intel_pstate.c 65.8 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

J
Joe Perches 已提交
13 14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

15 16 17 18 19 20 21
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
22
#include <linux/sched/cpufreq.h>
23 24 25 26 27 28
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
29
#include <linux/acpi.h>
30
#include <linux/vmalloc.h>
31 32 33 34 35
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
36
#include <asm/cpufeature.h>
37
#include <asm/intel-family.h>
38

39
#define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
40

41
#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
42
#define INTEL_CPUFREQ_TRANSITION_DELAY		500
43

44 45
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
46
#include <acpi/cppc_acpi.h>
47 48
#endif

49
#define FRAC_BITS 8
50 51
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
52

53 54
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55 56
#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
57

58 59 60 61 62
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

63
static inline int32_t div_fp(s64 x, s64 y)
64
{
65
	return div64_s64((int64_t)x << FRAC_BITS, y);
66 67
}

68 69 70 71 72 73 74 75 76 77 78
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

79 80 81 82 83
static inline int32_t percent_fp(int percent)
{
	return div_fp(percent, 100);
}

84 85 86 87 88 89 90 91 92 93
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

94 95 96 97 98
static inline int32_t percent_ext_fp(int percent)
{
	return div_ext_fp(percent, 100);
}

99 100
/**
 * struct sample -	Store performance sample
101
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
102 103
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
104
 *			P state. This can be different than core_avg_perf
105 106 107 108 109 110 111 112 113 114 115 116
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
117
struct sample {
118
	int32_t core_avg_perf;
119
	int32_t busy_scaled;
120 121
	u64 aperf;
	u64 mperf;
122
	u64 tsc;
123
	u64 time;
124 125
};

126 127 128 129 130 131 132 133 134 135 136
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
137 138
 * @max_freq:		@max_pstate frequency in cpufreq units
 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
139 140 141
 *
 * Stores the per cpu model P state limits and current P state.
 */
142 143 144 145
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
146
	int	max_pstate_physical;
147
	int	scaling;
148
	int	turbo_pstate;
149 150
	unsigned int max_freq;
	unsigned int turbo_freq;
151 152
};

153 154 155 156 157 158 159 160 161 162 163 164 165
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
166
struct vid_data {
167 168 169
	int min;
	int max;
	int turbo;
170 171 172
	int32_t ratio;
};

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
/**
 * struct global_params - Global parameters, mostly tunable via sysfs.
 * @no_turbo:		Whether or not to use turbo P-states.
 * @turbo_disabled:	Whethet or not turbo P-states are available at all,
 *			based on the MSR_IA32_MISC_ENABLE value and whether or
 *			not the maximum reported turbo P-state is different from
 *			the maximum reported non-turbo one.
 * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 */
struct global_params {
	bool no_turbo;
	bool turbo_disabled;
	int max_perf_pct;
	int min_perf_pct;
190 191
};

192 193 194
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
195
 * @policy:		CPUFreq policy value
196
 * @update_util:	CPUFreq utility callback information
197
 * @update_util_set:	CPUFreq utility callback is set
198 199
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
200 201 202
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @last_sample_time:	Last Sample time
203 204 205
 * @aperf_mperf_shift:	Number of clock cycles after aperf, merf is incremented
 *			This shift is a multiplier to mperf delta to
 *			calculate CPU busy.
206 207 208 209 210 211
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
212 213
 * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
 * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
214 215
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
216 217 218
 * @epp_powersave:	Last saved HWP energy performance preference
 *			(EPP) or energy performance bias (EPB),
 *			when policy switched to performance
219
 * @epp_policy:		Last saved policy used to set EPP/EPB
220 221 222 223
 * @epp_default:	Power on default HWP energy performance
 *			preference/bias
 * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
 *			operation
224 225
 * @hwp_req_cached:	Cached value of the last HWP Request MSR
 * @hwp_cap_cached:	Cached value of the last HWP Capabilities MSR
226 227
 * @last_io_update:	Last time when IO wake flag was set
 * @sched_flags:	Store scheduler flags for possible cross CPU update
228
 * @hwp_boost_min:	Last HWP boosted min performance
229 230 231
 *
 * This structure stores per CPU instance data for all CPUs.
 */
232 233 234
struct cpudata {
	int cpu;

235
	unsigned int policy;
236
	struct update_util_data update_util;
237
	bool   update_util_set;
238 239

	struct pstate_data pstate;
240
	struct vid_data vid;
241

242
	u64	last_update;
243
	u64	last_sample_time;
244
	u64	aperf_mperf_shift;
245 246
	u64	prev_aperf;
	u64	prev_mperf;
247
	u64	prev_tsc;
248
	u64	prev_cummulative_iowait;
249
	struct sample sample;
250 251
	int32_t	min_perf_ratio;
	int32_t	max_perf_ratio;
252 253 254 255
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
256
	unsigned int iowait_boost;
257
	s16 epp_powersave;
258
	s16 epp_policy;
259 260
	s16 epp_default;
	s16 epp_saved;
261 262
	u64 hwp_req_cached;
	u64 hwp_cap_cached;
263 264
	u64 last_io_update;
	unsigned int sched_flags;
265
	u32 hwp_boost_min;
266 267 268
};

static struct cpudata **all_cpu_data;
269 270 271 272 273 274 275 276 277 278 279 280 281 282

/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
283 284
struct pstate_funcs {
	int (*get_max)(void);
285
	int (*get_max_physical)(void);
286 287
	int (*get_min)(void);
	int (*get_turbo)(void);
288
	int (*get_scaling)(void);
289
	int (*get_aperf_mperf_shift)(void);
290
	u64 (*get_val)(struct cpudata*, int pstate);
291
	void (*get_vid)(struct cpudata *);
292 293
};

294
static struct pstate_funcs pstate_funcs __read_mostly;
295

296
static int hwp_active __read_mostly;
297
static int hwp_mode_bdw __read_mostly;
298
static bool per_cpu_limits __read_mostly;
299
static bool hwp_boost __read_mostly;
300

301
static struct cpufreq_driver *intel_pstate_driver __read_mostly;
302

303 304 305
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
306

307
static struct global_params global;
308

309
static DEFINE_MUTEX(intel_pstate_driver_lock);
310 311
static DEFINE_MUTEX(intel_pstate_limits_lock);

312
#ifdef CONFIG_ACPI
313

314
static bool intel_pstate_acpi_pm_profile_server(void)
315 316 317 318 319
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

320 321 322 323 324 325 326 327
	return false;
}

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (intel_pstate_acpi_pm_profile_server())
		return true;

328 329 330
	return acpi_ppc;
}

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
#ifdef CONFIG_ACPI_CPPC_LIB

/* The work item is needed to avoid CPU hotplug locking issues */
static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
{
	sched_set_itmt_support();
}

static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);

static void intel_pstate_set_itmt_prio(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return;

	/*
	 * The priorities can be set regardless of whether or not
	 * sched_set_itmt_support(true) has been called and it is valid to
	 * update them at any time after it has been called.
	 */
	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);

	if (max_highest_perf <= min_highest_perf) {
		if (cppc_perf.highest_perf > max_highest_perf)
			max_highest_perf = cppc_perf.highest_perf;

		if (cppc_perf.highest_perf < min_highest_perf)
			min_highest_perf = cppc_perf.highest_perf;

		if (max_highest_perf > min_highest_perf) {
			/*
			 * This code can be run during CPU online under the
			 * CPU hotplug locks, so sched_set_itmt_support()
			 * cannot be called from here.  Queue up a work item
			 * to invoke it.
			 */
			schedule_work(&sched_itmt_work);
		}
	}
}
#else
static void intel_pstate_set_itmt_prio(int cpu)
{
}
#endif

382 383 384 385 386 387
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

388 389
	if (hwp_active) {
		intel_pstate_set_itmt_prio(policy->cpu);
390
		return;
391
	}
392

393
	if (!intel_pstate_get_ppc_enable_status())
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
436
	 * correct max turbo frequency based on the turbo state.
437 438
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
439
	if (!global.turbo_disabled)
440 441 442
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
443
	pr_debug("_PPC limits will be enforced\n");
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}
#else
463
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
464 465 466
{
}

467
static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
468 469
{
}
470 471 472 473 474

static inline bool intel_pstate_acpi_pm_profile_server(void)
{
	return false;
}
475 476
#endif

477 478 479 480 481 482 483
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
484
	global.turbo_disabled =
485 486 487 488
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

489 490 491
static int min_perf_pct_min(void)
{
	struct cpudata *cpu = all_cpu_data[0];
492
	int turbo_pstate = cpu->pstate.turbo_pstate;
493

494
	return turbo_pstate ?
495
		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
496 497
}

498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
{
	u64 epb;
	int ret;

	if (!static_cpu_has(X86_FEATURE_EPB))
		return -ENXIO;

	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return (s16)ret;

	return (s16)(epb & 0x0f);
}

static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
{
	s16 epp;

517 518 519 520 521 522 523 524 525 526 527
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * When hwp_req_data is 0, means that caller didn't read
		 * MSR_HWP_REQUEST, so need to read and get EPP.
		 */
		if (!hwp_req_data) {
			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
					    &hwp_req_data);
			if (epp)
				return epp;
		}
528
		epp = (hwp_req_data >> 24) & 0xff;
529
	} else {
530 531
		/* When there is no EPP present, HWP uses EPB settings */
		epp = intel_pstate_get_epb(cpu_data);
532
	}
533 534 535 536

	return epp;
}

537
static int intel_pstate_set_epb(int cpu, s16 pref)
538 539
{
	u64 epb;
540
	int ret;
541 542

	if (!static_cpu_has(X86_FEATURE_EPB))
543
		return -ENXIO;
544

545 546 547
	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return ret;
548 549 550

	epb = (epb & ~0x0f) | pref;
	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
551 552

	return 0;
553 554
}

555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
/*
 * EPP/EPB display strings corresponding to EPP index in the
 * energy_perf_strings[]
 *	index		String
 *-------------------------------------
 *	0		default
 *	1		performance
 *	2		balance_performance
 *	3		balance_power
 *	4		power
 */
static const char * const energy_perf_strings[] = {
	"default",
	"performance",
	"balance_performance",
	"balance_power",
	"power",
	NULL
};
574 575 576 577 578 579
static const unsigned int epp_values[] = {
	HWP_EPP_PERFORMANCE,
	HWP_EPP_BALANCE_PERFORMANCE,
	HWP_EPP_BALANCE_POWERSAVE,
	HWP_EPP_POWERSAVE
};
580 581 582 583 584 585 586 587 588 589 590

static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
{
	s16 epp;
	int index = -EINVAL;

	epp = intel_pstate_get_epp(cpu_data, 0);
	if (epp < 0)
		return epp;

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
591 592 593 594 595 596 597 598
		if (epp == HWP_EPP_PERFORMANCE)
			return 1;
		if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
			return 2;
		if (epp <= HWP_EPP_BALANCE_POWERSAVE)
			return 3;
		else
			return 4;
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
	} else if (static_cpu_has(X86_FEATURE_EPB)) {
		/*
		 * Range:
		 *	0x00-0x03	:	Performance
		 *	0x04-0x07	:	Balance performance
		 *	0x08-0x0B	:	Balance power
		 *	0x0C-0x0F	:	Power
		 * The EPB is a 4 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 2) + 1;
	}

	return index;
}

static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
					      int pref_index)
{
	int epp = -EINVAL;
	int ret;

	if (!pref_index)
		epp = cpu_data->epp_default;

	mutex_lock(&intel_pstate_limits_lock);

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		u64 value;

		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
		if (ret)
			goto return_pref;

		value &= ~GENMASK_ULL(31, 24);

		if (epp == -EINVAL)
637
			epp = epp_values[pref_index - 1];
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672

		value |= (u64)epp << 24;
		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
	} else {
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 2;
		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
	}
return_pref:
	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
}

static ssize_t show_energy_performance_available_preferences(
				struct cpufreq_policy *policy, char *buf)
{
	int i = 0;
	int ret = 0;

	while (energy_perf_strings[i] != NULL)
		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);

	ret += sprintf(&buf[ret], "\n");

	return ret;
}

cpufreq_freq_attr_ro(energy_performance_available_preferences);

static ssize_t store_energy_performance_preference(
		struct cpufreq_policy *policy, const char *buf, size_t count)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	char str_preference[21];
673
	int ret;
674 675 676 677 678

	ret = sscanf(buf, "%20s", str_preference);
	if (ret != 1)
		return -EINVAL;

679 680 681
	ret = match_string(energy_perf_strings, -1, str_preference);
	if (ret < 0)
		return ret;
682

683 684
	intel_pstate_set_energy_pref_index(cpu_data, ret);
	return count;
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
}

static ssize_t show_energy_performance_preference(
				struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	int preference;

	preference = intel_pstate_get_energy_pref_index(cpu_data);
	if (preference < 0)
		return preference;

	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
}

cpufreq_freq_attr_rw(energy_performance_preference);

static struct freq_attr *hwp_cpufreq_attrs[] = {
	&energy_performance_preference,
	&energy_performance_available_preferences,
	NULL,
};

708 709
static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
				     int *current_max)
D
Dirk Brandewie 已提交
710
{
711
	u64 cap;
712

713
	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
714
	WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
715
	if (global.no_turbo)
716
		*current_max = HWP_GUARANTEED_PERF(cap);
717
	else
718 719 720 721 722 723 724 725 726 727 728 729 730 731
		*current_max = HWP_HIGHEST_PERF(cap);

	*phy_max = HWP_HIGHEST_PERF(cap);
}

static void intel_pstate_hwp_set(unsigned int cpu)
{
	struct cpudata *cpu_data = all_cpu_data[cpu];
	int max, min;
	u64 value;
	s16 epp;

	max = cpu_data->max_perf_ratio;
	min = cpu_data->min_perf_ratio;
732

733 734
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
		min = max;
735

736
	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
D
Dirk Brandewie 已提交
737

738 739
	value &= ~HWP_MIN_PERF(~0L);
	value |= HWP_MIN_PERF(min);
740

741 742
	value &= ~HWP_MAX_PERF(~0L);
	value |= HWP_MAX_PERF(max);
743

744 745
	if (cpu_data->epp_policy == cpu_data->policy)
		goto skip_epp;
746

747
	cpu_data->epp_policy = cpu_data->policy;
748

749 750 751 752 753
	if (cpu_data->epp_saved >= 0) {
		epp = cpu_data->epp_saved;
		cpu_data->epp_saved = -EINVAL;
		goto update_epp;
	}
754

755 756 757 758 759 760
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
		epp = intel_pstate_get_epp(cpu_data, value);
		cpu_data->epp_powersave = epp;
		/* If EPP read was failed, then don't try to write */
		if (epp < 0)
			goto skip_epp;
761

762 763 764 765 766
		epp = 0;
	} else {
		/* skip setting EPP, when saved value is invalid */
		if (cpu_data->epp_powersave < 0)
			goto skip_epp;
767

768 769 770 771 772 773 774 775 776 777
		/*
		 * No need to restore EPP when it is not zero. This
		 * means:
		 *  - Policy is not changed
		 *  - user has manually changed
		 *  - Error reading EPB
		 */
		epp = intel_pstate_get_epp(cpu_data, value);
		if (epp)
			goto skip_epp;
778

779 780
		epp = cpu_data->epp_powersave;
	}
781
update_epp:
782 783 784 785 786
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		value &= ~GENMASK_ULL(31, 24);
		value |= (u64)epp << 24;
	} else {
		intel_pstate_set_epb(cpu, epp);
D
Dirk Brandewie 已提交
787
	}
788
skip_epp:
789
	WRITE_ONCE(cpu_data->hwp_req_cached, value);
790
	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
791
}
D
Dirk Brandewie 已提交
792

793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
static void intel_pstate_hwp_force_min_perf(int cpu)
{
	u64 value;
	int min_perf;

	value = all_cpu_data[cpu]->hwp_req_cached;
	value &= ~GENMASK_ULL(31, 0);
	min_perf = HWP_LOWEST_PERF(all_cpu_data[cpu]->hwp_cap_cached);

	/* Set hwp_max = hwp_min */
	value |= HWP_MAX_PERF(min_perf);
	value |= HWP_MIN_PERF(min_perf);

	/* Set EPP/EPB to min */
	if (static_cpu_has(X86_FEATURE_HWP_EPP))
		value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
	else
		intel_pstate_set_epb(cpu, HWP_EPP_BALANCE_POWERSAVE);

	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
}

815 816 817 818 819 820 821 822 823 824 825 826
static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];

	if (!hwp_active)
		return 0;

	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);

	return 0;
}

827 828
static void intel_pstate_hwp_enable(struct cpudata *cpudata);

829 830 831 832 833
static int intel_pstate_resume(struct cpufreq_policy *policy)
{
	if (!hwp_active)
		return 0;

834 835
	mutex_lock(&intel_pstate_limits_lock);

836 837 838
	if (policy->cpu == 0)
		intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);

839
	all_cpu_data[policy->cpu]->epp_policy = 0;
840
	intel_pstate_hwp_set(policy->cpu);
841 842 843

	mutex_unlock(&intel_pstate_limits_lock);

844
	return 0;
845 846
}

847
static void intel_pstate_update_policies(void)
848
{
849 850 851 852
	int cpu;

	for_each_possible_cpu(cpu)
		cpufreq_update_policy(cpu);
D
Dirk Brandewie 已提交
853 854
}

855 856 857
/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
858
	(struct kobject *kobj, struct kobj_attribute *attr, char *buf)	\
859
	{								\
860
		return sprintf(buf, "%u\n", global.object);		\
861 862
	}

863 864 865 866
static ssize_t intel_pstate_show_status(char *buf);
static int intel_pstate_update_status(const char *buf, size_t size);

static ssize_t show_status(struct kobject *kobj,
867
			   struct kobj_attribute *attr, char *buf)
868 869 870 871 872 873 874 875 876 877
{
	ssize_t ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_show_status(buf);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret;
}

878
static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
879 880 881 882 883 884 885 886 887 888 889 890
			    const char *buf, size_t count)
{
	char *p = memchr(buf, '\n', count);
	int ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_update_status(buf, p ? p - buf : count);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret < 0 ? ret : count;
}

891
static ssize_t show_turbo_pct(struct kobject *kobj,
892
				struct kobj_attribute *attr, char *buf)
893 894 895 896 897
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

898 899
	mutex_lock(&intel_pstate_driver_lock);

900
	if (!intel_pstate_driver) {
901 902 903 904
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

905 906 907 908
	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
909
	turbo_fp = div_fp(no_turbo, total);
910
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
911 912 913

	mutex_unlock(&intel_pstate_driver_lock);

914 915 916
	return sprintf(buf, "%u\n", turbo_pct);
}

917
static ssize_t show_num_pstates(struct kobject *kobj,
918
				struct kobj_attribute *attr, char *buf)
919 920 921 922
{
	struct cpudata *cpu;
	int total;

923 924
	mutex_lock(&intel_pstate_driver_lock);

925
	if (!intel_pstate_driver) {
926 927 928 929
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

930 931
	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
932 933 934

	mutex_unlock(&intel_pstate_driver_lock);

935 936 937
	return sprintf(buf, "%u\n", total);
}

938
static ssize_t show_no_turbo(struct kobject *kobj,
939
			     struct kobj_attribute *attr, char *buf)
940 941 942
{
	ssize_t ret;

943 944
	mutex_lock(&intel_pstate_driver_lock);

945
	if (!intel_pstate_driver) {
946 947 948 949
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

950
	update_turbo_state();
951 952
	if (global.turbo_disabled)
		ret = sprintf(buf, "%u\n", global.turbo_disabled);
953
	else
954
		ret = sprintf(buf, "%u\n", global.no_turbo);
955

956 957
	mutex_unlock(&intel_pstate_driver_lock);

958 959 960
	return ret;
}

961
static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
962
			      const char *buf, size_t count)
963 964 965
{
	unsigned int input;
	int ret;
966

967 968 969
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
970

971 972
	mutex_lock(&intel_pstate_driver_lock);

973
	if (!intel_pstate_driver) {
974 975 976 977
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

978 979
	mutex_lock(&intel_pstate_limits_lock);

980
	update_turbo_state();
981
	if (global.turbo_disabled) {
J
Joe Perches 已提交
982
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
983
		mutex_unlock(&intel_pstate_limits_lock);
984
		mutex_unlock(&intel_pstate_driver_lock);
985
		return -EPERM;
986
	}
D
Dirk Brandewie 已提交
987

988
	global.no_turbo = clamp_t(int, input, 0, 1);
989

990 991 992 993 994 995 996 997 998
	if (global.no_turbo) {
		struct cpudata *cpu = all_cpu_data[0];
		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;

		/* Squash the global minimum into the permitted range. */
		if (global.min_perf_pct > pct)
			global.min_perf_pct = pct;
	}

999 1000
	mutex_unlock(&intel_pstate_limits_lock);

1001 1002
	intel_pstate_update_policies();

1003 1004
	mutex_unlock(&intel_pstate_driver_lock);

1005 1006 1007
	return count;
}

1008
static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1009
				  const char *buf, size_t count)
1010 1011 1012
{
	unsigned int input;
	int ret;
1013

1014 1015 1016 1017
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

1018 1019
	mutex_lock(&intel_pstate_driver_lock);

1020
	if (!intel_pstate_driver) {
1021 1022 1023 1024
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1025 1026
	mutex_lock(&intel_pstate_limits_lock);

1027
	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1028

1029 1030
	mutex_unlock(&intel_pstate_limits_lock);

1031 1032
	intel_pstate_update_policies();

1033 1034
	mutex_unlock(&intel_pstate_driver_lock);

1035 1036 1037
	return count;
}

1038
static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1039
				  const char *buf, size_t count)
1040 1041 1042
{
	unsigned int input;
	int ret;
1043

1044 1045 1046
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1047

1048 1049
	mutex_lock(&intel_pstate_driver_lock);

1050
	if (!intel_pstate_driver) {
1051 1052 1053 1054
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1055 1056
	mutex_lock(&intel_pstate_limits_lock);

1057 1058
	global.min_perf_pct = clamp_t(int, input,
				      min_perf_pct_min(), global.max_perf_pct);
1059

1060 1061
	mutex_unlock(&intel_pstate_limits_lock);

1062 1063
	intel_pstate_update_policies();

1064 1065
	mutex_unlock(&intel_pstate_driver_lock);

1066 1067 1068
	return count;
}

1069
static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1070
				struct kobj_attribute *attr, char *buf)
1071 1072 1073 1074
{
	return sprintf(buf, "%u\n", hwp_boost);
}

1075 1076
static ssize_t store_hwp_dynamic_boost(struct kobject *a,
				       struct kobj_attribute *b,
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
				       const char *buf, size_t count)
{
	unsigned int input;
	int ret;

	ret = kstrtouint(buf, 10, &input);
	if (ret)
		return ret;

	mutex_lock(&intel_pstate_driver_lock);
	hwp_boost = !!input;
	intel_pstate_update_policies();
	mutex_unlock(&intel_pstate_driver_lock);

	return count;
}

1094 1095 1096
show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

1097
define_one_global_rw(status);
1098 1099 1100
define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
1101
define_one_global_ro(turbo_pct);
1102
define_one_global_ro(num_pstates);
1103
define_one_global_rw(hwp_dynamic_boost);
1104 1105

static struct attribute *intel_pstate_attributes[] = {
1106
	&status.attr,
1107
	&no_turbo.attr,
1108
	&turbo_pct.attr,
1109
	&num_pstates.attr,
1110 1111 1112
	NULL
};

1113
static const struct attribute_group intel_pstate_attr_group = {
1114 1115 1116
	.attrs = intel_pstate_attributes,
};

1117
static void __init intel_pstate_sysfs_expose_params(void)
1118
{
1119
	struct kobject *intel_pstate_kobject;
1120 1121 1122 1123
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
1124 1125 1126
	if (WARN_ON(!intel_pstate_kobject))
		return;

1127
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
	if (WARN_ON(rc))
		return;

	/*
	 * If per cpu limits are enforced there are no global limits, so
	 * return without creating max/min_perf_pct attributes
	 */
	if (per_cpu_limits)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
	WARN_ON(rc);

	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
	WARN_ON(rc);

1144 1145 1146 1147 1148
	if (hwp_active) {
		rc = sysfs_create_file(intel_pstate_kobject,
				       &hwp_dynamic_boost.attr);
		WARN_ON(rc);
	}
1149 1150
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
1151

1152
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
1153
{
1154
	/* First disable HWP notification interrupt as we don't process them */
1155 1156
	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1157

1158
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1159
	cpudata->epp_policy = 0;
1160 1161
	if (cpudata->epp_default == -EINVAL)
		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
D
Dirk Brandewie 已提交
1162 1163
}

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
#define MSR_IA32_POWER_CTL_BIT_EE	19

/* Disable energy efficiency optimization */
static void intel_pstate_disable_ee(int cpu)
{
	u64 power_ctl;
	int ret;

	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
	if (ret)
		return;

	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
		pr_info("Disabling energy efficiency optimization\n");
		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
	}
}

1183
static int atom_get_min_pstate(void)
1184 1185
{
	u64 value;
1186

1187
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1188
	return (value >> 8) & 0x7F;
1189 1190
}

1191
static int atom_get_max_pstate(void)
1192 1193
{
	u64 value;
1194

1195
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1196
	return (value >> 16) & 0x7F;
1197
}
1198

1199
static int atom_get_turbo_pstate(void)
1200 1201
{
	u64 value;
1202

1203
	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
1204
	return value & 0x7F;
1205 1206
}

1207
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1208 1209 1210 1211 1212
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

1213
	val = (u64)pstate << 8;
1214
	if (global.no_turbo && !global.turbo_disabled)
1215 1216 1217 1218 1219 1220 1221
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1222
	vid = ceiling_fp(vid_fp);
1223

1224 1225 1226
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

1227
	return val | vid;
1228 1229
}

1230
static int silvermont_get_scaling(void)
1231 1232 1233
{
	u64 value;
	int i;
1234 1235 1236
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
1237 1238

	rdmsrl(MSR_FSB_FREQ, value);
1239 1240
	i = value & 0x7;
	WARN_ON(i > 4);
1241

1242 1243
	return silvermont_freq_table[i];
}
1244

1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
1259 1260
}

1261
static void atom_get_vid(struct cpudata *cpudata)
1262 1263 1264
{
	u64 value;

1265
	rdmsrl(MSR_ATOM_CORE_VIDS, value);
D
Dirk Brandewie 已提交
1266 1267
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1268 1269 1270 1271
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
1272

1273
	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1274
	cpudata->vid.turbo = value & 0x7f;
1275 1276
}

1277
static int core_get_min_pstate(void)
1278 1279
{
	u64 value;
1280

1281
	rdmsrl(MSR_PLATFORM_INFO, value);
1282 1283 1284
	return (value >> 40) & 0xFF;
}

1285
static int core_get_max_pstate_physical(void)
1286 1287
{
	u64 value;
1288

1289
	rdmsrl(MSR_PLATFORM_INFO, value);
1290 1291 1292
	return (value >> 8) & 0xFF;
}

1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
static int core_get_tdp_ratio(u64 plat_info)
{
	/* Check how many TDP levels present */
	if (plat_info & 0x600000000) {
		u64 tdp_ctrl;
		u64 tdp_ratio;
		int tdp_msr;
		int err;

		/* Get the TDP level (0, 1, 2) to get ratios */
		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
		if (err)
			return err;

		/* TDP MSR are continuous starting at 0x648 */
		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
		if (err)
			return err;

		/* For level 1 and 2, bits[23:16] contain the ratio */
		if (tdp_ctrl & 0x03)
			tdp_ratio >>= 16;

		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);

		return (int)tdp_ratio;
	}

	return -ENXIO;
}

1326
static int core_get_max_pstate(void)
1327
{
1328 1329 1330
	u64 tar;
	u64 plat_info;
	int max_pstate;
1331
	int tdp_ratio;
1332 1333 1334 1335 1336
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

1337 1338 1339 1340 1341 1342 1343 1344 1345
	tdp_ratio = core_get_tdp_ratio(plat_info);
	if (tdp_ratio <= 0)
		return max_pstate;

	if (hwp_active) {
		/* Turbo activation ratio is not used on HWP platforms */
		return tdp_ratio;
	}

1346 1347
	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
1348 1349
		int tar_levels;

1350
		/* Do some sanity checking for safety */
1351 1352 1353 1354
		tar_levels = tar & 0xff;
		if (tdp_ratio - 1 == tar_levels) {
			max_pstate = tar_levels;
			pr_debug("max_pstate=TAC %x\n", max_pstate);
1355 1356
		}
	}
1357

1358
	return max_pstate;
1359 1360
}

1361
static int core_get_turbo_pstate(void)
1362 1363 1364
{
	u64 value;
	int nont, ret;
1365

1366
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1367
	nont = core_get_max_pstate();
1368
	ret = (value) & 255;
1369 1370 1371 1372 1373
	if (ret <= nont)
		ret = nont;
	return ret;
}

1374 1375 1376 1377 1378
static inline int core_get_scaling(void)
{
	return 100000;
}

1379
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1380 1381 1382
{
	u64 val;

1383
	val = (u64)pstate << 8;
1384
	if (global.no_turbo && !global.turbo_disabled)
1385 1386
		val |= (u64)1 << 32;

1387
	return val;
1388 1389
}

1390 1391 1392 1393 1394
static int knl_get_aperf_mperf_shift(void)
{
	return 10;
}

1395 1396 1397 1398 1399
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1400
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1401 1402 1403 1404 1405 1406 1407
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1408
static int intel_pstate_get_base_pstate(struct cpudata *cpu)
1409
{
1410 1411
	return global.no_turbo || global.turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1412 1413
}

1414
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1415
{
1416 1417
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1418 1419 1420 1421 1422 1423 1424
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1425 1426
}

1427 1428 1429 1430 1431 1432 1433
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
1434
	int pstate;
1435 1436

	update_turbo_state();
1437
	pstate = intel_pstate_get_base_pstate(cpu);
1438
	pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1439
	intel_pstate_set_pstate(cpu, pstate);
1440 1441
}

1442 1443
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1444 1445
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1446
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1447
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1448
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1449
	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1450 1451 1452 1453 1454 1455 1456 1457 1458

	if (hwp_active && !hwp_mode_bdw) {
		unsigned int phy_max, current_max;

		intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
		cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
	} else {
		cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
	}
1459

1460 1461 1462
	if (pstate_funcs.get_aperf_mperf_shift)
		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();

1463 1464
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1465 1466

	intel_pstate_set_min_pstate(cpu);
1467 1468
}

1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
/*
 * Long hold time will keep high perf limits for long time,
 * which negatively impacts perf/watt for some workloads,
 * like specpower. 3ms is based on experiements on some
 * workoads.
 */
static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;

static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
{
	u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
	u32 max_limit = (hwp_req & 0xff00) >> 8;
	u32 min_limit = (hwp_req & 0xff);
	u32 boost_level1;

	/*
	 * Cases to consider (User changes via sysfs or boot time):
	 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
	 *	No boost, return.
	 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
	 *     Should result in one level boost only for P0.
	 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
	 *     Should result in two level boost:
	 *         (min + p1)/2 and P1.
	 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
	 *     Should result in three level boost:
	 *        (min + p1)/2, P1 and P0.
	 */

	/* If max and min are equal or already at max, nothing to boost */
	if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
		return;

	if (!cpu->hwp_boost_min)
		cpu->hwp_boost_min = min_limit;

	/* level at half way mark between min and guranteed */
	boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;

	if (cpu->hwp_boost_min < boost_level1)
		cpu->hwp_boost_min = boost_level1;
	else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
		cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
	else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
		 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
		cpu->hwp_boost_min = max_limit;
	else
		return;

	hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
	wrmsrl(MSR_HWP_REQUEST, hwp_req);
	cpu->last_update = cpu->sample.time;
}

static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
{
	if (cpu->hwp_boost_min) {
		bool expired;

		/* Check if we are idle for hold time to boost down */
		expired = time_after64(cpu->sample.time, cpu->last_update +
				       hwp_boost_hold_time_ns);
		if (expired) {
			wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
			cpu->hwp_boost_min = 0;
		}
	}
	cpu->last_update = cpu->sample.time;
}

1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
						      u64 time)
{
	cpu->sample.time = time;

	if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
		bool do_io = false;

		cpu->sched_flags = 0;
		/*
		 * Set iowait_boost flag and update time. Since IO WAIT flag
		 * is set all the time, we can't just conclude that there is
		 * some IO bound activity is scheduled on this CPU with just
		 * one occurrence. If we receive at least two in two
		 * consecutive ticks, then we treat as boost candidate.
		 */
		if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
			do_io = true;

		cpu->last_io_update = time;

		if (do_io)
			intel_pstate_hwp_boost_up(cpu);

	} else {
		intel_pstate_hwp_boost_down(cpu);
	}
}

1568 1569 1570
static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
						u64 time, unsigned int flags)
{
1571 1572 1573 1574 1575 1576
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);

	cpu->sched_flags |= flags;

	if (smp_processor_id() == cpu->cpu)
		intel_pstate_update_util_hwp_local(cpu, time);
1577 1578
}

1579
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1580
{
1581
	struct sample *sample = &cpu->sample;
1582

1583
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1584 1585
}

1586
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1587 1588
{
	u64 aperf, mperf;
1589
	unsigned long flags;
1590
	u64 tsc;
1591

1592
	local_irq_save(flags);
1593 1594
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1595
	tsc = rdtsc();
1596
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1597
		local_irq_restore(flags);
1598
		return false;
1599
	}
1600
	local_irq_restore(flags);
1601

1602
	cpu->last_sample_time = cpu->sample.time;
1603
	cpu->sample.time = time;
1604 1605
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1606
	cpu->sample.tsc =  tsc;
1607 1608
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1609
	cpu->sample.tsc -= cpu->prev_tsc;
1610

1611 1612
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1613
	cpu->prev_tsc = tsc;
1614 1615 1616 1617 1618 1619 1620
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
1621 1622 1623 1624 1625
	if (cpu->last_sample_time) {
		intel_pstate_calc_avg_perf(cpu);
		return true;
	}
	return false;
1626 1627
}

1628 1629
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1630
	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1631 1632
}

1633 1634
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1635 1636
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1637 1638
}

1639
static inline int32_t get_target_pstate(struct cpudata *cpu)
1640 1641
{
	struct sample *sample = &cpu->sample;
1642
	int32_t busy_frac, boost;
1643
	int target, avg_pstate;
1644

1645 1646
	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
			   sample->tsc);
1647

1648 1649
	boost = cpu->iowait_boost;
	cpu->iowait_boost >>= 1;
1650

1651 1652
	if (busy_frac < boost)
		busy_frac = boost;
1653

1654
	sample->busy_scaled = busy_frac * 100;
1655

1656
	target = global.no_turbo || global.turbo_disabled ?
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1675 1676
}

1677
static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1678
{
1679 1680
	int max_pstate = intel_pstate_get_base_pstate(cpu);
	int min_pstate;
1681

1682 1683
	min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
	max_pstate = max(min_pstate, cpu->max_perf_ratio);
1684
	return clamp_t(int, pstate, min_pstate, max_pstate);
1685 1686 1687 1688
}

static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
1689 1690 1691
	if (pstate == cpu->pstate.current_pstate)
		return;

1692
	cpu->pstate.current_pstate = pstate;
1693 1694 1695
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1696
static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1697
{
1698
	int from = cpu->pstate.current_pstate;
1699
	struct sample *sample;
1700
	int target_pstate;
1701

1702 1703
	update_turbo_state();

1704
	target_pstate = get_target_pstate(cpu);
1705 1706
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1707
	intel_pstate_update_pstate(cpu, target_pstate);
1708 1709

	sample = &cpu->sample;
1710
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1711
		fp_toint(sample->busy_scaled),
1712 1713 1714 1715 1716
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1717 1718
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1719 1720
}

1721
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1722
				     unsigned int flags)
1723
{
1724
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1725 1726
	u64 delta_ns;

1727 1728 1729 1730
	/* Don't allow remote callbacks */
	if (smp_processor_id() != cpu->cpu)
		return;

1731 1732
	if (flags & SCHED_CPUFREQ_IOWAIT) {
		cpu->iowait_boost = int_tofp(1);
1733 1734 1735 1736 1737 1738 1739 1740 1741
		cpu->last_update = time;
		/*
		 * The last time the busy was 100% so P-state was max anyway
		 * so avoid overhead of computation.
		 */
		if (fp_toint(cpu->sample.busy_scaled) == 100)
			return;

		goto set_pstate;
1742 1743 1744 1745 1746
	} else if (cpu->iowait_boost) {
		/* Clear iowait_boost if the CPU may have been idle. */
		delta_ns = time - cpu->last_update;
		if (delta_ns > TICK_NSEC)
			cpu->iowait_boost = 0;
1747
	}
1748
	cpu->last_update = time;
1749
	delta_ns = time - cpu->sample.time;
1750
	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1751
		return;
1752

1753
set_pstate:
1754 1755
	if (intel_pstate_sample(cpu, time))
		intel_pstate_adjust_pstate(cpu);
1756
}
1757

1758 1759 1760 1761 1762 1763 1764
static struct pstate_funcs core_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = core_get_turbo_pstate,
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
1765 1766
};

1767 1768 1769 1770 1771 1772 1773 1774
static const struct pstate_funcs silvermont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = silvermont_get_scaling,
	.get_vid = atom_get_vid,
1775 1776
};

1777 1778 1779 1780 1781 1782 1783 1784
static const struct pstate_funcs airmont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = airmont_get_scaling,
	.get_vid = atom_get_vid,
1785 1786
};

1787 1788 1789 1790 1791
static const struct pstate_funcs knl_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = knl_get_turbo_pstate,
1792
	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1793 1794
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
1795 1796
};

1797
#define ICPU(model, policy) \
1798 1799
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1800 1801

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1802 1803
	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_funcs),
	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_funcs),
1804
	ICPU(INTEL_FAM6_ATOM_SILVERMONT,	silvermont_funcs),
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
	ICPU(INTEL_FAM6_IVYBRIDGE,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_CORE,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_funcs),
	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_X,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_ULT,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_funcs),
	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_X,		core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_funcs),
	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_funcs),
	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_funcs),
1820
	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		core_funcs),
1821
	ICPU(INTEL_FAM6_ATOM_GOLDMONT_PLUS,     core_funcs),
1822
	ICPU(INTEL_FAM6_SKYLAKE_X,		core_funcs),
1823 1824 1825 1826
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

1827
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1828 1829 1830
	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
D
Dirk Brandewie 已提交
1831 1832 1833
	{}
};

1834
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1835
	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1836 1837 1838
	{}
};

1839 1840 1841 1842 1843 1844
static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_funcs),
	{}
};

1845 1846 1847 1848
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1849 1850 1851
	cpu = all_cpu_data[cpunum];

	if (!cpu) {
1852
		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1853 1854 1855 1856 1857
		if (!cpu)
			return -ENOMEM;

		all_cpu_data[cpunum] = cpu;

1858 1859 1860
		cpu->epp_default = -EINVAL;
		cpu->epp_powersave = -EINVAL;
		cpu->epp_saved = -EINVAL;
1861
	}
1862 1863 1864 1865

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1866

1867
	if (hwp_active) {
1868 1869 1870 1871 1872 1873
		const struct x86_cpu_id *id;

		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
		if (id)
			intel_pstate_disable_ee(cpunum);

1874
		intel_pstate_hwp_enable(cpu);
1875 1876

		id = x86_match_cpu(intel_pstate_hwp_boost_ids);
1877
		if (id && intel_pstate_acpi_pm_profile_server())
1878
			hwp_boost = true;
1879
	}
1880

1881
	intel_pstate_get_cpu_pstates(cpu);
1882

J
Joe Perches 已提交
1883
	pr_debug("controlling: cpu %d\n", cpunum);
1884 1885 1886 1887

	return 0;
}

1888
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1889
{
1890 1891
	struct cpudata *cpu = all_cpu_data[cpu_num];

1892
	if (hwp_active && !hwp_boost)
1893 1894
		return;

1895 1896 1897
	if (cpu->update_util_set)
		return;

1898 1899
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
1900
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1901 1902 1903
				     (hwp_active ?
				      intel_pstate_update_util_hwp :
				      intel_pstate_update_util));
1904
	cpu->update_util_set = true;
1905 1906 1907 1908
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
1909 1910 1911 1912 1913
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

1914
	cpufreq_remove_update_util_hook(cpu);
1915
	cpu_data->update_util_set = false;
1916 1917 1918
	synchronize_sched();
}

1919 1920 1921 1922 1923 1924
static int intel_pstate_get_max_freq(struct cpudata *cpu)
{
	return global.turbo_disabled || global.no_turbo ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
}

1925
static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1926
					    struct cpudata *cpu)
1927
{
1928
	int max_freq = intel_pstate_get_max_freq(cpu);
1929
	int32_t max_policy_perf, min_policy_perf;
1930
	int max_state, turbo_max;
1931

1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
	/*
	 * HWP needs some special consideration, because on BDX the
	 * HWP_REQUEST uses abstract value to represent performance
	 * rather than pure ratios.
	 */
	if (hwp_active) {
		intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
	} else {
		max_state = intel_pstate_get_base_pstate(cpu);
		turbo_max = cpu->pstate.turbo_pstate;
	}

	max_policy_perf = max_state * policy->max / max_freq;
1945
	if (policy->max == policy->min) {
1946
		min_policy_perf = max_policy_perf;
1947
	} else {
1948
		min_policy_perf = max_state * policy->min / max_freq;
1949 1950
		min_policy_perf = clamp_t(int32_t, min_policy_perf,
					  0, max_policy_perf);
1951
	}
1952

1953 1954 1955 1956
	pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
		 policy->cpu, max_state,
		 min_policy_perf, max_policy_perf);

1957
	/* Normalize user input to [min_perf, max_perf] */
1958
	if (per_cpu_limits) {
1959 1960
		cpu->min_perf_ratio = min_policy_perf;
		cpu->max_perf_ratio = max_policy_perf;
1961 1962 1963 1964
	} else {
		int32_t global_min, global_max;

		/* Global limits are in percent of the maximum turbo P-state. */
1965 1966
		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
1967
		global_min = clamp_t(int32_t, global_min, 0, global_max);
1968

1969 1970
		pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
			 global_min, global_max);
1971

1972 1973 1974 1975
		cpu->min_perf_ratio = max(min_policy_perf, global_min);
		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
		cpu->max_perf_ratio = min(max_policy_perf, global_max);
		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
1976

1977 1978 1979
		/* Make sure min_perf <= max_perf */
		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
					  cpu->max_perf_ratio);
1980

1981 1982 1983 1984
	}
	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
		 cpu->max_perf_ratio,
		 cpu->min_perf_ratio);
1985 1986
}

1987 1988
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
1989 1990
	struct cpudata *cpu;

1991 1992 1993
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

1994 1995 1996
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

1997
	cpu = all_cpu_data[policy->cpu];
1998 1999
	cpu->policy = policy->policy;

2000 2001
	mutex_lock(&intel_pstate_limits_lock);

2002
	intel_pstate_update_perf_limits(policy, cpu);
2003

2004
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2005 2006 2007 2008 2009 2010
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
2011 2012
	} else {
		intel_pstate_set_update_util_hook(policy->cpu);
2013 2014
	}

2015 2016 2017 2018 2019 2020 2021 2022
	if (hwp_active) {
		/*
		 * When hwp_boost was active before and dynamically it
		 * was turned off, in that case we need to clear the
		 * update util hook.
		 */
		if (!hwp_boost)
			intel_pstate_clear_update_util_hook(policy->cpu);
2023
		intel_pstate_hwp_set(policy->cpu);
2024
	}
D
Dirk Brandewie 已提交
2025

2026 2027
	mutex_unlock(&intel_pstate_limits_lock);

2028 2029 2030
	return 0;
}

2031 2032 2033
static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
					 struct cpudata *cpu)
{
2034 2035
	if (!hwp_active &&
	    cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2036 2037 2038 2039 2040 2041 2042
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_freq) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
	}
}

2043 2044
static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
2045 2046 2047
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2048 2049
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2050

2051
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2052
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2053 2054
		return -EINVAL;

2055 2056
	intel_pstate_adjust_policy_max(policy, cpu);

2057 2058 2059
	return 0;
}

2060 2061 2062 2063 2064
static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
{
	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
}

2065
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2066
{
2067
	pr_debug("CPU %d exiting\n", policy->cpu);
2068

2069
	intel_pstate_clear_update_util_hook(policy->cpu);
2070
	if (hwp_active) {
2071
		intel_pstate_hwp_save_state(policy);
2072 2073
		intel_pstate_hwp_force_min_perf(policy->cpu);
	} else {
2074
		intel_cpufreq_stop_cpu(policy);
2075
	}
2076
}
2077

2078 2079 2080
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);
2081

2082
	policy->fast_switch_possible = false;
D
Dirk Brandewie 已提交
2083

2084
	return 0;
2085 2086
}

2087
static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2088 2089
{
	struct cpudata *cpu;
2090
	int rc;
2091 2092 2093 2094 2095 2096 2097

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

2098 2099
	cpu->max_perf_ratio = 0xFF;
	cpu->min_perf_ratio = 0;
2100

2101 2102
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2103 2104

	/* cpuinfo and default policy values */
2105
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2106
	update_turbo_state();
2107
	policy->cpuinfo.max_freq = global.turbo_disabled ?
2108 2109 2110
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

2111 2112 2113 2114 2115 2116 2117 2118 2119
	if (hwp_active) {
		unsigned int max_freq;

		max_freq = global.turbo_disabled ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
		if (max_freq < policy->cpuinfo.max_freq)
			policy->cpuinfo.max_freq = max_freq;
	}

2120
	intel_pstate_init_acpi_perf_limits(policy);
2121

2122 2123
	policy->fast_switch_possible = true;

2124 2125 2126
	return 0;
}

2127
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2128
{
2129 2130 2131 2132 2133
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

2134
	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2135 2136 2137
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2138 2139 2140 2141

	return 0;
}

2142
static struct cpufreq_driver intel_pstate = {
2143 2144 2145
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
2146
	.suspend	= intel_pstate_hwp_save_state,
2147
	.resume		= intel_pstate_resume,
2148
	.init		= intel_pstate_cpu_init,
2149
	.exit		= intel_pstate_cpu_exit,
2150
	.stop_cpu	= intel_pstate_stop_cpu,
2151 2152 2153
	.name		= "intel_pstate",
};

2154 2155 2156 2157 2158
static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2159 2160
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2161

2162
	intel_pstate_adjust_policy_max(policy, cpu);
2163

2164 2165
	intel_pstate_update_perf_limits(policy, cpu);

2166 2167 2168
	return 0;
}

2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
/* Use of trace in passive mode:
 *
 * In passive mode the trace core_busy field (also known as the
 * performance field, and lablelled as such on the graphs; also known as
 * core_avg_perf) is not needed and so is re-assigned to indicate if the
 * driver call was via the normal or fast switch path. Various graphs
 * output from the intel_pstate_tracer.py utility that include core_busy
 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
 * so we use 10 to indicate the the normal path through the driver, and
 * 90 to indicate the fast switch path through the driver.
 * The scaled_busy field is not used, and is set to 0.
 */

#define	INTEL_PSTATE_TRACE_TARGET 10
#define	INTEL_PSTATE_TRACE_FAST_SWITCH 90

static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
{
	struct sample *sample;

	if (!trace_pstate_sample_enabled())
		return;

	if (!intel_pstate_sample(cpu, ktime_get()))
		return;

	sample = &cpu->sample;
	trace_pstate_sample(trace_type,
		0,
		old_pstate,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
}

2207 2208 2209 2210 2211 2212
static int intel_cpufreq_target(struct cpufreq_policy *policy,
				unsigned int target_freq,
				unsigned int relation)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct cpufreq_freqs freqs;
2213
	int target_pstate, old_pstate;
2214

2215 2216
	update_turbo_state();

2217
	freqs.old = policy->cur;
2218
	freqs.new = target_freq;
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232

	cpufreq_freq_transition_begin(policy, &freqs);
	switch (relation) {
	case CPUFREQ_RELATION_L:
		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
		break;
	case CPUFREQ_RELATION_H:
		target_pstate = freqs.new / cpu->pstate.scaling;
		break;
	default:
		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
		break;
	}
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2233
	old_pstate = cpu->pstate.current_pstate;
2234 2235 2236 2237 2238
	if (target_pstate != cpu->pstate.current_pstate) {
		cpu->pstate.current_pstate = target_pstate;
		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
			      pstate_funcs.get_val(cpu, target_pstate));
	}
2239
	freqs.new = target_pstate * cpu->pstate.scaling;
2240
	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2241 2242 2243 2244 2245 2246 2247 2248 2249
	cpufreq_freq_transition_end(policy, &freqs, false);

	return 0;
}

static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
					      unsigned int target_freq)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
2250
	int target_pstate, old_pstate;
2251

2252 2253
	update_turbo_state();

2254
	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2255
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2256
	old_pstate = cpu->pstate.current_pstate;
2257
	intel_pstate_update_pstate(cpu, target_pstate);
2258
	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2259
	return target_pstate * cpu->pstate.scaling;
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
}

static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2270
	policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
	policy->cur = policy->cpuinfo.min_freq;

	return 0;
}

static struct cpufreq_driver intel_cpufreq = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_cpufreq_verify_policy,
	.target		= intel_cpufreq_target,
	.fast_switch	= intel_cpufreq_fast_switch,
	.init		= intel_cpufreq_cpu_init,
	.exit		= intel_pstate_cpu_exit,
	.stop_cpu	= intel_cpufreq_stop_cpu,
	.name		= "intel_cpufreq",
};

2288
static struct cpufreq_driver *default_driver = &intel_pstate;
2289

2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
static void intel_pstate_driver_cleanup(void)
{
	unsigned int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			if (intel_pstate_driver == &intel_pstate)
				intel_pstate_clear_update_util_hook(cpu);

			kfree(all_cpu_data[cpu]);
			all_cpu_data[cpu] = NULL;
		}
	}
	put_online_cpus();
2305
	intel_pstate_driver = NULL;
2306 2307
}

2308
static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2309 2310 2311
{
	int ret;

2312 2313
	memset(&global, 0, sizeof(global));
	global.max_perf_pct = 100;
2314

2315
	intel_pstate_driver = driver;
2316 2317 2318 2319 2320 2321
	ret = cpufreq_register_driver(intel_pstate_driver);
	if (ret) {
		intel_pstate_driver_cleanup();
		return ret;
	}

2322 2323
	global.min_perf_pct = min_perf_pct_min();

2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
	return 0;
}

static int intel_pstate_unregister_driver(void)
{
	if (hwp_active)
		return -EBUSY;

	cpufreq_unregister_driver(intel_pstate_driver);
	intel_pstate_driver_cleanup();

	return 0;
}

static ssize_t intel_pstate_show_status(char *buf)
{
2340
	if (!intel_pstate_driver)
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
		return sprintf(buf, "off\n");

	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
					"active" : "passive");
}

static int intel_pstate_update_status(const char *buf, size_t size)
{
	int ret;

	if (size == 3 && !strncmp(buf, "off", size))
2352
		return intel_pstate_driver ?
2353 2354 2355
			intel_pstate_unregister_driver() : -EINVAL;

	if (size == 6 && !strncmp(buf, "active", size)) {
2356
		if (intel_pstate_driver) {
2357 2358 2359 2360 2361 2362 2363 2364
			if (intel_pstate_driver == &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2365
		return intel_pstate_register_driver(&intel_pstate);
2366 2367 2368
	}

	if (size == 7 && !strncmp(buf, "passive", size)) {
2369
		if (intel_pstate_driver) {
2370
			if (intel_pstate_driver == &intel_cpufreq)
2371 2372 2373 2374 2375 2376 2377
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2378
		return intel_pstate_register_driver(&intel_cpufreq);
2379 2380 2381 2382 2383
	}

	return -EINVAL;
}

2384 2385 2386
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
2387
static unsigned int force_load __initdata;
2388

2389
static int __init intel_pstate_msrs_not_valid(void)
2390
{
2391
	if (!pstate_funcs.get_max() ||
2392 2393
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
2394 2395 2396 2397
		return -ENODEV;

	return 0;
}
2398

2399
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2400 2401
{
	pstate_funcs.get_max   = funcs->get_max;
2402
	pstate_funcs.get_max_physical = funcs->get_max_physical;
2403 2404
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
2405
	pstate_funcs.get_scaling = funcs->get_scaling;
2406
	pstate_funcs.get_val   = funcs->get_val;
2407
	pstate_funcs.get_vid   = funcs->get_vid;
2408
	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2409 2410
}

2411
#ifdef CONFIG_ACPI
2412

2413
static bool __init intel_pstate_no_acpi_pss(void)
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

2439
	pr_debug("ACPI _PSS not found\n");
2440 2441 2442
	return true;
}

2443 2444 2445 2446 2447 2448 2449
static bool __init intel_pstate_no_acpi_pcch(void)
{
	acpi_status status;
	acpi_handle handle;

	status = acpi_get_handle(NULL, "\\_SB", &handle);
	if (ACPI_FAILURE(status))
2450 2451 2452 2453
		goto not_found;

	if (acpi_has_method(handle, "PCCH"))
		return false;
2454

2455 2456 2457
not_found:
	pr_debug("ACPI PCCH not found\n");
	return true;
2458 2459
}

2460
static bool __init intel_pstate_has_acpi_ppc(void)
2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
2472
	pr_debug("ACPI _PPC not found\n");
2473 2474 2475 2476 2477 2478 2479 2480
	return false;
}

enum {
	PSS,
	PPC,
};

2481
/* Hardware vendor-specific info that has its own power management modes */
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
static struct acpi_platform_list plat_info[] __initdata = {
	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{ } /* End */
2499 2500
};

2501
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2502
{
D
Dirk Brandewie 已提交
2503 2504
	const struct x86_cpu_id *id;
	u64 misc_pwr;
2505
	int idx;
D
Dirk Brandewie 已提交
2506 2507 2508 2509

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2510 2511
		if (misc_pwr & (1 << 8)) {
			pr_debug("Bit 8 in the MISC_PWR_MGMT MSR set\n");
D
Dirk Brandewie 已提交
2512
			return true;
2513
		}
D
Dirk Brandewie 已提交
2514
	}
2515

2516 2517
	idx = acpi_match_platform_list(plat_info);
	if (idx < 0)
2518 2519
		return false;

2520 2521
	switch (plat_info[idx].data) {
	case PSS:
2522 2523 2524 2525
		if (!intel_pstate_no_acpi_pss())
			return false;

		return intel_pstate_no_acpi_pcch();
2526 2527
	case PPC:
		return intel_pstate_has_acpi_ppc() && !force_load;
2528 2529 2530 2531
	}

	return false;
}
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541

static void intel_pstate_request_control_from_smm(void)
{
	/*
	 * It may be unsafe to request P-states control from SMM if _PPC support
	 * has not been enabled.
	 */
	if (acpi_ppc)
		acpi_processor_pstate_control();
}
2542 2543
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2544
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2545
static inline void intel_pstate_request_control_from_smm(void) {}
2546 2547
#endif /* CONFIG_ACPI */

2548 2549 2550 2551 2552
#define INTEL_PSTATE_HWP_BROADWELL	0x01

#define ICPU_HWP(model, hwp_mode) \
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_HWP, hwp_mode }

2553
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2554 2555 2556
	ICPU_HWP(INTEL_FAM6_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
	ICPU_HWP(INTEL_FAM6_BROADWELL_XEON_D, INTEL_PSTATE_HWP_BROADWELL),
	ICPU_HWP(X86_MODEL_ANY, 0),
2557 2558 2559
	{}
};

2560 2561
static int __init intel_pstate_init(void)
{
2562
	const struct x86_cpu_id *id;
2563
	int rc;
2564

2565 2566 2567
	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
		return -ENODEV;

2568 2569 2570
	if (no_load)
		return -ENODEV;

2571 2572
	id = x86_match_cpu(hwp_support_ids);
	if (id) {
2573
		copy_cpu_funcs(&core_funcs);
2574
		if (!no_hwp) {
2575
			hwp_active++;
2576
			hwp_mode_bdw = id->driver_data;
2577 2578 2579 2580 2581
			intel_pstate.attr = hwp_cpufreq_attrs;
			goto hwp_cpu_matched;
		}
	} else {
		id = x86_match_cpu(intel_pstate_cpu_ids);
2582
		if (!id) {
2583
			pr_info("CPU model not supported\n");
2584
			return -ENODEV;
2585
		}
2586

2587
		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2588
	}
2589

2590 2591
	if (intel_pstate_msrs_not_valid()) {
		pr_info("Invalid MSRs\n");
2592
		return -ENODEV;
2593
	}
2594

2595 2596 2597 2598 2599
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
2600 2601
	if (intel_pstate_platform_pwr_mgmt_exists()) {
		pr_info("P-states controlled by the platform\n");
2602
		return -ENODEV;
2603
	}
2604

2605 2606 2607
	if (!hwp_active && hwp_only)
		return -ENOTSUPP;

J
Joe Perches 已提交
2608
	pr_info("Intel P-state driver initializing\n");
2609

2610
	all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2611 2612 2613
	if (!all_cpu_data)
		return -ENOMEM;

2614 2615
	intel_pstate_request_control_from_smm();

2616
	intel_pstate_sysfs_expose_params();
2617

2618
	mutex_lock(&intel_pstate_driver_lock);
2619
	rc = intel_pstate_register_driver(default_driver);
2620
	mutex_unlock(&intel_pstate_driver_lock);
2621 2622
	if (rc)
		return rc;
2623

2624
	if (hwp_active)
J
Joe Perches 已提交
2625
		pr_info("HWP enabled\n");
2626

2627
	return 0;
2628 2629 2630
}
device_initcall(intel_pstate_init);

2631 2632 2633 2634 2635
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

2636
	if (!strcmp(str, "disable")) {
2637
		no_load = 1;
2638 2639
	} else if (!strcmp(str, "passive")) {
		pr_info("Passive mode enabled\n");
2640
		default_driver = &intel_cpufreq;
2641 2642
		no_hwp = 1;
	}
2643
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
2644
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
2645
		no_hwp = 1;
2646
	}
2647 2648
	if (!strcmp(str, "force"))
		force_load = 1;
2649 2650
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
2651 2652
	if (!strcmp(str, "per_cpu_perf_limits"))
		per_cpu_limits = true;
2653 2654 2655 2656 2657 2658

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

2659 2660 2661 2662
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

2663 2664 2665
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");