i915_gem.c 131.5 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include "intel_frontbuffer.h"
36
#include "intel_mocs.h"
37
#include <linux/dma-fence-array.h>
38
#include <linux/reservation.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/slab.h>
41
#include <linux/stop_machine.h>
42
#include <linux/swap.h>
J
Jesse Barnes 已提交
43
#include <linux/pci.h>
44
#include <linux/dma-buf.h>
45

46
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
47
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
48
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
49

50 51 52
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
53
	return HAS_LLC(to_i915(dev)) || level != I915_CACHE_NONE;
54 55
}

56 57
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
58 59 60
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

61 62 63 64 65 66
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

67
static int
68
insert_mappable_node(struct i915_ggtt *ggtt,
69 70 71
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
72 73 74 75
	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
76 77 78 79 80 81 82 83
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

84 85
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
86
				  u64 size)
87
{
88
	spin_lock(&dev_priv->mm.object_stat_lock);
89 90
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
91
	spin_unlock(&dev_priv->mm.object_stat_lock);
92 93 94
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
95
				     u64 size)
96
{
97
	spin_lock(&dev_priv->mm.object_stat_lock);
98 99
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
100
	spin_unlock(&dev_priv->mm.object_stat_lock);
101 102
}

103
static int
104
i915_gem_wait_for_error(struct i915_gpu_error *error)
105 106 107
{
	int ret;

108 109
	might_sleep();

110
	if (!i915_reset_in_progress(error))
111 112
		return 0;

113 114 115 116 117
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
118
	ret = wait_event_interruptible_timeout(error->reset_queue,
119
					       !i915_reset_in_progress(error),
120
					       I915_RESET_TIMEOUT);
121 122 123 124
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
125
		return ret;
126 127
	} else {
		return 0;
128
	}
129 130
}

131
int i915_mutex_lock_interruptible(struct drm_device *dev)
132
{
133
	struct drm_i915_private *dev_priv = to_i915(dev);
134 135
	int ret;

136
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
137 138 139 140 141 142 143 144 145
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
146

147 148
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
149
			    struct drm_file *file)
150
{
151
	struct drm_i915_private *dev_priv = to_i915(dev);
152
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
153
	struct drm_i915_gem_get_aperture *args = data;
154
	struct i915_vma *vma;
155
	size_t pinned;
156

157
	pinned = 0;
158
	mutex_lock(&dev->struct_mutex);
159
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
160
		if (i915_vma_is_pinned(vma))
161
			pinned += vma->node.size;
162
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
163
		if (i915_vma_is_pinned(vma))
164
			pinned += vma->node.size;
165
	mutex_unlock(&dev->struct_mutex);
166

167
	args->aper_size = ggtt->base.total;
168
	args->aper_available_size = args->aper_size - pinned;
169

170 171 172
	return 0;
}

173
static struct sg_table *
174
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
175
{
176
	struct address_space *mapping = obj->base.filp->f_mapping;
177
	drm_dma_handle_t *phys;
178 179
	struct sg_table *st;
	struct scatterlist *sg;
180
	char *vaddr;
181
	int i;
182

183
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
184
		return ERR_PTR(-EINVAL);
185

186 187 188 189 190 191 192 193 194 195 196
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
			     obj->base.size,
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
		return ERR_PTR(-ENOMEM);

	vaddr = phys->vaddr;
197 198 199 200 201
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
202 203 204 205
		if (IS_ERR(page)) {
			st = ERR_CAST(page);
			goto err_phys;
		}
206 207 208 209 210 211

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

212
		put_page(page);
213 214 215
		vaddr += PAGE_SIZE;
	}

216
	i915_gem_chipset_flush(to_i915(obj->base.dev));
217 218

	st = kmalloc(sizeof(*st), GFP_KERNEL);
219 220 221 222
	if (!st) {
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
	}
223 224 225

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
226 227
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
228 229 230 231 232
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
233

234
	sg_dma_address(sg) = phys->busaddr;
235 236
	sg_dma_len(sg) = obj->base.size;

237 238 239 240 241
	obj->phys_handle = phys;
	return st;

err_phys:
	drm_pci_free(obj->base.dev, phys);
242
	return st;
243 244 245
}

static void
246
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
247 248
				struct sg_table *pages,
				bool needs_clflush)
249
{
C
Chris Wilson 已提交
250
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
251

C
Chris Wilson 已提交
252 253
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
254

255 256
	if (needs_clflush &&
	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
257
	    !cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
258
		drm_clflush_sg(pages);
259 260 261 262 263 264 265 266 267

	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
268
	__i915_gem_object_release_shmem(obj, pages, false);
269

C
Chris Wilson 已提交
270
	if (obj->mm.dirty) {
271
		struct address_space *mapping = obj->base.filp->f_mapping;
272
		char *vaddr = obj->phys_handle->vaddr;
273 274 275
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
276 277 278 279 280 281 282 283 284 285 286 287 288
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
289
			if (obj->mm.madv == I915_MADV_WILLNEED)
290
				mark_page_accessed(page);
291
			put_page(page);
292 293
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
294
		obj->mm.dirty = false;
295 296
	}

297 298
	sg_free_table(pages);
	kfree(pages);
299 300

	drm_pci_free(obj->base.dev, obj->phys_handle);
301 302 303 304 305
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
306
	i915_gem_object_unpin_pages(obj);
307 308 309 310 311 312 313 314
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

315
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
316 317 318
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
319 320 321
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
322

323 324 325 326
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
327
	 */
328 329 330 331 332 333
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
334 335 336 337 338
	if (ret)
		return ret;

	i915_gem_retire_requests(to_i915(obj->base.dev));

339 340 341 342 343 344 345 346 347 348 349 350 351
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

352 353 354 355 356
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
			   struct intel_rps_client *rps)
357
{
358
	struct drm_i915_gem_request *rq;
359

360
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
361

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
	if (i915_gem_request_completed(rq))
		goto out;

	/* This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
	if (rps) {
		if (INTEL_GEN(rq->i915) >= 6)
			gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
		else
			rps = NULL;
394 395
	}

396 397 398 399 400 401
	timeout = i915_wait_request(rq, flags, timeout);

out:
	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
		i915_gem_request_retire_upto(rq);

402
	if (rps && rq->global_seqno == intel_engine_last_submit(rq->engine)) {
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
		/* The GPU is now idle and this client has stalled.
		 * Since no other client has submitted a request in the
		 * meantime, assume that this client is the only one
		 * supplying work to the GPU but is unable to keep that
		 * work supplied because it is waiting. Since the GPU is
		 * then never kept fully busy, RPS autoclocking will
		 * keep the clocks relatively low, causing further delays.
		 * Compensate by giving the synchronous client credit for
		 * a waitboost next time.
		 */
		spin_lock(&rq->i915->rps.client_lock);
		list_del_init(&rps->link);
		spin_unlock(&rq->i915->rps.client_lock);
	}

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
				 struct intel_rps_client *rps)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
432 433
		int ret;

434 435
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
436 437 438
		if (ret)
			return ret;

439 440 441 442
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
							     rps);
443
			if (timeout < 0)
444
				break;
445

446 447 448 449 450 451 452 453
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(resv);
454 455
	}

456
	if (excl && timeout >= 0)
457 458 459 460 461
		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);

	dma_fence_put(excl);

	return timeout;
462 463
}

464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
static void __fence_set_priority(struct dma_fence *fence, int prio)
{
	struct drm_i915_gem_request *rq;
	struct intel_engine_cs *engine;

	if (!dma_fence_is_i915(fence))
		return;

	rq = to_request(fence);
	engine = rq->engine;
	if (!engine->schedule)
		return;

	engine->schedule(rq, prio);
}

static void fence_set_priority(struct dma_fence *fence, int prio)
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
			__fence_set_priority(array->fences[i], prio);
	} else {
		__fence_set_priority(fence, prio);
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
			      int prio)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
			fence_set_priority(shared[i], prio);
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
		fence_set_priority(excl, prio);
		dma_fence_put(excl);
	}
	return 0;
}

528 529 530 531 532 533
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
 * @rps: client (user process) to charge for any waitboosting
534
 */
535 536 537 538 539
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
		     struct intel_rps_client *rps)
540
{
541 542 543 544 545 546 547
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
548

549 550 551
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
						   rps);
552
	return timeout < 0 ? timeout : 0;
553 554 555 556 557 558 559 560 561
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

562 563 564 565
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
566
	int ret;
567

568 569
	if (align > obj->base.size)
		return -EINVAL;
570

571
	if (obj->ops == &i915_gem_phys_ops)
572 573
		return 0;

C
Chris Wilson 已提交
574
	if (obj->mm.madv != I915_MADV_WILLNEED)
575 576 577 578 579
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
580 581 582 583
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

584
	__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
585 586
	if (obj->mm.pages)
		return -EBUSY;
587 588 589

	obj->ops = &i915_gem_phys_ops;

C
Chris Wilson 已提交
590
	return i915_gem_object_pin_pages(obj);
591 592 593 594 595
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
596
		     struct drm_file *file)
597 598
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
599
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
600 601 602 603

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
604
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
605 606
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
607

608
	drm_clflush_virt_range(vaddr, args->size);
609
	i915_gem_chipset_flush(to_i915(obj->base.dev));
610

611
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
612
	return 0;
613 614
}

615
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
616
{
617
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
618 619 620 621
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
622
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
623
	kmem_cache_free(dev_priv->objects, obj);
624 625
}

626 627
static int
i915_gem_create(struct drm_file *file,
628
		struct drm_i915_private *dev_priv,
629 630
		uint64_t size,
		uint32_t *handle_p)
631
{
632
	struct drm_i915_gem_object *obj;
633 634
	int ret;
	u32 handle;
635

636
	size = roundup(size, PAGE_SIZE);
637 638
	if (size == 0)
		return -EINVAL;
639 640

	/* Allocate the new object */
641
	obj = i915_gem_object_create(dev_priv, size);
642 643
	if (IS_ERR(obj))
		return PTR_ERR(obj);
644

645
	ret = drm_gem_handle_create(file, &obj->base, &handle);
646
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
647
	i915_gem_object_put(obj);
648 649
	if (ret)
		return ret;
650

651
	*handle_p = handle;
652 653 654
	return 0;
}

655 656 657 658 659 660
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
661
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
662
	args->size = args->pitch * args->height;
663
	return i915_gem_create(file, to_i915(dev),
664
			       args->size, &args->handle);
665 666 667 668
}

/**
 * Creates a new mm object and returns a handle to it.
669 670 671
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
672 673 674 675 676
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
677
	struct drm_i915_private *dev_priv = to_i915(dev);
678
	struct drm_i915_gem_create *args = data;
679

680
	i915_gem_flush_free_objects(dev_priv);
681

682
	return i915_gem_create(file, dev_priv,
683
			       args->size, &args->handle);
684 685
}

686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

712
static inline int
713 714
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

738 739 740 741 742 743
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
744
				    unsigned int *needs_clflush)
745 746 747
{
	int ret;

748
	lockdep_assert_held(&obj->base.dev->struct_mutex);
749

750
	*needs_clflush = 0;
751 752
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
753

754 755 756 757 758
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
759 760 761
	if (ret)
		return ret;

C
Chris Wilson 已提交
762
	ret = i915_gem_object_pin_pages(obj);
763 764 765
	if (ret)
		return ret;

766 767
	i915_gem_object_flush_gtt_write_domain(obj);

768 769 770 771 772 773
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
774 775
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
776 777 778

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
779 780 781
		if (ret)
			goto err_unpin;

782
		*needs_clflush = 0;
783 784
	}

785
	/* return with the pages pinned */
786
	return 0;
787 788 789 790

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
791 792 793 794 795 796 797
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

798 799
	lockdep_assert_held(&obj->base.dev->struct_mutex);

800 801 802 803
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

804 805 806 807 808 809
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
810 811 812
	if (ret)
		return ret;

C
Chris Wilson 已提交
813
	ret = i915_gem_object_pin_pages(obj);
814 815 816
	if (ret)
		return ret;

817 818
	i915_gem_object_flush_gtt_write_domain(obj);

819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
		*needs_clflush |= cpu_write_needs_clflush(obj) << 1;

	/* Same trick applies to invalidate partially written cachelines read
	 * before writing.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
		*needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
							 obj->cache_level);

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
836 837 838
		if (ret)
			goto err_unpin;

839 840 841 842 843 844 845
		*needs_clflush = 0;
	}

	if ((*needs_clflush & CLFLUSH_AFTER) == 0)
		obj->cache_dirty = true;

	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
846
	obj->mm.dirty = true;
847
	/* return with the pages pinned */
848
	return 0;
849 850 851 852

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
853 854
}

855 856 857 858
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
859
	if (unlikely(swizzled)) {
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

877 878 879
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
880
shmem_pread_slow(struct page *page, int offset, int length,
881 882 883 884 885 886 887 888
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
889
		shmem_clflush_swizzled_range(vaddr + offset, length,
890
					     page_do_bit17_swizzling);
891 892

	if (page_do_bit17_swizzling)
893
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
894
	else
895
		ret = __copy_to_user(user_data, vaddr + offset, length);
896 897
	kunmap(page);

898
	return ret ? - EFAULT : 0;
899 900
}

901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;

		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
977 978
{
	void *vaddr;
979
	unsigned long unwritten;
980 981

	/* We can use the cpu mem copy function because this is X86. */
982 983 984 985 986 987 988 989 990
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data, vaddr + offset, length);
		io_mapping_unmap(vaddr);
	}
991 992 993 994
	return unwritten;
}

static int
995 996
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
997
{
998 999
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1000
	struct drm_mm_node node;
1001 1002 1003
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1004 1005
	int ret;

1006 1007 1008 1009 1010 1011 1012
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE | PIN_NONBLOCK);
1013 1014 1015
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1016
		ret = i915_vma_put_fence(vma);
1017 1018 1019 1020 1021
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1022
	if (IS_ERR(vma)) {
1023
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1024
		if (ret)
1025 1026
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1027 1028 1029 1030 1031 1032
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1033
	mutex_unlock(&i915->drm.struct_mutex);
1034

1035 1036 1037
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1054
					       node.start, I915_CACHE_NONE, 0);
1055 1056 1057 1058
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1059 1060 1061

		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
				  user_data, page_length)) {
1062 1063 1064 1065 1066 1067 1068 1069 1070
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1071
	mutex_lock(&i915->drm.struct_mutex);
1072 1073 1074 1075
out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1076
				       node.start, node.size);
1077 1078
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1079
		i915_vma_unpin(vma);
1080
	}
1081 1082 1083
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1084

1085 1086 1087
	return ret;
}

1088 1089
/**
 * Reads data from the object referenced by handle.
1090 1091 1092
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1093 1094 1095 1096 1097
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1098
		     struct drm_file *file)
1099 1100
{
	struct drm_i915_gem_pread *args = data;
1101
	struct drm_i915_gem_object *obj;
1102
	int ret;
1103

1104 1105 1106 1107
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1108
		       u64_to_user_ptr(args->data_ptr),
1109 1110 1111
		       args->size))
		return -EFAULT;

1112
	obj = i915_gem_object_lookup(file, args->handle);
1113 1114
	if (!obj)
		return -ENOENT;
1115

1116
	/* Bounds check source.  */
1117
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1118
		ret = -EINVAL;
1119
		goto out;
C
Chris Wilson 已提交
1120 1121
	}

C
Chris Wilson 已提交
1122 1123
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1124 1125 1126 1127
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1128
	if (ret)
1129
		goto out;
1130

1131
	ret = i915_gem_object_pin_pages(obj);
1132
	if (ret)
1133
		goto out;
1134

1135
	ret = i915_gem_shmem_pread(obj, args);
1136
	if (ret == -EFAULT || ret == -ENODEV)
1137
		ret = i915_gem_gtt_pread(obj, args);
1138

1139 1140
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1141
	i915_gem_object_put(obj);
1142
	return ret;
1143 1144
}

1145 1146
/* This is the fast write path which cannot handle
 * page faults in the source data
1147
 */
1148

1149 1150 1151 1152
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1153
{
1154
	void *vaddr;
1155
	unsigned long unwritten;
1156

1157
	/* We can use the cpu mem copy function because this is X86. */
1158 1159
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1160
						      user_data, length);
1161 1162 1163 1164 1165 1166 1167
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user(vaddr + offset, user_data, length);
		io_mapping_unmap(vaddr);
	}
1168 1169 1170 1171

	return unwritten;
}

1172 1173 1174
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1175
 * @obj: i915 GEM object
1176
 * @args: pwrite arguments structure
1177
 */
1178
static int
1179 1180
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1181
{
1182
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1183 1184
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1185 1186 1187
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1188
	int ret;
1189

1190 1191 1192
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1193

1194
	intel_runtime_pm_get(i915);
C
Chris Wilson 已提交
1195
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1196
				       PIN_MAPPABLE | PIN_NONBLOCK);
1197 1198 1199
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1200
		ret = i915_vma_put_fence(vma);
1201 1202 1203 1204 1205
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1206
	if (IS_ERR(vma)) {
1207
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1208
		if (ret)
1209 1210
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1211
	}
D
Daniel Vetter 已提交
1212 1213 1214 1215 1216

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1217 1218
	mutex_unlock(&i915->drm.struct_mutex);

1219
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1220

1221 1222 1223 1224
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1225 1226
		/* Operation in this page
		 *
1227 1228 1229
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1230
		 */
1231
		u32 page_base = node.start;
1232 1233
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1244
		/* If we get a fault while copying data, then (presumably) our
1245 1246
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1247 1248
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1249
		 */
1250 1251 1252 1253
		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1254
		}
1255

1256 1257 1258
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1259
	}
1260
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1261 1262

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1263
out_unpin:
1264 1265 1266
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1267
				       node.start, node.size);
1268 1269
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1270
		i915_vma_unpin(vma);
1271
	}
1272
out_unlock:
1273
	intel_runtime_pm_put(i915);
1274
	mutex_unlock(&i915->drm.struct_mutex);
1275
	return ret;
1276 1277
}

1278
static int
1279
shmem_pwrite_slow(struct page *page, int offset, int length,
1280 1281 1282 1283
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1284
{
1285 1286
	char *vaddr;
	int ret;
1287

1288
	vaddr = kmap(page);
1289
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1290
		shmem_clflush_swizzled_range(vaddr + offset, length,
1291
					     page_do_bit17_swizzling);
1292
	if (page_do_bit17_swizzling)
1293 1294
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1295
	else
1296
		ret = __copy_from_user(vaddr + offset, user_data, length);
1297
	if (needs_clflush_after)
1298
		shmem_clflush_swizzled_range(vaddr + offset, length,
1299
					     page_do_bit17_swizzling);
1300
	kunmap(page);
1301

1302
	return ret ? -EFAULT : 0;
1303 1304
}

1305 1306 1307 1308 1309
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1310
static int
1311 1312 1313 1314
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1315
{
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1348
	unsigned int needs_clflush;
1349 1350
	unsigned int offset, idx;
	int ret;
1351

1352
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1353 1354 1355
	if (ret)
		return ret;

1356 1357 1358 1359
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1360

1361 1362 1363
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1364

1365 1366 1367 1368 1369 1370 1371
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1372

1373 1374 1375 1376 1377 1378
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;
1379

1380 1381 1382
		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;
1383

1384 1385 1386 1387
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1388
		if (ret)
1389
			break;
1390

1391 1392 1393
		remain -= length;
		user_data += length;
		offset = 0;
1394
	}
1395

1396
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1397
	i915_gem_obj_finish_shmem_access(obj);
1398
	return ret;
1399 1400 1401 1402
}

/**
 * Writes data to the object referenced by handle.
1403 1404 1405
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1406 1407 1408 1409 1410
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1411
		      struct drm_file *file)
1412 1413
{
	struct drm_i915_gem_pwrite *args = data;
1414
	struct drm_i915_gem_object *obj;
1415 1416 1417 1418 1419 1420
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1421
		       u64_to_user_ptr(args->data_ptr),
1422 1423 1424
		       args->size))
		return -EFAULT;

1425
	obj = i915_gem_object_lookup(file, args->handle);
1426 1427
	if (!obj)
		return -ENOENT;
1428

1429
	/* Bounds check destination. */
1430
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1431
		ret = -EINVAL;
1432
		goto err;
C
Chris Wilson 已提交
1433 1434
	}

C
Chris Wilson 已提交
1435 1436
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1437 1438 1439 1440 1441
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1442 1443 1444
	if (ret)
		goto err;

1445
	ret = i915_gem_object_pin_pages(obj);
1446
	if (ret)
1447
		goto err;
1448

D
Daniel Vetter 已提交
1449
	ret = -EFAULT;
1450 1451 1452 1453 1454 1455
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1456
	if (!i915_gem_object_has_struct_page(obj) ||
1457
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1458 1459
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1460 1461
		 * textures). Fallback to the shmem path in that case.
		 */
1462
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1463

1464
	if (ret == -EFAULT || ret == -ENOSPC) {
1465 1466
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1467
		else
1468
			ret = i915_gem_shmem_pwrite(obj, args);
1469
	}
1470

1471
	i915_gem_object_unpin_pages(obj);
1472
err:
C
Chris Wilson 已提交
1473
	i915_gem_object_put(obj);
1474
	return ret;
1475 1476
}

1477
static inline enum fb_op_origin
1478 1479
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
1480 1481
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1482 1483
}

1484 1485 1486 1487 1488 1489 1490 1491
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!i915_vma_is_ggtt(vma))
1492
			break;
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504

		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1505
	list_move_tail(&obj->global_link, list);
1506 1507
}

1508
/**
1509 1510
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1511 1512 1513
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1514 1515 1516
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1517
			  struct drm_file *file)
1518 1519
{
	struct drm_i915_gem_set_domain *args = data;
1520
	struct drm_i915_gem_object *obj;
1521 1522
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1523
	int err;
1524

1525
	/* Only handle setting domains to types used by the CPU. */
1526
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1527 1528 1529 1530 1531 1532 1533 1534
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1535
	obj = i915_gem_object_lookup(file, args->handle);
1536 1537
	if (!obj)
		return -ENOENT;
1538

1539 1540 1541 1542
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1543
	err = i915_gem_object_wait(obj,
1544 1545 1546 1547
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1548
	if (err)
C
Chris Wilson 已提交
1549
		goto out;
1550

1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1561
		goto out;
1562 1563 1564

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1565
		goto out_unpin;
1566

1567
	if (read_domains & I915_GEM_DOMAIN_GTT)
1568
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1569
	else
1570
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1571

1572 1573
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1574

1575
	mutex_unlock(&dev->struct_mutex);
1576

1577 1578 1579
	if (write_domain != 0)
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));

C
Chris Wilson 已提交
1580
out_unpin:
1581
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1582 1583
out:
	i915_gem_object_put(obj);
1584
	return err;
1585 1586 1587 1588
}

/**
 * Called when user space has done writes to this buffer
1589 1590 1591
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1592 1593 1594
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1595
			 struct drm_file *file)
1596 1597
{
	struct drm_i915_gem_sw_finish *args = data;
1598
	struct drm_i915_gem_object *obj;
1599
	int err = 0;
1600

1601
	obj = i915_gem_object_lookup(file, args->handle);
1602 1603
	if (!obj)
		return -ENOENT;
1604 1605

	/* Pinned buffers may be scanout, so flush the cache */
1606 1607 1608 1609 1610 1611 1612
	if (READ_ONCE(obj->pin_display)) {
		err = i915_mutex_lock_interruptible(dev);
		if (!err) {
			i915_gem_object_flush_cpu_write_domain(obj);
			mutex_unlock(&dev->struct_mutex);
		}
	}
1613

C
Chris Wilson 已提交
1614
	i915_gem_object_put(obj);
1615
	return err;
1616 1617 1618
}

/**
1619 1620 1621 1622 1623
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1624 1625 1626
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1637 1638 1639
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1640
		    struct drm_file *file)
1641 1642
{
	struct drm_i915_gem_mmap *args = data;
1643
	struct drm_i915_gem_object *obj;
1644 1645
	unsigned long addr;

1646 1647 1648
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1649
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1650 1651
		return -ENODEV;

1652 1653
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1654
		return -ENOENT;
1655

1656 1657 1658
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1659
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1660
		i915_gem_object_put(obj);
1661 1662 1663
		return -EINVAL;
	}

1664
	addr = vm_mmap(obj->base.filp, 0, args->size,
1665 1666
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1667 1668 1669 1670
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1671
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1672
			i915_gem_object_put(obj);
1673 1674
			return -EINTR;
		}
1675 1676 1677 1678 1679 1680 1681
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1682 1683

		/* This may race, but that's ok, it only gets set */
1684
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1685
	}
C
Chris Wilson 已提交
1686
	i915_gem_object_put(obj);
1687 1688 1689 1690 1691 1692 1693 1694
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1695 1696
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
1697
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1698 1699
}

1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
	return 1;
}

1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
static inline struct i915_ggtt_view
compute_partial_view(struct drm_i915_gem_object *obj,
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1761 1762
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1763
		min_t(unsigned int, chunk,
1764
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1765 1766 1767 1768 1769 1770 1771 1772

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1773 1774
/**
 * i915_gem_fault - fault a page into the GTT
C
Chris Wilson 已提交
1775
 * @area: CPU VMA in question
1776
 * @vmf: fault info
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1788 1789 1790
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1791
 */
C
Chris Wilson 已提交
1792
int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1793
{
1794
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
C
Chris Wilson 已提交
1795
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1796
	struct drm_device *dev = obj->base.dev;
1797 1798
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1799
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1800
	struct i915_vma *vma;
1801
	pgoff_t page_offset;
1802
	unsigned int flags;
1803
	int ret;
1804

1805
	/* We don't use vmf->pgoff since that has the fake offset */
1806
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1807

C
Chris Wilson 已提交
1808 1809
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1810
	/* Try to flush the object off the GPU first without holding the lock.
1811
	 * Upon acquiring the lock, we will perform our sanity checks and then
1812 1813 1814
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1815 1816 1817 1818
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
1819
	if (ret)
1820 1821
		goto err;

1822 1823 1824 1825
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

1826 1827 1828 1829 1830
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1831

1832
	/* Access to snoopable pages through the GTT is incoherent. */
1833
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1834
		ret = -EFAULT;
1835
		goto err_unlock;
1836 1837
	}

1838 1839 1840 1841 1842 1843 1844 1845
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

1846
	/* Now pin it into the GTT as needed */
1847
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1848 1849
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
1850
		struct i915_ggtt_view view =
1851
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1852

1853 1854 1855 1856 1857
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1858 1859
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
1860 1861
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1862
		goto err_unlock;
C
Chris Wilson 已提交
1863
	}
1864

1865 1866
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1867
		goto err_unpin;
1868

1869
	ret = i915_vma_get_fence(vma);
1870
	if (ret)
1871
		goto err_unpin;
1872

1873
	/* Mark as being mmapped into userspace for later revocation */
1874
	assert_rpm_wakelock_held(dev_priv);
1875 1876 1877
	if (list_empty(&obj->userfault_link))
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);

1878
	/* Finally, remap it using the new GTT offset */
1879
	ret = remap_io_mapping(area,
1880
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1881 1882 1883
			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
			       &ggtt->mappable);
1884

1885
err_unpin:
C
Chris Wilson 已提交
1886
	__i915_vma_unpin(vma);
1887
err_unlock:
1888
	mutex_unlock(&dev->struct_mutex);
1889 1890
err_rpm:
	intel_runtime_pm_put(dev_priv);
1891
	i915_gem_object_unpin_pages(obj);
1892
err:
1893
	switch (ret) {
1894
	case -EIO:
1895 1896 1897 1898 1899 1900 1901
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1902 1903 1904
			ret = VM_FAULT_SIGBUS;
			break;
		}
1905
	case -EAGAIN:
D
Daniel Vetter 已提交
1906 1907 1908 1909
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1910
		 */
1911 1912
	case 0:
	case -ERESTARTSYS:
1913
	case -EINTR:
1914 1915 1916 1917 1918
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1919 1920
		ret = VM_FAULT_NOPAGE;
		break;
1921
	case -ENOMEM:
1922 1923
		ret = VM_FAULT_OOM;
		break;
1924
	case -ENOSPC:
1925
	case -EFAULT:
1926 1927
		ret = VM_FAULT_SIGBUS;
		break;
1928
	default:
1929
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1930 1931
		ret = VM_FAULT_SIGBUS;
		break;
1932
	}
1933
	return ret;
1934 1935
}

1936 1937 1938 1939
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1940
 * Preserve the reservation of the mmapping with the DRM core code, but
1941 1942 1943 1944 1945 1946 1947 1948 1949
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1950
void
1951
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1952
{
1953 1954
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

1955 1956 1957
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
1958 1959 1960 1961
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
1962
	 */
1963
	lockdep_assert_held(&i915->drm.struct_mutex);
1964
	intel_runtime_pm_get(i915);
1965

1966
	if (list_empty(&obj->userfault_link))
1967
		goto out;
1968

1969
	list_del_init(&obj->userfault_link);
1970 1971
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1972 1973 1974 1975 1976 1977 1978 1979 1980

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
1981 1982 1983

out:
	intel_runtime_pm_put(i915);
1984 1985
}

1986
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
1987
{
1988
	struct drm_i915_gem_object *obj, *on;
1989
	int i;
1990

1991 1992 1993 1994 1995 1996
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
1997

1998 1999 2000
	list_for_each_entry_safe(obj, on,
				 &dev_priv->mm.userfault_list, userfault_link) {
		list_del_init(&obj->userfault_link);
2001 2002 2003
		drm_vma_node_unmap(&obj->base.vma_node,
				   obj->base.dev->anon_inode->i_mapping);
	}
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

		if (WARN_ON(reg->pin_count))
			continue;

		if (!reg->vma)
			continue;

		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
		reg->dirty = true;
	}
2021 2022
}

2023 2024
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2025
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2026
	int err;
2027

2028
	err = drm_gem_create_mmap_offset(&obj->base);
2029
	if (likely(!err))
2030
		return 0;
2031

2032 2033 2034 2035 2036
	/* Attempt to reap some mmap space from dead objects */
	do {
		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
		if (err)
			break;
2037

2038
		i915_gem_drain_freed_objects(dev_priv);
2039
		err = drm_gem_create_mmap_offset(&obj->base);
2040 2041 2042 2043
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2044

2045
	return err;
2046 2047 2048 2049 2050 2051 2052
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2053
int
2054 2055
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2056
		  uint32_t handle,
2057
		  uint64_t *offset)
2058
{
2059
	struct drm_i915_gem_object *obj;
2060 2061
	int ret;

2062
	obj = i915_gem_object_lookup(file, handle);
2063 2064
	if (!obj)
		return -ENOENT;
2065

2066
	ret = i915_gem_object_create_mmap_offset(obj);
2067 2068
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2069

C
Chris Wilson 已提交
2070
	i915_gem_object_put(obj);
2071
	return ret;
2072 2073
}

2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2095
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2096 2097
}

D
Daniel Vetter 已提交
2098 2099 2100
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2101
{
2102
	i915_gem_object_free_mmap_offset(obj);
2103

2104 2105
	if (obj->base.filp == NULL)
		return;
2106

D
Daniel Vetter 已提交
2107 2108 2109 2110 2111
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2112
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2113
	obj->mm.madv = __I915_MADV_PURGED;
D
Daniel Vetter 已提交
2114
}
2115

2116
/* Try to discard unwanted pages */
2117
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2118
{
2119 2120
	struct address_space *mapping;

2121 2122 2123
	lockdep_assert_held(&obj->mm.lock);
	GEM_BUG_ON(obj->mm.pages);

C
Chris Wilson 已提交
2124
	switch (obj->mm.madv) {
2125 2126 2127 2128 2129 2130 2131 2132 2133
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2134
	mapping = obj->base.filp->f_mapping,
2135
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2136 2137
}

2138
static void
2139 2140
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2141
{
2142 2143
	struct sgt_iter sgt_iter;
	struct page *page;
2144

2145
	__i915_gem_object_release_shmem(obj, pages, true);
2146

2147
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2148

2149
	if (i915_gem_object_needs_bit17_swizzle(obj))
2150
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2151

2152
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2153
		if (obj->mm.dirty)
2154
			set_page_dirty(page);
2155

C
Chris Wilson 已提交
2156
		if (obj->mm.madv == I915_MADV_WILLNEED)
2157
			mark_page_accessed(page);
2158

2159
		put_page(page);
2160
	}
C
Chris Wilson 已提交
2161
	obj->mm.dirty = false;
2162

2163 2164
	sg_free_table(pages);
	kfree(pages);
2165
}
C
Chris Wilson 已提交
2166

2167 2168 2169 2170 2171
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
	void **slot;

C
Chris Wilson 已提交
2172 2173
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2174 2175
}

2176 2177
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
2178
{
2179
	struct sg_table *pages;
2180

C
Chris Wilson 已提交
2181
	if (i915_gem_object_has_pinned_pages(obj))
2182
		return;
2183

2184
	GEM_BUG_ON(obj->bind_count);
2185 2186 2187 2188
	if (!READ_ONCE(obj->mm.pages))
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
2189
	mutex_lock_nested(&obj->mm.lock, subclass);
2190 2191
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;
B
Ben Widawsky 已提交
2192

2193 2194 2195
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2196 2197
	pages = fetch_and_zero(&obj->mm.pages);
	GEM_BUG_ON(!pages);
2198

C
Chris Wilson 已提交
2199
	if (obj->mm.mapping) {
2200 2201
		void *ptr;

C
Chris Wilson 已提交
2202
		ptr = ptr_mask_bits(obj->mm.mapping);
2203 2204
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2205
		else
2206 2207
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2208
		obj->mm.mapping = NULL;
2209 2210
	}

2211 2212
	__i915_gem_object_reset_page_iter(obj);

2213
	obj->ops->put_pages(obj, pages);
2214 2215
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2216 2217
}

2218 2219 2220 2221 2222 2223 2224 2225 2226
static void i915_sg_trim(struct sg_table *orig_st)
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
		return;

2227
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2228 2229 2230 2231 2232 2233 2234 2235
		return;

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
		/* called before being DMA mapped, no need to copy sg->dma_* */
		new_sg = sg_next(new_sg);
	}
2236
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2237 2238 2239 2240 2241 2242

	sg_free_table(orig_st);

	*orig_st = new_st;
}

2243
static struct sg_table *
C
Chris Wilson 已提交
2244
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2245
{
2246
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2247 2248
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2249
	struct address_space *mapping;
2250 2251
	struct sg_table *st;
	struct scatterlist *sg;
2252
	struct sgt_iter sgt_iter;
2253
	struct page *page;
2254
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2255
	unsigned int max_segment;
I
Imre Deak 已提交
2256
	int ret;
C
Chris Wilson 已提交
2257
	gfp_t gfp;
2258

C
Chris Wilson 已提交
2259 2260 2261 2262
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2263 2264
	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2265

2266
	max_segment = swiotlb_max_segment();
2267
	if (!max_segment)
2268
		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2269

2270 2271
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2272
		return ERR_PTR(-ENOMEM);
2273

2274
rebuild_st:
2275 2276
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2277
		return ERR_PTR(-ENOMEM);
2278
	}
2279

2280 2281 2282 2283 2284
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2285
	mapping = obj->base.filp->f_mapping;
2286
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2287
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2288 2289 2290
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2291 2292
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2293 2294 2295 2296 2297
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2298 2299 2300 2301 2302 2303 2304
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
2305
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2306 2307
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
2308
				goto err_sg;
I
Imre Deak 已提交
2309
			}
C
Chris Wilson 已提交
2310
		}
2311 2312 2313
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2314 2315 2316 2317 2318 2319 2320 2321
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2322 2323 2324

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2325
	}
2326
	if (sg) /* loop terminated early; short sg table */
2327
		sg_mark_end(sg);
2328

2329 2330 2331
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2332
	ret = i915_gem_gtt_prepare_pages(obj, st);
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
	if (ret) {
		/* DMA remapping failed? One possible cause is that
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2352

2353
	if (i915_gem_object_needs_bit17_swizzle(obj))
2354
		i915_gem_object_do_bit_17_swizzle(obj, st);
2355

2356
	return st;
2357

2358
err_sg:
2359
	sg_mark_end(sg);
2360
err_pages:
2361 2362
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2363 2364
	sg_free_table(st);
	kfree(st);
2365 2366 2367 2368 2369 2370 2371 2372 2373

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2374 2375 2376
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2377 2378 2379 2380 2381 2382
	return ERR_PTR(ret);
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
				 struct sg_table *pages)
{
2383
	lockdep_assert_held(&obj->mm.lock);
2384 2385 2386 2387 2388

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2389 2390 2391 2392 2393 2394 2395

	if (i915_gem_object_is_tiled(obj) &&
	    to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2396 2397 2398 2399 2400 2401
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct sg_table *pages;

2402 2403
	GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

	pages = obj->ops->get_pages(obj);
	if (unlikely(IS_ERR(pages)))
		return PTR_ERR(pages);

	__i915_gem_object_set_pages(obj, pages);
	return 0;
2415 2416
}

2417
/* Ensure that the associated pages are gathered from the backing storage
2418
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2419
 * multiple times before they are released by a single call to
2420
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2421 2422 2423
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2424
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2425
{
2426
	int err;
2427

2428 2429 2430
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2431

2432 2433 2434 2435
	if (unlikely(!obj->mm.pages)) {
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2436

2437 2438 2439
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2440

2441 2442
unlock:
	mutex_unlock(&obj->mm.lock);
2443
	return err;
2444 2445
}

2446
/* The 'mapping' part of i915_gem_object_pin_map() below */
2447 2448
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2449 2450
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2451
	struct sg_table *sgt = obj->mm.pages;
2452 2453
	struct sgt_iter sgt_iter;
	struct page *page;
2454 2455
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2456
	unsigned long i = 0;
2457
	pgprot_t pgprot;
2458 2459 2460
	void *addr;

	/* A single page can always be kmapped */
2461
	if (n_pages == 1 && type == I915_MAP_WB)
2462 2463
		return kmap(sg_page(sgt->sgl));

2464 2465 2466 2467 2468 2469
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2470

2471 2472
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2473 2474 2475 2476

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2477 2478 2479 2480 2481 2482 2483 2484 2485
	switch (type) {
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2486

2487 2488
	if (pages != stack_pages)
		drm_free_large(pages);
2489 2490 2491 2492 2493

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2494 2495
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2496
{
2497 2498 2499
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2500 2501
	int ret;

2502
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2503

2504
	ret = mutex_lock_interruptible(&obj->mm.lock);
2505 2506 2507
	if (ret)
		return ERR_PTR(ret);

2508 2509
	pinned = true;
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2510 2511 2512 2513
		if (unlikely(!obj->mm.pages)) {
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2514

2515 2516 2517
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2518 2519 2520
		pinned = false;
	}
	GEM_BUG_ON(!obj->mm.pages);
2521

C
Chris Wilson 已提交
2522
	ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2523 2524 2525
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2526
			goto err_unpin;
2527
		}
2528 2529 2530 2531 2532 2533

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2534
		ptr = obj->mm.mapping = NULL;
2535 2536
	}

2537 2538 2539 2540
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2541
			goto err_unpin;
2542 2543
		}

C
Chris Wilson 已提交
2544
		obj->mm.mapping = ptr_pack_bits(ptr, type);
2545 2546
	}

2547 2548
out_unlock:
	mutex_unlock(&obj->mm.lock);
2549 2550
	return ptr;

2551 2552 2553 2554 2555
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2556 2557
}

2558
static bool ban_context(const struct i915_gem_context *ctx)
2559
{
2560 2561
	return (i915_gem_context_is_bannable(ctx) &&
		ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD);
2562 2563
}

2564
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2565
{
2566
	ctx->guilty_count++;
2567 2568 2569
	ctx->ban_score += CONTEXT_SCORE_GUILTY;
	if (ban_context(ctx))
		i915_gem_context_set_banned(ctx);
2570 2571

	DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2572
			 ctx->name, ctx->ban_score,
2573
			 yesno(i915_gem_context_is_banned(ctx)));
2574

2575
	if (!i915_gem_context_is_banned(ctx) || IS_ERR_OR_NULL(ctx->file_priv))
2576 2577
		return;

2578 2579 2580
	ctx->file_priv->context_bans++;
	DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
			 ctx->name, ctx->file_priv->context_bans);
2581 2582 2583 2584
}

static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
{
2585
	ctx->active_count++;
2586 2587
}

2588
struct drm_i915_gem_request *
2589
i915_gem_find_active_request(struct intel_engine_cs *engine)
2590
{
2591 2592
	struct drm_i915_gem_request *request;

2593 2594 2595 2596 2597 2598 2599 2600
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2601
	list_for_each_entry(request, &engine->timeline->requests, link) {
C
Chris Wilson 已提交
2602
		if (__i915_gem_request_completed(request))
2603
			continue;
2604

2605
		GEM_BUG_ON(request->engine != engine);
2606
		return request;
2607
	}
2608 2609 2610 2611

	return NULL;
}

2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
static bool engine_stalled(struct intel_engine_cs *engine)
{
	if (!engine->hangcheck.stalled)
		return false;

	/* Check for possible seqno movement after hang declaration */
	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
		DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
		return false;
	}

	return true;
}

2626
int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2627 2628 2629
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
2630
	int err = 0;
2631 2632

	/* Ensure irq handler finishes, and not run again. */
2633 2634 2635
	for_each_engine(engine, dev_priv, id) {
		struct drm_i915_gem_request *request;

2636 2637
		tasklet_kill(&engine->irq_tasklet);

2638 2639 2640 2641 2642 2643 2644
		if (engine_stalled(engine)) {
			request = i915_gem_find_active_request(engine);
			if (request && request->fence.error == -EIO)
				err = -EIO; /* Previous reset failed! */
		}
	}

2645
	i915_gem_revoke_fences(dev_priv);
2646 2647

	return err;
2648 2649
}

2650
static void skip_request(struct drm_i915_gem_request *request)
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
2665 2666

	dma_fence_set_error(&request->fence, -EIO);
2667 2668
}

2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
static void engine_skip_context(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	struct i915_gem_context *hung_ctx = request->ctx;
	struct intel_timeline *timeline;
	unsigned long flags;

	timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);

	spin_lock_irqsave(&engine->timeline->lock, flags);
	spin_lock(&timeline->lock);

	list_for_each_entry_continue(request, &engine->timeline->requests, link)
		if (request->ctx == hung_ctx)
			skip_request(request);

	list_for_each_entry(request, &timeline->requests, link)
		skip_request(request);

	spin_unlock(&timeline->lock);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

2692 2693 2694 2695 2696 2697
/* Returns true if the request was guilty of hang */
static bool i915_gem_reset_request(struct drm_i915_gem_request *request)
{
	/* Read once and return the resolution */
	const bool guilty = engine_stalled(request->engine);

2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
	/* The guilty request will get skipped on a hung engine.
	 *
	 * Users of client default contexts do not rely on logical
	 * state preserved between batches so it is safe to execute
	 * queued requests following the hang. Non default contexts
	 * rely on preserved state, so skipping a batch loses the
	 * evolution of the state and it needs to be considered corrupted.
	 * Executing more queued batches on top of corrupted state is
	 * risky. But we take the risk by trying to advance through
	 * the queued requests in order to make the client behaviour
	 * more predictable around resets, by not throwing away random
	 * amount of batches it has prepared for execution. Sophisticated
	 * clients can use gem_reset_stats_ioctl and dma fence status
	 * (exported via sync_file info ioctl on explicit fences) to observe
	 * when it loses the context state and should rebuild accordingly.
	 *
	 * The context ban, and ultimately the client ban, mechanism are safety
	 * valves if client submission ends up resulting in nothing more than
	 * subsequent hangs.
	 */

2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
	if (guilty) {
		i915_gem_context_mark_guilty(request->ctx);
		skip_request(request);
	} else {
		i915_gem_context_mark_innocent(request->ctx);
		dma_fence_set_error(&request->fence, -EAGAIN);
	}

	return guilty;
}

2730
static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2731 2732 2733
{
	struct drm_i915_gem_request *request;

2734 2735 2736
	if (engine->irq_seqno_barrier)
		engine->irq_seqno_barrier(engine);

2737
	request = i915_gem_find_active_request(engine);
2738 2739 2740
	if (request && i915_gem_reset_request(request)) {
		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
				 engine->name, request->global_seqno);
2741

2742 2743 2744 2745
		/* If this context is now banned, skip all pending requests. */
		if (i915_gem_context_is_banned(request->ctx))
			engine_skip_context(request);
	}
2746 2747 2748

	/* Setup the CS to resume from the breadcrumb of the hung request */
	engine->reset_hw(engine, request);
2749
}
2750

2751
void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
2752
{
2753
	struct intel_engine_cs *engine;
2754
	enum intel_engine_id id;
2755

2756 2757
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

2758 2759
	i915_gem_retire_requests(dev_priv);

2760
	for_each_engine(engine, dev_priv, id)
2761 2762
		i915_gem_reset_engine(engine);

2763
	i915_gem_restore_fences(dev_priv);
2764 2765 2766 2767 2768 2769 2770

	if (dev_priv->gt.awake) {
		intel_sanitize_gt_powersave(dev_priv);
		intel_enable_gt_powersave(dev_priv);
		if (INTEL_GEN(dev_priv) >= 6)
			gen6_rps_busy(dev_priv);
	}
2771 2772 2773 2774
}

static void nop_submit_request(struct drm_i915_gem_request *request)
{
2775
	dma_fence_set_error(&request->fence, -EIO);
2776 2777
	i915_gem_request_submit(request);
	intel_engine_init_global_seqno(request->engine, request->global_seqno);
2778 2779
}

2780
static void engine_set_wedged(struct intel_engine_cs *engine)
2781
{
2782 2783 2784
	struct drm_i915_gem_request *request;
	unsigned long flags;

2785 2786 2787 2788 2789 2790
	/* We need to be sure that no thread is running the old callback as
	 * we install the nop handler (otherwise we would submit a request
	 * to hardware that will never complete). In order to prevent this
	 * race, we wait until the machine is idle before making the swap
	 * (using stop_machine()).
	 */
2791
	engine->submit_request = nop_submit_request;
2792

2793 2794 2795 2796 2797 2798
	/* Mark all executing requests as skipped */
	spin_lock_irqsave(&engine->timeline->lock, flags);
	list_for_each_entry(request, &engine->timeline->requests, link)
		dma_fence_set_error(&request->fence, -EIO);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);

2799 2800 2801 2802
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
2803
	intel_engine_init_global_seqno(engine,
2804
				       intel_engine_last_submit(engine));
2805

2806 2807 2808 2809 2810 2811
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2812
	if (i915.enable_execlists) {
2813 2814 2815 2816
		unsigned long flags;

		spin_lock_irqsave(&engine->timeline->lock, flags);

2817 2818 2819
		i915_gem_request_put(engine->execlist_port[0].request);
		i915_gem_request_put(engine->execlist_port[1].request);
		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2820 2821
		engine->execlist_queue = RB_ROOT;
		engine->execlist_first = NULL;
2822 2823

		spin_unlock_irqrestore(&engine->timeline->lock, flags);
2824
	}
2825 2826
}

2827
static int __i915_gem_set_wedged_BKL(void *data)
2828
{
2829
	struct drm_i915_private *i915 = data;
2830
	struct intel_engine_cs *engine;
2831
	enum intel_engine_id id;
2832

2833
	for_each_engine(engine, i915, id)
2834
		engine_set_wedged(engine);
2835 2836 2837 2838 2839 2840

	return 0;
}

void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
{
2841 2842
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
	set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2843

2844
	stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
2845

2846
	i915_gem_context_lost(dev_priv);
2847
	i915_gem_retire_requests(dev_priv);
2848 2849

	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2850 2851
}

2852
static void
2853 2854
i915_gem_retire_work_handler(struct work_struct *work)
{
2855
	struct drm_i915_private *dev_priv =
2856
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2857
	struct drm_device *dev = &dev_priv->drm;
2858

2859
	/* Come back later if the device is busy... */
2860
	if (mutex_trylock(&dev->struct_mutex)) {
2861
		i915_gem_retire_requests(dev_priv);
2862
		mutex_unlock(&dev->struct_mutex);
2863
	}
2864 2865 2866 2867 2868

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2869 2870
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
2871 2872
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2873
				   round_jiffies_up_relative(HZ));
2874
	}
2875
}
2876

2877 2878 2879 2880
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2881
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2882
	struct drm_device *dev = &dev_priv->drm;
2883
	struct intel_engine_cs *engine;
2884
	enum intel_engine_id id;
2885 2886 2887 2888 2889
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

2890 2891 2892 2893 2894 2895 2896
	/*
	 * Wait for last execlists context complete, but bail out in case a
	 * new request is submitted.
	 */
	wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
		 intel_execlists_idle(dev_priv), 10);

2897
	if (READ_ONCE(dev_priv->gt.active_requests))
2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

2911 2912 2913 2914 2915 2916 2917
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
	if (work_pending(work))
		goto out_unlock;

2918
	if (dev_priv->gt.active_requests)
2919
		goto out_unlock;
2920

2921 2922 2923
	if (wait_for(intel_execlists_idle(dev_priv), 10))
		DRM_ERROR("Timeout waiting for engines to idle\n");

2924
	for_each_engine(engine, dev_priv, id)
2925
		i915_gem_batch_pool_fini(&engine->batch_pool);
2926

2927 2928 2929
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
2930

2931 2932 2933 2934 2935
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
2936

2937 2938 2939 2940
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
2941
	}
2942 2943
}

2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
2954 2955 2956 2957 2958 2959

	if (i915_gem_object_is_active(obj) &&
	    !i915_gem_object_has_active_reference(obj)) {
		i915_gem_object_set_active_reference(obj);
		i915_gem_object_get(obj);
	}
2960 2961 2962
	mutex_unlock(&obj->base.dev->struct_mutex);
}

2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

2974 2975
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2976 2977 2978
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3003 3004
	ktime_t start;
	long ret;
3005

3006 3007 3008
	if (args->flags != 0)
		return -EINVAL;

3009
	obj = i915_gem_object_lookup(file, args->bo_handle);
3010
	if (!obj)
3011 3012
		return -ENOENT;

3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3024 3025
	}

C
Chris Wilson 已提交
3026
	i915_gem_object_put(obj);
3027
	return ret;
3028 3029
}

3030
static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3031
{
3032
	int ret, i;
3033

3034 3035 3036 3037 3038
	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
		if (ret)
			return ret;
	}
3039

3040 3041 3042 3043 3044 3045 3046
	return 0;
}

int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
{
	int ret;

3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
	if (flags & I915_WAIT_LOCKED) {
		struct i915_gem_timeline *tl;

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
			ret = wait_for_timeline(tl, flags);
			if (ret)
				return ret;
		}
	} else {
		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3059 3060 3061
		if (ret)
			return ret;
	}
3062

3063
	return 0;
3064 3065
}

3066 3067
void i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			     bool force)
3068 3069 3070 3071 3072
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
C
Chris Wilson 已提交
3073
	if (!obj->mm.pages)
3074
		return;
3075

3076 3077 3078 3079
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3080
	if (obj->stolen || obj->phys_handle)
3081
		return;
3082

3083 3084 3085 3086 3087 3088 3089 3090
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3091 3092
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3093
		return;
3094
	}
3095

C
Chris Wilson 已提交
3096
	trace_i915_gem_object_clflush(obj);
C
Chris Wilson 已提交
3097
	drm_clflush_sg(obj->mm.pages);
3098
	obj->cache_dirty = false;
3099 3100 3101 3102
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3103
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3104
{
3105
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
C
Chris Wilson 已提交
3106

3107
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3108 3109
		return;

3110
	/* No actual flushing is required for the GTT write domain.  Writes
3111
	 * to it "immediately" go to main memory as far as we know, so there's
3112
	 * no chipset flush.  It also doesn't land in render cache.
3113 3114 3115 3116
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3117 3118 3119 3120 3121 3122 3123
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour).
3124
	 */
3125
	wmb();
3126
	if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3127
		POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3128

3129
	intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3130

3131
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3132
	trace_i915_gem_object_change_domain(obj,
3133
					    obj->base.read_domains,
3134
					    I915_GEM_DOMAIN_GTT);
3135 3136 3137 3138
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3139
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3140
{
3141
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3142 3143
		return;

3144
	i915_gem_clflush_object(obj, obj->pin_display);
3145
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3146

3147
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3148
	trace_i915_gem_object_change_domain(obj,
3149
					    obj->base.read_domains,
3150
					    I915_GEM_DOMAIN_CPU);
3151 3152
}

3153 3154
/**
 * Moves a single object to the GTT read, and possibly write domain.
3155 3156
 * @obj: object to act on
 * @write: ask for write access or read only
3157 3158 3159 3160
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3161
int
3162
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3163
{
C
Chris Wilson 已提交
3164
	uint32_t old_write_domain, old_read_domains;
3165
	int ret;
3166

3167
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3168

3169 3170 3171 3172 3173 3174
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3175 3176 3177
	if (ret)
		return ret;

3178 3179 3180
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3181 3182 3183 3184 3185 3186 3187 3188
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3189
	ret = i915_gem_object_pin_pages(obj);
3190 3191 3192
	if (ret)
		return ret;

3193
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3194

3195 3196 3197 3198 3199 3200 3201
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3202 3203
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3204

3205 3206 3207
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3208
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3209
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3210
	if (write) {
3211 3212
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3213
		obj->mm.dirty = true;
3214 3215
	}

C
Chris Wilson 已提交
3216 3217 3218 3219
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

C
Chris Wilson 已提交
3220
	i915_gem_object_unpin_pages(obj);
3221 3222 3223
	return 0;
}

3224 3225
/**
 * Changes the cache-level of an object across all VMA.
3226 3227
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3239 3240 3241
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3242
	struct i915_vma *vma;
3243
	int ret;
3244

3245 3246
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3247
	if (obj->cache_level == cache_level)
3248
		return 0;
3249

3250 3251 3252 3253 3254
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3255 3256
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3257 3258 3259
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3260
		if (i915_vma_is_pinned(vma)) {
3261 3262 3263 3264
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3277 3278
	}

3279 3280 3281 3282 3283 3284 3285
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3286
	if (obj->bind_count) {
3287 3288 3289 3290
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3291 3292 3293 3294 3295 3296
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
3297 3298 3299
		if (ret)
			return ret;

3300 3301
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3318 3319 3320 3321 3322
			list_for_each_entry(vma, &obj->vma_list, obj_link) {
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3323 3324 3325 3326 3327 3328 3329 3330
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3331 3332
		}

3333
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3334 3335 3336 3337 3338 3339 3340
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3341 3342
	}

3343 3344 3345 3346
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
	    cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		obj->cache_dirty = true;

3347
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3348 3349 3350
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3351 3352 3353
	return 0;
}

B
Ben Widawsky 已提交
3354 3355
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3356
{
B
Ben Widawsky 已提交
3357
	struct drm_i915_gem_caching *args = data;
3358
	struct drm_i915_gem_object *obj;
3359
	int err = 0;
3360

3361 3362 3363 3364 3365 3366
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
3367

3368 3369 3370 3371 3372 3373
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3374 3375 3376 3377
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3378 3379 3380 3381
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3382 3383 3384
out:
	rcu_read_unlock();
	return err;
3385 3386
}

B
Ben Widawsky 已提交
3387 3388
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3389
{
3390
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
3391
	struct drm_i915_gem_caching *args = data;
3392 3393
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
3394
	int ret = 0;
3395

B
Ben Widawsky 已提交
3396 3397
	switch (args->caching) {
	case I915_CACHING_NONE:
3398 3399
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3400
	case I915_CACHING_CACHED:
3401 3402 3403 3404 3405 3406
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3407
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3408 3409
			return -ENODEV;

3410 3411
		level = I915_CACHE_LLC;
		break;
3412
	case I915_CACHING_DISPLAY:
3413
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3414
		break;
3415 3416 3417 3418
	default:
		return -EINVAL;
	}

3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
B
Ben Widawsky 已提交
3430
	if (ret)
3431
		goto out;
B
Ben Widawsky 已提交
3432

3433 3434 3435
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
3436 3437 3438

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
3439 3440 3441

out:
	i915_gem_object_put(obj);
3442 3443 3444
	return ret;
}

3445
/*
3446 3447 3448
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3449
 */
C
Chris Wilson 已提交
3450
struct i915_vma *
3451 3452
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3453
				     const struct i915_ggtt_view *view)
3454
{
C
Chris Wilson 已提交
3455
	struct i915_vma *vma;
3456
	u32 old_read_domains, old_write_domain;
3457 3458
	int ret;

3459 3460
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3461 3462 3463
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3464
	obj->pin_display++;
3465

3466 3467 3468 3469 3470 3471 3472 3473 3474
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3475
	ret = i915_gem_object_set_cache_level(obj,
3476 3477
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3478 3479
	if (ret) {
		vma = ERR_PTR(ret);
3480
		goto err_unpin_display;
C
Chris Wilson 已提交
3481
	}
3482

3483 3484
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3485 3486 3487 3488
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3489
	 */
3490
	vma = ERR_PTR(-ENOSPC);
3491
	if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3492 3493
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
					       PIN_MAPPABLE | PIN_NONBLOCK);
3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509
	if (IS_ERR(vma)) {
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
		unsigned int flags;

		/* Valleyview is definitely limited to scanning out the first
		 * 512MiB. Lets presume this behaviour was inherited from the
		 * g4x display engine and that all earlier gen are similarly
		 * limited. Testing suggests that it is a little more
		 * complicated than this. For example, Cherryview appears quite
		 * happy to scanout from anywhere within its global aperture.
		 */
		flags = 0;
		if (HAS_GMCH_DISPLAY(i915))
			flags = PIN_MAPPABLE;
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
	}
C
Chris Wilson 已提交
3510
	if (IS_ERR(vma))
3511
		goto err_unpin_display;
3512

3513 3514
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

3515 3516 3517 3518 3519
	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
	if (obj->cache_dirty) {
		i915_gem_clflush_object(obj, true);
		intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
	}
3520

3521
	old_write_domain = obj->base.write_domain;
3522
	old_read_domains = obj->base.read_domains;
3523 3524 3525 3526

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3527
	obj->base.write_domain = 0;
3528
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3529 3530 3531

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3532
					    old_write_domain);
3533

C
Chris Wilson 已提交
3534
	return vma;
3535 3536

err_unpin_display:
3537
	obj->pin_display--;
C
Chris Wilson 已提交
3538
	return vma;
3539 3540 3541
}

void
C
Chris Wilson 已提交
3542
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3543
{
3544
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3545

C
Chris Wilson 已提交
3546
	if (WARN_ON(vma->obj->pin_display == 0))
3547 3548
		return;

3549
	if (--vma->obj->pin_display == 0)
3550
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3551

3552
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3553
	i915_gem_object_bump_inactive_ggtt(vma->obj);
3554

C
Chris Wilson 已提交
3555
	i915_vma_unpin(vma);
3556 3557
}

3558 3559
/**
 * Moves a single object to the CPU read, and possibly write domain.
3560 3561
 * @obj: object to act on
 * @write: requesting write or read-only access
3562 3563 3564 3565
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3566
int
3567
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3568
{
C
Chris Wilson 已提交
3569
	uint32_t old_write_domain, old_read_domains;
3570 3571
	int ret;

3572
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3573

3574 3575 3576 3577 3578 3579
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3580 3581 3582
	if (ret)
		return ret;

3583 3584 3585
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3586
	i915_gem_object_flush_gtt_write_domain(obj);
3587

3588 3589
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3590

3591
	/* Flush the CPU cache if it's still invalid. */
3592
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3593
		i915_gem_clflush_object(obj, false);
3594

3595
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3596 3597 3598 3599 3600
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3601
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3602 3603 3604 3605 3606

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3607 3608
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3609
	}
3610

C
Chris Wilson 已提交
3611 3612 3613 3614
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3615 3616 3617
	return 0;
}

3618 3619 3620
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3621 3622 3623 3624
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3625 3626 3627
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3628
static int
3629
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3630
{
3631
	struct drm_i915_private *dev_priv = to_i915(dev);
3632
	struct drm_i915_file_private *file_priv = file->driver_priv;
3633
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3634
	struct drm_i915_gem_request *request, *target = NULL;
3635
	long ret;
3636

3637 3638 3639
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3640

3641
	spin_lock(&file_priv->mm.lock);
3642
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3643 3644
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3645

3646 3647 3648 3649 3650 3651 3652
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

3653
		target = request;
3654
	}
3655
	if (target)
3656
		i915_gem_request_get(target);
3657
	spin_unlock(&file_priv->mm.lock);
3658

3659
	if (target == NULL)
3660
		return 0;
3661

3662 3663 3664
	ret = i915_wait_request(target,
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
3665
	i915_gem_request_put(target);
3666

3667
	return ret < 0 ? ret : 0;
3668 3669
}

C
Chris Wilson 已提交
3670
struct i915_vma *
3671 3672
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3673
			 u64 size,
3674 3675
			 u64 alignment,
			 u64 flags)
3676
{
3677 3678
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
3679 3680
	struct i915_vma *vma;
	int ret;
3681

3682 3683
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3684
	vma = i915_vma_instance(obj, vm, view);
3685
	if (unlikely(IS_ERR(vma)))
C
Chris Wilson 已提交
3686
		return vma;
3687 3688 3689 3690

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
C
Chris Wilson 已提交
3691
			return ERR_PTR(-ENOSPC);
3692

3693 3694 3695 3696 3697 3698 3699 3700
		if (flags & PIN_MAPPABLE) {
			/* If the required space is larger than the available
			 * aperture, we will not able to find a slot for the
			 * object and unbinding the object now will be in
			 * vain. Worse, doing so may cause us to ping-pong
			 * the object in and out of the Global GTT and
			 * waste a lot of cycles under the mutex.
			 */
3701
			if (vma->fence_size > dev_priv->ggtt.mappable_end)
3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719
				return ERR_PTR(-E2BIG);

			/* If NONBLOCK is set the caller is optimistically
			 * trying to cache the full object within the mappable
			 * aperture, and *must* have a fallback in place for
			 * situations where we cannot bind the object. We
			 * can be a little more lax here and use the fallback
			 * more often to avoid costly migrations of ourselves
			 * and other objects within the aperture.
			 *
			 * Half-the-aperture is used as a simple heuristic.
			 * More interesting would to do search for a free
			 * block prior to making the commitment to unbind.
			 * That caters for the self-harm case, and with a
			 * little more heuristics (e.g. NOFAULT, NOEVICT)
			 * we could try to minimise harm to others.
			 */
			if (flags & PIN_NONBLOCK &&
3720
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
3721 3722 3723
				return ERR_PTR(-ENOSPC);
		}

3724 3725
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
3726 3727 3728
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
3729
		     !!(flags & PIN_MAPPABLE),
3730
		     i915_vma_is_map_and_fenceable(vma));
3731 3732
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
3733
			return ERR_PTR(ret);
3734 3735
	}

C
Chris Wilson 已提交
3736 3737 3738
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
3739

C
Chris Wilson 已提交
3740
	return vma;
3741 3742
}

3743
static __always_inline unsigned int __busy_read_flag(unsigned int id)
3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
3758 3759 3760 3761 3762 3763 3764 3765 3766
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
3767 3768
}

3769
static __always_inline unsigned int
3770
__busy_set_if_active(const struct dma_fence *fence,
3771 3772
		     unsigned int (*flag)(unsigned int id))
{
3773
	struct drm_i915_gem_request *rq;
3774

3775 3776 3777 3778
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
3779
	 *
3780
	 * Note we only report on the status of native fences.
3781
	 */
3782 3783 3784 3785 3786 3787 3788 3789 3790
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
	rq = container_of(fence, struct drm_i915_gem_request, fence);
	if (i915_gem_request_completed(rq))
		return 0;

	return flag(rq->engine->exec_id);
3791 3792
}

3793
static __always_inline unsigned int
3794
busy_check_reader(const struct dma_fence *fence)
3795
{
3796
	return __busy_set_if_active(fence, __busy_read_flag);
3797 3798
}

3799
static __always_inline unsigned int
3800
busy_check_writer(const struct dma_fence *fence)
3801
{
3802 3803 3804 3805
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
3806 3807
}

3808 3809
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3810
		    struct drm_file *file)
3811 3812
{
	struct drm_i915_gem_busy *args = data;
3813
	struct drm_i915_gem_object *obj;
3814 3815
	struct reservation_object_list *list;
	unsigned int seq;
3816
	int err;
3817

3818
	err = -ENOENT;
3819 3820
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
3821
	if (!obj)
3822
		goto out;
3823

3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
3842

3843 3844
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3845

3846 3847 3848 3849
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
3850

3851 3852 3853 3854 3855 3856
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
3857
	}
3858

3859 3860 3861 3862
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
3863 3864 3865
out:
	rcu_read_unlock();
	return err;
3866 3867 3868 3869 3870 3871
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3872
	return i915_gem_ring_throttle(dev, file_priv);
3873 3874
}

3875 3876 3877 3878
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
3879
	struct drm_i915_private *dev_priv = to_i915(dev);
3880
	struct drm_i915_gem_madvise *args = data;
3881
	struct drm_i915_gem_object *obj;
3882
	int err;
3883 3884 3885 3886 3887 3888 3889 3890 3891

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3892
	obj = i915_gem_object_lookup(file_priv, args->handle);
3893 3894 3895 3896 3897 3898
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
3899

C
Chris Wilson 已提交
3900
	if (obj->mm.pages &&
3901
	    i915_gem_object_is_tiled(obj) &&
3902
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
3903 3904
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
3905
			__i915_gem_object_unpin_pages(obj);
3906 3907 3908
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
3909
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
3910
			__i915_gem_object_pin_pages(obj);
3911 3912
			obj->mm.quirked = true;
		}
3913 3914
	}

C
Chris Wilson 已提交
3915 3916
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
3917

C
Chris Wilson 已提交
3918
	/* if the object is no longer attached, discard its backing storage */
C
Chris Wilson 已提交
3919
	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
3920 3921
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
3922
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
3923
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
3924

3925
out:
3926
	i915_gem_object_put(obj);
3927
	return err;
3928 3929
}

3930 3931 3932 3933 3934 3935 3936 3937 3938 3939
static void
frontbuffer_retire(struct i915_gem_active *active,
		   struct drm_i915_gem_request *request)
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

	intel_fb_obj_flush(obj, true, ORIGIN_CS);
}

3940 3941
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
3942
{
3943 3944
	mutex_init(&obj->mm.lock);

3945
	INIT_LIST_HEAD(&obj->global_link);
3946
	INIT_LIST_HEAD(&obj->userfault_link);
3947
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
3948
	INIT_LIST_HEAD(&obj->vma_list);
3949
	INIT_LIST_HEAD(&obj->batch_pool_link);
3950

3951 3952
	obj->ops = ops;

3953 3954 3955
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

3956
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
3957
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
3958 3959 3960 3961

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
3962

3963
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
3964 3965
}

3966
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3967 3968
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
3969 3970 3971 3972
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

3973
struct drm_i915_gem_object *
3974
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
3975
{
3976
	struct drm_i915_gem_object *obj;
3977
	struct address_space *mapping;
D
Daniel Vetter 已提交
3978
	gfp_t mask;
3979
	int ret;
3980

3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
	if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

3992
	obj = i915_gem_object_alloc(dev_priv);
3993
	if (obj == NULL)
3994
		return ERR_PTR(-ENOMEM);
3995

3996
	ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
3997 3998
	if (ret)
		goto fail;
3999

4000
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4001
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4002 4003 4004 4005 4006
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4007
	mapping = obj->base.filp->f_mapping;
4008
	mapping_set_gfp_mask(mapping, mask);
4009

4010
	i915_gem_object_init(obj, &i915_gem_object_ops);
4011

4012 4013
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4014

4015
	if (HAS_LLC(dev_priv)) {
4016
		/* On some devices, we can have the GPU use the LLC (the CPU
4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4032 4033
	trace_i915_gem_object_create(obj);

4034
	return obj;
4035 4036 4037 4038

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4039 4040
}

4041 4042 4043 4044 4045 4046 4047 4048
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4049
	if (obj->mm.madv != I915_MADV_WILLNEED)
4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4065 4066
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4067
{
4068
	struct drm_i915_gem_object *obj, *on;
4069

4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084
	mutex_lock(&i915->drm.struct_mutex);
	intel_runtime_pm_get(i915);
	llist_for_each_entry(obj, freed, freed) {
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(!i915_vma_is_ggtt(vma));
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
			i915_vma_close(vma);
		}
4085 4086
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4087

4088
		list_del(&obj->global_link);
4089 4090 4091 4092 4093 4094 4095 4096 4097 4098
	}
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);

	llist_for_each_entry_safe(obj, on, freed, freed) {
		GEM_BUG_ON(obj->bind_count);
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));

		if (obj->ops->release)
			obj->ops->release(obj);
4099

4100 4101
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4102
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4103 4104 4105 4106 4107
		GEM_BUG_ON(obj->mm.pages);

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4108
		reservation_object_fini(&obj->__builtin_resv);
4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
	}
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

	freed = llist_del_all(&i915->mm.free_list);
	if (unlikely(freed))
		__i915_gem_free_objects(i915, freed);
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4131

4132 4133 4134 4135 4136 4137 4138
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4139

4140 4141 4142
	while ((freed = llist_del_all(&i915->mm.free_list)))
		__i915_gem_free_objects(i915, freed);
}
4143

4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

	/* We can't simply use call_rcu() from i915_gem_free_object()
	 * as we need to block whilst unbinding, and the call_rcu
	 * task may be called from softirq context. So we take a
	 * detour through a worker.
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
		schedule_work(&i915->mm.free_work);
}
4158

4159 4160 4161
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4162

4163 4164 4165
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4166
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4167
		obj->mm.madv = I915_MADV_DONTNEED;
4168

4169 4170 4171 4172 4173 4174
	/* Before we free the object, make sure any pure RCU-only
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4175 4176
}

4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

	GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
	if (i915_gem_object_is_active(obj))
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4188 4189 4190 4191 4192 4193
static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, dev_priv, id)
4194 4195
		GEM_BUG_ON(engine->last_retired_context &&
			   !i915_gem_context_is_kernel(engine->last_retired_context));
4196 4197
}

4198
int i915_gem_suspend(struct drm_i915_private *dev_priv)
4199
{
4200
	struct drm_device *dev = &dev_priv->drm;
4201
	int ret;
4202

4203 4204
	intel_suspend_gt_powersave(dev_priv);

4205
	mutex_lock(&dev->struct_mutex);
4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
		goto err;

4219 4220 4221
	ret = i915_gem_wait_for_idle(dev_priv,
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
4222
	if (ret)
4223
		goto err;
4224

4225
	i915_gem_retire_requests(dev_priv);
4226
	GEM_BUG_ON(dev_priv->gt.active_requests);
4227

4228
	assert_kernel_context_is_current(dev_priv);
4229
	i915_gem_context_lost(dev_priv);
4230 4231
	mutex_unlock(&dev->struct_mutex);

4232
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4233
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4234 4235 4236 4237 4238 4239 4240 4241

	/* As the idle_work is rearming if it detects a race, play safe and
	 * repeat the flush until it is definitely idle.
	 */
	while (flush_delayed_work(&dev_priv->gt.idle_work))
		;

	i915_gem_drain_freed_objects(dev_priv);
4242

4243 4244 4245
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4246
	WARN_ON(dev_priv->gt.awake);
4247
	WARN_ON(!intel_execlists_idle(dev_priv));
4248

4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
4268
	if (HAS_HW_CONTEXTS(dev_priv)) {
4269 4270 4271 4272
		int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
		WARN_ON(reset && reset != -ENODEV);
	}

4273
	return 0;
4274 4275 4276 4277

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4278 4279
}

4280
void i915_gem_resume(struct drm_i915_private *dev_priv)
4281
{
4282
	struct drm_device *dev = &dev_priv->drm;
4283

4284 4285
	WARN_ON(dev_priv->gt.awake);

4286
	mutex_lock(&dev->struct_mutex);
4287
	i915_gem_restore_gtt_mappings(dev_priv);
4288 4289 4290 4291 4292

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4293
	dev_priv->gt.resume(dev_priv);
4294 4295 4296 4297

	mutex_unlock(&dev->struct_mutex);
}

4298
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4299
{
4300
	if (INTEL_GEN(dev_priv) < 5 ||
4301 4302 4303 4304 4305 4306
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4307
	if (IS_GEN5(dev_priv))
4308 4309
		return;

4310
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4311
	if (IS_GEN6(dev_priv))
4312
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4313
	else if (IS_GEN7(dev_priv))
4314
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4315
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
4316
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4317 4318
	else
		BUG();
4319
}
D
Daniel Vetter 已提交
4320

4321
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4322 4323 4324 4325 4326 4327 4328
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4329
static void init_unused_rings(struct drm_i915_private *dev_priv)
4330
{
4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4343 4344 4345
	}
}

4346
int
4347
i915_gem_init_hw(struct drm_i915_private *dev_priv)
4348
{
4349
	struct intel_engine_cs *engine;
4350
	enum intel_engine_id id;
C
Chris Wilson 已提交
4351
	int ret;
4352

4353 4354
	dev_priv->gt.last_init_time = ktime_get();

4355 4356 4357
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4358
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4359
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4360

4361
	if (IS_HASWELL(dev_priv))
4362
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4363
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4364

4365
	if (HAS_PCH_NOP(dev_priv)) {
4366
		if (IS_IVYBRIDGE(dev_priv)) {
4367 4368 4369
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
4370
		} else if (INTEL_GEN(dev_priv) >= 7) {
4371 4372 4373 4374
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4375 4376
	}

4377
	i915_gem_init_swizzling(dev_priv);
4378

4379 4380 4381 4382 4383 4384
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4385
	init_unused_rings(dev_priv);
4386

4387
	BUG_ON(!dev_priv->kernel_context);
4388

4389
	ret = i915_ppgtt_init_hw(dev_priv);
4390 4391 4392 4393 4394 4395
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4396
	for_each_engine(engine, dev_priv, id) {
4397
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4398
		if (ret)
4399
			goto out;
D
Daniel Vetter 已提交
4400
	}
4401

4402
	intel_mocs_init_l3cc_table(dev_priv);
4403

4404
	/* We can't enable contexts until all firmware is loaded */
4405
	ret = intel_guc_setup(dev_priv);
4406 4407
	if (ret)
		goto out;
4408

4409 4410
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4411
	return ret;
4412 4413
}

4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

#ifdef CONFIG_INTEL_IOMMU
	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

4435
int i915_gem_init(struct drm_i915_private *dev_priv)
4436 4437 4438
{
	int ret;

4439
	mutex_lock(&dev_priv->drm.struct_mutex);
4440

4441
	if (!i915.enable_execlists) {
4442
		dev_priv->gt.resume = intel_legacy_submission_resume;
4443
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4444
	} else {
4445
		dev_priv->gt.resume = intel_lr_context_resume;
4446
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4447 4448
	}

4449 4450 4451 4452 4453 4454 4455 4456
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4457
	i915_gem_init_userptr(dev_priv);
4458 4459 4460 4461

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4462

4463
	ret = i915_gem_context_init(dev_priv);
4464 4465
	if (ret)
		goto out_unlock;
4466

4467
	ret = intel_engines_init(dev_priv);
D
Daniel Vetter 已提交
4468
	if (ret)
4469
		goto out_unlock;
4470

4471
	ret = i915_gem_init_hw(dev_priv);
4472
	if (ret == -EIO) {
4473
		/* Allow engine initialisation to fail by marking the GPU as
4474 4475 4476 4477
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4478
		i915_gem_set_wedged(dev_priv);
4479
		ret = 0;
4480
	}
4481 4482

out_unlock:
4483
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4484
	mutex_unlock(&dev_priv->drm.struct_mutex);
4485

4486
	return ret;
4487 4488
}

4489
void
4490
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4491
{
4492
	struct intel_engine_cs *engine;
4493
	enum intel_engine_id id;
4494

4495
	for_each_engine(engine, dev_priv, id)
4496
		dev_priv->gt.cleanup_engine(engine);
4497 4498
}

4499 4500 4501
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4502
	int i;
4503 4504 4505 4506

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
4507 4508 4509
	else if (INTEL_INFO(dev_priv)->gen >= 4 ||
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4510 4511 4512 4513
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4514
	if (intel_vgpu_active(dev_priv))
4515 4516 4517 4518
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
4519 4520 4521 4522 4523 4524 4525
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
4526
	i915_gem_restore_fences(dev_priv);
4527

4528
	i915_gem_detect_bit_6_swizzle(dev_priv);
4529 4530
}

4531
int
4532
i915_gem_load_init(struct drm_i915_private *dev_priv)
4533
{
4534
	int err = -ENOMEM;
4535

4536 4537
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
4538 4539
		goto err_out;

4540 4541
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
4542 4543
		goto err_objects;

4544 4545 4546 4547 4548
	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
					SLAB_DESTROY_BY_RCU);
	if (!dev_priv->requests)
4549 4550
		goto err_vmas;

4551 4552 4553 4554 4555 4556
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

4557 4558
	mutex_lock(&dev_priv->drm.struct_mutex);
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
4559
	err = i915_gem_timeline_init__global(dev_priv);
4560 4561
	mutex_unlock(&dev_priv->drm.struct_mutex);
	if (err)
4562
		goto err_dependencies;
4563

4564
	INIT_LIST_HEAD(&dev_priv->context_list);
4565 4566
	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
	init_llist_head(&dev_priv->mm.free_list);
C
Chris Wilson 已提交
4567 4568
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4569
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4570
	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4571
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4572
			  i915_gem_retire_work_handler);
4573
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4574
			  i915_gem_idle_work_handler);
4575
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4576
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4577

4578 4579
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4580
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4581

4582 4583
	dev_priv->mm.interruptible = true;

4584 4585
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

4586
	spin_lock_init(&dev_priv->fb_tracking.lock);
4587 4588 4589

	return 0;

4590 4591
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
4592 4593 4594 4595 4596 4597 4598 4599
err_requests:
	kmem_cache_destroy(dev_priv->requests);
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
4600
}
4601

4602
void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4603
{
4604 4605
	WARN_ON(!llist_empty(&dev_priv->mm.free_list));

4606 4607 4608 4609 4610
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
	WARN_ON(!list_empty(&dev_priv->gt.timelines));
	mutex_unlock(&dev_priv->drm.struct_mutex);

4611
	kmem_cache_destroy(dev_priv->dependencies);
4612 4613 4614
	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4615 4616 4617

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4618 4619
}

4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
	intel_runtime_pm_get(dev_priv);

	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink_all(dev_priv);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	intel_runtime_pm_put(dev_priv);

	return 0;
}

4633 4634 4635
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
4636 4637 4638 4639 4640
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
4641 4642 4643 4644 4645 4646 4647 4648 4649 4650

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
4651 4652 4653
	 *
	 * To try and reduce the hibernation image, we manually shrink
	 * the objects as well.
4654 4655
	 */

4656 4657
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4658

4659
	for (p = phases; *p; p++) {
4660
		list_for_each_entry(obj, *p, global_link) {
4661 4662 4663
			obj->base.read_domains = I915_GEM_DOMAIN_CPU;
			obj->base.write_domain = I915_GEM_DOMAIN_CPU;
		}
4664
	}
4665
	mutex_unlock(&dev_priv->drm.struct_mutex);
4666 4667 4668 4669

	return 0;
}

4670
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4671
{
4672
	struct drm_i915_file_private *file_priv = file->driver_priv;
4673
	struct drm_i915_gem_request *request;
4674 4675 4676 4677 4678

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4679
	spin_lock(&file_priv->mm.lock);
4680
	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4681
		request->file_priv = NULL;
4682
	spin_unlock(&file_priv->mm.lock);
4683

4684
	if (!list_empty(&file_priv->rps.link)) {
4685
		spin_lock(&to_i915(dev)->rps.client_lock);
4686
		list_del(&file_priv->rps.link);
4687
		spin_unlock(&to_i915(dev)->rps.client_lock);
4688
	}
4689 4690 4691 4692 4693
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4694
	int ret;
4695

4696
	DRM_DEBUG("\n");
4697 4698 4699 4700 4701 4702

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4703
	file_priv->dev_priv = to_i915(dev);
4704
	file_priv->file = file;
4705
	INIT_LIST_HEAD(&file_priv->rps.link);
4706 4707 4708 4709

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4710
	file_priv->bsd_engine = -1;
4711

4712 4713 4714
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4715

4716
	return ret;
4717 4718
}

4719 4720
/**
 * i915_gem_track_fb - update frontbuffer tracking
4721 4722 4723
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4724 4725 4726 4727
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4728 4729 4730 4731
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
4732 4733 4734 4735 4736 4737 4738 4739 4740
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

4741
	if (old) {
4742 4743
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4744 4745 4746
	}

	if (new) {
4747 4748
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4749 4750 4751
	}
}

4752 4753
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
4754
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
4755 4756 4757 4758 4759 4760 4761
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

4762
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
4763
	if (IS_ERR(obj))
4764 4765 4766 4767 4768 4769
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

C
Chris Wilson 已提交
4770
	ret = i915_gem_object_pin_pages(obj);
4771 4772 4773
	if (ret)
		goto fail;

C
Chris Wilson 已提交
4774
	sg = obj->mm.pages;
4775
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
C
Chris Wilson 已提交
4776
	obj->mm.dirty = true; /* Backing store is now out of date */
4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
4788
	i915_gem_object_put(obj);
4789 4790
	return ERR_PTR(ret);
}
4791 4792 4793 4794 4795 4796

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
4797
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
4798 4799 4800 4801 4802
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
4803
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
4928
	if (!obj->mm.dirty)
4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}