intel_pstate.c 45.6 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

J
Joe Perches 已提交
13 14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
30
#include <linux/acpi.h>
31
#include <linux/vmalloc.h>
32 33 34 35 36
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
37
#include <asm/cpufeature.h>
38

39 40 41 42
#define ATOM_RATIOS		0x66a
#define ATOM_VIDS		0x66b
#define ATOM_TURBO_RATIOS	0x66c
#define ATOM_TURBO_VIDS		0x66d
43

44 45 46 47
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
#endif

48
#define FRAC_BITS 8
49 50
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
51

52 53 54 55 56
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

57
static inline int32_t div_fp(s64 x, s64 y)
58
{
59
	return div64_s64((int64_t)x << FRAC_BITS, y);
60 61
}

62 63 64 65 66 67 68 69 70 71 72
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
/**
 * struct sample -	Store performance sample
 * @core_pct_busy:	Ratio of APERF/MPERF in percent, which is actual
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
 *			P state. This can be different than core_pct_busy
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @freq:		Effective frequency calculated from APERF/MPERF
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
92
struct sample {
93
	int32_t core_pct_busy;
94
	int32_t busy_scaled;
95 96
	u64 aperf;
	u64 mperf;
97
	u64 tsc;
98
	int freq;
99
	u64 time;
100 101
};

102 103 104 105 106 107 108 109 110 111 112 113 114 115
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
 *
 * Stores the per cpu model P state limits and current P state.
 */
116 117 118 119
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
120
	int	max_pstate_physical;
121
	int	scaling;
122 123 124
	int	turbo_pstate;
};

125 126 127 128 129 130 131 132 133 134 135 136 137
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
138
struct vid_data {
139 140 141
	int min;
	int max;
	int turbo;
142 143 144
	int32_t ratio;
};

145 146 147 148 149 150 151 152 153 154 155 156
/**
 * struct _pid -	Stores PID data
 * @setpoint:		Target set point for busyness or performance
 * @integral:		Storage for accumulated error values
 * @p_gain:		PID proportional gain
 * @i_gain:		PID integral gain
 * @d_gain:		PID derivative gain
 * @deadband:		PID deadband
 * @last_err:		Last error storage for integral part of PID calculation
 *
 * Stores PID coefficients and last error for PID controller.
 */
157 158 159 160 161 162 163
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
164
	int32_t last_err;
165 166
};

167 168 169 170 171 172 173 174 175 176 177 178 179 180
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
 * @update_util:	CPUFreq utility callback information
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @pid:		Stores PID parameters for this CPU
 * @last_sample_time:	Last Sample time
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
181 182
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
183 184 185
 *
 * This structure stores per CPU instance data for all CPUs.
 */
186 187 188
struct cpudata {
	int cpu;

189
	struct update_util_data update_util;
190 191

	struct pstate_data pstate;
192
	struct vid_data vid;
193 194
	struct _pid pid;

195
	u64	last_sample_time;
196 197
	u64	prev_aperf;
	u64	prev_mperf;
198
	u64	prev_tsc;
199
	u64	prev_cummulative_iowait;
200
	struct sample sample;
201 202 203 204
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
205 206 207
};

static struct cpudata **all_cpu_data;
208 209 210 211 212 213 214 215 216 217 218 219 220

/**
 * struct pid_adjust_policy - Stores static PID configuration data
 * @sample_rate_ms:	PID calculation sample rate in ms
 * @sample_rate_ns:	Sample rate calculation in ns
 * @deadband:		PID deadband
 * @setpoint:		PID Setpoint
 * @p_gain_pct:		PID proportional gain
 * @i_gain_pct:		PID integral gain
 * @d_gain_pct:		PID derivative gain
 *
 * Stores per CPU model static PID configuration data.
 */
221 222
struct pstate_adjust_policy {
	int sample_rate_ms;
223
	s64 sample_rate_ns;
224 225 226 227 228 229 230
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

231 232 233 234 235 236 237 238 239 240 241 242 243 244
/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 * @get_target_pstate:	Callback to a function to calculate next P state to use
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
245 246
struct pstate_funcs {
	int (*get_max)(void);
247
	int (*get_max_physical)(void);
248 249
	int (*get_min)(void);
	int (*get_turbo)(void);
250
	int (*get_scaling)(void);
251
	u64 (*get_val)(struct cpudata*, int pstate);
252
	void (*get_vid)(struct cpudata *);
253
	int32_t (*get_target_pstate)(struct cpudata *);
254 255
};

256 257 258 259 260
/**
 * struct cpu_defaults- Per CPU model default config data
 * @pid_policy:	PID config data
 * @funcs:		Callback function data
 */
261 262 263
struct cpu_defaults {
	struct pstate_adjust_policy pid_policy;
	struct pstate_funcs funcs;
264 265
};

266
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
267
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
268

269 270
static struct pstate_adjust_policy pid_params;
static struct pstate_funcs pstate_funcs;
D
Dirk Brandewie 已提交
271
static int hwp_active;
272

273 274 275
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303

/**
 * struct perf_limits - Store user and policy limits
 * @no_turbo:		User requested turbo state from intel_pstate sysfs
 * @turbo_disabled:	Platform turbo status either from msr
 *			MSR_IA32_MISC_ENABLE or when maximum available pstate
 *			matches the maximum turbo pstate
 * @max_perf_pct:	Effective maximum performance limit in percentage, this
 *			is minimum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @min_perf_pct:	Effective minimum performance limit in percentage, this
 *			is maximum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @max_perf:		This is a scaled value between 0 to 255 for max_perf_pct
 *			This value is used to limit max pstate
 * @min_perf:		This is a scaled value between 0 to 255 for min_perf_pct
 *			This value is used to limit min pstate
 * @max_policy_pct:	The maximum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @max_sysfs_pct:	The maximum performance in percentage enforced by
 *			intel pstate sysfs interface
 * @min_policy_pct:	The minimum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @min_sysfs_pct:	The minimum performance in percentage enforced by
 *			intel pstate sysfs interface
 *
 * Storage for user and policy defined limits.
 */
304 305
struct perf_limits {
	int no_turbo;
306
	int turbo_disabled;
307 308 309 310
	int max_perf_pct;
	int min_perf_pct;
	int32_t max_perf;
	int32_t min_perf;
311 312
	int max_policy_pct;
	int max_sysfs_pct;
313 314
	int min_policy_pct;
	int min_sysfs_pct;
315 316
};

317 318 319 320 321 322 323 324 325 326 327 328 329 330
static struct perf_limits performance_limits = {
	.no_turbo = 0,
	.turbo_disabled = 0,
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 100,
	.min_perf = int_tofp(1),
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
};

static struct perf_limits powersave_limits = {
331
	.no_turbo = 0,
332
	.turbo_disabled = 0,
333 334 335 336
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 0,
	.min_perf = 0,
337 338
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
339 340
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
341 342
};

343 344 345 346 347 348
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
static struct perf_limits *limits = &performance_limits;
#else
static struct perf_limits *limits = &powersave_limits;
#endif

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
#ifdef CONFIG_ACPI
/*
 * The max target pstate ratio is a 8 bit value in both PLATFORM_INFO MSR and
 * in TURBO_RATIO_LIMIT MSR, which pstate driver stores in max_pstate and
 * max_turbo_pstate fields. The PERF_CTL MSR contains 16 bit value for P state
 * ratio, out of it only high 8 bits are used. For example 0x1700 is setting
 * target ratio 0x17. The _PSS control value stores in a format which can be
 * directly written to PERF_CTL MSR. But in intel_pstate driver this shift
 * occurs during write to PERF_CTL (E.g. for cores core_set_pstate()).
 * This function converts the _PSS control value to intel pstate driver format
 * for comparison and assignment.
 */
static int convert_to_native_pstate_format(struct cpudata *cpu, int index)
{
	return cpu->acpi_perf_data.states[index].control >> 8;
}

static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int turbo_pss_ctl;
	int ret;
	int i;

	if (!acpi_ppc)
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
	 * correct max turbo frequency based on the turbo ratio.
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
	turbo_pss_ctl = convert_to_native_pstate_format(cpu, 0);
	if (turbo_pss_ctl > cpu->pstate.max_pstate)
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
	pr_info("_PPC limits will be enforced\n");

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}

#else
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
}
#endif

454
static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
455
			     int deadband, int integral) {
456 457
	pid->setpoint = int_tofp(setpoint);
	pid->deadband  = int_tofp(deadband);
458
	pid->integral  = int_tofp(integral);
459
	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
460 461 462 463
}

static inline void pid_p_gain_set(struct _pid *pid, int percent)
{
464
	pid->p_gain = div_fp(percent, 100);
465 466 467 468
}

static inline void pid_i_gain_set(struct _pid *pid, int percent)
{
469
	pid->i_gain = div_fp(percent, 100);
470 471 472 473
}

static inline void pid_d_gain_set(struct _pid *pid, int percent)
{
474
	pid->d_gain = div_fp(percent, 100);
475 476
}

477
static signed int pid_calc(struct _pid *pid, int32_t busy)
478
{
479
	signed int result;
480 481 482
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

483
	fp_error = pid->setpoint - busy;
484

485
	if (abs(fp_error) <= pid->deadband)
486 487 488 489 490 491
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

492 493 494 495 496 497 498 499
	/*
	 * We limit the integral here so that it will never
	 * get higher than 30.  This prevents it from becoming
	 * too large an input over long periods of time and allows
	 * it to get factored out sooner.
	 *
	 * The value of 30 was chosen through experimentation.
	 */
500 501 502 503 504 505
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

506 507
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
508 509

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
510
	result = result + (1 << (FRAC_BITS-1));
511 512 513 514 515
	return (signed int)fp_toint(result);
}

static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
{
516 517 518
	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
519

520
	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
521 522 523 524 525
}

static inline void intel_pstate_reset_all_pid(void)
{
	unsigned int cpu;
526

527 528 529 530 531 532
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu])
			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
	}
}

533 534 535 536 537 538 539
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
540
	limits->turbo_disabled =
541 542 543 544
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

545
static void intel_pstate_hwp_set(const struct cpumask *cpumask)
D
Dirk Brandewie 已提交
546
{
547 548 549 550 551 552 553
	int min, hw_min, max, hw_max, cpu, range, adj_range;
	u64 value, cap;

	rdmsrl(MSR_HWP_CAPABILITIES, cap);
	hw_min = HWP_LOWEST_PERF(cap);
	hw_max = HWP_HIGHEST_PERF(cap);
	range = hw_max - hw_min;
D
Dirk Brandewie 已提交
554

555
	for_each_cpu(cpu, cpumask) {
D
Dirk Brandewie 已提交
556
		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
557
		adj_range = limits->min_perf_pct * range / 100;
558
		min = hw_min + adj_range;
D
Dirk Brandewie 已提交
559 560 561
		value &= ~HWP_MIN_PERF(~0L);
		value |= HWP_MIN_PERF(min);

562
		adj_range = limits->max_perf_pct * range / 100;
563
		max = hw_min + adj_range;
564
		if (limits->no_turbo) {
565 566 567
			hw_max = HWP_GUARANTEED_PERF(cap);
			if (hw_max < max)
				max = hw_max;
D
Dirk Brandewie 已提交
568 569 570 571 572 573
		}

		value &= ~HWP_MAX_PERF(~0L);
		value |= HWP_MAX_PERF(max);
		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
	}
574
}
D
Dirk Brandewie 已提交
575

576 577 578 579
static void intel_pstate_hwp_set_online_cpus(void)
{
	get_online_cpus();
	intel_pstate_hwp_set(cpu_online_mask);
D
Dirk Brandewie 已提交
580 581 582
	put_online_cpus();
}

583 584 585 586 587 588 589
/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
	*(u32 *)data = val;
	intel_pstate_reset_all_pid();
	return 0;
}
590

591 592 593 594 595
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
596
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
597 598 599 600 601 602 603

struct pid_param {
	char *name;
	void *value;
};

static struct pid_param pid_files[] = {
604 605 606 607 608 609
	{"sample_rate_ms", &pid_params.sample_rate_ms},
	{"d_gain_pct", &pid_params.d_gain_pct},
	{"i_gain_pct", &pid_params.i_gain_pct},
	{"deadband", &pid_params.deadband},
	{"setpoint", &pid_params.setpoint},
	{"p_gain_pct", &pid_params.p_gain_pct},
610 611 612
	{NULL, NULL}
};

613
static void __init intel_pstate_debug_expose_params(void)
614
{
615
	struct dentry *debugfs_parent;
616 617
	int i = 0;

D
Dirk Brandewie 已提交
618 619
	if (hwp_active)
		return;
620 621 622 623 624
	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
	while (pid_files[i].name) {
		debugfs_create_file(pid_files[i].name, 0660,
625 626
				    debugfs_parent, pid_files[i].value,
				    &fops_pid_param);
627 628 629 630 631 632 633 634 635 636 637
		i++;
	}
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
638
		return sprintf(buf, "%u\n", limits->object);		\
639 640
	}

641 642 643 644 645 646 647 648 649 650 651
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
652
	turbo_fp = div_fp(no_turbo, total);
653 654 655 656
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
	return sprintf(buf, "%u\n", turbo_pct);
}

657 658 659 660 661 662 663 664 665 666 667
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	return sprintf(buf, "%u\n", total);
}

668 669 670 671 672 673
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

	update_turbo_state();
674 675
	if (limits->turbo_disabled)
		ret = sprintf(buf, "%u\n", limits->turbo_disabled);
676
	else
677
		ret = sprintf(buf, "%u\n", limits->no_turbo);
678 679 680 681

	return ret;
}

682
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
683
			      const char *buf, size_t count)
684 685 686
{
	unsigned int input;
	int ret;
687

688 689 690
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
691 692

	update_turbo_state();
693
	if (limits->turbo_disabled) {
J
Joe Perches 已提交
694
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
695
		return -EPERM;
696
	}
D
Dirk Brandewie 已提交
697

698
	limits->no_turbo = clamp_t(int, input, 0, 1);
699

D
Dirk Brandewie 已提交
700
	if (hwp_active)
701
		intel_pstate_hwp_set_online_cpus();
D
Dirk Brandewie 已提交
702

703 704 705 706
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
707
				  const char *buf, size_t count)
708 709 710
{
	unsigned int input;
	int ret;
711

712 713 714 715
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

716 717 718 719 720 721 722
	limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);
	limits->max_perf_pct = max(limits->min_perf_pct,
				   limits->max_perf_pct);
723
	limits->max_perf = div_fp(limits->max_perf_pct, 100);
724

D
Dirk Brandewie 已提交
725
	if (hwp_active)
726
		intel_pstate_hwp_set_online_cpus();
727 728 729 730
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
731
				  const char *buf, size_t count)
732 733 734
{
	unsigned int input;
	int ret;
735

736 737 738
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
739

740 741 742 743 744 745 746
	limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->min_perf_pct = min(limits->max_perf_pct,
				   limits->min_perf_pct);
747
	limits->min_perf = div_fp(limits->min_perf_pct, 100);
748

D
Dirk Brandewie 已提交
749
	if (hwp_active)
750
		intel_pstate_hwp_set_online_cpus();
751 752 753 754 755 756 757 758 759
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
760
define_one_global_ro(turbo_pct);
761
define_one_global_ro(num_pstates);
762 763 764 765 766

static struct attribute *intel_pstate_attributes[] = {
	&no_turbo.attr,
	&max_perf_pct.attr,
	&min_perf_pct.attr,
767
	&turbo_pct.attr,
768
	&num_pstates.attr,
769 770 771 772 773 774 775
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};

776
static void __init intel_pstate_sysfs_expose_params(void)
777
{
778
	struct kobject *intel_pstate_kobject;
779 780 781 782 783
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
	BUG_ON(!intel_pstate_kobject);
784
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
785 786 787
	BUG_ON(rc);
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
788

789
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
790
{
791 792 793
	/* First disable HWP notification interrupt as we don't process them */
	wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);

794
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
D
Dirk Brandewie 已提交
795 796
}

797
static int atom_get_min_pstate(void)
798 799
{
	u64 value;
800

801
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
802
	return (value >> 8) & 0x7F;
803 804
}

805
static int atom_get_max_pstate(void)
806 807
{
	u64 value;
808

809
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
810
	return (value >> 16) & 0x7F;
811
}
812

813
static int atom_get_turbo_pstate(void)
814 815
{
	u64 value;
816

817
	rdmsrl(ATOM_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
818
	return value & 0x7F;
819 820
}

821
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
822 823 824 825 826
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

827
	val = (u64)pstate << 8;
828
	if (limits->no_turbo && !limits->turbo_disabled)
829 830 831 832 833 834 835
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
836
	vid = ceiling_fp(vid_fp);
837

838 839 840
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

841
	return val | vid;
842 843
}

844
static int silvermont_get_scaling(void)
845 846 847
{
	u64 value;
	int i;
848 849 850
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
851 852

	rdmsrl(MSR_FSB_FREQ, value);
853 854
	i = value & 0x7;
	WARN_ON(i > 4);
855

856 857
	return silvermont_freq_table[i];
}
858

859 860 861 862 863 864 865 866 867 868 869 870 871 872
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
873 874
}

875
static void atom_get_vid(struct cpudata *cpudata)
876 877 878
{
	u64 value;

879
	rdmsrl(ATOM_VIDS, value);
D
Dirk Brandewie 已提交
880 881
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
882 883 884 885
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
886

887
	rdmsrl(ATOM_TURBO_VIDS, value);
888
	cpudata->vid.turbo = value & 0x7f;
889 890
}

891
static int core_get_min_pstate(void)
892 893
{
	u64 value;
894

895
	rdmsrl(MSR_PLATFORM_INFO, value);
896 897 898
	return (value >> 40) & 0xFF;
}

899
static int core_get_max_pstate_physical(void)
900 901
{
	u64 value;
902

903
	rdmsrl(MSR_PLATFORM_INFO, value);
904 905 906
	return (value >> 8) & 0xFF;
}

907
static int core_get_max_pstate(void)
908
{
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
	u64 tar;
	u64 plat_info;
	int max_pstate;
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
		/* Do some sanity checking for safety */
		if (plat_info & 0x600000000) {
			u64 tdp_ctrl;
			u64 tdp_ratio;
			int tdp_msr;

			err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
			if (err)
				goto skip_tar;

			tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
			err = rdmsrl_safe(tdp_msr, &tdp_ratio);
			if (err)
				goto skip_tar;

			if (tdp_ratio - 1 == tar) {
				max_pstate = tar;
				pr_debug("max_pstate=TAC %x\n", max_pstate);
			} else {
				goto skip_tar;
			}
		}
	}
942

943 944
skip_tar:
	return max_pstate;
945 946
}

947
static int core_get_turbo_pstate(void)
948 949 950
{
	u64 value;
	int nont, ret;
951

952
	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
953
	nont = core_get_max_pstate();
954
	ret = (value) & 255;
955 956 957 958 959
	if (ret <= nont)
		ret = nont;
	return ret;
}

960 961 962 963 964
static inline int core_get_scaling(void)
{
	return 100000;
}

965
static u64 core_get_val(struct cpudata *cpudata, int pstate)
966 967 968
{
	u64 val;

969
	val = (u64)pstate << 8;
970
	if (limits->no_turbo && !limits->turbo_disabled)
971 972
		val |= (u64)1 << 32;

973
	return val;
974 975
}

976 977 978 979 980 981 982 983 984 985 986 987 988
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

989 990 991 992 993 994 995 996 997 998 999
static struct cpu_defaults core_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
1000
		.get_max_physical = core_get_max_pstate_physical,
1001 1002
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
1003
		.get_scaling = core_get_scaling,
1004
		.get_val = core_get_val,
1005
		.get_target_pstate = get_target_pstate_use_performance,
1006 1007 1008
	},
};

1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
static struct cpu_defaults silvermont_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1023
		.get_val = atom_get_val,
1024 1025
		.get_scaling = silvermont_get_scaling,
		.get_vid = atom_get_vid,
1026
		.get_target_pstate = get_target_pstate_use_cpu_load,
1027 1028 1029 1030
	},
};

static struct cpu_defaults airmont_params = {
1031 1032 1033
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
1034
		.setpoint = 60,
1035 1036 1037 1038 1039
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
1040 1041 1042 1043
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1044
		.get_val = atom_get_val,
1045
		.get_scaling = airmont_get_scaling,
1046
		.get_vid = atom_get_vid,
1047
		.get_target_pstate = get_target_pstate_use_cpu_load,
1048 1049 1050
	},
};

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
static struct cpu_defaults knl_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
1062
		.get_max_physical = core_get_max_pstate_physical,
1063 1064
		.get_min = core_get_min_pstate,
		.get_turbo = knl_get_turbo_pstate,
1065
		.get_scaling = core_get_scaling,
1066
		.get_val = core_get_val,
1067
		.get_target_pstate = get_target_pstate_use_performance,
1068 1069 1070
	},
};

1071 1072 1073
static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
1074
	int max_perf_adj;
1075
	int min_perf;
1076

1077
	if (limits->no_turbo || limits->turbo_disabled)
1078 1079
		max_perf = cpu->pstate.max_pstate;

1080 1081 1082 1083 1084
	/*
	 * performance can be limited by user through sysfs, by cpufreq
	 * policy, or by cpu specific default values determined through
	 * experimentation.
	 */
1085
	max_perf_adj = fp_toint(max_perf * limits->max_perf);
1086 1087
	*max = clamp_t(int, max_perf_adj,
			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1088

1089
	min_perf = fp_toint(max_perf * limits->min_perf);
1090
	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1091 1092
}

1093
static inline void intel_pstate_record_pstate(struct cpudata *cpu, int pstate)
1094
{
1095
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1096
	cpu->pstate.current_pstate = pstate;
1097
}
1098

1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	int pstate = cpu->pstate.min_pstate;

	intel_pstate_record_pstate(cpu, pstate);
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1111 1112 1113 1114
}

static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1115 1116
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1117
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1118
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1119
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1120

1121 1122
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1123 1124

	intel_pstate_set_min_pstate(cpu);
1125 1126
}

1127
static inline void intel_pstate_calc_busy(struct cpudata *cpu)
1128
{
1129
	struct sample *sample = &cpu->sample;
1130
	int64_t core_pct;
1131

1132 1133
	core_pct = sample->aperf * int_tofp(100);
	core_pct = div64_u64(core_pct, sample->mperf);
1134

1135
	sample->core_pct_busy = (int32_t)core_pct;
1136 1137
}

1138
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1139 1140
{
	u64 aperf, mperf;
1141
	unsigned long flags;
1142
	u64 tsc;
1143

1144
	local_irq_save(flags);
1145 1146
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1147
	tsc = rdtsc();
1148
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1149
		local_irq_restore(flags);
1150
		return false;
1151
	}
1152
	local_irq_restore(flags);
1153

1154
	cpu->last_sample_time = cpu->sample.time;
1155
	cpu->sample.time = time;
1156 1157
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1158
	cpu->sample.tsc =  tsc;
1159 1160
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1161
	cpu->sample.tsc -= cpu->prev_tsc;
1162

1163 1164
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1165
	cpu->prev_tsc = tsc;
1166 1167 1168 1169 1170 1171 1172 1173
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
	return !!cpu->last_sample_time;
1174 1175
}

1176 1177 1178 1179 1180 1181
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
	return div64_u64(cpu->pstate.max_pstate_physical * cpu->sample.aperf *
		cpu->pstate.scaling, cpu->sample.mperf);
}

1182 1183 1184 1185 1186 1187
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
	return div64_u64(cpu->pstate.max_pstate_physical * cpu->sample.aperf,
			 cpu->sample.mperf);
}

1188 1189 1190
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
{
	struct sample *sample = &cpu->sample;
1191 1192 1193
	u64 cummulative_iowait, delta_iowait_us;
	u64 delta_iowait_mperf;
	u64 mperf, now;
1194 1195
	int32_t cpu_load;

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
	cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);

	/*
	 * Convert iowait time into number of IO cycles spent at max_freq.
	 * IO is considered as busy only for the cpu_load algorithm. For
	 * performance this is not needed since we always try to reach the
	 * maximum P-State, so we are already boosting the IOs.
	 */
	delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
	delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
		cpu->pstate.max_pstate, MSEC_PER_SEC);

	mperf = cpu->sample.mperf + delta_iowait_mperf;
	cpu->prev_cummulative_iowait = cummulative_iowait;

1211 1212 1213 1214 1215 1216
	/*
	 * The load can be estimated as the ratio of the mperf counter
	 * running at a constant frequency during active periods
	 * (C0) and the time stamp counter running at the same frequency
	 * also during C-states.
	 */
1217
	cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
1218 1219
	cpu->sample.busy_scaled = cpu_load;

1220
	return get_avg_pstate(cpu) - pid_calc(&cpu->pid, cpu_load);
1221 1222
}

1223
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1224
{
1225
	int32_t core_busy, max_pstate, current_pstate, sample_ratio;
1226
	u64 duration_ns;
1227

1228 1229
	intel_pstate_calc_busy(cpu);

1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
	/*
	 * core_busy is the ratio of actual performance to max
	 * max_pstate is the max non turbo pstate available
	 * current_pstate was the pstate that was requested during
	 * 	the last sample period.
	 *
	 * We normalize core_busy, which was our actual percent
	 * performance to what we requested during the last sample
	 * period. The result will be a percentage of busy at a
	 * specified pstate.
	 */
1241
	core_busy = cpu->sample.core_pct_busy;
1242 1243
	max_pstate = cpu->pstate.max_pstate_physical;
	current_pstate = cpu->pstate.current_pstate;
1244
	core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
1245

1246
	/*
1247 1248 1249 1250
	 * Since our utilization update callback will not run unless we are
	 * in C0, check if the actual elapsed time is significantly greater (3x)
	 * than our sample interval.  If it is, then we were idle for a long
	 * enough period of time to adjust our busyness.
1251
	 */
1252
	duration_ns = cpu->sample.time - cpu->last_sample_time;
1253
	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1254
		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1255
		core_busy = mul_fp(core_busy, sample_ratio);
1256 1257 1258 1259
	} else {
		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
		if (sample_ratio < int_tofp(1))
			core_busy = 0;
1260 1261
	}

1262 1263
	cpu->sample.busy_scaled = core_busy;
	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, core_busy);
1264 1265
}

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
	int max_perf, min_perf;

	update_turbo_state();

	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
	pstate = clamp_t(int, pstate, min_perf, max_perf);
	if (pstate == cpu->pstate.current_pstate)
		return;

	intel_pstate_record_pstate(cpu, pstate);
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1281 1282
static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
{
1283
	int from, target_pstate;
1284 1285 1286
	struct sample *sample;

	from = cpu->pstate.current_pstate;
1287

1288
	target_pstate = pstate_funcs.get_target_pstate(cpu);
1289

1290
	intel_pstate_update_pstate(cpu, target_pstate);
1291 1292 1293

	sample = &cpu->sample;
	trace_pstate_sample(fp_toint(sample->core_pct_busy),
1294
		fp_toint(sample->busy_scaled),
1295 1296 1297 1298 1299
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1300
		get_avg_frequency(cpu));
1301 1302
}

1303 1304
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
				     unsigned long util, unsigned long max)
1305
{
1306 1307
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
	u64 delta_ns = time - cpu->sample.time;
1308

1309
	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1310 1311 1312
		bool sample_taken = intel_pstate_sample(cpu, time);

		if (sample_taken && !hwp_active)
1313 1314
			intel_pstate_adjust_busy_pstate(cpu);
	}
1315 1316 1317
}

#define ICPU(model, policy) \
1318 1319
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1320 1321

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1322 1323
	ICPU(0x2a, core_params),
	ICPU(0x2d, core_params),
1324
	ICPU(0x37, silvermont_params),
1325 1326
	ICPU(0x3a, core_params),
	ICPU(0x3c, core_params),
1327
	ICPU(0x3d, core_params),
1328 1329 1330 1331
	ICPU(0x3e, core_params),
	ICPU(0x3f, core_params),
	ICPU(0x45, core_params),
	ICPU(0x46, core_params),
1332
	ICPU(0x47, core_params),
1333
	ICPU(0x4c, airmont_params),
1334
	ICPU(0x4e, core_params),
1335
	ICPU(0x4f, core_params),
1336
	ICPU(0x5e, core_params),
1337
	ICPU(0x56, core_params),
1338
	ICPU(0x57, knl_params),
1339 1340 1341 1342
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

D
Dirk Brandewie 已提交
1343 1344 1345 1346 1347
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
	ICPU(0x56, core_params),
	{}
};

1348 1349 1350 1351
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1352 1353 1354
	if (!all_cpu_data[cpunum])
		all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
					       GFP_KERNEL);
1355 1356 1357 1358 1359 1360
	if (!all_cpu_data[cpunum])
		return -ENOMEM;

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1361

1362
	if (hwp_active) {
1363
		intel_pstate_hwp_enable(cpu);
1364 1365 1366
		pid_params.sample_rate_ms = 50;
		pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
	}
1367

1368
	intel_pstate_get_cpu_pstates(cpu);
1369

1370 1371
	intel_pstate_busy_pid_reset(cpu);

J
Joe Perches 已提交
1372
	pr_debug("controlling: cpu %d\n", cpunum);
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
	struct sample *sample;
	struct cpudata *cpu;

	cpu = all_cpu_data[cpu_num];
	if (!cpu)
		return 0;
1385
	sample = &cpu->sample;
1386
	return get_avg_frequency(cpu);
1387 1388
}

1389
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1390
{
1391 1392 1393 1394
	struct cpudata *cpu = all_cpu_data[cpu_num];

	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
1395 1396
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
				     intel_pstate_update_util);
1397 1398 1399 1400
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
1401
	cpufreq_remove_update_util_hook(cpu);
1402 1403 1404
	synchronize_sched();
}

1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
static void intel_pstate_set_performance_limits(struct perf_limits *limits)
{
	limits->no_turbo = 0;
	limits->turbo_disabled = 0;
	limits->max_perf_pct = 100;
	limits->max_perf = int_tofp(1);
	limits->min_perf_pct = 100;
	limits->min_perf = int_tofp(1);
	limits->max_policy_pct = 100;
	limits->max_sysfs_pct = 100;
	limits->min_policy_pct = 0;
	limits->min_sysfs_pct = 0;
}

1419 1420
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
1421 1422 1423
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

1424 1425
	intel_pstate_clear_update_util_hook(policy->cpu);

1426
	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
1427
		limits = &performance_limits;
1428
		if (policy->max >= policy->cpuinfo.max_freq) {
J
Joe Perches 已提交
1429
			pr_debug("set performance\n");
1430 1431 1432 1433
			intel_pstate_set_performance_limits(limits);
			goto out;
		}
	} else {
J
Joe Perches 已提交
1434
		pr_debug("set powersave\n");
1435
		limits = &powersave_limits;
1436
	}
D
Dirk Brandewie 已提交
1437

1438 1439
	limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
	limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1440 1441
	limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
					      policy->cpuinfo.max_freq);
1442
	limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1443 1444

	/* Normalize user input to [min_policy_pct, max_policy_pct] */
1445 1446 1447 1448 1449 1450 1451 1452
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);
1453
	limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1454 1455

	/* Make sure min_perf_pct <= max_perf_pct */
1456
	limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1457

1458 1459
	limits->min_perf = div_fp(limits->min_perf_pct, 100);
	limits->max_perf = div_fp(limits->max_perf_pct, 100);
1460

1461 1462 1463
 out:
	intel_pstate_set_update_util_hook(policy->cpu);

D
Dirk Brandewie 已提交
1464
	if (hwp_active)
1465
		intel_pstate_hwp_set(policy->cpus);
D
Dirk Brandewie 已提交
1466

1467 1468 1469 1470 1471
	return 0;
}

static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
1472
	cpufreq_verify_within_cpu_limits(policy);
1473

1474
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1475
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1476 1477 1478 1479 1480
		return -EINVAL;

	return 0;
}

1481
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1482
{
1483 1484
	int cpu_num = policy->cpu;
	struct cpudata *cpu = all_cpu_data[cpu_num];
1485

J
Joe Perches 已提交
1486
	pr_debug("CPU %d exiting\n", cpu_num);
1487

1488
	intel_pstate_clear_update_util_hook(cpu_num);
1489

D
Dirk Brandewie 已提交
1490 1491 1492
	if (hwp_active)
		return;

1493
	intel_pstate_set_min_pstate(cpu);
1494 1495
}

1496
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1497 1498
{
	struct cpudata *cpu;
1499
	int rc;
1500 1501 1502 1503 1504 1505 1506

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

1507
	if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1508 1509 1510 1511
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;

1512 1513
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1514 1515

	/* cpuinfo and default policy values */
1516 1517 1518
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->cpuinfo.max_freq =
		cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1519
	intel_pstate_init_acpi_perf_limits(policy);
1520 1521 1522 1523 1524 1525
	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
	cpumask_set_cpu(policy->cpu, policy->cpus);

	return 0;
}

1526 1527 1528 1529 1530 1531 1532
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);

	return 0;
}

1533 1534 1535 1536 1537 1538
static struct cpufreq_driver intel_pstate_driver = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
1539
	.exit		= intel_pstate_cpu_exit,
1540
	.stop_cpu	= intel_pstate_stop_cpu,
1541 1542 1543
	.name		= "intel_pstate",
};

1544
static int __initdata no_load;
D
Dirk Brandewie 已提交
1545
static int __initdata no_hwp;
1546
static int __initdata hwp_only;
1547
static unsigned int force_load;
1548

1549 1550
static int intel_pstate_msrs_not_valid(void)
{
1551
	if (!pstate_funcs.get_max() ||
1552 1553
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
1554 1555 1556 1557
		return -ENODEV;

	return 0;
}
1558

1559
static void copy_pid_params(struct pstate_adjust_policy *policy)
1560 1561
{
	pid_params.sample_rate_ms = policy->sample_rate_ms;
1562
	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1563 1564 1565 1566 1567 1568 1569
	pid_params.p_gain_pct = policy->p_gain_pct;
	pid_params.i_gain_pct = policy->i_gain_pct;
	pid_params.d_gain_pct = policy->d_gain_pct;
	pid_params.deadband = policy->deadband;
	pid_params.setpoint = policy->setpoint;
}

1570
static void copy_cpu_funcs(struct pstate_funcs *funcs)
1571 1572
{
	pstate_funcs.get_max   = funcs->get_max;
1573
	pstate_funcs.get_max_physical = funcs->get_max_physical;
1574 1575
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
1576
	pstate_funcs.get_scaling = funcs->get_scaling;
1577
	pstate_funcs.get_val   = funcs->get_val;
1578
	pstate_funcs.get_vid   = funcs->get_vid;
1579 1580
	pstate_funcs.get_target_pstate = funcs->get_target_pstate;

1581 1582
}

1583
#ifdef CONFIG_ACPI
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613

static bool intel_pstate_no_acpi_pss(void)
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
static bool intel_pstate_has_acpi_ppc(void)
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

1634 1635 1636 1637
struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1638
	int  oem_pwr_table;
1639 1640 1641 1642
};

/* Hardware vendor-specific info that has its own power management modes */
static struct hw_vendor_info vendor_info[] = {
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
	{1, "HP    ", "ProLiant", PSS},
	{1, "ORACLE", "X4-2    ", PPC},
	{1, "ORACLE", "X4-2L   ", PPC},
	{1, "ORACLE", "X4-2B   ", PPC},
	{1, "ORACLE", "X3-2    ", PPC},
	{1, "ORACLE", "X3-2L   ", PPC},
	{1, "ORACLE", "X3-2B   ", PPC},
	{1, "ORACLE", "X4470M2 ", PPC},
	{1, "ORACLE", "X4270M3 ", PPC},
	{1, "ORACLE", "X4270M2 ", PPC},
	{1, "ORACLE", "X4170M2 ", PPC},
1654 1655 1656 1657
	{1, "ORACLE", "X4170 M3", PPC},
	{1, "ORACLE", "X4275 M3", PPC},
	{1, "ORACLE", "X6-2    ", PPC},
	{1, "ORACLE", "Sudbury ", PPC},
1658 1659 1660 1661 1662 1663 1664
	{0, "", ""},
};

static bool intel_pstate_platform_pwr_mgmt_exists(void)
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;
D
Dirk Brandewie 已提交
1665 1666 1667 1668 1669 1670 1671 1672 1673
	const struct x86_cpu_id *id;
	u64 misc_pwr;

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
1674

1675 1676
	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1677 1678 1679
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
1680
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1681 1682 1683 1684 1685 1686
			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
						ACPI_OEM_TABLE_ID_SIZE))
			switch (v_info->oem_pwr_table) {
			case PSS:
				return intel_pstate_no_acpi_pss();
			case PPC:
1687 1688
				return intel_pstate_has_acpi_ppc() &&
					(!force_load);
1689
			}
1690 1691 1692 1693 1694 1695
	}

	return false;
}
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1696
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1697 1698
#endif /* CONFIG_ACPI */

1699 1700 1701 1702 1703
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
	{}
};

1704 1705
static int __init intel_pstate_init(void)
{
1706
	int cpu, rc = 0;
1707
	const struct x86_cpu_id *id;
1708
	struct cpu_defaults *cpu_def;
1709

1710 1711 1712
	if (no_load)
		return -ENODEV;

1713 1714 1715 1716 1717 1718
	if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
		copy_cpu_funcs(&core_params.funcs);
		hwp_active++;
		goto hwp_cpu_matched;
	}

1719 1720 1721 1722
	id = x86_match_cpu(intel_pstate_cpu_ids);
	if (!id)
		return -ENODEV;

1723
	cpu_def = (struct cpu_defaults *)id->driver_data;
1724

1725 1726
	copy_pid_params(&cpu_def->pid_policy);
	copy_cpu_funcs(&cpu_def->funcs);
1727

1728 1729 1730
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

1731 1732 1733 1734 1735 1736 1737 1738
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

J
Joe Perches 已提交
1739
	pr_info("Intel P-state driver initializing\n");
1740

1741
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1742 1743 1744
	if (!all_cpu_data)
		return -ENOMEM;

1745 1746 1747
	if (!hwp_active && hwp_only)
		goto out;

1748 1749 1750 1751 1752 1753
	rc = cpufreq_register_driver(&intel_pstate_driver);
	if (rc)
		goto out;

	intel_pstate_debug_expose_params();
	intel_pstate_sysfs_expose_params();
1754

1755
	if (hwp_active)
J
Joe Perches 已提交
1756
		pr_info("HWP enabled\n");
1757

1758 1759
	return rc;
out:
1760 1761 1762
	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
1763
			intel_pstate_clear_update_util_hook(cpu);
1764 1765 1766 1767 1768 1769
			kfree(all_cpu_data[cpu]);
		}
	}

	put_online_cpus();
	vfree(all_cpu_data);
1770 1771 1772 1773
	return -ENODEV;
}
device_initcall(intel_pstate_init);

1774 1775 1776 1777 1778 1779 1780
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

	if (!strcmp(str, "disable"))
		no_load = 1;
1781
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
1782
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
1783
		no_hwp = 1;
1784
	}
1785 1786
	if (!strcmp(str, "force"))
		force_load = 1;
1787 1788
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
1789 1790 1791 1792 1793 1794

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

1795 1796 1797 1798
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

1799 1800 1801
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");