hrtimer.c 46.3 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
35
#include <linux/export.h>
36 37 38 39
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46
#include <linux/sched.h>
47
#include <linux/sched/sysctl.h>
48
#include <linux/sched/rt.h>
49
#include <linux/sched/deadline.h>
50
#include <linux/timer.h>
51
#include <linux/freezer.h>
52 53 54

#include <asm/uaccess.h>

55 56
#include <trace/events/timer.h>

57
#include "tick-internal.h"
58

59 60
/*
 * The timer bases:
61
 *
62 63 64 65
 * There are more clockids then hrtimer bases. Thus, we index
 * into the timer bases by the hrtimer_base_type enum. When trying
 * to reach a base using a clockid, hrtimer_clockid_to_base()
 * is used to convert from clockid to the proper hrtimer_base_type.
66
 */
67
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
68
{
69
	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
70
	.seq = SEQCNT_ZERO(hrtimer_bases.seq),
71
	.clock_base =
72
	{
73
		{
74 75
			.index = HRTIMER_BASE_MONOTONIC,
			.clockid = CLOCK_MONOTONIC,
76 77
			.get_time = &ktime_get,
		},
T
Thomas Gleixner 已提交
78 79 80 81 82
		{
			.index = HRTIMER_BASE_REALTIME,
			.clockid = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
		},
83
		{
84 85
			.index = HRTIMER_BASE_BOOTTIME,
			.clockid = CLOCK_BOOTTIME,
86 87
			.get_time = &ktime_get_boottime,
		},
88 89 90 91 92
		{
			.index = HRTIMER_BASE_TAI,
			.clockid = CLOCK_TAI,
			.get_time = &ktime_get_clocktai,
		},
93
	}
94 95
};

96
static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
97 98 99
	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
100
	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
101
};
102 103 104 105 106 107

static inline int hrtimer_clockid_to_base(clockid_t clock_id)
{
	return hrtimer_clock_to_base_table[clock_id];
}

108 109 110 111 112 113
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

114 115 116 117 118 119 120 121 122 123 124 125
/*
 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
 * such that hrtimer_callback_running() can unconditionally dereference
 * timer->base->cpu_base
 */
static struct hrtimer_cpu_base migration_cpu_base = {
	.seq = SEQCNT_ZERO(migration_cpu_base),
	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
};

#define migration_base	migration_cpu_base.clock_base[0]

126 127 128 129 130 131 132 133 134
/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
135 136
 * possible to set timer->base = &migration_base and drop the lock: the timer
 * remains locked.
137
 */
138 139 140
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
141
{
142
	struct hrtimer_clock_base *base;
143 144 145

	for (;;) {
		base = timer->base;
146
		if (likely(base != &migration_base)) {
147
			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
148 149 150
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
151
			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
152 153 154 155 156
		}
		cpu_relax();
	}
}

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
/*
 * With HIGHRES=y we do not migrate the timer when it is expiring
 * before the next event on the target cpu because we cannot reprogram
 * the target cpu hardware and we would cause it to fire late.
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	ktime_t expires;

	if (!new_base->cpu_base->hres_active)
		return 0;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
#else
	return 0;
#endif
}

180 181 182 183 184 185
#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
static inline
struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
					 int pinned)
{
	if (pinned || !base->migration_enabled)
186
		return base;
187 188 189 190 191 192 193
	return &per_cpu(hrtimer_bases, get_nohz_timer_target());
}
#else
static inline
struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
					 int pinned)
{
194
	return base;
195 196 197
}
#endif

198
/*
199 200 201 202 203 204 205 206 207 208
 * We switch the timer base to a power-optimized selected CPU target,
 * if:
 *	- NO_HZ_COMMON is enabled
 *	- timer migration is enabled
 *	- the timer callback is not running
 *	- the timer is not the first expiring timer on the new target
 *
 * If one of the above requirements is not fulfilled we move the timer
 * to the current CPU or leave it on the previously assigned CPU if
 * the timer callback is currently running.
209
 */
210
static inline struct hrtimer_clock_base *
211 212
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
213
{
214
	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
215
	struct hrtimer_clock_base *new_base;
216
	int basenum = base->index;
217

218 219
	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
	new_cpu_base = get_target_base(this_cpu_base, pinned);
220
again:
221
	new_base = &new_cpu_base->clock_base[basenum];
222 223 224

	if (base != new_base) {
		/*
225
		 * We are trying to move timer to new_base.
226 227 228 229 230 231 232
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
233
		if (unlikely(hrtimer_callback_running(timer)))
234 235
			return base;

236 237
		/* See the comment in lock_hrtimer_base() */
		timer->base = &migration_base;
238 239
		raw_spin_unlock(&base->cpu_base->lock);
		raw_spin_lock(&new_base->cpu_base->lock);
240

241
		if (new_cpu_base != this_cpu_base &&
242
		    hrtimer_check_target(timer, new_base)) {
243 244
			raw_spin_unlock(&new_base->cpu_base->lock);
			raw_spin_lock(&base->cpu_base->lock);
245
			new_cpu_base = this_cpu_base;
246 247
			timer->base = base;
			goto again;
248
		}
249
		timer->base = new_base;
250
	} else {
251
		if (new_cpu_base != this_cpu_base &&
252
		    hrtimer_check_target(timer, new_base)) {
253
			new_cpu_base = this_cpu_base;
254 255
			goto again;
		}
256 257 258 259 260 261
	}
	return new_base;
}

#else /* CONFIG_SMP */

262
static inline struct hrtimer_clock_base *
263 264
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
265
	struct hrtimer_clock_base *base = timer->base;
266

267
	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
268 269 270 271

	return base;
}

272
# define switch_hrtimer_base(t, b, p)	(b)
273 274 275 276 277 278 279 280 281 282 283

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
/*
 * Divide a ktime value by a nanosecond value
 */
284
s64 __ktime_divns(const ktime_t kt, s64 div)
285 286
{
	int sft = 0;
287 288
	s64 dclc;
	u64 tmp;
289

290
	dclc = ktime_to_ns(kt);
291 292
	tmp = dclc < 0 ? -dclc : dclc;

293 294 295 296 297
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
298 299 300
	tmp >>= sft;
	do_div(tmp, (unsigned long) div);
	return dclc < 0 ? -tmp : tmp;
301
}
302
EXPORT_SYMBOL_GPL(__ktime_divns);
303 304
#endif /* BITS_PER_LONG >= 64 */

305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
	ktime_t res = ktime_add(lhs, rhs);

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

322 323
EXPORT_SYMBOL_GPL(ktime_add_safe);

324 325 326 327
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

328 329 330 331 332
static void *hrtimer_debug_hint(void *addr)
{
	return ((struct hrtimer *) addr)->function;
}

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
{
	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
392
	.debug_hint	= hrtimer_debug_hint,
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}
S
Stephen Hemminger 已提交
427
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
428 429 430 431 432 433 434 435 436 437 438 439

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
	   enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	trace_hrtimer_init(timer, clockid, mode);
}

static inline void debug_activate(struct hrtimer *timer)
{
	debug_hrtimer_activate(timer);
	trace_hrtimer_start(timer);
}

static inline void debug_deactivate(struct hrtimer *timer)
{
	debug_hrtimer_deactivate(timer);
	trace_hrtimer_cancel(timer);
}

460
#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
461 462 463 464 465 466 467 468
static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
					     struct hrtimer *timer)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	cpu_base->next_timer = timer;
#endif
}

469
static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
470 471 472
{
	struct hrtimer_clock_base *base = cpu_base->clock_base;
	ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
473
	unsigned int active = cpu_base->active_bases;
474

475
	hrtimer_update_next_timer(cpu_base, NULL);
476
	for (; active; base++, active >>= 1) {
477 478 479
		struct timerqueue_node *next;
		struct hrtimer *timer;

480
		if (!(active & 0x01))
481 482
			continue;

483
		next = timerqueue_getnext(&base->active);
484 485
		timer = container_of(next, struct hrtimer, node);
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
486
		if (expires.tv64 < expires_next.tv64) {
487
			expires_next = expires;
488 489
			hrtimer_update_next_timer(cpu_base, timer);
		}
490 491 492 493 494 495 496 497 498 499 500 501
	}
	/*
	 * clock_was_set() might have changed base->offset of any of
	 * the clock bases so the result might be negative. Fix it up
	 * to prevent a false positive in clockevents_program_event().
	 */
	if (expires_next.tv64 < 0)
		expires_next.tv64 = 0;
	return expires_next;
}
#endif

502 503 504 505 506 507
static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
{
	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;

508 509
	return ktime_get_update_offsets_now(&base->clock_was_set_seq,
					    offs_real, offs_boot, offs_tai);
510 511
}

512 513 514 515 516 517 518
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static int hrtimer_hres_enabled __read_mostly  = 1;
519 520
unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
EXPORT_SYMBOL_GPL(hrtimer_resolution);
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	if (!strcmp(str, "off"))
		hrtimer_hres_enabled = 0;
	else if (!strcmp(str, "on"))
		hrtimer_hres_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
549 550 551 552 553
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
{
	return cpu_base->hres_active;
}

554 555
static inline int hrtimer_hres_active(void)
{
556
	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
557 558 559 560 561 562 563
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
564 565
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
566
{
567 568 569 570 571 572
	ktime_t expires_next;

	if (!cpu_base->hres_active)
		return;

	expires_next = __hrtimer_get_next_event(cpu_base);
573

574 575 576 577 578
	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
		return;

	cpu_base->expires_next.tv64 = expires_next.tv64;

579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * leave the hang delay active in the hardware. We want the
	 * system to make progress. That also prevents the following
	 * scenario:
	 * T1 expires 50ms from now
	 * T2 expires 5s from now
	 *
	 * T1 is removed, so this code is called and would reprogram
	 * the hardware to 5s from now. Any hrtimer_start after that
	 * will not reprogram the hardware due to hang_detected being
	 * set. So we'd effectivly block all timers until the T2 event
	 * fires.
	 */
	if (cpu_base->hang_detected)
		return;

596
	tick_program_event(cpu_base->expires_next, 1);
597 598 599 600 601 602 603 604 605
}

/*
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
606 607
static void hrtimer_reprogram(struct hrtimer *timer,
			      struct hrtimer_clock_base *base)
608
{
609
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
610
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
611

612
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
613

614
	/*
615 616
	 * If the timer is not on the current cpu, we cannot reprogram
	 * the other cpus clock event device.
617
	 */
618 619 620 621 622 623 624 625 626 627 628 629
	if (base->cpu_base != cpu_base)
		return;

	/*
	 * If the hrtimer interrupt is running, then it will
	 * reevaluate the clock bases and reprogram the clock event
	 * device. The callbacks are always executed in hard interrupt
	 * context so we don't need an extra check for a running
	 * callback.
	 */
	if (cpu_base->in_hrtirq)
		return;
630

631 632
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
633
	 * expiry time which is less than base->offset. Set it to 0.
634 635
	 */
	if (expires.tv64 < 0)
636
		expires.tv64 = 0;
637

638
	if (expires.tv64 >= cpu_base->expires_next.tv64)
639
		return;
640

641
	/* Update the pointer to the next expiring timer */
642
	cpu_base->next_timer = timer;
643

644 645 646 647 648 649 650
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * do not schedule a timer which is earlier than the expiry
	 * which we enforced in the hang detection. We want the system
	 * to make progress.
	 */
	if (cpu_base->hang_detected)
651
		return;
652 653

	/*
654 655
	 * Program the timer hardware. We enforce the expiry for
	 * events which are already in the past.
656
	 */
657 658
	cpu_base->expires_next = expires;
	tick_program_event(expires, 1);
659 660 661 662 663 664 665 666 667 668 669
}

/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
	base->expires_next.tv64 = KTIME_MAX;
	base->hres_active = 0;
}

670 671 672 673 674 675 676
/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
677
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
678

679
	if (!base->hres_active)
680 681 682
		return;

	raw_spin_lock(&base->lock);
683
	hrtimer_update_base(base);
684 685 686
	hrtimer_force_reprogram(base, 0);
	raw_spin_unlock(&base->lock);
}
687

688 689 690
/*
 * Switch to high resolution mode
 */
691
static void hrtimer_switch_to_hres(void)
692
{
693
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
694 695

	if (tick_init_highres()) {
I
Ingo Molnar 已提交
696
		printk(KERN_WARNING "Could not switch to high resolution "
697
				    "mode on CPU %d\n", base->cpu);
698
		return;
699 700
	}
	base->hres_active = 1;
701
	hrtimer_resolution = HIGH_RES_NSEC;
702 703 704 705 706 707

	tick_setup_sched_timer();
	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
}

708 709 710 711 712 713 714
static void clock_was_set_work(struct work_struct *work)
{
	clock_was_set();
}

static DECLARE_WORK(hrtimer_work, clock_was_set_work);

715
/*
716 717
 * Called from timekeeping and resume code to reprogramm the hrtimer
 * interrupt device on all cpus.
718 719 720
 */
void clock_was_set_delayed(void)
{
721
	schedule_work(&hrtimer_work);
722 723
}

724 725
#else

726
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
727 728
static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
729
static inline void hrtimer_switch_to_hres(void) { }
730 731
static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
732 733
static inline int hrtimer_reprogram(struct hrtimer *timer,
				    struct hrtimer_clock_base *base)
734 735 736 737
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
738
static inline void retrigger_next_event(void *arg) { }
739 740 741

#endif /* CONFIG_HIGH_RES_TIMERS */

742 743 744 745 746 747 748 749 750 751 752 753 754
/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
755
#ifdef CONFIG_HIGH_RES_TIMERS
756 757
	/* Retrigger the CPU local events everywhere */
	on_each_cpu(retrigger_next_event, NULL, 1);
758 759
#endif
	timerfd_clock_was_set();
760 761 762 763
}

/*
 * During resume we might have to reprogram the high resolution timer
764 765
 * interrupt on all online CPUs.  However, all other CPUs will be
 * stopped with IRQs interrupts disabled so the clock_was_set() call
766
 * must be deferred.
767 768 769 770 771 772
 */
void hrtimers_resume(void)
{
	WARN_ONCE(!irqs_disabled(),
		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");

773
	/* Retrigger on the local CPU */
774
	retrigger_next_event(NULL);
775 776
	/* And schedule a retrigger for all others */
	clock_was_set_delayed();
777 778
}

779
static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
780
{
781
#ifdef CONFIG_TIMER_STATS
782 783
	if (timer->start_site)
		return;
784
	timer->start_site = __builtin_return_address(0);
785 786
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
787 788 789 790 791 792 793 794
#endif
}

static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
#endif
795
}
796 797 798 799 800 801 802 803

static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	if (likely(!timer_stats_active))
		return;
	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
				 timer->function, timer->start_comm, 0);
804
#endif
805
}
806

807
/*
808
 * Counterpart to lock_hrtimer_base above:
809 810 811 812
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
813
	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
814 815 816 817 818
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
819
 * @now:	forward past this time
820 821 822
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
823
 * Returns the number of overruns.
824 825 826 827 828 829 830 831
 *
 * Can be safely called from the callback function of @timer. If
 * called from other contexts @timer must neither be enqueued nor
 * running the callback and the caller needs to take care of
 * serialization.
 *
 * Note: This only updates the timer expiry value and does not requeue
 * the timer.
832
 */
D
Davide Libenzi 已提交
833
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
834
{
D
Davide Libenzi 已提交
835
	u64 orun = 1;
836
	ktime_t delta;
837

838
	delta = ktime_sub(now, hrtimer_get_expires(timer));
839 840 841 842

	if (delta.tv64 < 0)
		return 0;

843 844 845
	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
		return 0;

846 847
	if (interval.tv64 < hrtimer_resolution)
		interval.tv64 = hrtimer_resolution;
848

849
	if (unlikely(delta.tv64 >= interval.tv64)) {
850
		s64 incr = ktime_to_ns(interval);
851 852

		orun = ktime_divns(delta, incr);
853 854
		hrtimer_add_expires_ns(timer, incr * orun);
		if (hrtimer_get_expires_tv64(timer) > now.tv64)
855 856 857 858 859 860 861
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
862
	hrtimer_add_expires(timer, interval);
863 864 865

	return orun;
}
S
Stas Sergeev 已提交
866
EXPORT_SYMBOL_GPL(hrtimer_forward);
867 868 869 870 871 872

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
873 874
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
875
 */
876 877
static int enqueue_hrtimer(struct hrtimer *timer,
			   struct hrtimer_clock_base *base)
878
{
879
	debug_activate(timer);
880

881
	base->cpu_base->active_bases |= 1 << base->index;
882

883
	timer->state = HRTIMER_STATE_ENQUEUED;
884

885
	return timerqueue_add(&base->active, &timer->node);
886
}
887 888 889 890 891

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
892 893 894 895 896
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
897
 */
898
static void __remove_hrtimer(struct hrtimer *timer,
899
			     struct hrtimer_clock_base *base,
900
			     unsigned long newstate, int reprogram)
901
{
902
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
903
	unsigned int state = timer->state;
904

905 906 907
	timer->state = newstate;
	if (!(state & HRTIMER_STATE_ENQUEUED))
		return;
908

909
	if (!timerqueue_del(&base->active, &timer->node))
910
		cpu_base->active_bases &= ~(1 << base->index);
911 912

#ifdef CONFIG_HIGH_RES_TIMERS
913 914 915 916 917 918 919 920 921 922
	/*
	 * Note: If reprogram is false we do not update
	 * cpu_base->next_timer. This happens when we remove the first
	 * timer on a remote cpu. No harm as we never dereference
	 * cpu_base->next_timer. So the worst thing what can happen is
	 * an superflous call to hrtimer_force_reprogram() on the
	 * remote cpu later on if the same timer gets enqueued again.
	 */
	if (reprogram && timer == cpu_base->next_timer)
		hrtimer_force_reprogram(cpu_base, 1);
923
#endif
924 925 926 927 928 929
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
930
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
931
{
932
	if (hrtimer_is_queued(timer)) {
933
		unsigned long state = timer->state;
934 935 936 937 938 939 940 941 942 943
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
944
		debug_deactivate(timer);
945
		timer_stats_hrtimer_clear_start_info(timer);
946
		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
947

948 949 950
		if (!restart)
			state = HRTIMER_STATE_INACTIVE;

951
		__remove_hrtimer(timer, base, state, reprogram);
952 953 954 955 956
		return 1;
	}
	return 0;
}

957 958 959 960 961 962 963 964
/**
 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
 * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL)
 */
965 966
void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
			    unsigned long delta_ns, const enum hrtimer_mode mode)
967
{
968
	struct hrtimer_clock_base *base, *new_base;
969
	unsigned long flags;
970
	int leftmost;
971 972 973 974

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
975
	remove_hrtimer(timer, base, true);
976

977
	if (mode & HRTIMER_MODE_REL) {
978
		tim = ktime_add_safe(tim, base->get_time());
979 980 981 982 983 984 985 986
		/*
		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
		 * to signal that they simply return xtime in
		 * do_gettimeoffset(). In this case we want to round up by
		 * resolution when starting a relative timer, to avoid short
		 * timeouts. This will go away with the GTOD framework.
		 */
#ifdef CONFIG_TIME_LOW_RES
987
		tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution));
988 989
#endif
	}
990

991
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
992

993 994 995
	/* Switch the timer base, if necessary: */
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);

996 997
	timer_stats_hrtimer_set_start_info(timer);

998
	leftmost = enqueue_hrtimer(timer, new_base);
999 1000
	if (!leftmost)
		goto unlock;
1001 1002 1003 1004 1005 1006

	if (!hrtimer_is_hres_active(timer)) {
		/*
		 * Kick to reschedule the next tick to handle the new timer
		 * on dynticks target.
		 */
1007 1008
		if (new_base->cpu_base->nohz_active)
			wake_up_nohz_cpu(new_base->cpu_base->cpu);
1009 1010
	} else {
		hrtimer_reprogram(timer, new_base);
1011
	}
1012
unlock:
1013
	unlock_hrtimer_base(timer, &flags);
1014
}
1015 1016
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

1017 1018 1019 1020 1021 1022 1023 1024
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
1025
 *    cannot be stopped
1026 1027 1028
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
1029
	struct hrtimer_clock_base *base;
1030 1031 1032
	unsigned long flags;
	int ret = -1;

1033 1034 1035 1036 1037 1038 1039 1040 1041
	/*
	 * Check lockless first. If the timer is not active (neither
	 * enqueued nor running the callback, nothing to do here.  The
	 * base lock does not serialize against a concurrent enqueue,
	 * so we can avoid taking it.
	 */
	if (!hrtimer_active(timer))
		return 0;

1042 1043
	base = lock_hrtimer_base(timer, &flags);

1044
	if (!hrtimer_callback_running(timer))
1045
		ret = remove_hrtimer(timer, base, false);
1046 1047 1048 1049 1050 1051

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1052
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1069
		cpu_relax();
1070 1071
	}
}
1072
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
 */
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
{
	unsigned long flags;
	ktime_t rem;

1083
	lock_hrtimer_base(timer, &flags);
1084
	rem = hrtimer_expires_remaining(timer);
1085 1086 1087 1088
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1089
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1090

1091
#ifdef CONFIG_NO_HZ_COMMON
1092 1093 1094
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
1095
 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1096
 */
1097
u64 hrtimer_get_next_event(void)
1098
{
1099
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1100
	u64 expires = KTIME_MAX;
1101 1102
	unsigned long flags;

1103
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1104

1105
	if (!__hrtimer_hres_active(cpu_base))
1106
		expires = __hrtimer_get_next_event(cpu_base).tv64;
1107

1108
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1109

1110
	return expires;
1111 1112 1113
}
#endif

1114 1115
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1116
{
1117
	struct hrtimer_cpu_base *cpu_base;
1118
	int base;
1119

1120 1121
	memset(timer, 0, sizeof(struct hrtimer));

1122
	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1123

1124
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1125 1126
		clock_id = CLOCK_MONOTONIC;

1127 1128
	base = hrtimer_clockid_to_base(clock_id);
	timer->base = &cpu_base->clock_base[base];
1129
	timerqueue_init(&timer->node);
1130 1131 1132 1133 1134 1135

#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
1136
}
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
 * @mode:	timer mode abs/rel
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
1147
	debug_init(timer, clock_id, mode);
1148 1149
	__hrtimer_init(timer, clock_id, mode);
}
1150
EXPORT_SYMBOL_GPL(hrtimer_init);
1151

1152 1153 1154 1155
/*
 * A timer is active, when it is enqueued into the rbtree or the
 * callback function is running or it's in the state of being migrated
 * to another cpu.
1156
 *
1157
 * It is important for this function to not return a false negative.
1158
 */
1159
bool hrtimer_active(const struct hrtimer *timer)
1160
{
1161
	struct hrtimer_cpu_base *cpu_base;
1162
	unsigned int seq;
1163

1164 1165 1166
	do {
		cpu_base = READ_ONCE(timer->base->cpu_base);
		seq = raw_read_seqcount_begin(&cpu_base->seq);
1167

1168 1169 1170 1171 1172 1173 1174 1175
		if (timer->state != HRTIMER_STATE_INACTIVE ||
		    cpu_base->running == timer)
			return true;

	} while (read_seqcount_retry(&cpu_base->seq, seq) ||
		 cpu_base != READ_ONCE(timer->base->cpu_base));

	return false;
1176
}
1177
EXPORT_SYMBOL_GPL(hrtimer_active);
1178

1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
/*
 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
 * distinct sections:
 *
 *  - queued:	the timer is queued
 *  - callback:	the timer is being ran
 *  - post:	the timer is inactive or (re)queued
 *
 * On the read side we ensure we observe timer->state and cpu_base->running
 * from the same section, if anything changed while we looked at it, we retry.
 * This includes timer->base changing because sequence numbers alone are
 * insufficient for that.
 *
 * The sequence numbers are required because otherwise we could still observe
 * a false negative if the read side got smeared over multiple consequtive
 * __run_hrtimer() invocations.
 */

1197 1198 1199
static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
			  struct hrtimer_clock_base *base,
			  struct hrtimer *timer, ktime_t *now)
1200 1201 1202 1203
{
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1204
	lockdep_assert_held(&cpu_base->lock);
1205

1206
	debug_deactivate(timer);
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
	cpu_base->running = timer;

	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
	 * timer->state == INACTIVE.
	 */
	raw_write_seqcount_barrier(&cpu_base->seq);

	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1219 1220
	timer_stats_account_hrtimer(timer);
	fn = timer->function;
1221 1222 1223 1224 1225 1226

	/*
	 * Because we run timers from hardirq context, there is no chance
	 * they get migrated to another cpu, therefore its safe to unlock
	 * the timer base.
	 */
1227
	raw_spin_unlock(&cpu_base->lock);
1228
	trace_hrtimer_expire_entry(timer, now);
1229
	restart = fn(timer);
1230
	trace_hrtimer_expire_exit(timer);
1231
	raw_spin_lock(&cpu_base->lock);
1232 1233

	/*
1234
	 * Note: We clear the running state after enqueue_hrtimer and
T
Thomas Gleixner 已提交
1235 1236
	 * we do not reprogramm the event hardware. Happens either in
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1237 1238 1239 1240
	 *
	 * Note: Because we dropped the cpu_base->lock above,
	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
	 * for us already.
1241
	 */
1242 1243
	if (restart != HRTIMER_NORESTART &&
	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1244
		enqueue_hrtimer(timer, base);
1245

1246 1247 1248 1249 1250 1251 1252 1253
	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
	 * timer->state == INACTIVE.
	 */
	raw_write_seqcount_barrier(&cpu_base->seq);
1254

1255 1256
	WARN_ON_ONCE(cpu_base->running != timer);
	cpu_base->running = NULL;
1257 1258
}

1259
static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1260
{
1261 1262
	struct hrtimer_clock_base *base = cpu_base->clock_base;
	unsigned int active = cpu_base->active_bases;
1263

1264
	for (; active; base++, active >>= 1) {
1265
		struct timerqueue_node *node;
1266 1267
		ktime_t basenow;

1268
		if (!(active & 0x01))
1269
			continue;
1270 1271 1272

		basenow = ktime_add(now, base->offset);

1273
		while ((node = timerqueue_getnext(&base->active))) {
1274 1275
			struct hrtimer *timer;

1276
			timer = container_of(node, struct hrtimer, node);
1277

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */
1290
			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
1291 1292
				break;

1293
			__run_hrtimer(cpu_base, base, timer, &basenow);
1294 1295
		}
	}
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
}

#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
	ktime_t expires_next, now, entry_time, delta;
	int retries = 0;

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event.tv64 = KTIME_MAX;

	raw_spin_lock(&cpu_base->lock);
	entry_time = now = hrtimer_update_base(cpu_base);
retry:
	cpu_base->in_hrtirq = 1;
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
	cpu_base->expires_next.tv64 = KTIME_MAX;

	__hrtimer_run_queues(cpu_base, now);

1329 1330
	/* Reevaluate the clock bases for the next expiry */
	expires_next = __hrtimer_get_next_event(cpu_base);
1331 1332 1333 1334
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1335
	cpu_base->expires_next = expires_next;
1336
	cpu_base->in_hrtirq = 0;
1337
	raw_spin_unlock(&cpu_base->lock);
1338 1339

	/* Reprogramming necessary ? */
1340
	if (!tick_program_event(expires_next, 0)) {
1341 1342
		cpu_base->hang_detected = 0;
		return;
1343
	}
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353

	/*
	 * The next timer was already expired due to:
	 * - tracing
	 * - long lasting callbacks
	 * - being scheduled away when running in a VM
	 *
	 * We need to prevent that we loop forever in the hrtimer
	 * interrupt routine. We give it 3 attempts to avoid
	 * overreacting on some spurious event.
1354 1355 1356
	 *
	 * Acquire base lock for updating the offsets and retrieving
	 * the current time.
1357
	 */
1358
	raw_spin_lock(&cpu_base->lock);
1359
	now = hrtimer_update_base(cpu_base);
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
	cpu_base->nr_retries++;
	if (++retries < 3)
		goto retry;
	/*
	 * Give the system a chance to do something else than looping
	 * here. We stored the entry time, so we know exactly how long
	 * we spent here. We schedule the next event this amount of
	 * time away.
	 */
	cpu_base->nr_hangs++;
	cpu_base->hang_detected = 1;
1371
	raw_spin_unlock(&cpu_base->lock);
1372
	delta = ktime_sub(now, entry_time);
1373 1374
	if ((unsigned int)delta.tv64 > cpu_base->max_hang_time)
		cpu_base->max_hang_time = (unsigned int) delta.tv64;
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
	/*
	 * Limit it to a sensible value as we enforce a longer
	 * delay. Give the CPU at least 100ms to catch up.
	 */
	if (delta.tv64 > 100 * NSEC_PER_MSEC)
		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
	else
		expires_next = ktime_add(now, delta);
	tick_program_event(expires_next, 1);
	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
		    ktime_to_ns(delta));
1386 1387
}

1388 1389 1390 1391
/*
 * local version of hrtimer_peek_ahead_timers() called with interrupts
 * disabled.
 */
1392
static inline void __hrtimer_peek_ahead_timers(void)
1393 1394 1395 1396 1397 1398
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

1399
	td = this_cpu_ptr(&tick_cpu_device);
1400 1401 1402 1403
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1404 1405 1406 1407 1408
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1409

1410
/*
1411
 * Called from run_local_timers in hardirq context every jiffy
1412
 */
1413
void hrtimer_run_queues(void)
1414
{
1415
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1416
	ktime_t now;
1417

1418
	if (__hrtimer_hres_active(cpu_base))
1419
		return;
1420

1421
	/*
1422 1423 1424 1425 1426
	 * This _is_ ugly: We have to check periodically, whether we
	 * can switch to highres and / or nohz mode. The clocksource
	 * switch happens with xtime_lock held. Notification from
	 * there only sets the check bit in the tick_oneshot code,
	 * otherwise we might deadlock vs. xtime_lock.
1427
	 */
1428
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1429
		hrtimer_switch_to_hres();
1430
		return;
1431
	}
1432

1433 1434 1435 1436
	raw_spin_lock(&cpu_base->lock);
	now = hrtimer_update_base(cpu_base);
	__hrtimer_run_queues(cpu_base, now);
	raw_spin_unlock(&cpu_base->lock);
1437 1438
}

1439 1440 1441
/*
 * Sleep related functions:
 */
1442
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1455
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1456 1457 1458 1459
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}
S
Stephen Hemminger 已提交
1460
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1461

1462
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1463
{
1464
	hrtimer_init_sleeper(t, current);
1465

1466 1467
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1468
		hrtimer_start_expires(&t->timer, mode);
1469

1470
		if (likely(t->task))
1471
			freezable_schedule();
1472

1473
		hrtimer_cancel(&t->timer);
1474
		mode = HRTIMER_MODE_ABS;
1475 1476

	} while (t->task && !signal_pending(current));
1477

1478 1479
	__set_current_state(TASK_RUNNING);

1480
	return t->task == NULL;
1481 1482
}

1483 1484 1485 1486 1487
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

1488
	rem = hrtimer_expires_remaining(timer);
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
	if (rem.tv64 <= 0)
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;
}

1499
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1500
{
1501
	struct hrtimer_sleeper t;
1502
	struct timespec __user  *rmtp;
1503
	int ret = 0;
1504

1505
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1506
				HRTIMER_MODE_ABS);
1507
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1508

1509
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1510
		goto out;
1511

1512
	rmtp = restart->nanosleep.rmtp;
1513
	if (rmtp) {
1514
		ret = update_rmtp(&t.timer, rmtp);
1515
		if (ret <= 0)
1516
			goto out;
1517
	}
1518 1519

	/* The other values in restart are already filled in */
1520 1521 1522 1523
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1524 1525
}

1526
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1527 1528 1529
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1530
	struct hrtimer_sleeper t;
1531
	int ret = 0;
1532 1533 1534
	unsigned long slack;

	slack = current->timer_slack_ns;
1535
	if (dl_task(current) || rt_task(current))
1536
		slack = 0;
1537

1538
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1539
	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1540
	if (do_nanosleep(&t, mode))
1541
		goto out;
1542

1543
	/* Absolute timers do not update the rmtp value and restart: */
1544 1545 1546 1547
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1548

1549
	if (rmtp) {
1550
		ret = update_rmtp(&t.timer, rmtp);
1551
		if (ret <= 0)
1552
			goto out;
1553
	}
1554

1555
	restart = &current->restart_block;
1556
	restart->fn = hrtimer_nanosleep_restart;
1557
	restart->nanosleep.clockid = t.timer.base->clockid;
1558
	restart->nanosleep.rmtp = rmtp;
1559
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1560

1561 1562 1563 1564
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1565 1566
}

1567 1568
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1569
{
1570
	struct timespec tu;
1571 1572 1573 1574 1575 1576 1577

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1578
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1579 1580
}

1581 1582 1583
/*
 * Functions related to boot-time initialization:
 */
1584
static void init_hrtimers_cpu(int cpu)
1585
{
1586
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1587 1588
	int i;

1589
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1590
		cpu_base->clock_base[i].cpu_base = cpu_base;
1591 1592
		timerqueue_init_head(&cpu_base->clock_base[i].active);
	}
1593

1594
	cpu_base->cpu = cpu;
1595
	hrtimer_init_hres(cpu_base);
1596 1597 1598 1599
}

#ifdef CONFIG_HOTPLUG_CPU

1600
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1601
				struct hrtimer_clock_base *new_base)
1602 1603
{
	struct hrtimer *timer;
1604
	struct timerqueue_node *node;
1605

1606 1607
	while ((node = timerqueue_getnext(&old_base->active))) {
		timer = container_of(node, struct hrtimer, node);
1608
		BUG_ON(hrtimer_callback_running(timer));
1609
		debug_deactivate(timer);
T
Thomas Gleixner 已提交
1610 1611

		/*
1612
		 * Mark it as ENQUEUED not INACTIVE otherwise the
T
Thomas Gleixner 已提交
1613 1614 1615
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
1616
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1617
		timer->base = new_base;
1618
		/*
T
Thomas Gleixner 已提交
1619 1620 1621 1622 1623 1624
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1625
		 */
1626
		enqueue_hrtimer(timer, new_base);
1627 1628 1629
	}
}

1630
static void migrate_hrtimers(int scpu)
1631
{
1632
	struct hrtimer_cpu_base *old_base, *new_base;
1633
	int i;
1634

1635 1636
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1637 1638 1639

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
1640
	new_base = this_cpu_ptr(&hrtimer_bases);
1641 1642 1643 1644
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1645 1646
	raw_spin_lock(&new_base->lock);
	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1647

1648
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1649
		migrate_hrtimer_list(&old_base->clock_base[i],
1650
				     &new_base->clock_base[i]);
1651 1652
	}

1653 1654
	raw_spin_unlock(&old_base->lock);
	raw_spin_unlock(&new_base->lock);
1655

1656 1657 1658
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1659
}
1660

1661 1662
#endif /* CONFIG_HOTPLUG_CPU */

1663
static int hrtimer_cpu_notify(struct notifier_block *self,
1664 1665
					unsigned long action, void *hcpu)
{
1666
	int scpu = (long)hcpu;
1667 1668 1669 1670

	switch (action) {

	case CPU_UP_PREPARE:
1671
	case CPU_UP_PREPARE_FROZEN:
1672
		init_hrtimers_cpu(scpu);
1673 1674 1675 1676
		break;

#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
1677
	case CPU_DEAD_FROZEN:
1678
		migrate_hrtimers(scpu);
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
		break;
#endif

	default:
		break;
	}

	return NOTIFY_OK;
}

1689
static struct notifier_block hrtimers_nb = {
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
	.notifier_call = hrtimer_cpu_notify,
};

void __init hrtimers_init(void)
{
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
			  (void *)(long)smp_processor_id());
	register_cpu_notifier(&hrtimers_nb);
}

1700
/**
1701
 * schedule_hrtimeout_range_clock - sleep until timeout
1702
 * @expires:	timeout value (ktime_t)
1703
 * @delta:	slack in expires timeout (ktime_t)
1704
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1705
 * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1706
 */
1707 1708 1709
int __sched
schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
			       const enum hrtimer_mode mode, int clock)
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
	if (expires && !expires->tv64) {
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
N
Namhyung Kim 已提交
1723
	 * A NULL parameter means "infinite"
1724 1725 1726 1727 1728 1729
	 */
	if (!expires) {
		schedule();
		return -EINTR;
	}

1730
	hrtimer_init_on_stack(&t.timer, clock, mode);
1731
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1732 1733 1734

	hrtimer_init_sleeper(&t, current);

1735
	hrtimer_start_expires(&t.timer, mode);
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781

/**
 * schedule_hrtimeout_range - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @delta:	slack in expires timeout (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
				     const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range_clock(expires, delta, mode,
					      CLOCK_MONOTONIC);
}
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1811
EXPORT_SYMBOL_GPL(schedule_hrtimeout);