blk-mq.c 69.9 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22 23
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>
24
#include <linux/crash_dump.h>
25
#include <linux/prefetch.h>
26 27 28 29 30 31 32

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"
33
#include "blk-stat.h"
J
Jens Axboe 已提交
34
#include "blk-wbt.h"
35
#include "blk-mq-sched.h"
36 37 38 39 40 41 42

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
43
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
44
{
45 46 47
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
48 49
}

50 51 52 53 54 55
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
56 57
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
58 59 60 61 62
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
63
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
64 65
}

66
void blk_mq_freeze_queue_start(struct request_queue *q)
67
{
68
	int freeze_depth;
69

70 71
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
72
		percpu_ref_kill(&q->q_usage_counter);
73
		blk_mq_run_hw_queues(q, false);
74
	}
75
}
76
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
77

78
void blk_mq_freeze_queue_wait(struct request_queue *q)
79
{
80
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
81
}
82
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
83

84 85 86 87 88 89 90 91 92
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);

93 94 95 96
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
97
void blk_freeze_queue(struct request_queue *q)
98
{
99 100 101 102 103 104 105
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
106 107 108
	blk_mq_freeze_queue_start(q);
	blk_mq_freeze_queue_wait(q);
}
109 110 111 112 113 114 115 116 117

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
118
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
119

120
void blk_mq_unfreeze_queue(struct request_queue *q)
121
{
122
	int freeze_depth;
123

124 125 126
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
127
		percpu_ref_reinit(&q->q_usage_counter);
128
		wake_up_all(&q->mq_freeze_wq);
129
	}
130
}
131
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
132

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
/**
 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
 * callback function is invoked. Additionally, it is not prevented that
 * new queue_rq() calls occur unless the queue has been stopped first.
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

	blk_mq_stop_hw_queues(q);

	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
			synchronize_srcu(&hctx->queue_rq_srcu);
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

160 161 162 163 164 165 166 167
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
168 169 170 171 172 173 174

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
175 176
}

177 178 179 180 181 182
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

183 184
void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			struct request *rq, unsigned int op)
185
{
186 187 188
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
189
	rq->mq_ctx = ctx;
190
	rq->cmd_flags = op;
191 192
	if (blk_queue_io_stat(q))
		rq->rq_flags |= RQF_IO_STAT;
193 194 195 196 197 198
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
199
	rq->start_time = jiffies;
200 201
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
202
	set_start_time_ns(rq);
203 204 205 206 207 208 209 210 211 212 213 214
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
215 216
	rq->timeout = 0;

217 218 219 220
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

221
	ctx->rq_dispatched[op_is_sync(op)]++;
222
}
223
EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
224

225 226
struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
				       unsigned int op)
227 228 229 230
{
	struct request *rq;
	unsigned int tag;

231
	tag = blk_mq_get_tag(data);
232
	if (tag != BLK_MQ_TAG_FAIL) {
233 234 235
		struct blk_mq_tags *tags = blk_mq_tags_from_data(data);

		rq = tags->static_rqs[tag];
236

237 238 239 240
		if (data->flags & BLK_MQ_REQ_INTERNAL) {
			rq->tag = -1;
			rq->internal_tag = tag;
		} else {
241 242 243 244
			if (blk_mq_tag_busy(data->hctx)) {
				rq->rq_flags = RQF_MQ_INFLIGHT;
				atomic_inc(&data->hctx->nr_active);
			}
245 246
			rq->tag = tag;
			rq->internal_tag = -1;
247
			data->hctx->tags->rqs[rq->tag] = rq;
248 249
		}

250
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
251 252 253 254 255
		return rq;
	}

	return NULL;
}
256
EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
257

258 259
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
260
{
261
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
262
	struct request *rq;
263
	int ret;
264

265
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
266 267
	if (ret)
		return ERR_PTR(ret);
268

269
	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
270

271 272 273 274
	blk_mq_put_ctx(alloc_data.ctx);
	blk_queue_exit(q);

	if (!rq)
275
		return ERR_PTR(-EWOULDBLOCK);
276 277 278 279

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
280 281
	return rq;
}
282
EXPORT_SYMBOL(blk_mq_alloc_request);
283

M
Ming Lin 已提交
284 285 286
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
287
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
288
	struct request *rq;
289
	unsigned int cpu;
M
Ming Lin 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

308 309 310 311
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
312 313 314 315
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
M
Ming Lin 已提交
316
	}
317 318
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
319

320
	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
321

322
	blk_mq_put_ctx(alloc_data.ctx);
323
	blk_queue_exit(q);
324 325 326 327 328

	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
329 330 331
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

332 333
void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			     struct request *rq)
334
{
335
	const int sched_tag = rq->internal_tag;
336 337
	struct request_queue *q = rq->q;

338
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
339
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
340 341

	wbt_done(q->rq_wb, &rq->issue_stat);
342
	rq->rq_flags = 0;
343

344
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
345
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
346 347 348 349
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
		blk_mq_sched_completed_request(hctx, rq);
350
	blk_mq_sched_restart_queues(hctx);
351
	blk_queue_exit(q);
352 353
}

354
static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
355
				     struct request *rq)
356 357 358 359
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
360 361 362 363 364 365
	__blk_mq_finish_request(hctx, ctx, rq);
}

void blk_mq_finish_request(struct request *rq)
{
	blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
366 367 368 369
}

void blk_mq_free_request(struct request *rq)
{
370
	blk_mq_sched_put_request(rq);
371
}
J
Jens Axboe 已提交
372
EXPORT_SYMBOL_GPL(blk_mq_free_request);
373

374
inline void __blk_mq_end_request(struct request *rq, int error)
375
{
M
Ming Lei 已提交
376 377
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
378
	if (rq->end_io) {
J
Jens Axboe 已提交
379
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
380
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
381 382 383
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
384
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
385
	}
386
}
387
EXPORT_SYMBOL(__blk_mq_end_request);
388

389
void blk_mq_end_request(struct request *rq, int error)
390 391 392
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
393
	__blk_mq_end_request(rq, error);
394
}
395
EXPORT_SYMBOL(blk_mq_end_request);
396

397
static void __blk_mq_complete_request_remote(void *data)
398
{
399
	struct request *rq = data;
400

401
	rq->q->softirq_done_fn(rq);
402 403
}

404
static void blk_mq_ipi_complete_request(struct request *rq)
405 406
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
407
	bool shared = false;
408 409
	int cpu;

C
Christoph Hellwig 已提交
410
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
411 412 413
		rq->q->softirq_done_fn(rq);
		return;
	}
414 415

	cpu = get_cpu();
C
Christoph Hellwig 已提交
416 417 418 419
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
420
		rq->csd.func = __blk_mq_complete_request_remote;
421 422
		rq->csd.info = rq;
		rq->csd.flags = 0;
423
		smp_call_function_single_async(ctx->cpu, &rq->csd);
424
	} else {
425
		rq->q->softirq_done_fn(rq);
426
	}
427 428
	put_cpu();
}
429

430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
static void blk_mq_stat_add(struct request *rq)
{
	if (rq->rq_flags & RQF_STATS) {
		/*
		 * We could rq->mq_ctx here, but there's less of a risk
		 * of races if we have the completion event add the stats
		 * to the local software queue.
		 */
		struct blk_mq_ctx *ctx;

		ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
		blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
	}
}

445
static void __blk_mq_complete_request(struct request *rq)
446 447 448
{
	struct request_queue *q = rq->q;

449 450
	blk_mq_stat_add(rq);

451
	if (!q->softirq_done_fn)
452
		blk_mq_end_request(rq, rq->errors);
453 454 455 456
	else
		blk_mq_ipi_complete_request(rq);
}

457 458 459 460 461 462 463 464
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
465
void blk_mq_complete_request(struct request *rq, int error)
466
{
467 468 469
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
470
		return;
471 472
	if (!blk_mark_rq_complete(rq)) {
		rq->errors = error;
473
		__blk_mq_complete_request(rq);
474
	}
475 476
}
EXPORT_SYMBOL(blk_mq_complete_request);
477

478 479 480 481 482 483
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

484
void blk_mq_start_request(struct request *rq)
485 486 487
{
	struct request_queue *q = rq->q;

488 489
	blk_mq_sched_started_request(rq);

490 491
	trace_block_rq_issue(q, rq);

492 493 494
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
		blk_stat_set_issue_time(&rq->issue_stat);
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
495
		wbt_issue(q->rq_wb, &rq->issue_stat);
496 497
	}

498
	blk_add_timer(rq);
499

500 501 502 503 504 505
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

506 507 508 509 510 511
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
512 513 514 515
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
516 517 518 519 520 521 522 523 524

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
525
}
526
EXPORT_SYMBOL(blk_mq_start_request);
527

528
static void __blk_mq_requeue_request(struct request *rq)
529 530 531 532
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
533
	wbt_requeue(q->rq_wb, &rq->issue_stat);
534
	blk_mq_sched_requeue_request(rq);
535

536 537 538 539
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
540 541
}

542
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
543 544 545 546
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
547
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
548 549 550
}
EXPORT_SYMBOL(blk_mq_requeue_request);

551 552 553
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
554
		container_of(work, struct request_queue, requeue_work.work);
555 556 557 558 559 560 561 562 563
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
564
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
565 566
			continue;

567
		rq->rq_flags &= ~RQF_SOFTBARRIER;
568
		list_del_init(&rq->queuelist);
569
		blk_mq_sched_insert_request(rq, true, false, false, true);
570 571 572 573 574
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
575
		blk_mq_sched_insert_request(rq, false, false, false, true);
576 577
	}

578
	blk_mq_run_hw_queues(q, false);
579 580
}

581 582
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
583 584 585 586 587 588 589 590
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
591
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
592 593 594

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
595
		rq->rq_flags |= RQF_SOFTBARRIER;
596 597 598 599 600
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
601 602 603

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
604 605 606 607 608
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
609
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
610 611 612
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

613 614 615 616 617 618 619 620
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

641 642
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
643 644
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
645
		return tags->rqs[tag];
646
	}
647 648

	return NULL;
649 650 651
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

652
struct blk_mq_timeout_data {
653 654
	unsigned long next;
	unsigned int next_set;
655 656
};

657
void blk_mq_rq_timed_out(struct request *req, bool reserved)
658
{
J
Jens Axboe 已提交
659
	const struct blk_mq_ops *ops = req->q->mq_ops;
660
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
661 662 663 664 665 666 667 668 669 670

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
671 672
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
673

674
	if (ops->timeout)
675
		ret = ops->timeout(req, reserved);
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
691
}
692

693 694 695 696
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
697

698 699 700 701 702
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		/*
		 * If a request wasn't started before the queue was
		 * marked dying, kill it here or it'll go unnoticed.
		 */
703 704 705 706
		if (unlikely(blk_queue_dying(rq->q))) {
			rq->errors = -EIO;
			blk_mq_end_request(rq, rq->errors);
		}
707
		return;
708
	}
709

710 711
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
712
			blk_mq_rq_timed_out(rq, reserved);
713 714 715 716
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
717 718
}

719
static void blk_mq_timeout_work(struct work_struct *work)
720
{
721 722
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
723 724 725 726 727
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
728

729 730 731 732 733 734 735 736 737 738 739 740 741 742
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
	 * blk_mq_freeze_queue_start, and the moment the last request is
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
743 744
		return;

745
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
746

747 748 749
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
750
	} else {
751 752
		struct blk_mq_hw_ctx *hctx;

753 754 755 756 757
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
758
	}
759
	blk_queue_exit(q);
760 761 762 763 764 765 766 767 768 769 770 771 772 773
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
774
		bool merged = false;
775 776 777 778 779 780 781

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

782 783 784 785
		switch (blk_try_merge(rq, bio)) {
		case ELEVATOR_BACK_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_back_merge(q, rq, bio);
786
			break;
787 788 789
		case ELEVATOR_FRONT_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_front_merge(q, rq, bio);
790
			break;
791 792
		case ELEVATOR_DISCARD_MERGE:
			merged = bio_attempt_discard_merge(q, rq, bio);
793
			break;
794 795
		default:
			continue;
796
		}
797 798 799 800

		if (merged)
			ctx->rq_merged++;
		return merged;
801 802 803 804 805
	}

	return false;
}

806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

824 825 826 827
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
828
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
829
{
830 831 832 833
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
834

835
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
836
}
837
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
838

839 840 841 842
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
843

844
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
845 846
}

847 848
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
849 850 851 852 853 854 855 856 857 858 859 860 861 862
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

	if (rq->tag != -1) {
done:
		if (hctx)
			*hctx = data.hctx;
		return true;
	}

863 864 865
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

866 867
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
868 869 870 871
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
872 873 874 875 876 877 878
		data.hctx->tags->rqs[rq->tag] = rq;
		goto done;
	}

	return false;
}

879 880
static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				    struct request *rq)
881 882 883 884 885 886 887 888 889 890
{
	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	__blk_mq_put_driver_tag(hctx, rq);
}

static void blk_mq_put_driver_tag(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;

	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
	__blk_mq_put_driver_tag(hctx, rq);
}

911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
				void *key)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

	list_del(&wait->task_list);
	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
{
	struct sbq_wait_state *ws;

	/*
	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
	 * The thread which wins the race to grab this bit adds the hardware
	 * queue to the wait queue.
	 */
	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
		return false;

	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);

	/*
	 * As soon as this returns, it's no longer safe to fiddle with
	 * hctx->dispatch_wait, since a completion can wake up the wait queue
	 * and unlock the bit.
	 */
	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
	return true;
}

973
bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
974 975 976
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
977 978
	LIST_HEAD(driver_list);
	struct list_head *dptr;
979
	int queued, ret = BLK_MQ_RQ_QUEUE_OK;
980

981 982 983 984 985 986
	/*
	 * Start off with dptr being NULL, so we start the first request
	 * immediately, even if we have more pending.
	 */
	dptr = NULL;

987 988 989
	/*
	 * Now process all the entries, sending them to the driver.
	 */
990
	queued = 0;
991
	while (!list_empty(list)) {
992
		struct blk_mq_queue_data bd;
993

994
		rq = list_first_entry(list, struct request, queuelist);
995 996 997
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
998 999

			/*
1000 1001
			 * The initial allocation attempt failed, so we need to
			 * rerun the hardware queue when a tag is freed.
1002
			 */
1003 1004 1005 1006 1007 1008 1009 1010 1011
			if (blk_mq_dispatch_wait_add(hctx)) {
				/*
				 * It's possible that a tag was freed in the
				 * window between the allocation failure and
				 * adding the hardware queue to the wait queue.
				 */
				if (!blk_mq_get_driver_tag(rq, &hctx, false))
					break;
			} else {
1012
				break;
1013
			}
1014
		}
1015

1016 1017
		list_del_init(&rq->queuelist);

1018 1019
		bd.rq = rq;
		bd.list = dptr;
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			struct request *nxt;

			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1033 1034

		ret = q->mq_ops->queue_rq(hctx, &bd);
1035 1036 1037
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
1038
			break;
1039
		case BLK_MQ_RQ_QUEUE_BUSY:
1040
			blk_mq_put_driver_tag_hctx(hctx, rq);
1041
			list_add(&rq->queuelist, list);
1042
			__blk_mq_requeue_request(rq);
1043 1044 1045 1046
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
1047
			rq->errors = -EIO;
1048
			blk_mq_end_request(rq, rq->errors);
1049 1050 1051 1052 1053
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
1054 1055 1056 1057 1058

		/*
		 * We've done the first request. If we have more than 1
		 * left in the list, set dptr to defer issue.
		 */
1059
		if (!dptr && list->next != list->prev)
1060
			dptr = &driver_list;
1061 1062
	}

1063
	hctx->dispatched[queued_to_index(queued)]++;
1064 1065 1066 1067 1068

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1069
	if (!list_empty(list)) {
1070 1071 1072 1073 1074 1075 1076
		/*
		 * If we got a driver tag for the next request already,
		 * free it again.
		 */
		rq = list_first_entry(list, struct request, queuelist);
		blk_mq_put_driver_tag(rq);

1077
		spin_lock(&hctx->lock);
1078
		list_splice_init(list, &hctx->dispatch);
1079
		spin_unlock(&hctx->lock);
1080

1081 1082 1083 1084 1085 1086 1087 1088
		/*
		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
		 * it's possible the queue is stopped and restarted again
		 * before this. Queue restart will dispatch requests. And since
		 * requests in rq_list aren't added into hctx->dispatch yet,
		 * the requests in rq_list might get lost.
		 *
		 * blk_mq_run_hw_queue() already checks the STOPPED bit
1089
		 *
1090 1091
		 * If RESTART or TAG_WAITING is set, then let completion restart
		 * the queue instead of potentially looping here.
1092
		 */
1093 1094
		if (!blk_mq_sched_needs_restart(hctx) &&
		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1095
			blk_mq_run_hw_queue(hctx, true);
1096
	}
1097

1098
	return queued != 0;
1099 1100
}

1101 1102 1103 1104 1105 1106 1107 1108 1109
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1110
		blk_mq_sched_dispatch_requests(hctx);
1111 1112 1113
		rcu_read_unlock();
	} else {
		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1114
		blk_mq_sched_dispatch_requests(hctx);
1115 1116 1117 1118
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1119 1120 1121 1122 1123 1124 1125 1126
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1127 1128
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1129 1130

	if (--hctx->next_cpu_batch <= 0) {
1131
		int next_cpu;
1132 1133 1134 1135 1136 1137 1138 1139 1140

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1141
	return hctx->next_cpu;
1142 1143
}

1144 1145
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
1146 1147
	if (unlikely(blk_mq_hctx_stopped(hctx) ||
		     !blk_mq_hw_queue_mapped(hctx)))
1148 1149
		return;

1150
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1151 1152
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1153
			__blk_mq_run_hw_queue(hctx);
1154
			put_cpu();
1155 1156
			return;
		}
1157

1158
		put_cpu();
1159
	}
1160

1161
	kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
1162 1163
}

1164
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1165 1166 1167 1168 1169
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1170
		if (!blk_mq_hctx_has_pending(hctx) ||
1171
		    blk_mq_hctx_stopped(hctx))
1172 1173
			continue;

1174
		blk_mq_run_hw_queue(hctx, async);
1175 1176
	}
}
1177
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1178

1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1199 1200
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1201
	cancel_work(&hctx->run_work);
1202
	cancel_delayed_work(&hctx->delay_work);
1203 1204 1205 1206
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1217 1218 1219
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1220

1221
	blk_mq_run_hw_queue(hctx, false);
1222 1223 1224
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1245
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1246 1247 1248 1249
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1250 1251
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1252 1253 1254
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1255
static void blk_mq_run_work_fn(struct work_struct *work)
1256 1257 1258
{
	struct blk_mq_hw_ctx *hctx;

1259
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1260

1261 1262 1263
	__blk_mq_run_hw_queue(hctx);
}

1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1276 1277
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1278

1279
	blk_mq_stop_hw_queue(hctx);
1280 1281
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
1282 1283 1284
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1285 1286 1287
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1288
{
J
Jens Axboe 已提交
1289 1290
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1291 1292
	trace_block_rq_insert(hctx->queue, rq);

1293 1294 1295 1296
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1297
}
1298

1299 1300
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1301 1302 1303
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

J
Jens Axboe 已提交
1304
	__blk_mq_insert_req_list(hctx, rq, at_head);
1305 1306 1307
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1308 1309
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1321
		BUG_ON(rq->mq_ctx != ctx);
1322
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1323
		__blk_mq_insert_req_list(hctx, rq, false);
1324
	}
1325
	blk_mq_hctx_mark_pending(hctx, ctx);
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1362 1363 1364 1365
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1382 1383 1384
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1385 1386 1387 1388 1389 1390
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1391

1392
	blk_account_io_start(rq, true);
1393 1394
}

1395 1396 1397 1398 1399 1400
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1401 1402 1403
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1404
{
1405
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1406 1407 1408 1409 1410 1411 1412
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1413 1414
		struct request_queue *q = hctx->queue;

1415 1416 1417 1418 1419
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1420

1421
		spin_unlock(&ctx->lock);
1422
		__blk_mq_finish_request(hctx, ctx, rq);
1423
		return true;
1424
	}
1425
}
1426

1427 1428
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1429 1430 1431 1432
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1433 1434
}

1435
static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie)
1436 1437 1438 1439 1440 1441 1442
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
		.list = NULL,
		.last = 1
	};
1443 1444 1445
	struct blk_mq_hw_ctx *hctx;
	blk_qc_t new_cookie;
	int ret;
1446

1447
	if (q->elevator)
1448 1449
		goto insert;

1450 1451 1452 1453 1454
	if (!blk_mq_get_driver_tag(rq, &hctx, false))
		goto insert;

	new_cookie = request_to_qc_t(hctx, rq);

1455 1456 1457 1458 1459 1460
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1461 1462
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
1463
		return;
1464
	}
1465

1466 1467 1468 1469 1470 1471
	__blk_mq_requeue_request(rq);

	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
1472
		return;
1473
	}
1474

1475
insert:
1476
	blk_mq_sched_insert_request(rq, false, true, true, false);
1477 1478
}

1479 1480 1481 1482 1483
/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
1484
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1485
{
1486
	const int is_sync = op_is_sync(bio->bi_opf);
1487
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1488
	struct blk_mq_alloc_data data = { .flags = 0 };
1489
	struct request *rq;
1490
	unsigned int request_count = 0, srcu_idx;
1491
	struct blk_plug *plug;
1492
	struct request *same_queue_rq = NULL;
1493
	blk_qc_t cookie;
J
Jens Axboe 已提交
1494
	unsigned int wb_acct;
1495 1496 1497 1498

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1499
		bio_io_error(bio);
1500
		return BLK_QC_T_NONE;
1501 1502
	}

1503 1504
	blk_queue_split(q, &bio, q->bio_split);

1505 1506 1507
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1508

1509 1510 1511
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1512 1513
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1514 1515 1516
	trace_block_getrq(q, bio, bio->bi_opf);

	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1517 1518
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1519
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1520 1521 1522
	}

	wbt_track(&rq->issue_stat, wb_acct);
1523

1524
	cookie = request_to_qc_t(data.hctx, rq);
1525 1526

	if (unlikely(is_flush_fua)) {
1527 1528
		if (q->elevator)
			goto elv_insert;
1529 1530
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
1531
		goto run_queue;
1532 1533
	}

1534
	plug = current->plug;
1535 1536 1537 1538 1539
	/*
	 * If the driver supports defer issued based on 'last', then
	 * queue it up like normal since we can potentially save some
	 * CPU this way.
	 */
1540 1541 1542
	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
		struct request *old_rq = NULL;
1543 1544 1545 1546

		blk_mq_bio_to_request(rq, bio);

		/*
1547
		 * We do limited plugging. If the bio can be merged, do that.
1548 1549
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1550
		 */
1551
		if (plug) {
1552 1553
			/*
			 * The plug list might get flushed before this. If that
1554 1555 1556
			 * happens, same_queue_rq is invalid and plug list is
			 * empty
			 */
1557 1558
			if (same_queue_rq && !list_empty(&plug->mq_list)) {
				old_rq = same_queue_rq;
1559
				list_del_init(&old_rq->queuelist);
1560
			}
1561 1562 1563 1564 1565
			list_add_tail(&rq->queuelist, &plug->mq_list);
		} else /* is_sync */
			old_rq = rq;
		blk_mq_put_ctx(data.ctx);
		if (!old_rq)
1566
			goto done;
1567 1568 1569

		if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
			rcu_read_lock();
1570
			blk_mq_try_issue_directly(old_rq, &cookie);
1571 1572 1573
			rcu_read_unlock();
		} else {
			srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1574
			blk_mq_try_issue_directly(old_rq, &cookie);
1575 1576
			srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
		}
1577
		goto done;
1578 1579
	}

1580
	if (q->elevator) {
1581
elv_insert:
1582 1583
		blk_mq_put_ctx(data.ctx);
		blk_mq_bio_to_request(rq, bio);
1584
		blk_mq_sched_insert_request(rq, false, true,
1585
						!is_sync || is_flush_fua, true);
1586 1587
		goto done;
	}
1588 1589 1590 1591 1592 1593 1594
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
1595
run_queue:
1596 1597 1598
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
	blk_mq_put_ctx(data.ctx);
1599 1600
done:
	return cookie;
1601 1602 1603 1604 1605 1606
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
1607
static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1608
{
1609
	const int is_sync = op_is_sync(bio->bi_opf);
1610
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1611 1612
	struct blk_plug *plug;
	unsigned int request_count = 0;
1613
	struct blk_mq_alloc_data data = { .flags = 0 };
1614
	struct request *rq;
1615
	blk_qc_t cookie;
J
Jens Axboe 已提交
1616
	unsigned int wb_acct;
1617 1618 1619 1620

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1621
		bio_io_error(bio);
1622
		return BLK_QC_T_NONE;
1623 1624
	}

1625 1626
	blk_queue_split(q, &bio, q->bio_split);

1627 1628 1629 1630 1631
	if (!is_flush_fua && !blk_queue_nomerges(q)) {
		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
			return BLK_QC_T_NONE;
	} else
		request_count = blk_plug_queued_count(q);
1632

1633 1634 1635
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1636 1637
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1638 1639 1640
	trace_block_getrq(q, bio, bio->bi_opf);

	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1641 1642
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1643
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1644 1645 1646
	}

	wbt_track(&rq->issue_stat, wb_acct);
1647

1648
	cookie = request_to_qc_t(data.hctx, rq);
1649 1650

	if (unlikely(is_flush_fua)) {
1651 1652
		if (q->elevator)
			goto elv_insert;
1653 1654
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
1655
		goto run_queue;
1656 1657 1658 1659 1660 1661 1662
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
1663 1664
	plug = current->plug;
	if (plug) {
1665 1666
		struct request *last = NULL;

1667
		blk_mq_bio_to_request(rq, bio);
1668 1669 1670 1671 1672 1673 1674

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
M
Ming Lei 已提交
1675
		if (!request_count)
1676
			trace_block_plug(q);
1677 1678
		else
			last = list_entry_rq(plug->mq_list.prev);
1679 1680 1681

		blk_mq_put_ctx(data.ctx);

1682 1683
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1684 1685
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1686
		}
1687

1688
		list_add_tail(&rq->queuelist, &plug->mq_list);
1689
		return cookie;
1690 1691
	}

1692
	if (q->elevator) {
1693
elv_insert:
1694 1695
		blk_mq_put_ctx(data.ctx);
		blk_mq_bio_to_request(rq, bio);
1696
		blk_mq_sched_insert_request(rq, false, true,
1697
						!is_sync || is_flush_fua, true);
1698 1699
		goto done;
	}
1700 1701 1702 1703 1704 1705 1706
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
1707
run_queue:
1708
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1709 1710
	}

1711
	blk_mq_put_ctx(data.ctx);
1712
done:
1713
	return cookie;
1714 1715
}

1716 1717
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1718
{
1719
	struct page *page;
1720

1721
	if (tags->rqs && set->ops->exit_request) {
1722
		int i;
1723

1724
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1725 1726 1727
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1728
				continue;
J
Jens Axboe 已提交
1729
			set->ops->exit_request(set->driver_data, rq,
1730
						hctx_idx, i);
J
Jens Axboe 已提交
1731
			tags->static_rqs[i] = NULL;
1732
		}
1733 1734
	}

1735 1736
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1737
		list_del_init(&page->lru);
1738 1739 1740 1741 1742
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1743 1744
		__free_pages(page, page->private);
	}
1745
}
1746

1747 1748
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1749
	kfree(tags->rqs);
1750
	tags->rqs = NULL;
J
Jens Axboe 已提交
1751 1752
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1753

1754
	blk_mq_free_tags(tags);
1755 1756
}

1757 1758 1759 1760
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1761
{
1762
	struct blk_mq_tags *tags;
1763
	int node;
1764

1765 1766 1767 1768 1769
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1770
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1771 1772
	if (!tags)
		return NULL;
1773

1774
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1775
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1776
				 node);
1777 1778 1779 1780
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1781

J
Jens Axboe 已提交
1782 1783
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1784
				 node);
J
Jens Axboe 已提交
1785 1786 1787 1788 1789 1790
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1804 1805 1806 1807 1808
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1809 1810 1811

	INIT_LIST_HEAD(&tags->page_list);

1812 1813 1814 1815
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1816
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1817
				cache_line_size());
1818
	left = rq_size * depth;
1819

1820
	for (i = 0; i < depth; ) {
1821 1822 1823 1824 1825
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1826
		while (this_order && left < order_to_size(this_order - 1))
1827 1828 1829
			this_order--;

		do {
1830
			page = alloc_pages_node(node,
1831
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1832
				this_order);
1833 1834 1835 1836 1837 1838 1839 1840 1841
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1842
			goto fail;
1843 1844

		page->private = this_order;
1845
		list_add_tail(&page->lru, &tags->page_list);
1846 1847

		p = page_address(page);
1848 1849 1850 1851
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1852
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1853
		entries_per_page = order_to_size(this_order) / rq_size;
1854
		to_do = min(entries_per_page, depth - i);
1855 1856
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1857 1858 1859
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1860 1861
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
J
Jens Axboe 已提交
1862
						rq, hctx_idx, i,
1863
						node)) {
J
Jens Axboe 已提交
1864
					tags->static_rqs[i] = NULL;
1865
					goto fail;
1866
				}
1867 1868
			}

1869 1870 1871 1872
			p += rq_size;
			i++;
		}
	}
1873
	return 0;
1874

1875
fail:
1876 1877
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1878 1879
}

J
Jens Axboe 已提交
1880 1881 1882 1883 1884
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1885
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1886
{
1887
	struct blk_mq_hw_ctx *hctx;
1888 1889 1890
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1891
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1892
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1893 1894 1895 1896 1897 1898 1899 1900 1901

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1902
		return 0;
1903

J
Jens Axboe 已提交
1904 1905 1906
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1907 1908

	blk_mq_run_hw_queue(hctx, true);
1909
	return 0;
1910 1911
}

1912
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1913
{
1914 1915
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1916 1917
}

1918
/* hctx->ctxs will be freed in queue's release handler */
1919 1920 1921 1922
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1923 1924
	unsigned flush_start_tag = set->queue_depth;

1925 1926
	blk_mq_tag_idle(hctx);

1927 1928 1929 1930 1931
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1932 1933 1934
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1935 1936 1937
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		cleanup_srcu_struct(&hctx->queue_rq_srcu);

1938
	blk_mq_remove_cpuhp(hctx);
1939
	blk_free_flush_queue(hctx->fq);
1940
	sbitmap_free(&hctx->ctx_map);
1941 1942
}

M
Ming Lei 已提交
1943 1944 1945 1946 1947 1948 1949 1950 1951
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1952
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1953 1954 1955 1956 1957 1958 1959 1960 1961
	}
}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

1962
	queue_for_each_hw_ctx(q, hctx, i)
M
Ming Lei 已提交
1963 1964 1965
		free_cpumask_var(hctx->cpumask);
}

1966 1967 1968
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1969
{
1970
	int node;
1971
	unsigned flush_start_tag = set->queue_depth;
1972 1973 1974 1975 1976

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1977
	INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1978 1979 1980 1981 1982
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1983
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1984

1985
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1986 1987

	hctx->tags = set->tags[hctx_idx];
1988 1989

	/*
1990 1991
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1992
	 */
1993 1994 1995 1996
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1997

1998 1999
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
2000
		goto free_ctxs;
2001

2002
	hctx->nr_ctx = 0;
2003

2004 2005 2006
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
2007

2008 2009 2010
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;
2011

2012 2013 2014 2015 2016
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
2017

2018 2019 2020
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		init_srcu_struct(&hctx->queue_rq_srcu);

2021
	return 0;
2022

2023 2024 2025 2026 2027
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
2028
 free_bitmap:
2029
	sbitmap_free(&hctx->ctx_map);
2030 2031 2032
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
2033
	blk_mq_remove_cpuhp(hctx);
2034 2035
	return -1;
}
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;
2051 2052
		blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
		blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
2053 2054 2055 2056 2057

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

C
Christoph Hellwig 已提交
2058
		hctx = blk_mq_map_queue(q, i);
2059

2060 2061 2062 2063 2064
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2065
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2066 2067 2068
	}
}

2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2091 2092 2093 2094 2095
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2096 2097
}

2098 2099
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
2100
{
2101
	unsigned int i, hctx_idx;
2102 2103
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2104
	struct blk_mq_tag_set *set = q->tag_set;
2105

2106 2107 2108 2109 2110
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2111
	queue_for_each_hw_ctx(q, hctx, i) {
2112
		cpumask_clear(hctx->cpumask);
2113 2114 2115 2116 2117 2118
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
2119
	for_each_possible_cpu(i) {
2120
		/* If the cpu isn't online, the cpu is mapped to first hctx */
2121
		if (!cpumask_test_cpu(i, online_mask))
2122 2123
			continue;

2124 2125
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2126 2127
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2128 2129 2130 2131 2132 2133
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2134
			q->mq_map[i] = 0;
2135 2136
		}

2137
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2138
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2139

2140
		cpumask_set_cpu(i, hctx->cpumask);
2141 2142 2143
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2144

2145 2146
	mutex_unlock(&q->sysfs_lock);

2147
	queue_for_each_hw_ctx(q, hctx, i) {
2148
		/*
2149 2150
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2151 2152
		 */
		if (!hctx->nr_ctx) {
2153 2154 2155 2156
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2157 2158 2159
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2160
			hctx->tags = NULL;
2161 2162 2163
			continue;
		}

M
Ming Lei 已提交
2164 2165 2166
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2167 2168 2169 2170 2171
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2172
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2173

2174 2175 2176
		/*
		 * Initialize batch roundrobin counts
		 */
2177 2178 2179
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2180 2181
}

2182
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2183 2184 2185 2186
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
2198 2199 2200

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2201
		queue_set_hctx_shared(q, shared);
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
2212 2213 2214 2215 2216 2217
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2218 2219 2220 2221 2222 2223 2224 2225 2226
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2227 2228 2229 2230 2231 2232 2233 2234 2235

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2236
	list_add_tail(&q->tag_set_list, &set->tag_list);
2237

2238 2239 2240
	mutex_unlock(&set->tag_list_lock);
}

2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

2252 2253
	blk_mq_sched_teardown(q);

2254
	/* hctx kobj stays in hctx */
2255 2256 2257 2258
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
		kfree(hctx->ctxs);
2259
		kfree(hctx);
2260
	}
2261

2262 2263
	q->mq_map = NULL;

2264 2265 2266 2267 2268 2269
	kfree(q->queue_hw_ctx);

	/* ctx kobj stays in queue_ctx */
	free_percpu(q->queue_ctx);
}

2270
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
2286 2287
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2288
{
K
Keith Busch 已提交
2289 2290
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2291

K
Keith Busch 已提交
2292
	blk_mq_sysfs_unregister(q);
2293
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2294
		int node;
2295

K
Keith Busch 已提交
2296 2297 2298 2299
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2300 2301
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
2302
		if (!hctxs[i])
K
Keith Busch 已提交
2303
			break;
2304

2305
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2306 2307 2308 2309 2310
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2311

2312
		atomic_set(&hctxs[i]->nr_active, 0);
2313
		hctxs[i]->numa_node = node;
2314
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2315 2316 2317 2318 2319 2320 2321 2322

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2323
	}
K
Keith Busch 已提交
2324 2325 2326 2327
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2328 2329
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
			blk_mq_exit_hctx(q, set, hctx, j);
			free_cpumask_var(hctx->cpumask);
			kobject_put(&hctx->kobj);
			kfree(hctx->ctxs);
			kfree(hctx);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2346 2347 2348
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

K
Keith Busch 已提交
2349 2350
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2351
		goto err_exit;
K
Keith Busch 已提交
2352 2353 2354 2355 2356 2357

	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2358
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2359 2360 2361 2362

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2363

2364
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2365
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2366 2367 2368

	q->nr_queues = nr_cpu_ids;

2369
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2370

2371 2372 2373
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2374 2375
	q->sg_reserved_size = INT_MAX;

2376
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2377 2378 2379
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2380 2381 2382 2383 2384
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

2385 2386 2387 2388 2389
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2390 2391 2392 2393 2394
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2395 2396
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2397

2398
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2399

2400
	get_online_cpus();
2401 2402
	mutex_lock(&all_q_mutex);

2403
	list_add_tail(&q->all_q_node, &all_q_list);
2404
	blk_mq_add_queue_tag_set(set, q);
2405
	blk_mq_map_swqueue(q, cpu_online_mask);
2406

2407
	mutex_unlock(&all_q_mutex);
2408
	put_online_cpus();
2409

2410 2411 2412 2413 2414 2415 2416 2417
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2418
	return q;
2419

2420
err_hctxs:
K
Keith Busch 已提交
2421
	kfree(q->queue_hw_ctx);
2422
err_percpu:
K
Keith Busch 已提交
2423
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2424 2425
err_exit:
	q->mq_ops = NULL;
2426 2427
	return ERR_PTR(-ENOMEM);
}
2428
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2429 2430 2431

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2432
	struct blk_mq_tag_set	*set = q->tag_set;
2433

2434 2435 2436 2437
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

J
Jens Axboe 已提交
2438 2439
	wbt_exit(q);

2440 2441
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2442 2443
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
2444 2445 2446
}

/* Basically redo blk_mq_init_queue with queue frozen */
2447 2448
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2449
{
2450
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2451

2452 2453
	blk_mq_sysfs_unregister(q);

2454 2455 2456 2457 2458 2459
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2460
	blk_mq_map_swqueue(q, online_mask);
2461

2462
	blk_mq_sysfs_register(q);
2463 2464
}

2465 2466 2467 2468 2469 2470 2471 2472
/*
 * New online cpumask which is going to be set in this hotplug event.
 * Declare this cpumasks as global as cpu-hotplug operation is invoked
 * one-by-one and dynamically allocating this could result in a failure.
 */
static struct cpumask cpuhp_online_new;

static void blk_mq_queue_reinit_work(void)
2473 2474 2475 2476
{
	struct request_queue *q;

	mutex_lock(&all_q_mutex);
2477 2478 2479 2480 2481 2482 2483 2484 2485
	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_start(q);
2486
	list_for_each_entry(q, &all_q_list, all_q_node)
2487 2488
		blk_mq_freeze_queue_wait(q);

2489
	list_for_each_entry(q, &all_q_list, all_q_node)
2490
		blk_mq_queue_reinit(q, &cpuhp_online_new);
2491 2492 2493 2494

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2495
	mutex_unlock(&all_q_mutex);
2496 2497 2498 2499
}

static int blk_mq_queue_reinit_dead(unsigned int cpu)
{
2500
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
	blk_mq_queue_reinit_work();
	return 0;
}

/*
 * Before hotadded cpu starts handling requests, new mappings must be
 * established.  Otherwise, these requests in hw queue might never be
 * dispatched.
 *
 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
 * for CPU0, and ctx1 for CPU1).
 *
 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
 *
2516 2517 2518 2519
 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
 * ignored.
2520 2521 2522 2523 2524 2525 2526
 */
static int blk_mq_queue_reinit_prepare(unsigned int cpu)
{
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
	cpumask_set_cpu(cpu, &cpuhp_online_new);
	blk_mq_queue_reinit_work();
	return 0;
2527 2528
}

2529 2530 2531 2532
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2533 2534
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2535 2536 2537 2538 2539 2540
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2541
		blk_mq_free_rq_map(set->tags[i]);
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2581 2582 2583 2584 2585 2586
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2587 2588
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2589 2590
	int ret;

B
Bart Van Assche 已提交
2591 2592
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2593 2594
	if (!set->nr_hw_queues)
		return -EINVAL;
2595
	if (!set->queue_depth)
2596 2597 2598 2599
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2600
	if (!set->ops->queue_rq)
2601 2602
		return -EINVAL;

2603 2604 2605 2606 2607
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2608

2609 2610 2611 2612 2613 2614 2615 2616 2617
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2618 2619 2620 2621 2622
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2623

K
Keith Busch 已提交
2624
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2625 2626
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2627
		return -ENOMEM;
2628

2629 2630 2631
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2632 2633 2634
	if (!set->mq_map)
		goto out_free_tags;

2635 2636 2637 2638 2639 2640 2641 2642 2643
	if (set->ops->map_queues)
		ret = set->ops->map_queues(set);
	else
		ret = blk_mq_map_queues(set);
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2644
		goto out_free_mq_map;
2645

2646 2647 2648
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2649
	return 0;
2650 2651 2652 2653 2654

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2655 2656
	kfree(set->tags);
	set->tags = NULL;
2657
	return ret;
2658 2659 2660 2661 2662 2663 2664
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2665 2666
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2667

2668 2669 2670
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2671
	kfree(set->tags);
2672
	set->tags = NULL;
2673 2674 2675
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2676 2677 2678 2679 2680 2681
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2682
	if (!set)
2683 2684
		return -EINVAL;

2685 2686 2687
	blk_mq_freeze_queue(q);
	blk_mq_quiesce_queue(q);

2688 2689
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2690 2691
		if (!hctx->tags)
			continue;
2692 2693 2694 2695
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2696 2697 2698 2699 2700 2701 2702 2703
		if (!hctx->sched_tags) {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
							min(nr, set->queue_depth),
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2704 2705 2706 2707 2708 2709 2710
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2711 2712 2713
	blk_mq_unfreeze_queue(q);
	blk_mq_start_stopped_hw_queues(q, true);

2714 2715 2716
	return ret;
}

K
Keith Busch 已提交
2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	struct request_queue *q;

	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);

2733 2734 2735 2736
		/*
		 * Manually set the make_request_fn as blk_queue_make_request
		 * resets a lot of the queue settings.
		 */
K
Keith Busch 已提交
2737
		if (q->nr_hw_queues > 1)
2738
			q->make_request_fn = blk_mq_make_request;
K
Keith Busch 已提交
2739
		else
2740
			q->make_request_fn = blk_sq_make_request;
K
Keith Busch 已提交
2741 2742 2743 2744 2745 2746 2747 2748 2749

		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	struct blk_rq_stat stat[2];
	unsigned long ret = 0;

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
	if (!blk_stat_enable(q))
		return 0;

	/*
	 * We don't have to do this once per IO, should optimize this
	 * to just use the current window of stats until it changes
	 */
	memset(&stat, 0, sizeof(stat));
	blk_hctx_stat_get(hctx, stat);

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
	 * than ~10 usec.
	 */
	if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
		ret = (stat[BLK_STAT_READ].mean + 1) / 2;
	else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
		ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;

	return ret;
}

2787
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2788
				     struct blk_mq_hw_ctx *hctx,
2789 2790 2791 2792
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2793
	unsigned int nsecs;
2794 2795
	ktime_t kt;

2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2814 2815 2816 2817 2818 2819 2820 2821
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2822
	kt = nsecs;
2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2845 2846 2847 2848 2849
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2850 2851 2852 2853 2854 2855 2856
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2857
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2858 2859
		return true;

J
Jens Axboe 已提交
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2903 2904 2905 2906
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
	else
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
J
Jens Axboe 已提交
2907 2908 2909 2910 2911

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2922 2923
static int __init blk_mq_init(void)
{
2924 2925
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2926

2927 2928 2929
	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
				  blk_mq_queue_reinit_prepare,
				  blk_mq_queue_reinit_dead);
2930 2931 2932
	return 0;
}
subsys_initcall(blk_mq_init);