hrtimer.c 46.7 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
35
#include <linux/export.h>
36 37 38 39
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46
#include <linux/sched.h>
47
#include <linux/sched/sysctl.h>
48
#include <linux/sched/rt.h>
49
#include <linux/sched/deadline.h>
50
#include <linux/timer.h>
51
#include <linux/freezer.h>
52 53 54

#include <asm/uaccess.h>

55 56
#include <trace/events/timer.h>

57
#include "tick-internal.h"
58

59 60
/*
 * The timer bases:
61
 *
Z
Zhen Lei 已提交
62
 * There are more clockids than hrtimer bases. Thus, we index
63 64 65
 * into the timer bases by the hrtimer_base_type enum. When trying
 * to reach a base using a clockid, hrtimer_clockid_to_base()
 * is used to convert from clockid to the proper hrtimer_base_type.
66
 */
67
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
68
{
69
	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
70
	.seq = SEQCNT_ZERO(hrtimer_bases.seq),
71
	.clock_base =
72
	{
73
		{
74 75
			.index = HRTIMER_BASE_MONOTONIC,
			.clockid = CLOCK_MONOTONIC,
76 77
			.get_time = &ktime_get,
		},
T
Thomas Gleixner 已提交
78 79 80 81 82
		{
			.index = HRTIMER_BASE_REALTIME,
			.clockid = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
		},
83
		{
84 85
			.index = HRTIMER_BASE_BOOTTIME,
			.clockid = CLOCK_BOOTTIME,
86 87
			.get_time = &ktime_get_boottime,
		},
88 89 90 91 92
		{
			.index = HRTIMER_BASE_TAI,
			.clockid = CLOCK_TAI,
			.get_time = &ktime_get_clocktai,
		},
93
	}
94 95
};

96
static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
97 98 99
	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
100
	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
101
};
102 103 104 105 106 107

static inline int hrtimer_clockid_to_base(clockid_t clock_id)
{
	return hrtimer_clock_to_base_table[clock_id];
}

108 109 110 111 112 113
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

114 115 116 117 118 119 120 121 122 123 124 125
/*
 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
 * such that hrtimer_callback_running() can unconditionally dereference
 * timer->base->cpu_base
 */
static struct hrtimer_cpu_base migration_cpu_base = {
	.seq = SEQCNT_ZERO(migration_cpu_base),
	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
};

#define migration_base	migration_cpu_base.clock_base[0]

126 127 128 129 130 131 132 133 134
/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
135 136
 * possible to set timer->base = &migration_base and drop the lock: the timer
 * remains locked.
137
 */
138 139 140
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
141
{
142
	struct hrtimer_clock_base *base;
143 144 145

	for (;;) {
		base = timer->base;
146
		if (likely(base != &migration_base)) {
147
			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
148 149 150
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
151
			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
152 153 154 155 156
		}
		cpu_relax();
	}
}

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
/*
 * With HIGHRES=y we do not migrate the timer when it is expiring
 * before the next event on the target cpu because we cannot reprogram
 * the target cpu hardware and we would cause it to fire late.
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	ktime_t expires;

	if (!new_base->cpu_base->hres_active)
		return 0;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
#else
	return 0;
#endif
}

180 181 182 183 184 185
#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
static inline
struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
					 int pinned)
{
	if (pinned || !base->migration_enabled)
186
		return base;
187 188 189 190 191 192 193
	return &per_cpu(hrtimer_bases, get_nohz_timer_target());
}
#else
static inline
struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
					 int pinned)
{
194
	return base;
195 196 197
}
#endif

198
/*
199 200 201 202 203 204 205 206 207 208
 * We switch the timer base to a power-optimized selected CPU target,
 * if:
 *	- NO_HZ_COMMON is enabled
 *	- timer migration is enabled
 *	- the timer callback is not running
 *	- the timer is not the first expiring timer on the new target
 *
 * If one of the above requirements is not fulfilled we move the timer
 * to the current CPU or leave it on the previously assigned CPU if
 * the timer callback is currently running.
209
 */
210
static inline struct hrtimer_clock_base *
211 212
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
213
{
214
	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
215
	struct hrtimer_clock_base *new_base;
216
	int basenum = base->index;
217

218 219
	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
	new_cpu_base = get_target_base(this_cpu_base, pinned);
220
again:
221
	new_base = &new_cpu_base->clock_base[basenum];
222 223 224

	if (base != new_base) {
		/*
225
		 * We are trying to move timer to new_base.
226 227 228 229 230 231 232
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
233
		if (unlikely(hrtimer_callback_running(timer)))
234 235
			return base;

236 237
		/* See the comment in lock_hrtimer_base() */
		timer->base = &migration_base;
238 239
		raw_spin_unlock(&base->cpu_base->lock);
		raw_spin_lock(&new_base->cpu_base->lock);
240

241
		if (new_cpu_base != this_cpu_base &&
242
		    hrtimer_check_target(timer, new_base)) {
243 244
			raw_spin_unlock(&new_base->cpu_base->lock);
			raw_spin_lock(&base->cpu_base->lock);
245
			new_cpu_base = this_cpu_base;
246 247
			timer->base = base;
			goto again;
248
		}
249
		timer->base = new_base;
250
	} else {
251
		if (new_cpu_base != this_cpu_base &&
252
		    hrtimer_check_target(timer, new_base)) {
253
			new_cpu_base = this_cpu_base;
254 255
			goto again;
		}
256 257 258 259 260 261
	}
	return new_base;
}

#else /* CONFIG_SMP */

262
static inline struct hrtimer_clock_base *
263 264
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
265
	struct hrtimer_clock_base *base = timer->base;
266

267
	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
268 269 270 271

	return base;
}

272
# define switch_hrtimer_base(t, b, p)	(b)
273 274 275 276 277 278 279 280 281 282 283

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
/*
 * Divide a ktime value by a nanosecond value
 */
284
s64 __ktime_divns(const ktime_t kt, s64 div)
285 286
{
	int sft = 0;
287 288
	s64 dclc;
	u64 tmp;
289

290
	dclc = ktime_to_ns(kt);
291 292
	tmp = dclc < 0 ? -dclc : dclc;

293 294 295 296 297
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
298 299 300
	tmp >>= sft;
	do_div(tmp, (unsigned long) div);
	return dclc < 0 ? -tmp : tmp;
301
}
302
EXPORT_SYMBOL_GPL(__ktime_divns);
303 304
#endif /* BITS_PER_LONG >= 64 */

305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
	ktime_t res = ktime_add(lhs, rhs);

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

322 323
EXPORT_SYMBOL_GPL(ktime_add_safe);

324 325 326 327
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

328 329 330 331 332
static void *hrtimer_debug_hint(void *addr)
{
	return ((struct hrtimer *) addr)->function;
}

333 334 335 336
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
337
static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
338 339 340 341 342 343 344
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
345
		return true;
346
	default:
347
		return false;
348 349 350 351 352 353
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
354
 * - an unknown non-static object is activated
355
 */
356
static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
357 358 359 360 361 362
{
	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
363
		return false;
364 365 366 367 368 369 370
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
371
static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
372 373 374 375 376 377 378
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
379
		return true;
380
	default:
381
		return false;
382 383 384 385 386
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
387
	.debug_hint	= hrtimer_debug_hint,
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}
S
Stephen Hemminger 已提交
422
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
423 424 425 426 427 428 429 430 431 432 433 434

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
	   enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	trace_hrtimer_init(timer, clockid, mode);
}

static inline void debug_activate(struct hrtimer *timer)
{
	debug_hrtimer_activate(timer);
	trace_hrtimer_start(timer);
}

static inline void debug_deactivate(struct hrtimer *timer)
{
	debug_hrtimer_deactivate(timer);
	trace_hrtimer_cancel(timer);
}

455
#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
456 457 458 459 460 461 462 463
static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
					     struct hrtimer *timer)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	cpu_base->next_timer = timer;
#endif
}

464
static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
465 466 467
{
	struct hrtimer_clock_base *base = cpu_base->clock_base;
	ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
468
	unsigned int active = cpu_base->active_bases;
469

470
	hrtimer_update_next_timer(cpu_base, NULL);
471
	for (; active; base++, active >>= 1) {
472 473 474
		struct timerqueue_node *next;
		struct hrtimer *timer;

475
		if (!(active & 0x01))
476 477
			continue;

478
		next = timerqueue_getnext(&base->active);
479 480
		timer = container_of(next, struct hrtimer, node);
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
481
		if (expires.tv64 < expires_next.tv64) {
482
			expires_next = expires;
483 484
			hrtimer_update_next_timer(cpu_base, timer);
		}
485 486 487 488 489 490 491 492 493 494 495 496
	}
	/*
	 * clock_was_set() might have changed base->offset of any of
	 * the clock bases so the result might be negative. Fix it up
	 * to prevent a false positive in clockevents_program_event().
	 */
	if (expires_next.tv64 < 0)
		expires_next.tv64 = 0;
	return expires_next;
}
#endif

497 498 499 500 501 502
static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
{
	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;

503 504
	return ktime_get_update_offsets_now(&base->clock_was_set_seq,
					    offs_real, offs_boot, offs_tai);
505 506
}

507 508 509 510 511 512
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
513
static bool hrtimer_hres_enabled __read_mostly  = true;
514 515
unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
EXPORT_SYMBOL_GPL(hrtimer_resolution);
516 517 518 519 520 521

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
522
	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
538 539 540 541 542
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
{
	return cpu_base->hres_active;
}

543 544
static inline int hrtimer_hres_active(void)
{
545
	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
546 547 548 549 550 551 552
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
553 554
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
555
{
556 557 558 559 560 561
	ktime_t expires_next;

	if (!cpu_base->hres_active)
		return;

	expires_next = __hrtimer_get_next_event(cpu_base);
562

563 564 565 566 567
	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
		return;

	cpu_base->expires_next.tv64 = expires_next.tv64;

568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * leave the hang delay active in the hardware. We want the
	 * system to make progress. That also prevents the following
	 * scenario:
	 * T1 expires 50ms from now
	 * T2 expires 5s from now
	 *
	 * T1 is removed, so this code is called and would reprogram
	 * the hardware to 5s from now. Any hrtimer_start after that
	 * will not reprogram the hardware due to hang_detected being
	 * set. So we'd effectivly block all timers until the T2 event
	 * fires.
	 */
	if (cpu_base->hang_detected)
		return;

585
	tick_program_event(cpu_base->expires_next, 1);
586 587 588 589 590 591 592 593 594
}

/*
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
595 596
static void hrtimer_reprogram(struct hrtimer *timer,
			      struct hrtimer_clock_base *base)
597
{
598
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
599
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
600

601
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
602

603
	/*
604 605
	 * If the timer is not on the current cpu, we cannot reprogram
	 * the other cpus clock event device.
606
	 */
607 608 609 610 611 612 613 614 615 616 617 618
	if (base->cpu_base != cpu_base)
		return;

	/*
	 * If the hrtimer interrupt is running, then it will
	 * reevaluate the clock bases and reprogram the clock event
	 * device. The callbacks are always executed in hard interrupt
	 * context so we don't need an extra check for a running
	 * callback.
	 */
	if (cpu_base->in_hrtirq)
		return;
619

620 621
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
622
	 * expiry time which is less than base->offset. Set it to 0.
623 624
	 */
	if (expires.tv64 < 0)
625
		expires.tv64 = 0;
626

627
	if (expires.tv64 >= cpu_base->expires_next.tv64)
628
		return;
629

630
	/* Update the pointer to the next expiring timer */
631
	cpu_base->next_timer = timer;
632

633 634 635 636 637 638 639
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * do not schedule a timer which is earlier than the expiry
	 * which we enforced in the hang detection. We want the system
	 * to make progress.
	 */
	if (cpu_base->hang_detected)
640
		return;
641 642

	/*
643 644
	 * Program the timer hardware. We enforce the expiry for
	 * events which are already in the past.
645
	 */
646 647
	cpu_base->expires_next = expires;
	tick_program_event(expires, 1);
648 649 650 651 652 653 654 655 656 657 658
}

/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
	base->expires_next.tv64 = KTIME_MAX;
	base->hres_active = 0;
}

659 660 661 662 663 664 665
/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
666
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
667

668
	if (!base->hres_active)
669 670 671
		return;

	raw_spin_lock(&base->lock);
672
	hrtimer_update_base(base);
673 674 675
	hrtimer_force_reprogram(base, 0);
	raw_spin_unlock(&base->lock);
}
676

677 678 679
/*
 * Switch to high resolution mode
 */
680
static void hrtimer_switch_to_hres(void)
681
{
682
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
683 684

	if (tick_init_highres()) {
I
Ingo Molnar 已提交
685
		printk(KERN_WARNING "Could not switch to high resolution "
686
				    "mode on CPU %d\n", base->cpu);
687
		return;
688 689
	}
	base->hres_active = 1;
690
	hrtimer_resolution = HIGH_RES_NSEC;
691 692 693 694 695 696

	tick_setup_sched_timer();
	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
}

697 698 699 700 701 702 703
static void clock_was_set_work(struct work_struct *work)
{
	clock_was_set();
}

static DECLARE_WORK(hrtimer_work, clock_was_set_work);

704
/*
705 706
 * Called from timekeeping and resume code to reprogramm the hrtimer
 * interrupt device on all cpus.
707 708 709
 */
void clock_was_set_delayed(void)
{
710
	schedule_work(&hrtimer_work);
711 712
}

713 714
#else

715
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
716 717
static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
718
static inline void hrtimer_switch_to_hres(void) { }
719 720
static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
721 722
static inline int hrtimer_reprogram(struct hrtimer *timer,
				    struct hrtimer_clock_base *base)
723 724 725 726
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
727
static inline void retrigger_next_event(void *arg) { }
728 729 730

#endif /* CONFIG_HIGH_RES_TIMERS */

731 732 733 734 735 736 737 738 739 740 741 742 743
/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
744
#ifdef CONFIG_HIGH_RES_TIMERS
745 746
	/* Retrigger the CPU local events everywhere */
	on_each_cpu(retrigger_next_event, NULL, 1);
747 748
#endif
	timerfd_clock_was_set();
749 750 751 752
}

/*
 * During resume we might have to reprogram the high resolution timer
753 754
 * interrupt on all online CPUs.  However, all other CPUs will be
 * stopped with IRQs interrupts disabled so the clock_was_set() call
755
 * must be deferred.
756 757 758 759 760 761
 */
void hrtimers_resume(void)
{
	WARN_ONCE(!irqs_disabled(),
		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");

762
	/* Retrigger on the local CPU */
763
	retrigger_next_event(NULL);
764 765
	/* And schedule a retrigger for all others */
	clock_was_set_delayed();
766 767
}

768
static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
769
{
770
#ifdef CONFIG_TIMER_STATS
771 772
	if (timer->start_site)
		return;
773
	timer->start_site = __builtin_return_address(0);
774 775
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
776 777 778 779 780 781 782 783
#endif
}

static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
#endif
784
}
785 786 787 788 789 790 791 792

static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	if (likely(!timer_stats_active))
		return;
	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
				 timer->function, timer->start_comm, 0);
793
#endif
794
}
795

796
/*
797
 * Counterpart to lock_hrtimer_base above:
798 799 800 801
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
802
	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
803 804 805 806 807
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
808
 * @now:	forward past this time
809 810 811
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
812
 * Returns the number of overruns.
813 814 815 816 817 818 819 820
 *
 * Can be safely called from the callback function of @timer. If
 * called from other contexts @timer must neither be enqueued nor
 * running the callback and the caller needs to take care of
 * serialization.
 *
 * Note: This only updates the timer expiry value and does not requeue
 * the timer.
821
 */
D
Davide Libenzi 已提交
822
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
823
{
D
Davide Libenzi 已提交
824
	u64 orun = 1;
825
	ktime_t delta;
826

827
	delta = ktime_sub(now, hrtimer_get_expires(timer));
828 829 830 831

	if (delta.tv64 < 0)
		return 0;

832 833 834
	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
		return 0;

835 836
	if (interval.tv64 < hrtimer_resolution)
		interval.tv64 = hrtimer_resolution;
837

838
	if (unlikely(delta.tv64 >= interval.tv64)) {
839
		s64 incr = ktime_to_ns(interval);
840 841

		orun = ktime_divns(delta, incr);
842 843
		hrtimer_add_expires_ns(timer, incr * orun);
		if (hrtimer_get_expires_tv64(timer) > now.tv64)
844 845 846 847 848 849 850
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
851
	hrtimer_add_expires(timer, interval);
852 853 854

	return orun;
}
S
Stas Sergeev 已提交
855
EXPORT_SYMBOL_GPL(hrtimer_forward);
856 857 858 859 860 861

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
862 863
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
864
 */
865 866
static int enqueue_hrtimer(struct hrtimer *timer,
			   struct hrtimer_clock_base *base)
867
{
868
	debug_activate(timer);
869

870
	base->cpu_base->active_bases |= 1 << base->index;
871

872
	timer->state = HRTIMER_STATE_ENQUEUED;
873

874
	return timerqueue_add(&base->active, &timer->node);
875
}
876 877 878 879 880

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
881 882 883 884 885
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
886
 */
887
static void __remove_hrtimer(struct hrtimer *timer,
888
			     struct hrtimer_clock_base *base,
889
			     u8 newstate, int reprogram)
890
{
891
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
892
	u8 state = timer->state;
893

894 895 896
	timer->state = newstate;
	if (!(state & HRTIMER_STATE_ENQUEUED))
		return;
897

898
	if (!timerqueue_del(&base->active, &timer->node))
899
		cpu_base->active_bases &= ~(1 << base->index);
900 901

#ifdef CONFIG_HIGH_RES_TIMERS
902 903 904 905 906 907 908 909 910 911
	/*
	 * Note: If reprogram is false we do not update
	 * cpu_base->next_timer. This happens when we remove the first
	 * timer on a remote cpu. No harm as we never dereference
	 * cpu_base->next_timer. So the worst thing what can happen is
	 * an superflous call to hrtimer_force_reprogram() on the
	 * remote cpu later on if the same timer gets enqueued again.
	 */
	if (reprogram && timer == cpu_base->next_timer)
		hrtimer_force_reprogram(cpu_base, 1);
912
#endif
913 914 915 916 917 918
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
919
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
920
{
921
	if (hrtimer_is_queued(timer)) {
922
		u8 state = timer->state;
923 924 925 926 927 928 929 930 931 932
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
933
		debug_deactivate(timer);
934
		timer_stats_hrtimer_clear_start_info(timer);
935
		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
936

937 938 939
		if (!restart)
			state = HRTIMER_STATE_INACTIVE;

940
		__remove_hrtimer(timer, base, state, reprogram);
941 942 943 944 945
		return 1;
	}
	return 0;
}

946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
					    const enum hrtimer_mode mode)
{
#ifdef CONFIG_TIME_LOW_RES
	/*
	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
	 * granular time values. For relative timers we add hrtimer_resolution
	 * (i.e. one jiffie) to prevent short timeouts.
	 */
	timer->is_rel = mode & HRTIMER_MODE_REL;
	if (timer->is_rel)
		tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution));
#endif
	return tim;
}

962 963 964 965 966 967 968 969
/**
 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
 * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL)
 */
970
void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
971
			    u64 delta_ns, const enum hrtimer_mode mode)
972
{
973
	struct hrtimer_clock_base *base, *new_base;
974
	unsigned long flags;
975
	int leftmost;
976 977 978 979

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
980
	remove_hrtimer(timer, base, true);
981

982
	if (mode & HRTIMER_MODE_REL)
983
		tim = ktime_add_safe(tim, base->get_time());
984 985

	tim = hrtimer_update_lowres(timer, tim, mode);
986

987
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
988

989 990 991
	/* Switch the timer base, if necessary: */
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);

992 993
	timer_stats_hrtimer_set_start_info(timer);

994
	leftmost = enqueue_hrtimer(timer, new_base);
995 996
	if (!leftmost)
		goto unlock;
997 998 999 1000 1001 1002

	if (!hrtimer_is_hres_active(timer)) {
		/*
		 * Kick to reschedule the next tick to handle the new timer
		 * on dynticks target.
		 */
1003 1004
		if (new_base->cpu_base->nohz_active)
			wake_up_nohz_cpu(new_base->cpu_base->cpu);
1005 1006
	} else {
		hrtimer_reprogram(timer, new_base);
1007
	}
1008
unlock:
1009
	unlock_hrtimer_base(timer, &flags);
1010
}
1011 1012
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

1013 1014 1015 1016 1017 1018 1019 1020
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
1021
 *    cannot be stopped
1022 1023 1024
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
1025
	struct hrtimer_clock_base *base;
1026 1027 1028
	unsigned long flags;
	int ret = -1;

1029 1030 1031 1032 1033 1034 1035 1036 1037
	/*
	 * Check lockless first. If the timer is not active (neither
	 * enqueued nor running the callback, nothing to do here.  The
	 * base lock does not serialize against a concurrent enqueue,
	 * so we can avoid taking it.
	 */
	if (!hrtimer_active(timer))
		return 0;

1038 1039
	base = lock_hrtimer_base(timer, &flags);

1040
	if (!hrtimer_callback_running(timer))
1041
		ret = remove_hrtimer(timer, base, false);
1042 1043 1044 1045 1046 1047

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1048
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1065
		cpu_relax();
1066 1067
	}
}
1068
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1069 1070 1071 1072

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
1073
 * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1074
 */
1075
ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1076 1077 1078 1079
{
	unsigned long flags;
	ktime_t rem;

1080
	lock_hrtimer_base(timer, &flags);
1081 1082 1083 1084
	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
		rem = hrtimer_expires_remaining_adjusted(timer);
	else
		rem = hrtimer_expires_remaining(timer);
1085 1086 1087 1088
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1089
EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1090

1091
#ifdef CONFIG_NO_HZ_COMMON
1092 1093 1094
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
1095
 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1096
 */
1097
u64 hrtimer_get_next_event(void)
1098
{
1099
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1100
	u64 expires = KTIME_MAX;
1101 1102
	unsigned long flags;

1103
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1104

1105
	if (!__hrtimer_hres_active(cpu_base))
1106
		expires = __hrtimer_get_next_event(cpu_base).tv64;
1107

1108
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1109

1110
	return expires;
1111 1112 1113
}
#endif

1114 1115
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1116
{
1117
	struct hrtimer_cpu_base *cpu_base;
1118
	int base;
1119

1120 1121
	memset(timer, 0, sizeof(struct hrtimer));

1122
	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1123

1124
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1125 1126
		clock_id = CLOCK_MONOTONIC;

1127 1128
	base = hrtimer_clockid_to_base(clock_id);
	timer->base = &cpu_base->clock_base[base];
1129
	timerqueue_init(&timer->node);
1130 1131 1132 1133 1134 1135

#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
1136
}
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
 * @mode:	timer mode abs/rel
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
1147
	debug_init(timer, clock_id, mode);
1148 1149
	__hrtimer_init(timer, clock_id, mode);
}
1150
EXPORT_SYMBOL_GPL(hrtimer_init);
1151

1152 1153 1154 1155
/*
 * A timer is active, when it is enqueued into the rbtree or the
 * callback function is running or it's in the state of being migrated
 * to another cpu.
1156
 *
1157
 * It is important for this function to not return a false negative.
1158
 */
1159
bool hrtimer_active(const struct hrtimer *timer)
1160
{
1161
	struct hrtimer_cpu_base *cpu_base;
1162
	unsigned int seq;
1163

1164 1165 1166
	do {
		cpu_base = READ_ONCE(timer->base->cpu_base);
		seq = raw_read_seqcount_begin(&cpu_base->seq);
1167

1168 1169 1170 1171 1172 1173 1174 1175
		if (timer->state != HRTIMER_STATE_INACTIVE ||
		    cpu_base->running == timer)
			return true;

	} while (read_seqcount_retry(&cpu_base->seq, seq) ||
		 cpu_base != READ_ONCE(timer->base->cpu_base));

	return false;
1176
}
1177
EXPORT_SYMBOL_GPL(hrtimer_active);
1178

1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
/*
 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
 * distinct sections:
 *
 *  - queued:	the timer is queued
 *  - callback:	the timer is being ran
 *  - post:	the timer is inactive or (re)queued
 *
 * On the read side we ensure we observe timer->state and cpu_base->running
 * from the same section, if anything changed while we looked at it, we retry.
 * This includes timer->base changing because sequence numbers alone are
 * insufficient for that.
 *
 * The sequence numbers are required because otherwise we could still observe
 * a false negative if the read side got smeared over multiple consequtive
 * __run_hrtimer() invocations.
 */

1197 1198 1199
static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
			  struct hrtimer_clock_base *base,
			  struct hrtimer *timer, ktime_t *now)
1200 1201 1202 1203
{
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1204
	lockdep_assert_held(&cpu_base->lock);
1205

1206
	debug_deactivate(timer);
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
	cpu_base->running = timer;

	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
	 * timer->state == INACTIVE.
	 */
	raw_write_seqcount_barrier(&cpu_base->seq);

	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1219 1220
	timer_stats_account_hrtimer(timer);
	fn = timer->function;
1221

1222 1223 1224 1225 1226 1227 1228 1229
	/*
	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
	 * timer is restarted with a period then it becomes an absolute
	 * timer. If its not restarted it does not matter.
	 */
	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
		timer->is_rel = false;

1230 1231 1232 1233 1234
	/*
	 * Because we run timers from hardirq context, there is no chance
	 * they get migrated to another cpu, therefore its safe to unlock
	 * the timer base.
	 */
1235
	raw_spin_unlock(&cpu_base->lock);
1236
	trace_hrtimer_expire_entry(timer, now);
1237
	restart = fn(timer);
1238
	trace_hrtimer_expire_exit(timer);
1239
	raw_spin_lock(&cpu_base->lock);
1240 1241

	/*
1242
	 * Note: We clear the running state after enqueue_hrtimer and
T
Thomas Gleixner 已提交
1243 1244
	 * we do not reprogramm the event hardware. Happens either in
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1245 1246 1247 1248
	 *
	 * Note: Because we dropped the cpu_base->lock above,
	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
	 * for us already.
1249
	 */
1250 1251
	if (restart != HRTIMER_NORESTART &&
	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1252
		enqueue_hrtimer(timer, base);
1253

1254 1255 1256 1257 1258 1259 1260 1261
	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
	 * timer->state == INACTIVE.
	 */
	raw_write_seqcount_barrier(&cpu_base->seq);
1262

1263 1264
	WARN_ON_ONCE(cpu_base->running != timer);
	cpu_base->running = NULL;
1265 1266
}

1267
static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1268
{
1269 1270
	struct hrtimer_clock_base *base = cpu_base->clock_base;
	unsigned int active = cpu_base->active_bases;
1271

1272
	for (; active; base++, active >>= 1) {
1273
		struct timerqueue_node *node;
1274 1275
		ktime_t basenow;

1276
		if (!(active & 0x01))
1277
			continue;
1278 1279 1280

		basenow = ktime_add(now, base->offset);

1281
		while ((node = timerqueue_getnext(&base->active))) {
1282 1283
			struct hrtimer *timer;

1284
			timer = container_of(node, struct hrtimer, node);
1285

1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */
1298
			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
1299 1300
				break;

1301
			__run_hrtimer(cpu_base, base, timer, &basenow);
1302 1303
		}
	}
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
}

#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
	ktime_t expires_next, now, entry_time, delta;
	int retries = 0;

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event.tv64 = KTIME_MAX;

	raw_spin_lock(&cpu_base->lock);
	entry_time = now = hrtimer_update_base(cpu_base);
retry:
	cpu_base->in_hrtirq = 1;
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
	cpu_base->expires_next.tv64 = KTIME_MAX;

	__hrtimer_run_queues(cpu_base, now);

1337 1338
	/* Reevaluate the clock bases for the next expiry */
	expires_next = __hrtimer_get_next_event(cpu_base);
1339 1340 1341 1342
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1343
	cpu_base->expires_next = expires_next;
1344
	cpu_base->in_hrtirq = 0;
1345
	raw_spin_unlock(&cpu_base->lock);
1346 1347

	/* Reprogramming necessary ? */
1348
	if (!tick_program_event(expires_next, 0)) {
1349 1350
		cpu_base->hang_detected = 0;
		return;
1351
	}
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361

	/*
	 * The next timer was already expired due to:
	 * - tracing
	 * - long lasting callbacks
	 * - being scheduled away when running in a VM
	 *
	 * We need to prevent that we loop forever in the hrtimer
	 * interrupt routine. We give it 3 attempts to avoid
	 * overreacting on some spurious event.
1362 1363 1364
	 *
	 * Acquire base lock for updating the offsets and retrieving
	 * the current time.
1365
	 */
1366
	raw_spin_lock(&cpu_base->lock);
1367
	now = hrtimer_update_base(cpu_base);
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
	cpu_base->nr_retries++;
	if (++retries < 3)
		goto retry;
	/*
	 * Give the system a chance to do something else than looping
	 * here. We stored the entry time, so we know exactly how long
	 * we spent here. We schedule the next event this amount of
	 * time away.
	 */
	cpu_base->nr_hangs++;
	cpu_base->hang_detected = 1;
1379
	raw_spin_unlock(&cpu_base->lock);
1380
	delta = ktime_sub(now, entry_time);
1381 1382
	if ((unsigned int)delta.tv64 > cpu_base->max_hang_time)
		cpu_base->max_hang_time = (unsigned int) delta.tv64;
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
	/*
	 * Limit it to a sensible value as we enforce a longer
	 * delay. Give the CPU at least 100ms to catch up.
	 */
	if (delta.tv64 > 100 * NSEC_PER_MSEC)
		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
	else
		expires_next = ktime_add(now, delta);
	tick_program_event(expires_next, 1);
	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
		    ktime_to_ns(delta));
1394 1395
}

1396 1397 1398 1399
/*
 * local version of hrtimer_peek_ahead_timers() called with interrupts
 * disabled.
 */
1400
static inline void __hrtimer_peek_ahead_timers(void)
1401 1402 1403 1404 1405 1406
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

1407
	td = this_cpu_ptr(&tick_cpu_device);
1408 1409 1410 1411
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1412 1413 1414 1415 1416
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1417

1418
/*
1419
 * Called from run_local_timers in hardirq context every jiffy
1420
 */
1421
void hrtimer_run_queues(void)
1422
{
1423
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1424
	ktime_t now;
1425

1426
	if (__hrtimer_hres_active(cpu_base))
1427
		return;
1428

1429
	/*
1430 1431 1432 1433 1434
	 * This _is_ ugly: We have to check periodically, whether we
	 * can switch to highres and / or nohz mode. The clocksource
	 * switch happens with xtime_lock held. Notification from
	 * there only sets the check bit in the tick_oneshot code,
	 * otherwise we might deadlock vs. xtime_lock.
1435
	 */
1436
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1437
		hrtimer_switch_to_hres();
1438
		return;
1439
	}
1440

1441 1442 1443 1444
	raw_spin_lock(&cpu_base->lock);
	now = hrtimer_update_base(cpu_base);
	__hrtimer_run_queues(cpu_base, now);
	raw_spin_unlock(&cpu_base->lock);
1445 1446
}

1447 1448 1449
/*
 * Sleep related functions:
 */
1450
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1463
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1464 1465 1466 1467
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}
S
Stephen Hemminger 已提交
1468
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1469

1470
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1471
{
1472
	hrtimer_init_sleeper(t, current);
1473

1474 1475
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1476
		hrtimer_start_expires(&t->timer, mode);
1477

1478
		if (likely(t->task))
1479
			freezable_schedule();
1480

1481
		hrtimer_cancel(&t->timer);
1482
		mode = HRTIMER_MODE_ABS;
1483 1484

	} while (t->task && !signal_pending(current));
1485

1486 1487
	__set_current_state(TASK_RUNNING);

1488
	return t->task == NULL;
1489 1490
}

1491 1492 1493 1494 1495
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

1496
	rem = hrtimer_expires_remaining(timer);
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
	if (rem.tv64 <= 0)
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;
}

1507
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1508
{
1509
	struct hrtimer_sleeper t;
1510
	struct timespec __user  *rmtp;
1511
	int ret = 0;
1512

1513
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1514
				HRTIMER_MODE_ABS);
1515
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1516

1517
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1518
		goto out;
1519

1520
	rmtp = restart->nanosleep.rmtp;
1521
	if (rmtp) {
1522
		ret = update_rmtp(&t.timer, rmtp);
1523
		if (ret <= 0)
1524
			goto out;
1525
	}
1526 1527

	/* The other values in restart are already filled in */
1528 1529 1530 1531
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1532 1533
}

1534
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1535 1536 1537
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1538
	struct hrtimer_sleeper t;
1539
	int ret = 0;
1540
	u64 slack;
1541 1542

	slack = current->timer_slack_ns;
1543
	if (dl_task(current) || rt_task(current))
1544
		slack = 0;
1545

1546
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1547
	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1548
	if (do_nanosleep(&t, mode))
1549
		goto out;
1550

1551
	/* Absolute timers do not update the rmtp value and restart: */
1552 1553 1554 1555
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1556

1557
	if (rmtp) {
1558
		ret = update_rmtp(&t.timer, rmtp);
1559
		if (ret <= 0)
1560
			goto out;
1561
	}
1562

1563
	restart = &current->restart_block;
1564
	restart->fn = hrtimer_nanosleep_restart;
1565
	restart->nanosleep.clockid = t.timer.base->clockid;
1566
	restart->nanosleep.rmtp = rmtp;
1567
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1568

1569 1570 1571 1572
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1573 1574
}

1575 1576
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1577
{
1578
	struct timespec tu;
1579 1580 1581 1582 1583 1584 1585

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1586
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1587 1588
}

1589 1590 1591
/*
 * Functions related to boot-time initialization:
 */
1592
static void init_hrtimers_cpu(int cpu)
1593
{
1594
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1595 1596
	int i;

1597
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1598
		cpu_base->clock_base[i].cpu_base = cpu_base;
1599 1600
		timerqueue_init_head(&cpu_base->clock_base[i].active);
	}
1601

1602
	cpu_base->cpu = cpu;
1603
	hrtimer_init_hres(cpu_base);
1604 1605 1606 1607
}

#ifdef CONFIG_HOTPLUG_CPU

1608
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1609
				struct hrtimer_clock_base *new_base)
1610 1611
{
	struct hrtimer *timer;
1612
	struct timerqueue_node *node;
1613

1614 1615
	while ((node = timerqueue_getnext(&old_base->active))) {
		timer = container_of(node, struct hrtimer, node);
1616
		BUG_ON(hrtimer_callback_running(timer));
1617
		debug_deactivate(timer);
T
Thomas Gleixner 已提交
1618 1619

		/*
1620
		 * Mark it as ENQUEUED not INACTIVE otherwise the
T
Thomas Gleixner 已提交
1621 1622 1623
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
1624
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1625
		timer->base = new_base;
1626
		/*
T
Thomas Gleixner 已提交
1627 1628 1629 1630 1631 1632
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1633
		 */
1634
		enqueue_hrtimer(timer, new_base);
1635 1636 1637
	}
}

1638
static void migrate_hrtimers(int scpu)
1639
{
1640
	struct hrtimer_cpu_base *old_base, *new_base;
1641
	int i;
1642

1643 1644
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1645 1646 1647

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
1648
	new_base = this_cpu_ptr(&hrtimer_bases);
1649 1650 1651 1652
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1653 1654
	raw_spin_lock(&new_base->lock);
	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1655

1656
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1657
		migrate_hrtimer_list(&old_base->clock_base[i],
1658
				     &new_base->clock_base[i]);
1659 1660
	}

1661 1662
	raw_spin_unlock(&old_base->lock);
	raw_spin_unlock(&new_base->lock);
1663

1664 1665 1666
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1667
}
1668

1669 1670
#endif /* CONFIG_HOTPLUG_CPU */

1671
static int hrtimer_cpu_notify(struct notifier_block *self,
1672 1673
					unsigned long action, void *hcpu)
{
1674
	int scpu = (long)hcpu;
1675 1676 1677 1678

	switch (action) {

	case CPU_UP_PREPARE:
1679
	case CPU_UP_PREPARE_FROZEN:
1680
		init_hrtimers_cpu(scpu);
1681 1682 1683 1684
		break;

#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
1685
	case CPU_DEAD_FROZEN:
1686
		migrate_hrtimers(scpu);
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
		break;
#endif

	default:
		break;
	}

	return NOTIFY_OK;
}

1697
static struct notifier_block hrtimers_nb = {
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
	.notifier_call = hrtimer_cpu_notify,
};

void __init hrtimers_init(void)
{
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
			  (void *)(long)smp_processor_id());
	register_cpu_notifier(&hrtimers_nb);
}

1708
/**
1709
 * schedule_hrtimeout_range_clock - sleep until timeout
1710
 * @expires:	timeout value (ktime_t)
1711
 * @delta:	slack in expires timeout (ktime_t)
1712
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1713
 * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1714
 */
1715
int __sched
1716
schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1717
			       const enum hrtimer_mode mode, int clock)
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
	if (expires && !expires->tv64) {
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
N
Namhyung Kim 已提交
1731
	 * A NULL parameter means "infinite"
1732 1733 1734 1735 1736 1737
	 */
	if (!expires) {
		schedule();
		return -EINTR;
	}

1738
	hrtimer_init_on_stack(&t.timer, clock, mode);
1739
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1740 1741 1742

	hrtimer_init_sleeper(&t, current);

1743
	hrtimer_start_expires(&t.timer, mode);
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783

/**
 * schedule_hrtimeout_range - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @delta:	slack in expires timeout (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
1784
int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1785 1786 1787 1788 1789
				     const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range_clock(expires, delta, mode,
					      CLOCK_MONOTONIC);
}
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1819
EXPORT_SYMBOL_GPL(schedule_hrtimeout);