hrtimer.c 52.5 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
35
#include <linux/export.h>
36 37 38 39
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46
#include <linux/sched/signal.h>
47
#include <linux/sched/sysctl.h>
48
#include <linux/sched/rt.h>
49
#include <linux/sched/deadline.h>
50
#include <linux/sched/nohz.h>
51
#include <linux/sched/debug.h>
52
#include <linux/timer.h>
53
#include <linux/freezer.h>
54
#include <linux/compat.h>
55

56
#include <linux/uaccess.h>
57

58 59
#include <trace/events/timer.h>

60
#include "tick-internal.h"
61

62 63 64 65 66 67 68 69 70
/*
 * Masks for selecting the soft and hard context timers from
 * cpu_base->active
 */
#define MASK_SHIFT		(HRTIMER_BASE_MONOTONIC_SOFT)
#define HRTIMER_ACTIVE_HARD	((1U << MASK_SHIFT) - 1)
#define HRTIMER_ACTIVE_SOFT	(HRTIMER_ACTIVE_HARD << MASK_SHIFT)
#define HRTIMER_ACTIVE_ALL	(HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)

71 72
/*
 * The timer bases:
73
 *
Z
Zhen Lei 已提交
74
 * There are more clockids than hrtimer bases. Thus, we index
75 76 77
 * into the timer bases by the hrtimer_base_type enum. When trying
 * to reach a base using a clockid, hrtimer_clockid_to_base()
 * is used to convert from clockid to the proper hrtimer_base_type.
78
 */
79
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
80
{
81
	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
82
	.clock_base =
83
	{
84
		{
85 86
			.index = HRTIMER_BASE_MONOTONIC,
			.clockid = CLOCK_MONOTONIC,
87 88
			.get_time = &ktime_get,
		},
T
Thomas Gleixner 已提交
89 90 91 92 93
		{
			.index = HRTIMER_BASE_REALTIME,
			.clockid = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
		},
94
		{
95 96
			.index = HRTIMER_BASE_BOOTTIME,
			.clockid = CLOCK_BOOTTIME,
97 98
			.get_time = &ktime_get_boottime,
		},
99 100 101 102 103
		{
			.index = HRTIMER_BASE_TAI,
			.clockid = CLOCK_TAI,
			.get_time = &ktime_get_clocktai,
		},
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
		{
			.index = HRTIMER_BASE_MONOTONIC_SOFT,
			.clockid = CLOCK_MONOTONIC,
			.get_time = &ktime_get,
		},
		{
			.index = HRTIMER_BASE_REALTIME_SOFT,
			.clockid = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
		},
		{
			.index = HRTIMER_BASE_BOOTTIME_SOFT,
			.clockid = CLOCK_BOOTTIME,
			.get_time = &ktime_get_boottime,
		},
		{
			.index = HRTIMER_BASE_TAI_SOFT,
			.clockid = CLOCK_TAI,
			.get_time = &ktime_get_clocktai,
		},
124
	}
125 126
};

127
static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
128 129 130
	/* Make sure we catch unsupported clockids */
	[0 ... MAX_CLOCKS - 1]	= HRTIMER_MAX_CLOCK_BASES,

131 132 133
	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
134
	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
135
};
136

137 138 139 140 141 142
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

143 144 145 146 147 148 149 150 151 152 153
/*
 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
 * such that hrtimer_callback_running() can unconditionally dereference
 * timer->base->cpu_base
 */
static struct hrtimer_cpu_base migration_cpu_base = {
	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
};

#define migration_base	migration_cpu_base.clock_base[0]

154 155 156 157 158 159 160 161 162
/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
163 164
 * possible to set timer->base = &migration_base and drop the lock: the timer
 * remains locked.
165
 */
166 167 168
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
169
{
170
	struct hrtimer_clock_base *base;
171 172 173

	for (;;) {
		base = timer->base;
174
		if (likely(base != &migration_base)) {
175
			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
176 177 178
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
179
			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
180 181 182 183 184
		}
		cpu_relax();
	}
}

185
/*
186 187 188 189 190
 * We do not migrate the timer when it is expiring before the next
 * event on the target cpu. When high resolution is enabled, we cannot
 * reprogram the target cpu hardware and we would cause it to fire
 * late. To keep it simple, we handle the high resolution enabled and
 * disabled case similar.
191 192 193 194 195 196 197 198 199
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
	ktime_t expires;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
200
	return expires < new_base->cpu_base->expires_next;
201 202
}

203 204 205 206
static inline
struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
					 int pinned)
{
207 208 209 210
#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
	if (static_branch_likely(&timers_migration_enabled) && !pinned)
		return &per_cpu(hrtimer_bases, get_nohz_timer_target());
#endif
211
	return base;
212 213
}

214
/*
215 216 217 218 219 220 221 222 223 224
 * We switch the timer base to a power-optimized selected CPU target,
 * if:
 *	- NO_HZ_COMMON is enabled
 *	- timer migration is enabled
 *	- the timer callback is not running
 *	- the timer is not the first expiring timer on the new target
 *
 * If one of the above requirements is not fulfilled we move the timer
 * to the current CPU or leave it on the previously assigned CPU if
 * the timer callback is currently running.
225
 */
226
static inline struct hrtimer_clock_base *
227 228
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
229
{
230
	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
231
	struct hrtimer_clock_base *new_base;
232
	int basenum = base->index;
233

234 235
	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
	new_cpu_base = get_target_base(this_cpu_base, pinned);
236
again:
237
	new_base = &new_cpu_base->clock_base[basenum];
238 239 240

	if (base != new_base) {
		/*
241
		 * We are trying to move timer to new_base.
242 243 244 245 246 247 248
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
249
		if (unlikely(hrtimer_callback_running(timer)))
250 251
			return base;

252 253
		/* See the comment in lock_hrtimer_base() */
		timer->base = &migration_base;
254 255
		raw_spin_unlock(&base->cpu_base->lock);
		raw_spin_lock(&new_base->cpu_base->lock);
256

257
		if (new_cpu_base != this_cpu_base &&
258
		    hrtimer_check_target(timer, new_base)) {
259 260
			raw_spin_unlock(&new_base->cpu_base->lock);
			raw_spin_lock(&base->cpu_base->lock);
261
			new_cpu_base = this_cpu_base;
262 263
			timer->base = base;
			goto again;
264
		}
265
		timer->base = new_base;
266
	} else {
267
		if (new_cpu_base != this_cpu_base &&
268
		    hrtimer_check_target(timer, new_base)) {
269
			new_cpu_base = this_cpu_base;
270 271
			goto again;
		}
272 273 274 275 276 277
	}
	return new_base;
}

#else /* CONFIG_SMP */

278
static inline struct hrtimer_clock_base *
279 280
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
281
	struct hrtimer_clock_base *base = timer->base;
282

283
	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
284 285 286 287

	return base;
}

288
# define switch_hrtimer_base(t, b, p)	(b)
289 290 291 292 293 294 295 296 297 298 299

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
/*
 * Divide a ktime value by a nanosecond value
 */
300
s64 __ktime_divns(const ktime_t kt, s64 div)
301 302
{
	int sft = 0;
303 304
	s64 dclc;
	u64 tmp;
305

306
	dclc = ktime_to_ns(kt);
307 308
	tmp = dclc < 0 ? -dclc : dclc;

309 310 311 312 313
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
314 315 316
	tmp >>= sft;
	do_div(tmp, (unsigned long) div);
	return dclc < 0 ? -tmp : tmp;
317
}
318
EXPORT_SYMBOL_GPL(__ktime_divns);
319 320
#endif /* BITS_PER_LONG >= 64 */

321 322 323 324 325
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
326
	ktime_t res = ktime_add_unsafe(lhs, rhs);
327 328 329 330 331

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
T
Thomas Gleixner 已提交
332
	if (res < 0 || res < lhs || res < rhs)
333 334 335 336 337
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

338 339
EXPORT_SYMBOL_GPL(ktime_add_safe);

340 341 342 343
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

344 345 346 347 348
static void *hrtimer_debug_hint(void *addr)
{
	return ((struct hrtimer *) addr)->function;
}

349 350 351 352
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
353
static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
354 355 356 357 358 359 360
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
361
		return true;
362
	default:
363
		return false;
364 365 366 367 368 369
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
370
 * - an unknown non-static object is activated
371
 */
372
static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
373 374 375 376 377 378
{
	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
379
		return false;
380 381 382 383 384 385 386
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
387
static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
388 389 390 391 392 393 394
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
395
		return true;
396
	default:
397
		return false;
398 399 400 401 402
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
403
	.debug_hint	= hrtimer_debug_hint,
404 405 406 407 408 409 410 411 412 413
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

414 415
static inline void debug_hrtimer_activate(struct hrtimer *timer,
					  enum hrtimer_mode mode)
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}
S
Stephen Hemminger 已提交
439
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
440 441 442 443 444

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}
445
EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
446 447

#else
448

449
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
450 451
static inline void debug_hrtimer_activate(struct hrtimer *timer,
					  enum hrtimer_mode mode) { }
452 453 454
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

455 456 457 458 459 460 461 462
static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
	   enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	trace_hrtimer_init(timer, clockid, mode);
}

463 464
static inline void debug_activate(struct hrtimer *timer,
				  enum hrtimer_mode mode)
465
{
466
	debug_hrtimer_activate(timer, mode);
467
	trace_hrtimer_start(timer, mode);
468 469 470 471 472 473 474 475
}

static inline void debug_deactivate(struct hrtimer *timer)
{
	debug_hrtimer_deactivate(timer);
	trace_hrtimer_cancel(timer);
}

476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
static struct hrtimer_clock_base *
__next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
{
	unsigned int idx;

	if (!*active)
		return NULL;

	idx = __ffs(*active);
	*active &= ~(1U << idx);

	return &cpu_base->clock_base[idx];
}

#define for_each_active_base(base, cpu_base, active)	\
	while ((base = __next_base((cpu_base), &(active))))

493 494 495
static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
					 unsigned int active,
					 ktime_t expires_next)
496
{
497
	struct hrtimer_clock_base *base;
498
	ktime_t expires;
499

500
	for_each_active_base(base, cpu_base, active) {
501 502 503
		struct timerqueue_node *next;
		struct hrtimer *timer;

504
		next = timerqueue_getnext(&base->active);
505 506
		timer = container_of(next, struct hrtimer, node);
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
T
Thomas Gleixner 已提交
507
		if (expires < expires_next) {
508
			expires_next = expires;
509 510 511 512
			if (timer->is_soft)
				cpu_base->softirq_next_timer = timer;
			else
				cpu_base->next_timer = timer;
513
		}
514 515 516 517 518 519
	}
	/*
	 * clock_was_set() might have changed base->offset of any of
	 * the clock bases so the result might be negative. Fix it up
	 * to prevent a false positive in clockevents_program_event().
	 */
T
Thomas Gleixner 已提交
520 521
	if (expires_next < 0)
		expires_next = 0;
522 523 524
	return expires_next;
}

525 526 527 528
/*
 * Recomputes cpu_base::*next_timer and returns the earliest expires_next but
 * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram.
 *
529 530 531 532 533 534 535 536
 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
 * those timers will get run whenever the softirq gets handled, at the end of
 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
 *
 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
 *
537
 * @active_mask must be one of:
538
 *  - HRTIMER_ACTIVE_ALL,
539 540 541
 *  - HRTIMER_ACTIVE_SOFT, or
 *  - HRTIMER_ACTIVE_HARD.
 */
542 543
static ktime_t
__hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
544
{
545
	unsigned int active;
546
	struct hrtimer *next_timer = NULL;
547 548
	ktime_t expires_next = KTIME_MAX;

549 550 551 552 553 554 555
	if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
		active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
		cpu_base->softirq_next_timer = NULL;
		expires_next = __hrtimer_next_event_base(cpu_base, active, KTIME_MAX);

		next_timer = cpu_base->softirq_next_timer;
	}
556

557 558 559 560 561
	if (active_mask & HRTIMER_ACTIVE_HARD) {
		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
		cpu_base->next_timer = next_timer;
		expires_next = __hrtimer_next_event_base(cpu_base, active, expires_next);
	}
562 563 564 565

	return expires_next;
}

566 567 568 569 570 571
static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
{
	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;

572
	ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
573
					    offs_real, offs_boot, offs_tai);
574 575 576 577 578 579

	base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
	base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
	base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;

	return now;
580 581
}

582 583 584 585 586 587 588 589 590 591 592 593 594 595
/*
 * Is the high resolution mode active ?
 */
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
{
	return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
		cpu_base->hres_active : 0;
}

static inline int hrtimer_hres_active(void)
{
	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
}

596 597 598 599 600
/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
601 602
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
603
{
604 605
	ktime_t expires_next;

606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
	/*
	 * Find the current next expiration time.
	 */
	expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);

	if (cpu_base->next_timer && cpu_base->next_timer->is_soft) {
		/*
		 * When the softirq is activated, hrtimer has to be
		 * programmed with the first hard hrtimer because soft
		 * timer interrupt could occur too late.
		 */
		if (cpu_base->softirq_activated)
			expires_next = __hrtimer_get_next_event(cpu_base,
								HRTIMER_ACTIVE_HARD);
		else
			cpu_base->softirq_expires_next = expires_next;
	}
623

T
Thomas Gleixner 已提交
624
	if (skip_equal && expires_next == cpu_base->expires_next)
625 626
		return;

T
Thomas Gleixner 已提交
627
	cpu_base->expires_next = expires_next;
628

629
	/*
630 631 632
	 * If hres is not active, hardware does not have to be
	 * reprogrammed yet.
	 *
633 634 635 636 637 638 639 640 641 642 643 644 645
	 * If a hang was detected in the last timer interrupt then we
	 * leave the hang delay active in the hardware. We want the
	 * system to make progress. That also prevents the following
	 * scenario:
	 * T1 expires 50ms from now
	 * T2 expires 5s from now
	 *
	 * T1 is removed, so this code is called and would reprogram
	 * the hardware to 5s from now. Any hrtimer_start after that
	 * will not reprogram the hardware due to hang_detected being
	 * set. So we'd effectivly block all timers until the T2 event
	 * fires.
	 */
646
	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
647 648
		return;

649
	tick_program_event(cpu_base->expires_next, 1);
650 651
}

652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static bool hrtimer_hres_enabled __read_mostly  = true;
unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
EXPORT_SYMBOL_GPL(hrtimer_resolution);

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

680 681 682 683 684 685 686
/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
687
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
688

689
	if (!__hrtimer_hres_active(base))
690 691 692
		return;

	raw_spin_lock(&base->lock);
693
	hrtimer_update_base(base);
694 695 696
	hrtimer_force_reprogram(base, 0);
	raw_spin_unlock(&base->lock);
}
697

698 699 700
/*
 * Switch to high resolution mode
 */
701
static void hrtimer_switch_to_hres(void)
702
{
703
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
704 705

	if (tick_init_highres()) {
I
Ingo Molnar 已提交
706
		printk(KERN_WARNING "Could not switch to high resolution "
707
				    "mode on CPU %d\n", base->cpu);
708
		return;
709 710
	}
	base->hres_active = 1;
711
	hrtimer_resolution = HIGH_RES_NSEC;
712 713 714 715 716 717

	tick_setup_sched_timer();
	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
}

718 719 720 721 722 723 724
static void clock_was_set_work(struct work_struct *work)
{
	clock_was_set();
}

static DECLARE_WORK(hrtimer_work, clock_was_set_work);

725
/*
P
Pratyush Patel 已提交
726
 * Called from timekeeping and resume code to reprogram the hrtimer
727
 * interrupt device on all cpus.
728 729 730
 */
void clock_was_set_delayed(void)
{
731
	schedule_work(&hrtimer_work);
732 733
}

734 735 736
#else

static inline int hrtimer_is_hres_enabled(void) { return 0; }
737
static inline void hrtimer_switch_to_hres(void) { }
738
static inline void retrigger_next_event(void *arg) { }
739 740 741

#endif /* CONFIG_HIGH_RES_TIMERS */

742 743 744 745 746 747 748
/*
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
749
static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
750 751
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
752
	struct hrtimer_clock_base *base = timer->base;
753 754 755 756
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);

	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);

757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
	 * expiry time which is less than base->offset. Set it to 0.
	 */
	if (expires < 0)
		expires = 0;

	if (timer->is_soft) {
		/*
		 * soft hrtimer could be started on a remote CPU. In this
		 * case softirq_expires_next needs to be updated on the
		 * remote CPU. The soft hrtimer will not expire before the
		 * first hard hrtimer on the remote CPU -
		 * hrtimer_check_target() prevents this case.
		 */
		struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;

		if (timer_cpu_base->softirq_activated)
			return;

		if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
			return;

		timer_cpu_base->softirq_next_timer = timer;
		timer_cpu_base->softirq_expires_next = expires;

		if (!ktime_before(expires, timer_cpu_base->expires_next) ||
		    !reprogram)
			return;
	}

788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
	/*
	 * If the timer is not on the current cpu, we cannot reprogram
	 * the other cpus clock event device.
	 */
	if (base->cpu_base != cpu_base)
		return;

	/*
	 * If the hrtimer interrupt is running, then it will
	 * reevaluate the clock bases and reprogram the clock event
	 * device. The callbacks are always executed in hard interrupt
	 * context so we don't need an extra check for a running
	 * callback.
	 */
	if (cpu_base->in_hrtirq)
		return;

	if (expires >= cpu_base->expires_next)
		return;

	/* Update the pointer to the next expiring timer */
	cpu_base->next_timer = timer;
810
	cpu_base->expires_next = expires;
811 812

	/*
813 814 815
	 * If hres is not active, hardware does not have to be
	 * programmed yet.
	 *
816 817 818 819 820
	 * If a hang was detected in the last timer interrupt then we
	 * do not schedule a timer which is earlier than the expiry
	 * which we enforced in the hang detection. We want the system
	 * to make progress.
	 */
821
	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
822 823 824 825 826 827 828 829 830
		return;

	/*
	 * Program the timer hardware. We enforce the expiry for
	 * events which are already in the past.
	 */
	tick_program_event(expires, 1);
}

831 832 833 834 835 836 837 838 839 840 841 842 843
/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
844
#ifdef CONFIG_HIGH_RES_TIMERS
845 846
	/* Retrigger the CPU local events everywhere */
	on_each_cpu(retrigger_next_event, NULL, 1);
847 848
#endif
	timerfd_clock_was_set();
849 850 851 852
}

/*
 * During resume we might have to reprogram the high resolution timer
853 854
 * interrupt on all online CPUs.  However, all other CPUs will be
 * stopped with IRQs interrupts disabled so the clock_was_set() call
855
 * must be deferred.
856 857 858
 */
void hrtimers_resume(void)
{
859
	lockdep_assert_irqs_disabled();
860
	/* Retrigger on the local CPU */
861
	retrigger_next_event(NULL);
862 863
	/* And schedule a retrigger for all others */
	clock_was_set_delayed();
864 865
}

866
/*
867
 * Counterpart to lock_hrtimer_base above:
868 869 870 871
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
872
	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
873 874 875 876 877
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
878
 * @now:	forward past this time
879 880 881
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
882
 * Returns the number of overruns.
883 884 885 886 887 888 889 890
 *
 * Can be safely called from the callback function of @timer. If
 * called from other contexts @timer must neither be enqueued nor
 * running the callback and the caller needs to take care of
 * serialization.
 *
 * Note: This only updates the timer expiry value and does not requeue
 * the timer.
891
 */
D
Davide Libenzi 已提交
892
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
893
{
D
Davide Libenzi 已提交
894
	u64 orun = 1;
895
	ktime_t delta;
896

897
	delta = ktime_sub(now, hrtimer_get_expires(timer));
898

T
Thomas Gleixner 已提交
899
	if (delta < 0)
900 901
		return 0;

902 903 904
	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
		return 0;

T
Thomas Gleixner 已提交
905 906
	if (interval < hrtimer_resolution)
		interval = hrtimer_resolution;
907

T
Thomas Gleixner 已提交
908
	if (unlikely(delta >= interval)) {
909
		s64 incr = ktime_to_ns(interval);
910 911

		orun = ktime_divns(delta, incr);
912
		hrtimer_add_expires_ns(timer, incr * orun);
T
Thomas Gleixner 已提交
913
		if (hrtimer_get_expires_tv64(timer) > now)
914 915 916 917 918 919 920
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
921
	hrtimer_add_expires(timer, interval);
922 923 924

	return orun;
}
S
Stas Sergeev 已提交
925
EXPORT_SYMBOL_GPL(hrtimer_forward);
926 927 928 929 930 931

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
932 933
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
934
 */
935
static int enqueue_hrtimer(struct hrtimer *timer,
936 937
			   struct hrtimer_clock_base *base,
			   enum hrtimer_mode mode)
938
{
939
	debug_activate(timer, mode);
940

941
	base->cpu_base->active_bases |= 1 << base->index;
942

943
	timer->state = HRTIMER_STATE_ENQUEUED;
944

945
	return timerqueue_add(&base->active, &timer->node);
946
}
947 948 949 950 951

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
952 953 954 955 956
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
957
 */
958
static void __remove_hrtimer(struct hrtimer *timer,
959
			     struct hrtimer_clock_base *base,
960
			     u8 newstate, int reprogram)
961
{
962
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
963
	u8 state = timer->state;
964

965 966 967
	timer->state = newstate;
	if (!(state & HRTIMER_STATE_ENQUEUED))
		return;
968

969
	if (!timerqueue_del(&base->active, &timer->node))
970
		cpu_base->active_bases &= ~(1 << base->index);
971

972 973 974 975 976 977 978 979 980 981
	/*
	 * Note: If reprogram is false we do not update
	 * cpu_base->next_timer. This happens when we remove the first
	 * timer on a remote cpu. No harm as we never dereference
	 * cpu_base->next_timer. So the worst thing what can happen is
	 * an superflous call to hrtimer_force_reprogram() on the
	 * remote cpu later on if the same timer gets enqueued again.
	 */
	if (reprogram && timer == cpu_base->next_timer)
		hrtimer_force_reprogram(cpu_base, 1);
982 983 984 985 986 987
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
988
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
989
{
990
	if (hrtimer_is_queued(timer)) {
991
		u8 state = timer->state;
992 993 994 995 996 997 998 999 1000 1001
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
1002
		debug_deactivate(timer);
1003
		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1004

1005 1006 1007
		if (!restart)
			state = HRTIMER_STATE_INACTIVE;

1008
		__remove_hrtimer(timer, base, state, reprogram);
1009 1010 1011 1012 1013
		return 1;
	}
	return 0;
}

1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
					    const enum hrtimer_mode mode)
{
#ifdef CONFIG_TIME_LOW_RES
	/*
	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
	 * granular time values. For relative timers we add hrtimer_resolution
	 * (i.e. one jiffie) to prevent short timeouts.
	 */
	timer->is_rel = mode & HRTIMER_MODE_REL;
	if (timer->is_rel)
T
Thomas Gleixner 已提交
1025
		tim = ktime_add_safe(tim, hrtimer_resolution);
1026 1027 1028 1029
#endif
	return tim;
}

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
static void
hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
{
	ktime_t expires;

	/*
	 * Find the next SOFT expiration.
	 */
	expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);

	/*
	 * reprogramming needs to be triggered, even if the next soft
	 * hrtimer expires at the same time than the next hard
	 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
	 */
	if (expires == KTIME_MAX)
		return;

	/*
	 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
	 * cpu_base->*expires_next is only set by hrtimer_reprogram()
	 */
	hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
}

1055 1056 1057
static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
				    u64 delta_ns, const enum hrtimer_mode mode,
				    struct hrtimer_clock_base *base)
1058
{
1059
	struct hrtimer_clock_base *new_base;
1060 1061

	/* Remove an active timer from the queue: */
1062
	remove_hrtimer(timer, base, true);
1063

1064
	if (mode & HRTIMER_MODE_REL)
1065
		tim = ktime_add_safe(tim, base->get_time());
1066 1067

	tim = hrtimer_update_lowres(timer, tim, mode);
1068

1069
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1070

1071 1072 1073
	/* Switch the timer base, if necessary: */
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);

1074 1075
	return enqueue_hrtimer(timer, new_base, mode);
}
1076

1077 1078 1079 1080 1081 1082
/**
 * hrtimer_start_range_ns - (re)start an hrtimer
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
 * @mode:	timer mode: absolute (HRTIMER_MODE_ABS) or
1083 1084
 *		relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
 *		softirq based mode is considered for debug purpose only!
1085 1086 1087 1088 1089 1090 1091
 */
void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
			    u64 delta_ns, const enum hrtimer_mode mode)
{
	struct hrtimer_clock_base *base;
	unsigned long flags;

1092 1093 1094 1095 1096 1097
	/*
	 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
	 * match.
	 */
	WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);

1098 1099 1100
	base = lock_hrtimer_base(timer, &flags);

	if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1101
		hrtimer_reprogram(timer, true);
1102

1103
	unlock_hrtimer_base(timer, &flags);
1104
}
1105 1106
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

1107 1108 1109 1110 1111 1112 1113
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
1114
 * -1 when the timer is currently executing the callback function and
1115
 *    cannot be stopped
1116 1117 1118
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
1119
	struct hrtimer_clock_base *base;
1120 1121 1122
	unsigned long flags;
	int ret = -1;

1123 1124 1125 1126 1127 1128 1129 1130 1131
	/*
	 * Check lockless first. If the timer is not active (neither
	 * enqueued nor running the callback, nothing to do here.  The
	 * base lock does not serialize against a concurrent enqueue,
	 * so we can avoid taking it.
	 */
	if (!hrtimer_active(timer))
		return 0;

1132 1133
	base = lock_hrtimer_base(timer, &flags);

1134
	if (!hrtimer_callback_running(timer))
1135
		ret = remove_hrtimer(timer, base, false);
1136 1137 1138 1139 1140 1141

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1142
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1159
		cpu_relax();
1160 1161
	}
}
1162
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1163 1164 1165 1166

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
1167
 * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1168
 */
1169
ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1170 1171 1172 1173
{
	unsigned long flags;
	ktime_t rem;

1174
	lock_hrtimer_base(timer, &flags);
1175 1176 1177 1178
	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
		rem = hrtimer_expires_remaining_adjusted(timer);
	else
		rem = hrtimer_expires_remaining(timer);
1179 1180 1181 1182
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1183
EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1184

1185
#ifdef CONFIG_NO_HZ_COMMON
1186 1187 1188
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
1189
 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1190
 */
1191
u64 hrtimer_get_next_event(void)
1192
{
1193
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1194
	u64 expires = KTIME_MAX;
1195 1196
	unsigned long flags;

1197
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1198

1199
	if (!__hrtimer_hres_active(cpu_base))
1200
		expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1201

1202
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1203

1204
	return expires;
1205 1206 1207
}
#endif

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
static inline int hrtimer_clockid_to_base(clockid_t clock_id)
{
	if (likely(clock_id < MAX_CLOCKS)) {
		int base = hrtimer_clock_to_base_table[clock_id];

		if (likely(base != HRTIMER_MAX_CLOCK_BASES))
			return base;
	}
	WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
	return HRTIMER_BASE_MONOTONIC;
}

1220 1221
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1222
{
1223 1224
	bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
	int base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1225
	struct hrtimer_cpu_base *cpu_base;
1226

1227 1228
	memset(timer, 0, sizeof(struct hrtimer));

1229
	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1230

1231 1232 1233 1234 1235 1236
	/*
	 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
	 * clock modifications, so they needs to become CLOCK_MONOTONIC to
	 * ensure POSIX compliance.
	 */
	if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1237 1238
		clock_id = CLOCK_MONOTONIC;

1239 1240
	base += hrtimer_clockid_to_base(clock_id);
	timer->is_soft = softtimer;
1241
	timer->base = &cpu_base->clock_base[base];
1242
	timerqueue_init(&timer->node);
1243
}
1244 1245 1246 1247 1248

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
1249 1250 1251 1252 1253 1254 1255
 * @mode:       The modes which are relevant for intitialization:
 *              HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
 *              HRTIMER_MODE_REL_SOFT
 *
 *              The PINNED variants of the above can be handed in,
 *              but the PINNED bit is ignored as pinning happens
 *              when the hrtimer is started
1256 1257 1258 1259
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
1260
	debug_init(timer, clock_id, mode);
1261 1262
	__hrtimer_init(timer, clock_id, mode);
}
1263
EXPORT_SYMBOL_GPL(hrtimer_init);
1264

1265 1266 1267 1268
/*
 * A timer is active, when it is enqueued into the rbtree or the
 * callback function is running or it's in the state of being migrated
 * to another cpu.
1269
 *
1270
 * It is important for this function to not return a false negative.
1271
 */
1272
bool hrtimer_active(const struct hrtimer *timer)
1273
{
1274
	struct hrtimer_clock_base *base;
1275
	unsigned int seq;
1276

1277
	do {
1278 1279
		base = READ_ONCE(timer->base);
		seq = raw_read_seqcount_begin(&base->seq);
1280

1281
		if (timer->state != HRTIMER_STATE_INACTIVE ||
1282
		    base->running == timer)
1283 1284
			return true;

1285 1286
	} while (read_seqcount_retry(&base->seq, seq) ||
		 base != READ_ONCE(timer->base));
1287 1288

	return false;
1289
}
1290
EXPORT_SYMBOL_GPL(hrtimer_active);
1291

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
/*
 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
 * distinct sections:
 *
 *  - queued:	the timer is queued
 *  - callback:	the timer is being ran
 *  - post:	the timer is inactive or (re)queued
 *
 * On the read side we ensure we observe timer->state and cpu_base->running
 * from the same section, if anything changed while we looked at it, we retry.
 * This includes timer->base changing because sequence numbers alone are
 * insufficient for that.
 *
 * The sequence numbers are required because otherwise we could still observe
 * a false negative if the read side got smeared over multiple consequtive
 * __run_hrtimer() invocations.
 */

1310 1311
static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
			  struct hrtimer_clock_base *base,
1312 1313
			  struct hrtimer *timer, ktime_t *now,
			  unsigned long flags)
1314 1315 1316 1317
{
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1318
	lockdep_assert_held(&cpu_base->lock);
1319

1320
	debug_deactivate(timer);
1321
	base->running = timer;
1322 1323 1324 1325 1326

	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
1327
	 * hrtimer_active() cannot observe base->running == NULL &&
1328 1329
	 * timer->state == INACTIVE.
	 */
1330
	raw_write_seqcount_barrier(&base->seq);
1331 1332

	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1333
	fn = timer->function;
1334

1335 1336 1337 1338 1339 1340 1341 1342
	/*
	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
	 * timer is restarted with a period then it becomes an absolute
	 * timer. If its not restarted it does not matter.
	 */
	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
		timer->is_rel = false;

1343
	/*
1344 1345 1346
	 * The timer is marked as running in the CPU base, so it is
	 * protected against migration to a different CPU even if the lock
	 * is dropped.
1347
	 */
1348
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1349
	trace_hrtimer_expire_entry(timer, now);
1350
	restart = fn(timer);
1351
	trace_hrtimer_expire_exit(timer);
1352
	raw_spin_lock_irq(&cpu_base->lock);
1353 1354

	/*
1355
	 * Note: We clear the running state after enqueue_hrtimer and
P
Pratyush Patel 已提交
1356
	 * we do not reprogram the event hardware. Happens either in
T
Thomas Gleixner 已提交
1357
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1358 1359 1360 1361
	 *
	 * Note: Because we dropped the cpu_base->lock above,
	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
	 * for us already.
1362
	 */
1363 1364
	if (restart != HRTIMER_NORESTART &&
	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1365
		enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1366

1367 1368 1369 1370
	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
1371
	 * hrtimer_active() cannot observe base->running.timer == NULL &&
1372 1373
	 * timer->state == INACTIVE.
	 */
1374
	raw_write_seqcount_barrier(&base->seq);
1375

1376 1377
	WARN_ON_ONCE(base->running != timer);
	base->running = NULL;
1378 1379
}

1380
static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1381
				 unsigned long flags, unsigned int active_mask)
1382
{
1383
	struct hrtimer_clock_base *base;
1384
	unsigned int active = cpu_base->active_bases & active_mask;
1385

1386
	for_each_active_base(base, cpu_base, active) {
1387
		struct timerqueue_node *node;
1388 1389
		ktime_t basenow;

1390 1391
		basenow = ktime_add(now, base->offset);

1392
		while ((node = timerqueue_getnext(&base->active))) {
1393 1394
			struct hrtimer *timer;

1395
			timer = container_of(node, struct hrtimer, node);
1396

1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */
T
Thomas Gleixner 已提交
1409
			if (basenow < hrtimer_get_softexpires_tv64(timer))
1410 1411
				break;

1412
			__run_hrtimer(cpu_base, base, timer, &basenow, flags);
1413 1414
		}
	}
1415 1416
}

1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
	unsigned long flags;
	ktime_t now;

	raw_spin_lock_irqsave(&cpu_base->lock, flags);

	now = hrtimer_update_base(cpu_base);
	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);

	cpu_base->softirq_activated = 0;
	hrtimer_update_softirq_timer(cpu_base, true);

	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
}

1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
	ktime_t expires_next, now, entry_time, delta;
1444
	unsigned long flags;
1445 1446 1447 1448
	int retries = 0;

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
T
Thomas Gleixner 已提交
1449
	dev->next_event = KTIME_MAX;
1450

1451
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
	entry_time = now = hrtimer_update_base(cpu_base);
retry:
	cpu_base->in_hrtirq = 1;
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
T
Thomas Gleixner 已提交
1462
	cpu_base->expires_next = KTIME_MAX;
1463

1464 1465 1466 1467 1468 1469
	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
		cpu_base->softirq_expires_next = KTIME_MAX;
		cpu_base->softirq_activated = 1;
		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
	}

1470
	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1471

1472
	/* Reevaluate the clock bases for the next expiry */
1473
	expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1474 1475 1476 1477
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1478
	cpu_base->expires_next = expires_next;
1479
	cpu_base->in_hrtirq = 0;
1480
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1481 1482

	/* Reprogramming necessary ? */
1483
	if (!tick_program_event(expires_next, 0)) {
1484 1485
		cpu_base->hang_detected = 0;
		return;
1486
	}
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496

	/*
	 * The next timer was already expired due to:
	 * - tracing
	 * - long lasting callbacks
	 * - being scheduled away when running in a VM
	 *
	 * We need to prevent that we loop forever in the hrtimer
	 * interrupt routine. We give it 3 attempts to avoid
	 * overreacting on some spurious event.
1497 1498 1499
	 *
	 * Acquire base lock for updating the offsets and retrieving
	 * the current time.
1500
	 */
1501
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1502
	now = hrtimer_update_base(cpu_base);
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
	cpu_base->nr_retries++;
	if (++retries < 3)
		goto retry;
	/*
	 * Give the system a chance to do something else than looping
	 * here. We stored the entry time, so we know exactly how long
	 * we spent here. We schedule the next event this amount of
	 * time away.
	 */
	cpu_base->nr_hangs++;
	cpu_base->hang_detected = 1;
1514 1515
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);

1516
	delta = ktime_sub(now, entry_time);
T
Thomas Gleixner 已提交
1517 1518
	if ((unsigned int)delta > cpu_base->max_hang_time)
		cpu_base->max_hang_time = (unsigned int) delta;
1519 1520 1521 1522
	/*
	 * Limit it to a sensible value as we enforce a longer
	 * delay. Give the CPU at least 100ms to catch up.
	 */
T
Thomas Gleixner 已提交
1523
	if (delta > 100 * NSEC_PER_MSEC)
1524 1525 1526 1527 1528 1529
		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
	else
		expires_next = ktime_add(now, delta);
	tick_program_event(expires_next, 1);
	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
		    ktime_to_ns(delta));
1530 1531
}

1532
/* called with interrupts disabled */
1533
static inline void __hrtimer_peek_ahead_timers(void)
1534 1535 1536 1537 1538 1539
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

1540
	td = this_cpu_ptr(&tick_cpu_device);
1541 1542 1543 1544
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1545 1546 1547 1548 1549
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1550

1551
/*
1552
 * Called from run_local_timers in hardirq context every jiffy
1553
 */
1554
void hrtimer_run_queues(void)
1555
{
1556
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1557
	unsigned long flags;
1558
	ktime_t now;
1559

1560
	if (__hrtimer_hres_active(cpu_base))
1561
		return;
1562

1563
	/*
1564 1565 1566 1567 1568
	 * This _is_ ugly: We have to check periodically, whether we
	 * can switch to highres and / or nohz mode. The clocksource
	 * switch happens with xtime_lock held. Notification from
	 * there only sets the check bit in the tick_oneshot code,
	 * otherwise we might deadlock vs. xtime_lock.
1569
	 */
1570
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1571
		hrtimer_switch_to_hres();
1572
		return;
1573
	}
1574

1575
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1576
	now = hrtimer_update_base(cpu_base);
1577 1578 1579 1580 1581 1582 1583

	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
		cpu_base->softirq_expires_next = KTIME_MAX;
		cpu_base->softirq_activated = 1;
		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
	}

1584
	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1585
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1586 1587
}

1588 1589 1590
/*
 * Sleep related functions:
 */
1591
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1604
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1605 1606 1607 1608
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}
S
Stephen Hemminger 已提交
1609
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1610

1611
int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1612 1613 1614 1615
{
	switch(restart->nanosleep.type) {
#ifdef CONFIG_COMPAT
	case TT_COMPAT:
1616
		if (compat_put_timespec64(ts, restart->nanosleep.compat_rmtp))
1617 1618 1619 1620
			return -EFAULT;
		break;
#endif
	case TT_NATIVE:
1621
		if (put_timespec64(ts, restart->nanosleep.rmtp))
1622 1623 1624 1625 1626 1627 1628 1629
			return -EFAULT;
		break;
	default:
		BUG();
	}
	return -ERESTART_RESTARTBLOCK;
}

1630
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1631
{
1632 1633
	struct restart_block *restart;

1634
	hrtimer_init_sleeper(t, current);
1635

1636 1637
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1638
		hrtimer_start_expires(&t->timer, mode);
1639

1640
		if (likely(t->task))
1641
			freezable_schedule();
1642

1643
		hrtimer_cancel(&t->timer);
1644
		mode = HRTIMER_MODE_ABS;
1645 1646

	} while (t->task && !signal_pending(current));
1647

1648 1649
	__set_current_state(TASK_RUNNING);

1650
	if (!t->task)
1651 1652
		return 0;

1653 1654
	restart = &current->restart_block;
	if (restart->nanosleep.type != TT_NONE) {
1655
		ktime_t rem = hrtimer_expires_remaining(&t->timer);
1656
		struct timespec64 rmt;
1657

1658 1659
		if (rem <= 0)
			return 0;
1660
		rmt = ktime_to_timespec64(rem);
1661

1662
		return nanosleep_copyout(restart, &rmt);
1663 1664
	}
	return -ERESTART_RESTARTBLOCK;
1665 1666
}

A
Al Viro 已提交
1667
static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1668
{
1669
	struct hrtimer_sleeper t;
1670
	int ret;
1671

1672
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1673
				HRTIMER_MODE_ABS);
1674
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1675

1676
	ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1677 1678
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1679 1680
}

1681
long hrtimer_nanosleep(const struct timespec64 *rqtp,
1682 1683
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
1684
	struct restart_block *restart;
1685
	struct hrtimer_sleeper t;
1686
	int ret = 0;
1687
	u64 slack;
1688 1689

	slack = current->timer_slack_ns;
1690
	if (dl_task(current) || rt_task(current))
1691
		slack = 0;
1692

1693
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1694
	hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
1695 1696
	ret = do_nanosleep(&t, mode);
	if (ret != -ERESTART_RESTARTBLOCK)
1697
		goto out;
1698

1699
	/* Absolute timers do not update the rmtp value and restart: */
1700 1701 1702 1703
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1704

1705
	restart = &current->restart_block;
1706
	restart->fn = hrtimer_nanosleep_restart;
1707
	restart->nanosleep.clockid = t.timer.base->clockid;
1708
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1709 1710 1711
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1712 1713
}

1714 1715
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1716
{
1717
	struct timespec64 tu;
1718

1719
	if (get_timespec64(&tu, rqtp))
1720 1721
		return -EFAULT;

1722
	if (!timespec64_valid(&tu))
1723 1724
		return -EINVAL;

1725
	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1726
	current->restart_block.nanosleep.rmtp = rmtp;
1727
	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1728 1729
}

1730 1731 1732 1733 1734
#ifdef CONFIG_COMPAT

COMPAT_SYSCALL_DEFINE2(nanosleep, struct compat_timespec __user *, rqtp,
		       struct compat_timespec __user *, rmtp)
{
1735
	struct timespec64 tu;
1736

1737
	if (compat_get_timespec64(&tu, rqtp))
1738 1739
		return -EFAULT;

1740
	if (!timespec64_valid(&tu))
1741 1742 1743 1744
		return -EINVAL;

	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
	current->restart_block.nanosleep.compat_rmtp = rmtp;
1745
	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1746 1747 1748
}
#endif

1749 1750 1751
/*
 * Functions related to boot-time initialization:
 */
1752
int hrtimers_prepare_cpu(unsigned int cpu)
1753
{
1754
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1755 1756
	int i;

1757
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1758
		cpu_base->clock_base[i].cpu_base = cpu_base;
1759 1760
		timerqueue_init_head(&cpu_base->clock_base[i].active);
	}
1761

1762
	cpu_base->cpu = cpu;
1763
	cpu_base->hres_active = 0;
1764
	cpu_base->expires_next = KTIME_MAX;
1765
	cpu_base->softirq_expires_next = KTIME_MAX;
1766
	return 0;
1767 1768 1769 1770
}

#ifdef CONFIG_HOTPLUG_CPU

1771
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1772
				struct hrtimer_clock_base *new_base)
1773 1774
{
	struct hrtimer *timer;
1775
	struct timerqueue_node *node;
1776

1777 1778
	while ((node = timerqueue_getnext(&old_base->active))) {
		timer = container_of(node, struct hrtimer, node);
1779
		BUG_ON(hrtimer_callback_running(timer));
1780
		debug_deactivate(timer);
T
Thomas Gleixner 已提交
1781 1782

		/*
1783
		 * Mark it as ENQUEUED not INACTIVE otherwise the
T
Thomas Gleixner 已提交
1784 1785 1786
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
1787
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1788
		timer->base = new_base;
1789
		/*
T
Thomas Gleixner 已提交
1790 1791 1792 1793 1794 1795
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1796
		 */
1797
		enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
1798 1799 1800
	}
}

1801
int hrtimers_dead_cpu(unsigned int scpu)
1802
{
1803
	struct hrtimer_cpu_base *old_base, *new_base;
1804
	int i;
1805

1806 1807
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1808

1809 1810 1811 1812 1813 1814
	/*
	 * this BH disable ensures that raise_softirq_irqoff() does
	 * not wakeup ksoftirqd (and acquire the pi-lock) while
	 * holding the cpu_base lock
	 */
	local_bh_disable();
1815 1816
	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
1817
	new_base = this_cpu_ptr(&hrtimer_bases);
1818 1819 1820 1821
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1822 1823
	raw_spin_lock(&new_base->lock);
	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1824

1825
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1826
		migrate_hrtimer_list(&old_base->clock_base[i],
1827
				     &new_base->clock_base[i]);
1828 1829
	}

1830 1831 1832 1833 1834 1835
	/*
	 * The migration might have changed the first expiring softirq
	 * timer on this CPU. Update it.
	 */
	hrtimer_update_softirq_timer(new_base, false);

1836 1837
	raw_spin_unlock(&old_base->lock);
	raw_spin_unlock(&new_base->lock);
1838

1839 1840 1841
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1842
	local_bh_enable();
1843
	return 0;
1844
}
1845

1846 1847 1848 1849
#endif /* CONFIG_HOTPLUG_CPU */

void __init hrtimers_init(void)
{
1850
	hrtimers_prepare_cpu(smp_processor_id());
1851
	open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
1852 1853
}

1854
/**
1855
 * schedule_hrtimeout_range_clock - sleep until timeout
1856
 * @expires:	timeout value (ktime_t)
1857
 * @delta:	slack in expires timeout (ktime_t)
1858 1859
 * @mode:	timer mode
 * @clock_id:	timer clock to be used
1860
 */
1861
int __sched
1862
schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1863
			       const enum hrtimer_mode mode, clockid_t clock_id)
1864 1865 1866 1867 1868 1869 1870
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
T
Thomas Gleixner 已提交
1871
	if (expires && *expires == 0) {
1872 1873 1874 1875 1876
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
N
Namhyung Kim 已提交
1877
	 * A NULL parameter means "infinite"
1878 1879 1880 1881 1882 1883
	 */
	if (!expires) {
		schedule();
		return -EINTR;
	}

1884
	hrtimer_init_on_stack(&t.timer, clock_id, mode);
1885
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1886 1887 1888

	hrtimer_init_sleeper(&t, current);

1889
	hrtimer_start_expires(&t.timer, mode);
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1901 1902 1903 1904 1905

/**
 * schedule_hrtimeout_range - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @delta:	slack in expires timeout (ktime_t)
1906
 * @mode:	timer mode
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1920 1921
 * pass before the routine returns unless the current task is explicitly
 * woken up, (e.g. by wake_up_process()).
1922 1923
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1924 1925
 * delivered to the current task or the current task is explicitly woken
 * up.
1926 1927 1928 1929
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
1930 1931 1932
 * Returns 0 when the timer has expired. If the task was woken before the
 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
 * by an explicit wakeup, it returns -EINTR.
1933
 */
1934
int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1935 1936 1937 1938 1939
				     const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range_clock(expires, delta, mode,
					      CLOCK_MONOTONIC);
}
1940 1941 1942 1943 1944
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
1945
 * @mode:	timer mode
1946 1947 1948 1949 1950 1951 1952 1953
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1954 1955
 * pass before the routine returns unless the current task is explicitly
 * woken up, (e.g. by wake_up_process()).
1956 1957
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1958 1959
 * delivered to the current task or the current task is explicitly woken
 * up.
1960 1961 1962 1963
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
1964 1965 1966
 * Returns 0 when the timer has expired. If the task was woken before the
 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
 * by an explicit wakeup, it returns -EINTR.
1967 1968 1969 1970 1971 1972
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1973
EXPORT_SYMBOL_GPL(schedule_hrtimeout);