
526 527 528 529 530 531

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
532
	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
548 549 550 551 552
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
{
	return cpu_base->hres_active;
}

553 554
static inline int hrtimer_hres_active(void)
{
555
	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
556 557 558 559 560 561 562
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
563 564
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
565
{
566 567 568 569 570 571
	ktime_t expires_next;

	if (!cpu_base->hres_active)
		return;

	expires_next = __hrtimer_get_next_event(cpu_base);
572

T
Thomas Gleixner 已提交
573
	if (skip_equal && expires_next == cpu_base->expires_next)
574 575
		return;

T
Thomas Gleixner 已提交
576
	cpu_base->expires_next = expires_next;
577

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * leave the hang delay active in the hardware. We want the
	 * system to make progress. That also prevents the following
	 * scenario:
	 * T1 expires 50ms from now
	 * T2 expires 5s from now
	 *
	 * T1 is removed, so this code is called and would reprogram
	 * the hardware to 5s from now. Any hrtimer_start after that
	 * will not reprogram the hardware due to hang_detected being
	 * set. So we'd effectivly block all timers until the T2 event
	 * fires.
	 */
	if (cpu_base->hang_detected)
		return;

595
	tick_program_event(cpu_base->expires_next, 1);
596 597 598 599 600 601 602 603 604
}

/*
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
605 606
static void hrtimer_reprogram(struct hrtimer *timer,
			      struct hrtimer_clock_base *base)
607
{
608
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
609
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
610

611
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
612

613
	/*
614 615
	 * If the timer is not on the current cpu, we cannot reprogram
	 * the other cpus clock event device.
616
	 */
617 618 619 620 621 622 623 624 625 626 627 628
	if (base->cpu_base != cpu_base)
		return;

	/*
	 * If the hrtimer interrupt is running, then it will
	 * reevaluate the clock bases and reprogram the clock event
	 * device. The callbacks are always executed in hard interrupt
	 * context so we don't need an extra check for a running
	 * callback.
	 */
	if (cpu_base->in_hrtirq)
		return;
629

630 631
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
632
	 * expiry time which is less than base->offset. Set it to 0.
633
	 */
T
Thomas Gleixner 已提交
634 635
	if (expires < 0)
		expires = 0;
636

T
Thomas Gleixner 已提交
637
	if (expires >= cpu_base->expires_next)
638
		return;
639

640
	/* Update the pointer to the next expiring timer */
641
	cpu_base->next_timer = timer;
642

643 644 645 646 647 648 649
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * do not schedule a timer which is earlier than the expiry
	 * which we enforced in the hang detection. We want the system
	 * to make progress.
	 */
	if (cpu_base->hang_detected)
650
		return;
651 652

	/*
653 654
	 * Program the timer hardware. We enforce the expiry for
	 * events which are already in the past.
655
	 */
656 657
	cpu_base->expires_next = expires;
	tick_program_event(expires, 1);
658 659 660 661 662 663 664
}

/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
T
Thomas Gleixner 已提交
665
	base->expires_next = KTIME_MAX;
666 667 668
	base->hres_active = 0;
}

669 670 671 672 673 674 675
/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
676
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
677

678
	if (!base->hres_active)
679 680 681
		return;

	raw_spin_lock(&base->lock);
682
	hrtimer_update_base(base);
683 684 685
	hrtimer_force_reprogram(base, 0);
	raw_spin_unlock(&base->lock);
}
686

687 688 689
/*
 * Switch to high resolution mode
 */
690
static void hrtimer_switch_to_hres(void)
691
{
692
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
693 694

	if (tick_init_highres()) {
I
Ingo Molnar 已提交
695
		printk(KERN_WARNING "Could not switch to high resolution "
696
				    "mode on CPU %d\n", base->cpu);
697
		return;
698 699
	}
	base->hres_active = 1;
700
	hrtimer_resolution = HIGH_RES_NSEC;
701 702 703 704 705 706

	tick_setup_sched_timer();
	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
}

707 708 709 710 711 712 713
static void clock_was_set_work(struct work_struct *work)
{
	clock_was_set();
}

static DECLARE_WORK(hrtimer_work, clock_was_set_work);

714
/*
P
Pratyush Patel 已提交
715
 * Called from timekeeping and resume code to reprogram the hrtimer
716
 * interrupt device on all cpus.
717 718 719
 */
void clock_was_set_delayed(void)
{
720
	schedule_work(&hrtimer_work);
721 722
}

723 724
#else

725
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
726 727
static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
728
static inline void hrtimer_switch_to_hres(void) { }
729 730
static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
731 732
static inline int hrtimer_reprogram(struct hrtimer *timer,
				    struct hrtimer_clock_base *base)
733 734 735 736
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
737
static inline void retrigger_next_event(void *arg) { }
738 739 740

#endif /* CONFIG_HIGH_RES_TIMERS */

741 742 743 744 745 746 747 748 749 750 751 752 753
/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
754
#ifdef CONFIG_HIGH_RES_TIMERS
755 756
	/* Retrigger the CPU local events everywhere */
	on_each_cpu(retrigger_next_event, NULL, 1);
757 758
#endif
	timerfd_clock_was_set();
759 760 761 762
}

/*
 * During resume we might have to reprogram the high resolution timer
763 764
 * interrupt on all online CPUs.  However, all other CPUs will be
 * stopped with IRQs interrupts disabled so the clock_was_set() call
765
 * must be deferred.
766 767 768
 */
void hrtimers_resume(void)
{
769
	lockdep_assert_irqs_disabled();
770
	/* Retrigger on the local CPU */
771
	retrigger_next_event(NULL);
772 773
	/* And schedule a retrigger for all others */
	clock_was_set_delayed();
774 775
}

776
/*
777
 * Counterpart to lock_hrtimer_base above:
778 779 780 781
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
782
	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
783 784 785 786 787
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
788
 * @now:	forward past this time
789 790 791
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
792
 * Returns the number of overruns.
793 794 795 796 797 798 799 800
 *
 * Can be safely called from the callback function of @timer. If
 * called from other contexts @timer must neither be enqueued nor
 * running the callback and the caller needs to take care of
 * serialization.
 *
 * Note: This only updates the timer expiry value and does not requeue
 * the timer.
801
 */
D
Davide Libenzi 已提交
802
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
803
{
D
Davide Libenzi 已提交
804
	u64 orun = 1;
805
	ktime_t delta;
806

807
	delta = ktime_sub(now, hrtimer_get_expires(timer));
808

T
Thomas Gleixner 已提交
809
	if (delta < 0)
810 811
		return 0;

812 813 814
	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
		return 0;

T
Thomas Gleixner 已提交
815 816
	if (interval < hrtimer_resolution)
		interval = hrtimer_resolution;
817

T
Thomas Gleixner 已提交
818
	if (unlikely(delta >= interval)) {
819
		s64 incr = ktime_to_ns(interval);
820 821

		orun = ktime_divns(delta, incr);
822
		hrtimer_add_expires_ns(timer, incr * orun);
T
Thomas Gleixner 已提交
823
		if (hrtimer_get_expires_tv64(timer) > now)
824 825 826 827 828 829 830
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
831
	hrtimer_add_expires(timer, interval);
832 833 834

	return orun;
}
S
Stas Sergeev 已提交
835
EXPORT_SYMBOL_GPL(hrtimer_forward);
836 837 838 839 840 841

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
842 843
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
844
 */
845
static int enqueue_hrtimer(struct hrtimer *timer,
846 847
			   struct hrtimer_clock_base *base,
			   enum hrtimer_mode mode)
848
{
849
	debug_activate(timer, mode);
850

851
	base->cpu_base->active_bases |= 1 << base->index;
852

853
	timer->state = HRTIMER_STATE_ENQUEUED;
854

855
	return timerqueue_add(&base->active, &timer->node);
856
}
857 858 859 860 861

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
862 863 864 865 866
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
867
 */
868
static void __remove_hrtimer(struct hrtimer *timer,
869
			     struct hrtimer_clock_base *base,
870
			     u8 newstate, int reprogram)
871
{
872
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
873
	u8 state = timer->state;
874

875 876 877
	timer->state = newstate;
	if (!(state & HRTIMER_STATE_ENQUEUED))
		return;
878

879
	if (!timerqueue_del(&base->active, &timer->node))
880
		cpu_base->active_bases &= ~(1 << base->index);
881 882

#ifdef CONFIG_HIGH_RES_TIMERS
883 884 885 886 887 888 889 890 891 892
	/*
	 * Note: If reprogram is false we do not update
	 * cpu_base->next_timer. This happens when we remove the first
	 * timer on a remote cpu. No harm as we never dereference
	 * cpu_base->next_timer. So the worst thing what can happen is
	 * an superflous call to hrtimer_force_reprogram() on the
	 * remote cpu later on if the same timer gets enqueued again.
	 */
	if (reprogram && timer == cpu_base->next_timer)
		hrtimer_force_reprogram(cpu_base, 1);
893
#endif
894 895 896 897 898 899
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
900
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
901
{
902
	if (hrtimer_is_queued(timer)) {
903
		u8 state = timer->state;
904 905 906 907 908 909 910 911 912 913
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
914
		debug_deactivate(timer);
915
		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
916

917 918 919
		if (!restart)
			state = HRTIMER_STATE_INACTIVE;

920
		__remove_hrtimer(timer, base, state, reprogram);
921 922 923 924 925
		return 1;
	}
	return 0;
}

926 927 928 929 930 931 932 933 934 935 936
static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
					    const enum hrtimer_mode mode)
{
#ifdef CONFIG_TIME_LOW_RES
	/*
	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
	 * granular time values. For relative timers we add hrtimer_resolution
	 * (i.e. one jiffie) to prevent short timeouts.
	 */
	timer->is_rel = mode & HRTIMER_MODE_REL;
	if (timer->is_rel)
T
Thomas Gleixner 已提交
937
		tim = ktime_add_safe(tim, hrtimer_resolution);
938 939 940 941
#endif
	return tim;
}

942
/**
943
 * hrtimer_start_range_ns - (re)start an hrtimer
944 945 946
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
947 948
 * @mode:	timer mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED)
949
 */
950
void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
951
			    u64 delta_ns, const enum hrtimer_mode mode)
952
{
953
	struct hrtimer_clock_base *base, *new_base;
954
	unsigned long flags;
955
	int leftmost;
956 957 958 959

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
960
	remove_hrtimer(timer, base, true);
961

962
	if (mode & HRTIMER_MODE_REL)
963
		tim = ktime_add_safe(tim, base->get_time());
964 965

	tim = hrtimer_update_lowres(timer, tim, mode);
966

967
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
968

969 970 971
	/* Switch the timer base, if necessary: */
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);

972
	leftmost = enqueue_hrtimer(timer, new_base, mode);
973 974
	if (!leftmost)
		goto unlock;
975 976 977 978 979 980

	if (!hrtimer_is_hres_active(timer)) {
		/*
		 * Kick to reschedule the next tick to handle the new timer
		 * on dynticks target.
		 */
981
		if (is_timers_nohz_active())
982
			wake_up_nohz_cpu(new_base->cpu_base->cpu);
983 984
	} else {
		hrtimer_reprogram(timer, new_base);
985
	}
986
unlock:
987
	unlock_hrtimer_base(timer, &flags);
988
}
989 990
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

991 992 993 994 995 996 997
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
998
 * -1 when the timer is currently executing the callback function and
999
 *    cannot be stopped
1000 1001 1002
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
1003
	struct hrtimer_clock_base *base;
1004 1005 1006
	unsigned long flags;
	int ret = -1;

1007 1008 1009 1010 1011 1012 1013 1014 1015
	/*
	 * Check lockless first. If the timer is not active (neither
	 * enqueued nor running the callback, nothing to do here.  The
	 * base lock does not serialize against a concurrent enqueue,
	 * so we can avoid taking it.
	 */
	if (!hrtimer_active(timer))
		return 0;

1016 1017
	base = lock_hrtimer_base(timer, &flags);

1018
	if (!hrtimer_callback_running(timer))
1019
		ret = remove_hrtimer(timer, base, false);
1020 1021 1022 1023 1024 1025

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1026
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1043
		cpu_relax();
1044 1045
	}
}
1046
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1047 1048 1049 1050

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
1051
 * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1052
 */
1053
ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1054 1055 1056 1057
{
	unsigned long flags;
	ktime_t rem;

1058
	lock_hrtimer_base(timer, &flags);
1059 1060 1061 1062
	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
		rem = hrtimer_expires_remaining_adjusted(timer);
	else
		rem = hrtimer_expires_remaining(timer);
1063 1064 1065 1066
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1067
EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1068

1069
#ifdef CONFIG_NO_HZ_COMMON
1070 1071 1072
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
1073
 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1074
 */
1075
u64 hrtimer_get_next_event(void)
1076
{
1077
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1078
	u64 expires = KTIME_MAX;
1079 1080
	unsigned long flags;

1081
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1082

1083
	if (!__hrtimer_hres_active(cpu_base))
T
Thomas Gleixner 已提交
1084
		expires = __hrtimer_get_next_event(cpu_base);
1085

1086
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1087

1088
	return expires;
1089 1090 1091
}
#endif

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
static inline int hrtimer_clockid_to_base(clockid_t clock_id)
{
	if (likely(clock_id < MAX_CLOCKS)) {
		int base = hrtimer_clock_to_base_table[clock_id];

		if (likely(base != HRTIMER_MAX_CLOCK_BASES))
			return base;
	}
	WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
	return HRTIMER_BASE_MONOTONIC;
}

1104 1105
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1106
{
1107
	struct hrtimer_cpu_base *cpu_base;
1108
	int base;
1109

1110 1111
	memset(timer, 0, sizeof(struct hrtimer));

1112
	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1113

1114 1115 1116 1117 1118 1119
	/*
	 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
	 * clock modifications, so they needs to become CLOCK_MONOTONIC to
	 * ensure POSIX compliance.
	 */
	if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1120 1121
		clock_id = CLOCK_MONOTONIC;

1122 1123
	base = hrtimer_clockid_to_base(clock_id);
	timer->base = &cpu_base->clock_base[base];
1124
	timerqueue_init(&timer->node);
1125
}
1126 1127 1128 1129 1130

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
1131 1132
 * @mode:	timer mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL); pinned is not considered here!
1133 1134 1135 1136
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
1137
	debug_init(timer, clock_id, mode);
1138 1139
	__hrtimer_init(timer, clock_id, mode);
}
1140
EXPORT_SYMBOL_GPL(hrtimer_init);
1141

1142 1143 1144 1145
/*
 * A timer is active, when it is enqueued into the rbtree or the
 * callback function is running or it's in the state of being migrated
 * to another cpu.
1146
 *
1147
 * It is important for this function to not return a false negative.
1148
 */
1149
bool hrtimer_active(const struct hrtimer *timer)
1150
{
1151
	struct hrtimer_cpu_base *cpu_base;
1152
	unsigned int seq;
1153

1154 1155 1156
	do {
		cpu_base = READ_ONCE(timer->base->cpu_base);
		seq = raw_read_seqcount_begin(&cpu_base->seq);
1157

1158 1159 1160 1161 1162 1163 1164 1165
		if (timer->state != HRTIMER_STATE_INACTIVE ||
		    cpu_base->running == timer)
			return true;

	} while (read_seqcount_retry(&cpu_base->seq, seq) ||
		 cpu_base != READ_ONCE(timer->base->cpu_base));

	return false;
1166
}
1167
EXPORT_SYMBOL_GPL(hrtimer_active);
1168

1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
/*
 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
 * distinct sections:
 *
 *  - queued:	the timer is queued
 *  - callback:	the timer is being ran
 *  - post:	the timer is inactive or (re)queued
 *
 * On the read side we ensure we observe timer->state and cpu_base->running
 * from the same section, if anything changed while we looked at it, we retry.
 * This includes timer->base changing because sequence numbers alone are
 * insufficient for that.
 *
 * The sequence numbers are required because otherwise we could still observe
 * a false negative if the read side got smeared over multiple consequtive
 * __run_hrtimer() invocations.
 */

1187 1188 1189
static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
			  struct hrtimer_clock_base *base,
			  struct hrtimer *timer, ktime_t *now)
1190 1191 1192 1193
{
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1194
	lockdep_assert_held(&cpu_base->lock);
1195

1196
	debug_deactivate(timer);
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
	cpu_base->running = timer;

	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
	 * timer->state == INACTIVE.
	 */
	raw_write_seqcount_barrier(&cpu_base->seq);

	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1209
	fn = timer->function;
1210

1211 1212 1213 1214 1215 1216 1217 1218
	/*
	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
	 * timer is restarted with a period then it becomes an absolute
	 * timer. If its not restarted it does not matter.
	 */
	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
		timer->is_rel = false;

1219
	/*
1220 1221 1222
	 * The timer is marked as running in the CPU base, so it is
	 * protected against migration to a different CPU even if the lock
	 * is dropped.
1223
	 */
1224
	raw_spin_unlock(&cpu_base->lock);
1225
	trace_hrtimer_expire_entry(timer, now);
1226
	restart = fn(timer);
1227
	trace_hrtimer_expire_exit(timer);
1228
	raw_spin_lock(&cpu_base->lock);
1229 1230

	/*
1231
	 * Note: We clear the running state after enqueue_hrtimer and
P
Pratyush Patel 已提交
1232
	 * we do not reprogram the event hardware. Happens either in
T
Thomas Gleixner 已提交
1233
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1234 1235 1236 1237
	 *
	 * Note: Because we dropped the cpu_base->lock above,
	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
	 * for us already.
1238
	 */
1239 1240
	if (restart != HRTIMER_NORESTART &&
	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1241
		enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1242

1243 1244 1245 1246 1247 1248 1249 1250
	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
	 * timer->state == INACTIVE.
	 */
	raw_write_seqcount_barrier(&cpu_base->seq);
1251

1252 1253
	WARN_ON_ONCE(cpu_base->running != timer);
	cpu_base->running = NULL;
1254 1255
}

1256
static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1257
{
1258
	struct hrtimer_clock_base *base;
1259
	unsigned int active = cpu_base->active_bases;
1260

1261
	for_each_active_base(base, cpu_base, active) {
1262
		struct timerqueue_node *node;
1263 1264
		ktime_t basenow;

1265 1266
		basenow = ktime_add(now, base->offset);

1267
		while ((node = timerqueue_getnext(&base->active))) {
1268 1269
			struct hrtimer *timer;

1270
			timer = container_of(node, struct hrtimer, node);
1271

1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */
T
Thomas Gleixner 已提交
1284
			if (basenow < hrtimer_get_softexpires_tv64(timer))
1285 1286
				break;

1287
			__run_hrtimer(cpu_base, base, timer, &basenow);
1288 1289
		}
	}
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
}

#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
	ktime_t expires_next, now, entry_time, delta;
	int retries = 0;

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
T
Thomas Gleixner 已提交
1306
	dev->next_event = KTIME_MAX;
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318

	raw_spin_lock(&cpu_base->lock);
	entry_time = now = hrtimer_update_base(cpu_base);
retry:
	cpu_base->in_hrtirq = 1;
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
T
Thomas Gleixner 已提交
1319
	cpu_base->expires_next = KTIME_MAX;
1320 1321 1322

	__hrtimer_run_queues(cpu_base, now);

1323 1324
	/* Reevaluate the clock bases for the next expiry */
	expires_next = __hrtimer_get_next_event(cpu_base);
1325 1326 1327 1328
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1329
	cpu_base->expires_next = expires_next;
1330
	cpu_base->in_hrtirq = 0;
1331
	raw_spin_unlock(&cpu_base->lock);
1332 1333

	/* Reprogramming necessary ? */
1334
	if (!tick_program_event(expires_next, 0)) {
1335 1336
		cpu_base->hang_detected = 0;
		return;
1337
	}
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347

	/*
	 * The next timer was already expired due to:
	 * - tracing
	 * - long lasting callbacks
	 * - being scheduled away when running in a VM
	 *
	 * We need to prevent that we loop forever in the hrtimer
	 * interrupt routine. We give it 3 attempts to avoid
	 * overreacting on some spurious event.
1348 1349 1350
	 *
	 * Acquire base lock for updating the offsets and retrieving
	 * the current time.
1351
	 */
1352
	raw_spin_lock(&cpu_base->lock);
1353
	now = hrtimer_update_base(cpu_base);
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
	cpu_base->nr_retries++;
	if (++retries < 3)
		goto retry;
	/*
	 * Give the system a chance to do something else than looping
	 * here. We stored the entry time, so we know exactly how long
	 * we spent here. We schedule the next event this amount of
	 * time away.
	 */
	cpu_base->nr_hangs++;
	cpu_base->hang_detected = 1;
1365
	raw_spin_unlock(&cpu_base->lock);
1366
	delta = ktime_sub(now, entry_time);
T
Thomas Gleixner 已提交
1367 1368
	if ((unsigned int)delta > cpu_base->max_hang_time)
		cpu_base->max_hang_time = (unsigned int) delta;
1369 1370 1371 1372
	/*
	 * Limit it to a sensible value as we enforce a longer
	 * delay. Give the CPU at least 100ms to catch up.
	 */
T
Thomas Gleixner 已提交
1373
	if (delta > 100 * NSEC_PER_MSEC)
1374 1375 1376 1377 1378 1379
		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
	else
		expires_next = ktime_add(now, delta);
	tick_program_event(expires_next, 1);
	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
		    ktime_to_ns(delta));
1380 1381
}

1382
/* called with interrupts disabled */
1383
static inline void __hrtimer_peek_ahead_timers(void)
1384 1385 1386 1387 1388 1389
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

1390
	td = this_cpu_ptr(&tick_cpu_device);
1391 1392 1393 1394
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1395 1396 1397 1398 1399
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1400

1401
/*
1402
 * Called from run_local_timers in hardirq context every jiffy
1403
 */
1404
void hrtimer_run_queues(void)
1405
{
1406
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1407
	ktime_t now;
1408

1409
	if (__hrtimer_hres_active(cpu_base))
1410
		return;
1411

1412
	/*
1413 1414 1415 1416 1417
	 * This _is_ ugly: We have to check periodically, whether we
	 * can switch to highres and / or nohz mode. The clocksource
	 * switch happens with xtime_lock held. Notification from
	 * there only sets the check bit in the tick_oneshot code,
	 * otherwise we might deadlock vs. xtime_lock.
1418
	 */
1419
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1420
		hrtimer_switch_to_hres();
1421
		return;
1422
	}
1423

1424 1425 1426 1427
	raw_spin_lock(&cpu_base->lock);
	now = hrtimer_update_base(cpu_base);
	__hrtimer_run_queues(cpu_base, now);
	raw_spin_unlock(&cpu_base->lock);
1428 1429
}

1430 1431 1432
/*
 * Sleep related functions:
 */
1433
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1446
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1447 1448 1449 1450
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}
S
Stephen Hemminger 已提交
1451
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1452

1453
int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1454 1455 1456 1457
{
	switch(restart->nanosleep.type) {
#ifdef CONFIG_COMPAT
	case TT_COMPAT:
1458
		if (compat_put_timespec64(ts, restart->nanosleep.compat_rmtp))
1459 1460 1461 1462
			return -EFAULT;
		break;
#endif
	case TT_NATIVE:
1463
		if (put_timespec64(ts, restart->nanosleep.rmtp))
1464 1465 1466 1467 1468 1469 1470 1471
			return -EFAULT;
		break;
	default:
		BUG();
	}
	return -ERESTART_RESTARTBLOCK;
}

1472
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1473
{
1474 1475
	struct restart_block *restart;

1476
	hrtimer_init_sleeper(t, current);
1477

1478 1479
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1480
		hrtimer_start_expires(&t->timer, mode);
1481

1482
		if (likely(t->task))
1483
			freezable_schedule();
1484

1485
		hrtimer_cancel(&t->timer);
1486
		mode = HRTIMER_MODE_ABS;
1487 1488

	} while (t->task && !signal_pending(current));
1489

1490 1491
	__set_current_state(TASK_RUNNING);

1492
	if (!t->task)
1493 1494
		return 0;

1495 1496
	restart = &current->restart_block;
	if (restart->nanosleep.type != TT_NONE) {
1497
		ktime_t rem = hrtimer_expires_remaining(&t->timer);
1498
		struct timespec64 rmt;
1499

1500 1501
		if (rem <= 0)
			return 0;
1502
		rmt = ktime_to_timespec64(rem);
1503

1504
		return nanosleep_copyout(restart, &rmt);
1505 1506
	}
	return -ERESTART_RESTARTBLOCK;
1507 1508
}

A
Al Viro 已提交
1509
static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1510
{
1511
	struct hrtimer_sleeper t;
1512
	int ret;
1513

1514
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1515
				HRTIMER_MODE_ABS);
1516
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1517

1518
	ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1519 1520
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1521 1522
}

1523
long hrtimer_nanosleep(const struct timespec64 *rqtp,
1524 1525
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
1526
	struct restart_block *restart;
1527
	struct hrtimer_sleeper t;
1528
	int ret = 0;
1529
	u64 slack;
1530 1531

	slack = current->timer_slack_ns;
1532
	if (dl_task(current) || rt_task(current))
1533
		slack = 0;
1534

1535
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1536
	hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
1537 1538
	ret = do_nanosleep(&t, mode);
	if (ret != -ERESTART_RESTARTBLOCK)
1539
		goto out;
1540

1541
	/* Absolute timers do not update the rmtp value and restart: */
1542 1543 1544 1545
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1546

1547
	restart = &current->restart_block;
1548
	restart->fn = hrtimer_nanosleep_restart;
1549
	restart->nanosleep.clockid = t.timer.base->clockid;
1550
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1551 1552 1553
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1554 1555
}

1556 1557
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1558
{
1559
	struct timespec64 tu;
1560

1561
	if (get_timespec64(&tu, rqtp))
1562 1563
		return -EFAULT;

1564
	if (!timespec64_valid(&tu))
1565 1566
		return -EINVAL;

1567
	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1568
	current->restart_block.nanosleep.rmtp = rmtp;
1569
	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1570 1571
}

1572 1573 1574 1575 1576
#ifdef CONFIG_COMPAT

COMPAT_SYSCALL_DEFINE2(nanosleep, struct compat_timespec __user *, rqtp,
		       struct compat_timespec __user *, rmtp)
{
1577
	struct timespec64 tu;
1578

1579
	if (compat_get_timespec64(&tu, rqtp))
1580 1581
		return -EFAULT;

1582
	if (!timespec64_valid(&tu))
1583 1584 1585 1586
		return -EINVAL;

	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
	current->restart_block.nanosleep.compat_rmtp = rmtp;
1587
	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1588 1589 1590
}
#endif

1591 1592 1593
/*
 * Functions related to boot-time initialization:
 */
1594
int hrtimers_prepare_cpu(unsigned int cpu)
1595
{
1596
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1597 1598
	int i;

1599
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1600
		cpu_base->clock_base[i].cpu_base = cpu_base;
1601 1602
		timerqueue_init_head(&cpu_base->clock_base[i].active);
	}
1603

1604
	cpu_base->cpu = cpu;
1605
	hrtimer_init_hres(cpu_base);
1606
	return 0;
1607 1608 1609 1610
}

#ifdef CONFIG_HOTPLUG_CPU

1611
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1612
				struct hrtimer_clock_base *new_base)
1613 1614
{
	struct hrtimer *timer;
1615
	struct timerqueue_node *node;
1616

1617 1618
	while ((node = timerqueue_getnext(&old_base->active))) {
		timer = container_of(node, struct hrtimer, node);
1619
		BUG_ON(hrtimer_callback_running(timer));
1620
		debug_deactivate(timer);
T
Thomas Gleixner 已提交
1621 1622

		/*
1623
		 * Mark it as ENQUEUED not INACTIVE otherwise the
T
Thomas Gleixner 已提交
1624 1625 1626
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
1627
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1628
		timer->base = new_base;
1629
		/*
T
Thomas Gleixner 已提交
1630 1631 1632 1633 1634 1635
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1636
		 */
1637
		enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
1638 1639 1640
	}
}

1641
int hrtimers_dead_cpu(unsigned int scpu)
1642
{
1643
	struct hrtimer_cpu_base *old_base, *new_base;
1644
	int i;
1645

1646 1647
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1648 1649 1650

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
1651
	new_base = this_cpu_ptr(&hrtimer_bases);
1652 1653 1654 1655
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1656 1657
	raw_spin_lock(&new_base->lock);
	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1658

1659
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1660
		migrate_hrtimer_list(&old_base->clock_base[i],
1661
				     &new_base->clock_base[i]);
1662 1663
	}

1664 1665
	raw_spin_unlock(&old_base->lock);
	raw_spin_unlock(&new_base->lock);
1666

1667 1668 1669
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1670
	return 0;
1671
}
1672

1673 1674 1675 1676
#endif /* CONFIG_HOTPLUG_CPU */

void __init hrtimers_init(void)
{
1677
	hrtimers_prepare_cpu(smp_processor_id());
1678 1679
}

1680
/**
1681
 * schedule_hrtimeout_range_clock - sleep until timeout
1682
 * @expires:	timeout value (ktime_t)
1683
 * @delta:	slack in expires timeout (ktime_t)
1684 1685
 * @mode:	timer mode
 * @clock_id:	timer clock to be used
1686
 */
1687
int __sched
1688
schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1689
			       const enum hrtimer_mode mode, clockid_t clock_id)
1690 1691 1692 1693 1694 1695 1696
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
T
Thomas Gleixner 已提交
1697
	if (expires && *expires == 0) {
1698 1699 1700 1701 1702
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
N
Namhyung Kim 已提交
1703
	 * A NULL parameter means "infinite"
1704 1705 1706 1707 1708 1709
	 */
	if (!expires) {
		schedule();
		return -EINTR;
	}

1710
	hrtimer_init_on_stack(&t.timer, clock_id, mode);
1711
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1712 1713 1714

	hrtimer_init_sleeper(&t, current);

1715
	hrtimer_start_expires(&t.timer, mode);
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1727 1728 1729 1730 1731

/**
 * schedule_hrtimeout_range - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @delta:	slack in expires timeout (ktime_t)
1732
 * @mode:	timer mode
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1746 1747
 * pass before the routine returns unless the current task is explicitly
 * woken up, (e.g. by wake_up_process()).
1748 1749
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1750 1751
 * delivered to the current task or the current task is explicitly woken
 * up.
1752 1753 1754 1755
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
1756 1757 1758
 * Returns 0 when the timer has expired. If the task was woken before the
 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
 * by an explicit wakeup, it returns -EINTR.
1759
 */
1760
int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1761 1762 1763 1764 1765
				     const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range_clock(expires, delta, mode,
					      CLOCK_MONOTONIC);
}
1766 1767 1768 1769 1770
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
1771
 * @mode:	timer mode
1772 1773 1774 1775 1776 1777 1778 1779
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1780 1781
 * pass before the routine returns unless the current task is explicitly
 * woken up, (e.g. by wake_up_process()).
1782 1783
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1784 1785
 * delivered to the current task or the current task is explicitly woken
 * up.
1786 1787 1788 1789
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
1790 1791 1792
 * Returns 0 when the timer has expired. If the task was woken before the
 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
 * by an explicit wakeup, it returns -EINTR.
1793 1794 1795 1796 1797 1798
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1799
EXPORT_SYMBOL_GPL(schedule_hrtimeout);