intel_pstate.c 57.3 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

J
Joe Perches 已提交
13 14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

15 16 17 18 19 20 21
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
22
#include <linux/sched/cpufreq.h>
23 24 25 26 27 28 29
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
30
#include <linux/acpi.h>
31
#include <linux/vmalloc.h>
32 33 34 35 36
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
37
#include <asm/cpufeature.h>
38
#include <asm/intel-family.h>
39

40 41
#define INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)

42
#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
43
#define INTEL_CPUFREQ_TRANSITION_DELAY		500
44

45 46
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
47
#include <acpi/cppc_acpi.h>
48 49
#endif

50
#define FRAC_BITS 8
51 52
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
53

54 55
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
56 57
#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
58

59 60 61 62 63
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

64
static inline int32_t div_fp(s64 x, s64 y)
65
{
66
	return div64_s64((int64_t)x << FRAC_BITS, y);
67 68
}

69 70 71 72 73 74 75 76 77 78 79
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

80 81 82 83 84
static inline int32_t percent_fp(int percent)
{
	return div_fp(percent, 100);
}

85 86 87 88 89 90 91 92 93 94
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

95 96 97 98 99
static inline int32_t percent_ext_fp(int percent)
{
	return div_ext_fp(percent, 100);
}

100 101
/**
 * struct sample -	Store performance sample
102
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
103 104
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
105
 *			P state. This can be different than core_avg_perf
106 107 108 109 110 111 112 113 114 115 116 117
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
118
struct sample {
119
	int32_t core_avg_perf;
120
	int32_t busy_scaled;
121 122
	u64 aperf;
	u64 mperf;
123
	u64 tsc;
124
	u64 time;
125 126
};

127 128 129 130 131 132 133 134 135 136 137
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
138 139
 * @max_freq:		@max_pstate frequency in cpufreq units
 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
140 141 142
 *
 * Stores the per cpu model P state limits and current P state.
 */
143 144 145 146
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
147
	int	max_pstate_physical;
148
	int	scaling;
149
	int	turbo_pstate;
150 151
	unsigned int max_freq;
	unsigned int turbo_freq;
152 153
};

154 155 156 157 158 159 160 161 162 163 164 165 166
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
167
struct vid_data {
168 169 170
	int min;
	int max;
	int turbo;
171 172 173
	int32_t ratio;
};

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
/**
 * struct global_params - Global parameters, mostly tunable via sysfs.
 * @no_turbo:		Whether or not to use turbo P-states.
 * @turbo_disabled:	Whethet or not turbo P-states are available at all,
 *			based on the MSR_IA32_MISC_ENABLE value and whether or
 *			not the maximum reported turbo P-state is different from
 *			the maximum reported non-turbo one.
 * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 */
struct global_params {
	bool no_turbo;
	bool turbo_disabled;
	int max_perf_pct;
	int min_perf_pct;
191 192
};

193 194 195
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
196
 * @policy:		CPUFreq policy value
197
 * @update_util:	CPUFreq utility callback information
198
 * @update_util_set:	CPUFreq utility callback is set
199 200
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
201 202 203
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @last_sample_time:	Last Sample time
204 205 206
 * @aperf_mperf_shift:	Number of clock cycles after aperf, merf is incremented
 *			This shift is a multiplier to mperf delta to
 *			calculate CPU busy.
207 208 209 210 211 212
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
213 214
 * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
 * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
215 216
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
217 218 219
 * @epp_powersave:	Last saved HWP energy performance preference
 *			(EPP) or energy performance bias (EPB),
 *			when policy switched to performance
220
 * @epp_policy:		Last saved policy used to set EPP/EPB
221 222 223 224
 * @epp_default:	Power on default HWP energy performance
 *			preference/bias
 * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
 *			operation
225 226 227
 *
 * This structure stores per CPU instance data for all CPUs.
 */
228 229 230
struct cpudata {
	int cpu;

231
	unsigned int policy;
232
	struct update_util_data update_util;
233
	bool   update_util_set;
234 235

	struct pstate_data pstate;
236
	struct vid_data vid;
237

238
	u64	last_update;
239
	u64	last_sample_time;
240
	u64	aperf_mperf_shift;
241 242
	u64	prev_aperf;
	u64	prev_mperf;
243
	u64	prev_tsc;
244
	u64	prev_cummulative_iowait;
245
	struct sample sample;
246 247
	int32_t	min_perf_ratio;
	int32_t	max_perf_ratio;
248 249 250 251
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
252
	unsigned int iowait_boost;
253
	s16 epp_powersave;
254
	s16 epp_policy;
255 256
	s16 epp_default;
	s16 epp_saved;
257 258 259
};

static struct cpudata **all_cpu_data;
260 261 262 263 264 265 266 267 268 269 270 271 272 273

/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
274 275
struct pstate_funcs {
	int (*get_max)(void);
276
	int (*get_max_physical)(void);
277 278
	int (*get_min)(void);
	int (*get_turbo)(void);
279
	int (*get_scaling)(void);
280
	int (*get_aperf_mperf_shift)(void);
281
	u64 (*get_val)(struct cpudata*, int pstate);
282
	void (*get_vid)(struct cpudata *);
283 284
};

285
static struct pstate_funcs pstate_funcs __read_mostly;
286

287
static int hwp_active __read_mostly;
288
static bool per_cpu_limits __read_mostly;
289

290
static struct cpufreq_driver *intel_pstate_driver __read_mostly;
291

292 293 294
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
295

296
static struct global_params global;
297

298
static DEFINE_MUTEX(intel_pstate_driver_lock);
299 300
static DEFINE_MUTEX(intel_pstate_limits_lock);

301
#ifdef CONFIG_ACPI
302 303 304 305 306 307 308 309 310 311

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

	return acpi_ppc;
}

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
#ifdef CONFIG_ACPI_CPPC_LIB

/* The work item is needed to avoid CPU hotplug locking issues */
static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
{
	sched_set_itmt_support();
}

static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);

static void intel_pstate_set_itmt_prio(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return;

	/*
	 * The priorities can be set regardless of whether or not
	 * sched_set_itmt_support(true) has been called and it is valid to
	 * update them at any time after it has been called.
	 */
	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);

	if (max_highest_perf <= min_highest_perf) {
		if (cppc_perf.highest_perf > max_highest_perf)
			max_highest_perf = cppc_perf.highest_perf;

		if (cppc_perf.highest_perf < min_highest_perf)
			min_highest_perf = cppc_perf.highest_perf;

		if (max_highest_perf > min_highest_perf) {
			/*
			 * This code can be run during CPU online under the
			 * CPU hotplug locks, so sched_set_itmt_support()
			 * cannot be called from here.  Queue up a work item
			 * to invoke it.
			 */
			schedule_work(&sched_itmt_work);
		}
	}
}
#else
static void intel_pstate_set_itmt_prio(int cpu)
{
}
#endif

363 364 365 366 367 368
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

369 370
	if (hwp_active) {
		intel_pstate_set_itmt_prio(policy->cpu);
371
		return;
372
	}
373

374
	if (!intel_pstate_get_ppc_enable_status())
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
417
	 * correct max turbo frequency based on the turbo state.
418 419
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
420
	if (!global.turbo_disabled)
421 422 423
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
424
	pr_debug("_PPC limits will be enforced\n");
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}
#else
444
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
445 446 447
{
}

448
static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
449 450 451 452
{
}
#endif

453 454 455 456 457 458 459
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
460
	global.turbo_disabled =
461 462 463 464
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

465 466 467
static int min_perf_pct_min(void)
{
	struct cpudata *cpu = all_cpu_data[0];
468
	int turbo_pstate = cpu->pstate.turbo_pstate;
469

470
	return turbo_pstate ?
471
		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
472 473
}

474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
{
	u64 epb;
	int ret;

	if (!static_cpu_has(X86_FEATURE_EPB))
		return -ENXIO;

	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return (s16)ret;

	return (s16)(epb & 0x0f);
}

static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
{
	s16 epp;

493 494 495 496 497 498 499 500 501 502 503
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * When hwp_req_data is 0, means that caller didn't read
		 * MSR_HWP_REQUEST, so need to read and get EPP.
		 */
		if (!hwp_req_data) {
			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
					    &hwp_req_data);
			if (epp)
				return epp;
		}
504
		epp = (hwp_req_data >> 24) & 0xff;
505
	} else {
506 507
		/* When there is no EPP present, HWP uses EPB settings */
		epp = intel_pstate_get_epb(cpu_data);
508
	}
509 510 511 512

	return epp;
}

513
static int intel_pstate_set_epb(int cpu, s16 pref)
514 515
{
	u64 epb;
516
	int ret;
517 518

	if (!static_cpu_has(X86_FEATURE_EPB))
519
		return -ENXIO;
520

521 522 523
	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return ret;
524 525 526

	epb = (epb & ~0x0f) | pref;
	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
527 528

	return 0;
529 530
}

531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
/*
 * EPP/EPB display strings corresponding to EPP index in the
 * energy_perf_strings[]
 *	index		String
 *-------------------------------------
 *	0		default
 *	1		performance
 *	2		balance_performance
 *	3		balance_power
 *	4		power
 */
static const char * const energy_perf_strings[] = {
	"default",
	"performance",
	"balance_performance",
	"balance_power",
	"power",
	NULL
};
550 551 552 553 554 555
static const unsigned int epp_values[] = {
	HWP_EPP_PERFORMANCE,
	HWP_EPP_BALANCE_PERFORMANCE,
	HWP_EPP_BALANCE_POWERSAVE,
	HWP_EPP_POWERSAVE
};
556 557 558 559 560 561 562 563 564 565 566

static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
{
	s16 epp;
	int index = -EINVAL;

	epp = intel_pstate_get_epp(cpu_data, 0);
	if (epp < 0)
		return epp;

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
567 568 569 570 571 572 573 574
		if (epp == HWP_EPP_PERFORMANCE)
			return 1;
		if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
			return 2;
		if (epp <= HWP_EPP_BALANCE_POWERSAVE)
			return 3;
		else
			return 4;
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
	} else if (static_cpu_has(X86_FEATURE_EPB)) {
		/*
		 * Range:
		 *	0x00-0x03	:	Performance
		 *	0x04-0x07	:	Balance performance
		 *	0x08-0x0B	:	Balance power
		 *	0x0C-0x0F	:	Power
		 * The EPB is a 4 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 2) + 1;
	}

	return index;
}

static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
					      int pref_index)
{
	int epp = -EINVAL;
	int ret;

	if (!pref_index)
		epp = cpu_data->epp_default;

	mutex_lock(&intel_pstate_limits_lock);

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		u64 value;

		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
		if (ret)
			goto return_pref;

		value &= ~GENMASK_ULL(31, 24);

		if (epp == -EINVAL)
613
			epp = epp_values[pref_index - 1];
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686

		value |= (u64)epp << 24;
		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
	} else {
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 2;
		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
	}
return_pref:
	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
}

static ssize_t show_energy_performance_available_preferences(
				struct cpufreq_policy *policy, char *buf)
{
	int i = 0;
	int ret = 0;

	while (energy_perf_strings[i] != NULL)
		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);

	ret += sprintf(&buf[ret], "\n");

	return ret;
}

cpufreq_freq_attr_ro(energy_performance_available_preferences);

static ssize_t store_energy_performance_preference(
		struct cpufreq_policy *policy, const char *buf, size_t count)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	char str_preference[21];
	int ret, i = 0;

	ret = sscanf(buf, "%20s", str_preference);
	if (ret != 1)
		return -EINVAL;

	while (energy_perf_strings[i] != NULL) {
		if (!strcmp(str_preference, energy_perf_strings[i])) {
			intel_pstate_set_energy_pref_index(cpu_data, i);
			return count;
		}
		++i;
	}

	return -EINVAL;
}

static ssize_t show_energy_performance_preference(
				struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	int preference;

	preference = intel_pstate_get_energy_pref_index(cpu_data);
	if (preference < 0)
		return preference;

	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
}

cpufreq_freq_attr_rw(energy_performance_preference);

static struct freq_attr *hwp_cpufreq_attrs[] = {
	&energy_performance_preference,
	&energy_performance_available_preferences,
	NULL,
};

687 688
static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
				     int *current_max)
D
Dirk Brandewie 已提交
689
{
690
	u64 cap;
691

692 693
	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
	if (global.no_turbo)
694
		*current_max = HWP_GUARANTEED_PERF(cap);
695
	else
696 697 698 699 700 701 702 703 704 705 706 707 708 709
		*current_max = HWP_HIGHEST_PERF(cap);

	*phy_max = HWP_HIGHEST_PERF(cap);
}

static void intel_pstate_hwp_set(unsigned int cpu)
{
	struct cpudata *cpu_data = all_cpu_data[cpu];
	int max, min;
	u64 value;
	s16 epp;

	max = cpu_data->max_perf_ratio;
	min = cpu_data->min_perf_ratio;
710

711 712
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
		min = max;
713

714
	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
D
Dirk Brandewie 已提交
715

716 717
	value &= ~HWP_MIN_PERF(~0L);
	value |= HWP_MIN_PERF(min);
718

719 720
	value &= ~HWP_MAX_PERF(~0L);
	value |= HWP_MAX_PERF(max);
721

722 723
	if (cpu_data->epp_policy == cpu_data->policy)
		goto skip_epp;
724

725
	cpu_data->epp_policy = cpu_data->policy;
726

727 728 729 730 731
	if (cpu_data->epp_saved >= 0) {
		epp = cpu_data->epp_saved;
		cpu_data->epp_saved = -EINVAL;
		goto update_epp;
	}
732

733 734 735 736 737 738
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
		epp = intel_pstate_get_epp(cpu_data, value);
		cpu_data->epp_powersave = epp;
		/* If EPP read was failed, then don't try to write */
		if (epp < 0)
			goto skip_epp;
739

740 741 742 743 744
		epp = 0;
	} else {
		/* skip setting EPP, when saved value is invalid */
		if (cpu_data->epp_powersave < 0)
			goto skip_epp;
745

746 747 748 749 750 751 752 753 754 755
		/*
		 * No need to restore EPP when it is not zero. This
		 * means:
		 *  - Policy is not changed
		 *  - user has manually changed
		 *  - Error reading EPB
		 */
		epp = intel_pstate_get_epp(cpu_data, value);
		if (epp)
			goto skip_epp;
756

757 758
		epp = cpu_data->epp_powersave;
	}
759
update_epp:
760 761 762 763 764
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		value &= ~GENMASK_ULL(31, 24);
		value |= (u64)epp << 24;
	} else {
		intel_pstate_set_epb(cpu, epp);
D
Dirk Brandewie 已提交
765
	}
766 767
skip_epp:
	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
768
}
D
Dirk Brandewie 已提交
769

770 771 772 773 774 775 776 777 778 779 780 781
static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];

	if (!hwp_active)
		return 0;

	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);

	return 0;
}

782 783 784 785 786
static int intel_pstate_resume(struct cpufreq_policy *policy)
{
	if (!hwp_active)
		return 0;

787 788
	mutex_lock(&intel_pstate_limits_lock);

789
	all_cpu_data[policy->cpu]->epp_policy = 0;
790
	intel_pstate_hwp_set(policy->cpu);
791 792 793

	mutex_unlock(&intel_pstate_limits_lock);

794
	return 0;
795 796
}

797
static void intel_pstate_update_policies(void)
798
{
799 800 801 802
	int cpu;

	for_each_possible_cpu(cpu)
		cpufreq_update_policy(cpu);
D
Dirk Brandewie 已提交
803 804
}

805 806 807 808 809
/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
810
		return sprintf(buf, "%u\n", global.object);		\
811 812
	}

813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
static ssize_t intel_pstate_show_status(char *buf);
static int intel_pstate_update_status(const char *buf, size_t size);

static ssize_t show_status(struct kobject *kobj,
			   struct attribute *attr, char *buf)
{
	ssize_t ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_show_status(buf);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret;
}

static ssize_t store_status(struct kobject *a, struct attribute *b,
			    const char *buf, size_t count)
{
	char *p = memchr(buf, '\n', count);
	int ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_update_status(buf, p ? p - buf : count);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret < 0 ? ret : count;
}

841 842 843 844 845 846 847
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

848 849
	mutex_lock(&intel_pstate_driver_lock);

850
	if (!intel_pstate_driver) {
851 852 853 854
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

855 856 857 858
	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
859
	turbo_fp = div_fp(no_turbo, total);
860
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
861 862 863

	mutex_unlock(&intel_pstate_driver_lock);

864 865 866
	return sprintf(buf, "%u\n", turbo_pct);
}

867 868 869 870 871 872
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

873 874
	mutex_lock(&intel_pstate_driver_lock);

875
	if (!intel_pstate_driver) {
876 877 878 879
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

880 881
	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
882 883 884

	mutex_unlock(&intel_pstate_driver_lock);

885 886 887
	return sprintf(buf, "%u\n", total);
}

888 889 890 891 892
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

893 894
	mutex_lock(&intel_pstate_driver_lock);

895
	if (!intel_pstate_driver) {
896 897 898 899
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

900
	update_turbo_state();
901 902
	if (global.turbo_disabled)
		ret = sprintf(buf, "%u\n", global.turbo_disabled);
903
	else
904
		ret = sprintf(buf, "%u\n", global.no_turbo);
905

906 907
	mutex_unlock(&intel_pstate_driver_lock);

908 909 910
	return ret;
}

911
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
912
			      const char *buf, size_t count)
913 914 915
{
	unsigned int input;
	int ret;
916

917 918 919
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
920

921 922
	mutex_lock(&intel_pstate_driver_lock);

923
	if (!intel_pstate_driver) {
924 925 926 927
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

928 929
	mutex_lock(&intel_pstate_limits_lock);

930
	update_turbo_state();
931
	if (global.turbo_disabled) {
J
Joe Perches 已提交
932
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
933
		mutex_unlock(&intel_pstate_limits_lock);
934
		mutex_unlock(&intel_pstate_driver_lock);
935
		return -EPERM;
936
	}
D
Dirk Brandewie 已提交
937

938
	global.no_turbo = clamp_t(int, input, 0, 1);
939

940 941 942 943 944 945 946 947 948
	if (global.no_turbo) {
		struct cpudata *cpu = all_cpu_data[0];
		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;

		/* Squash the global minimum into the permitted range. */
		if (global.min_perf_pct > pct)
			global.min_perf_pct = pct;
	}

949 950
	mutex_unlock(&intel_pstate_limits_lock);

951 952
	intel_pstate_update_policies();

953 954
	mutex_unlock(&intel_pstate_driver_lock);

955 956 957 958
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
959
				  const char *buf, size_t count)
960 961 962
{
	unsigned int input;
	int ret;
963

964 965 966 967
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

968 969
	mutex_lock(&intel_pstate_driver_lock);

970
	if (!intel_pstate_driver) {
971 972 973 974
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

975 976
	mutex_lock(&intel_pstate_limits_lock);

977
	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
978

979 980
	mutex_unlock(&intel_pstate_limits_lock);

981 982
	intel_pstate_update_policies();

983 984
	mutex_unlock(&intel_pstate_driver_lock);

985 986 987 988
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
989
				  const char *buf, size_t count)
990 991 992
{
	unsigned int input;
	int ret;
993

994 995 996
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
997

998 999
	mutex_lock(&intel_pstate_driver_lock);

1000
	if (!intel_pstate_driver) {
1001 1002 1003 1004
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1005 1006
	mutex_lock(&intel_pstate_limits_lock);

1007 1008
	global.min_perf_pct = clamp_t(int, input,
				      min_perf_pct_min(), global.max_perf_pct);
1009

1010 1011
	mutex_unlock(&intel_pstate_limits_lock);

1012 1013
	intel_pstate_update_policies();

1014 1015
	mutex_unlock(&intel_pstate_driver_lock);

1016 1017 1018 1019 1020 1021
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

1022
define_one_global_rw(status);
1023 1024 1025
define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
1026
define_one_global_ro(turbo_pct);
1027
define_one_global_ro(num_pstates);
1028 1029

static struct attribute *intel_pstate_attributes[] = {
1030
	&status.attr,
1031
	&no_turbo.attr,
1032
	&turbo_pct.attr,
1033
	&num_pstates.attr,
1034 1035 1036
	NULL
};

1037
static const struct attribute_group intel_pstate_attr_group = {
1038 1039 1040
	.attrs = intel_pstate_attributes,
};

1041
static void __init intel_pstate_sysfs_expose_params(void)
1042
{
1043
	struct kobject *intel_pstate_kobject;
1044 1045 1046 1047
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
1048 1049 1050
	if (WARN_ON(!intel_pstate_kobject))
		return;

1051
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
	if (WARN_ON(rc))
		return;

	/*
	 * If per cpu limits are enforced there are no global limits, so
	 * return without creating max/min_perf_pct attributes
	 */
	if (per_cpu_limits)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
	WARN_ON(rc);

	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
	WARN_ON(rc);

1068 1069
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
1070

1071
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
1072
{
1073
	/* First disable HWP notification interrupt as we don't process them */
1074 1075
	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1076

1077
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1078
	cpudata->epp_policy = 0;
1079 1080
	if (cpudata->epp_default == -EINVAL)
		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
D
Dirk Brandewie 已提交
1081 1082
}

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
#define MSR_IA32_POWER_CTL_BIT_EE	19

/* Disable energy efficiency optimization */
static void intel_pstate_disable_ee(int cpu)
{
	u64 power_ctl;
	int ret;

	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
	if (ret)
		return;

	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
		pr_info("Disabling energy efficiency optimization\n");
		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
	}
}

1102
static int atom_get_min_pstate(void)
1103 1104
{
	u64 value;
1105

1106
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1107
	return (value >> 8) & 0x7F;
1108 1109
}

1110
static int atom_get_max_pstate(void)
1111 1112
{
	u64 value;
1113

1114
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1115
	return (value >> 16) & 0x7F;
1116
}
1117

1118
static int atom_get_turbo_pstate(void)
1119 1120
{
	u64 value;
1121

1122
	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
1123
	return value & 0x7F;
1124 1125
}

1126
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1127 1128 1129 1130 1131
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

1132
	val = (u64)pstate << 8;
1133
	if (global.no_turbo && !global.turbo_disabled)
1134 1135 1136 1137 1138 1139 1140
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1141
	vid = ceiling_fp(vid_fp);
1142

1143 1144 1145
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

1146
	return val | vid;
1147 1148
}

1149
static int silvermont_get_scaling(void)
1150 1151 1152
{
	u64 value;
	int i;
1153 1154 1155
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
1156 1157

	rdmsrl(MSR_FSB_FREQ, value);
1158 1159
	i = value & 0x7;
	WARN_ON(i > 4);
1160

1161 1162
	return silvermont_freq_table[i];
}
1163

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
1178 1179
}

1180
static void atom_get_vid(struct cpudata *cpudata)
1181 1182 1183
{
	u64 value;

1184
	rdmsrl(MSR_ATOM_CORE_VIDS, value);
D
Dirk Brandewie 已提交
1185 1186
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1187 1188 1189 1190
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
1191

1192
	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1193
	cpudata->vid.turbo = value & 0x7f;
1194 1195
}

1196
static int core_get_min_pstate(void)
1197 1198
{
	u64 value;
1199

1200
	rdmsrl(MSR_PLATFORM_INFO, value);
1201 1202 1203
	return (value >> 40) & 0xFF;
}

1204
static int core_get_max_pstate_physical(void)
1205 1206
{
	u64 value;
1207

1208
	rdmsrl(MSR_PLATFORM_INFO, value);
1209 1210 1211
	return (value >> 8) & 0xFF;
}

1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
static int core_get_tdp_ratio(u64 plat_info)
{
	/* Check how many TDP levels present */
	if (plat_info & 0x600000000) {
		u64 tdp_ctrl;
		u64 tdp_ratio;
		int tdp_msr;
		int err;

		/* Get the TDP level (0, 1, 2) to get ratios */
		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
		if (err)
			return err;

		/* TDP MSR are continuous starting at 0x648 */
		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
		if (err)
			return err;

		/* For level 1 and 2, bits[23:16] contain the ratio */
		if (tdp_ctrl & 0x03)
			tdp_ratio >>= 16;

		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);

		return (int)tdp_ratio;
	}

	return -ENXIO;
}

1245
static int core_get_max_pstate(void)
1246
{
1247 1248 1249
	u64 tar;
	u64 plat_info;
	int max_pstate;
1250
	int tdp_ratio;
1251 1252 1253 1254 1255
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

1256 1257 1258 1259 1260 1261 1262 1263 1264
	tdp_ratio = core_get_tdp_ratio(plat_info);
	if (tdp_ratio <= 0)
		return max_pstate;

	if (hwp_active) {
		/* Turbo activation ratio is not used on HWP platforms */
		return tdp_ratio;
	}

1265 1266
	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
1267 1268
		int tar_levels;

1269
		/* Do some sanity checking for safety */
1270 1271 1272 1273
		tar_levels = tar & 0xff;
		if (tdp_ratio - 1 == tar_levels) {
			max_pstate = tar_levels;
			pr_debug("max_pstate=TAC %x\n", max_pstate);
1274 1275
		}
	}
1276

1277
	return max_pstate;
1278 1279
}

1280
static int core_get_turbo_pstate(void)
1281 1282 1283
{
	u64 value;
	int nont, ret;
1284

1285
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1286
	nont = core_get_max_pstate();
1287
	ret = (value) & 255;
1288 1289 1290 1291 1292
	if (ret <= nont)
		ret = nont;
	return ret;
}

1293 1294 1295 1296 1297
static inline int core_get_scaling(void)
{
	return 100000;
}

1298
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1299 1300 1301
{
	u64 val;

1302
	val = (u64)pstate << 8;
1303
	if (global.no_turbo && !global.turbo_disabled)
1304 1305
		val |= (u64)1 << 32;

1306
	return val;
1307 1308
}

1309 1310 1311 1312 1313
static int knl_get_aperf_mperf_shift(void)
{
	return 10;
}

1314 1315 1316 1317 1318
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1319
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1320 1321 1322 1323 1324 1325 1326
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1327
static int intel_pstate_get_base_pstate(struct cpudata *cpu)
1328
{
1329 1330
	return global.no_turbo || global.turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1331 1332
}

1333
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1334
{
1335 1336
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1337 1338 1339 1340 1341 1342 1343
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1344 1345
}

1346 1347 1348 1349 1350 1351 1352
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
1353
	int pstate;
1354 1355

	update_turbo_state();
1356
	pstate = intel_pstate_get_base_pstate(cpu);
1357
	pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1358
	intel_pstate_set_pstate(cpu, pstate);
1359 1360
}

1361 1362
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1363 1364
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1365
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1366
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1367
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1368 1369
	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1370

1371 1372 1373
	if (pstate_funcs.get_aperf_mperf_shift)
		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();

1374 1375
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1376 1377

	intel_pstate_set_min_pstate(cpu);
1378 1379
}

1380
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1381
{
1382
	struct sample *sample = &cpu->sample;
1383

1384
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1385 1386
}

1387
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1388 1389
{
	u64 aperf, mperf;
1390
	unsigned long flags;
1391
	u64 tsc;
1392

1393
	local_irq_save(flags);
1394 1395
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1396
	tsc = rdtsc();
1397
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1398
		local_irq_restore(flags);
1399
		return false;
1400
	}
1401
	local_irq_restore(flags);
1402

1403
	cpu->last_sample_time = cpu->sample.time;
1404
	cpu->sample.time = time;
1405 1406
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1407
	cpu->sample.tsc =  tsc;
1408 1409
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1410
	cpu->sample.tsc -= cpu->prev_tsc;
1411

1412 1413
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1414
	cpu->prev_tsc = tsc;
1415 1416 1417 1418 1419 1420 1421
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
1422 1423 1424 1425 1426
	if (cpu->last_sample_time) {
		intel_pstate_calc_avg_perf(cpu);
		return true;
	}
	return false;
1427 1428
}

1429 1430
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1431 1432
	return mul_ext_fp(cpu->sample.core_avg_perf,
			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1433 1434
}

1435 1436
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1437 1438
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1439 1440
}

1441 1442 1443
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
{
	struct sample *sample = &cpu->sample;
1444
	int32_t busy_frac, boost;
1445
	int target, avg_pstate;
1446

1447 1448
	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
			   sample->tsc);
1449

1450 1451
	boost = cpu->iowait_boost;
	cpu->iowait_boost >>= 1;
1452

1453 1454
	if (busy_frac < boost)
		busy_frac = boost;
1455

1456
	sample->busy_scaled = busy_frac * 100;
1457

1458
	target = global.no_turbo || global.turbo_disabled ?
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1477 1478
}

1479
static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1480
{
1481 1482
	int max_pstate = intel_pstate_get_base_pstate(cpu);
	int min_pstate;
1483

1484 1485
	min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
	max_pstate = max(min_pstate, cpu->max_perf_ratio);
1486
	return clamp_t(int, pstate, min_pstate, max_pstate);
1487 1488 1489 1490
}

static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
1491 1492 1493
	if (pstate == cpu->pstate.current_pstate)
		return;

1494
	cpu->pstate.current_pstate = pstate;
1495 1496 1497
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1498
static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1499
{
1500
	int from = cpu->pstate.current_pstate;
1501
	struct sample *sample;
1502
	int target_pstate;
1503

1504 1505
	update_turbo_state();

1506
	target_pstate = get_target_pstate_use_cpu_load(cpu);
1507 1508
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1509
	intel_pstate_update_pstate(cpu, target_pstate);
1510 1511

	sample = &cpu->sample;
1512
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1513
		fp_toint(sample->busy_scaled),
1514 1515 1516 1517 1518
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1519 1520
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1521 1522
}

1523
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1524
				     unsigned int flags)
1525
{
1526
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1527 1528
	u64 delta_ns;

1529 1530
	if (flags & SCHED_CPUFREQ_IOWAIT) {
		cpu->iowait_boost = int_tofp(1);
1531 1532 1533 1534 1535 1536 1537 1538 1539
		cpu->last_update = time;
		/*
		 * The last time the busy was 100% so P-state was max anyway
		 * so avoid overhead of computation.
		 */
		if (fp_toint(cpu->sample.busy_scaled) == 100)
			return;

		goto set_pstate;
1540 1541 1542 1543 1544
	} else if (cpu->iowait_boost) {
		/* Clear iowait_boost if the CPU may have been idle. */
		delta_ns = time - cpu->last_update;
		if (delta_ns > TICK_NSEC)
			cpu->iowait_boost = 0;
1545
	}
1546
	cpu->last_update = time;
1547
	delta_ns = time - cpu->sample.time;
1548 1549
	if ((s64)delta_ns < INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL)
		return;
1550

1551
set_pstate:
1552 1553
	if (intel_pstate_sample(cpu, time))
		intel_pstate_adjust_pstate(cpu);
1554
}
1555

1556 1557 1558 1559 1560 1561 1562
static struct pstate_funcs core_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = core_get_turbo_pstate,
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
1563 1564
};

1565 1566 1567 1568 1569 1570 1571 1572
static const struct pstate_funcs silvermont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = silvermont_get_scaling,
	.get_vid = atom_get_vid,
1573 1574
};

1575 1576 1577 1578 1579 1580 1581 1582
static const struct pstate_funcs airmont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = airmont_get_scaling,
	.get_vid = atom_get_vid,
1583 1584
};

1585 1586 1587 1588 1589
static const struct pstate_funcs knl_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = knl_get_turbo_pstate,
1590
	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1591 1592
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
1593 1594
};

1595 1596 1597 1598 1599 1600 1601
static const struct pstate_funcs bxt_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = core_get_turbo_pstate,
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
1602 1603
};

1604
#define ICPU(model, policy) \
1605 1606
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1607 1608

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_funcs),
	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_funcs),
	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_funcs),
	ICPU(INTEL_FAM6_IVYBRIDGE,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_CORE,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_funcs),
	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_X,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_ULT,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_funcs),
	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_X,		core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_funcs),
	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_funcs),
	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_funcs),
	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_funcs),
1628
	ICPU(INTEL_FAM6_ATOM_GEMINI_LAKE,       bxt_funcs),
1629 1630 1631 1632
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

1633
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1634 1635 1636
	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
D
Dirk Brandewie 已提交
1637 1638 1639
	{}
};

1640
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1641
	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1642 1643 1644
	{}
};

1645 1646 1647 1648
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1649 1650 1651
	cpu = all_cpu_data[cpunum];

	if (!cpu) {
1652
		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1653 1654 1655 1656 1657
		if (!cpu)
			return -ENOMEM;

		all_cpu_data[cpunum] = cpu;

1658 1659 1660
		cpu->epp_default = -EINVAL;
		cpu->epp_powersave = -EINVAL;
		cpu->epp_saved = -EINVAL;
1661
	}
1662 1663 1664 1665

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1666

1667
	if (hwp_active) {
1668 1669 1670 1671 1672 1673
		const struct x86_cpu_id *id;

		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
		if (id)
			intel_pstate_disable_ee(cpunum);

1674
		intel_pstate_hwp_enable(cpu);
1675
	}
1676

1677
	intel_pstate_get_cpu_pstates(cpu);
1678

J
Joe Perches 已提交
1679
	pr_debug("controlling: cpu %d\n", cpunum);
1680 1681 1682 1683

	return 0;
}

1684
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1685
{
1686 1687
	struct cpudata *cpu = all_cpu_data[cpu_num];

1688 1689 1690
	if (hwp_active)
		return;

1691 1692 1693
	if (cpu->update_util_set)
		return;

1694 1695
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
1696
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1697
				     intel_pstate_update_util);
1698
	cpu->update_util_set = true;
1699 1700 1701 1702
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
1703 1704 1705 1706 1707
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

1708
	cpufreq_remove_update_util_hook(cpu);
1709
	cpu_data->update_util_set = false;
1710 1711 1712
	synchronize_sched();
}

1713 1714 1715 1716 1717 1718
static int intel_pstate_get_max_freq(struct cpudata *cpu)
{
	return global.turbo_disabled || global.no_turbo ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
}

1719
static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1720
					    struct cpudata *cpu)
1721
{
1722
	int max_freq = intel_pstate_get_max_freq(cpu);
1723
	int32_t max_policy_perf, min_policy_perf;
1724
	int max_state, turbo_max;
1725

1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
	/*
	 * HWP needs some special consideration, because on BDX the
	 * HWP_REQUEST uses abstract value to represent performance
	 * rather than pure ratios.
	 */
	if (hwp_active) {
		intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
	} else {
		max_state = intel_pstate_get_base_pstate(cpu);
		turbo_max = cpu->pstate.turbo_pstate;
	}

	max_policy_perf = max_state * policy->max / max_freq;
1739
	if (policy->max == policy->min) {
1740
		min_policy_perf = max_policy_perf;
1741
	} else {
1742
		min_policy_perf = max_state * policy->min / max_freq;
1743 1744
		min_policy_perf = clamp_t(int32_t, min_policy_perf,
					  0, max_policy_perf);
1745
	}
1746

1747 1748 1749 1750
	pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
		 policy->cpu, max_state,
		 min_policy_perf, max_policy_perf);

1751
	/* Normalize user input to [min_perf, max_perf] */
1752
	if (per_cpu_limits) {
1753 1754
		cpu->min_perf_ratio = min_policy_perf;
		cpu->max_perf_ratio = max_policy_perf;
1755 1756 1757 1758
	} else {
		int32_t global_min, global_max;

		/* Global limits are in percent of the maximum turbo P-state. */
1759 1760
		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
1761
		global_min = clamp_t(int32_t, global_min, 0, global_max);
1762

1763 1764
		pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
			 global_min, global_max);
1765

1766 1767 1768 1769
		cpu->min_perf_ratio = max(min_policy_perf, global_min);
		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
		cpu->max_perf_ratio = min(max_policy_perf, global_max);
		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
1770

1771 1772 1773
		/* Make sure min_perf <= max_perf */
		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
					  cpu->max_perf_ratio);
1774

1775 1776 1777 1778
	}
	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
		 cpu->max_perf_ratio,
		 cpu->min_perf_ratio);
1779 1780
}

1781 1782
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
1783 1784
	struct cpudata *cpu;

1785 1786 1787
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

1788 1789 1790
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

1791
	cpu = all_cpu_data[policy->cpu];
1792 1793
	cpu->policy = policy->policy;

1794 1795
	mutex_lock(&intel_pstate_limits_lock);

1796
	intel_pstate_update_perf_limits(policy, cpu);
1797

1798
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
1799 1800 1801 1802 1803 1804
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
1805 1806
	} else {
		intel_pstate_set_update_util_hook(policy->cpu);
1807 1808
	}

1809
	if (hwp_active)
1810
		intel_pstate_hwp_set(policy->cpu);
D
Dirk Brandewie 已提交
1811

1812 1813
	mutex_unlock(&intel_pstate_limits_lock);

1814 1815 1816
	return 0;
}

1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
					 struct cpudata *cpu)
{
	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_freq) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
	}
}

1828 1829
static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
1830 1831 1832
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
1833 1834
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
1835

1836
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1837
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1838 1839
		return -EINVAL;

1840 1841
	intel_pstate_adjust_policy_max(policy, cpu);

1842 1843 1844
	return 0;
}

1845 1846 1847 1848 1849
static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
{
	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
}

1850
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1851
{
1852
	pr_debug("CPU %d exiting\n", policy->cpu);
1853

1854
	intel_pstate_clear_update_util_hook(policy->cpu);
1855 1856 1857
	if (hwp_active)
		intel_pstate_hwp_save_state(policy);
	else
1858 1859
		intel_cpufreq_stop_cpu(policy);
}
1860

1861 1862 1863
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);
1864

1865
	policy->fast_switch_possible = false;
D
Dirk Brandewie 已提交
1866

1867
	return 0;
1868 1869
}

1870
static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
1871 1872
{
	struct cpudata *cpu;
1873
	int rc;
1874 1875 1876 1877 1878 1879 1880

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

1881 1882
	cpu->max_perf_ratio = 0xFF;
	cpu->min_perf_ratio = 0;
1883

1884 1885
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1886 1887

	/* cpuinfo and default policy values */
1888
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1889
	update_turbo_state();
1890
	policy->cpuinfo.max_freq = global.turbo_disabled ?
1891 1892 1893
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

1894
	intel_pstate_init_acpi_perf_limits(policy);
1895 1896
	cpumask_set_cpu(policy->cpu, policy->cpus);

1897 1898
	policy->fast_switch_possible = true;

1899 1900 1901
	return 0;
}

1902
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1903
{
1904 1905 1906 1907 1908 1909
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1910
	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
1911 1912 1913
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;
1914 1915 1916 1917

	return 0;
}

1918
static struct cpufreq_driver intel_pstate = {
1919 1920 1921
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
1922
	.suspend	= intel_pstate_hwp_save_state,
1923
	.resume		= intel_pstate_resume,
1924
	.init		= intel_pstate_cpu_init,
1925
	.exit		= intel_pstate_cpu_exit,
1926
	.stop_cpu	= intel_pstate_stop_cpu,
1927 1928 1929
	.name		= "intel_pstate",
};

1930 1931 1932 1933 1934
static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
1935 1936
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
1937

1938
	intel_pstate_adjust_policy_max(policy, cpu);
1939

1940 1941
	intel_pstate_update_perf_limits(policy, cpu);

1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
	return 0;
}

static int intel_cpufreq_target(struct cpufreq_policy *policy,
				unsigned int target_freq,
				unsigned int relation)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct cpufreq_freqs freqs;
	int target_pstate;

1953 1954
	update_turbo_state();

1955
	freqs.old = policy->cur;
1956
	freqs.new = target_freq;
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975

	cpufreq_freq_transition_begin(policy, &freqs);
	switch (relation) {
	case CPUFREQ_RELATION_L:
		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
		break;
	case CPUFREQ_RELATION_H:
		target_pstate = freqs.new / cpu->pstate.scaling;
		break;
	default:
		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
		break;
	}
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	if (target_pstate != cpu->pstate.current_pstate) {
		cpu->pstate.current_pstate = target_pstate;
		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
			      pstate_funcs.get_val(cpu, target_pstate));
	}
1976
	freqs.new = target_pstate * cpu->pstate.scaling;
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
	cpufreq_freq_transition_end(policy, &freqs, false);

	return 0;
}

static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
					      unsigned int target_freq)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	int target_pstate;

1988 1989
	update_turbo_state();

1990
	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
1991
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1992
	intel_pstate_update_pstate(cpu, target_pstate);
1993
	return target_pstate * cpu->pstate.scaling;
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
}

static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2004
	policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
	policy->cur = policy->cpuinfo.min_freq;

	return 0;
}

static struct cpufreq_driver intel_cpufreq = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_cpufreq_verify_policy,
	.target		= intel_cpufreq_target,
	.fast_switch	= intel_cpufreq_fast_switch,
	.init		= intel_cpufreq_cpu_init,
	.exit		= intel_pstate_cpu_exit,
	.stop_cpu	= intel_cpufreq_stop_cpu,
	.name		= "intel_cpufreq",
};

2022
static struct cpufreq_driver *default_driver = &intel_pstate;
2023

2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
static void intel_pstate_driver_cleanup(void)
{
	unsigned int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			if (intel_pstate_driver == &intel_pstate)
				intel_pstate_clear_update_util_hook(cpu);

			kfree(all_cpu_data[cpu]);
			all_cpu_data[cpu] = NULL;
		}
	}
	put_online_cpus();
2039
	intel_pstate_driver = NULL;
2040 2041
}

2042
static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2043 2044 2045
{
	int ret;

2046 2047
	memset(&global, 0, sizeof(global));
	global.max_perf_pct = 100;
2048

2049
	intel_pstate_driver = driver;
2050 2051 2052 2053 2054 2055
	ret = cpufreq_register_driver(intel_pstate_driver);
	if (ret) {
		intel_pstate_driver_cleanup();
		return ret;
	}

2056 2057
	global.min_perf_pct = min_perf_pct_min();

2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
	return 0;
}

static int intel_pstate_unregister_driver(void)
{
	if (hwp_active)
		return -EBUSY;

	cpufreq_unregister_driver(intel_pstate_driver);
	intel_pstate_driver_cleanup();

	return 0;
}

static ssize_t intel_pstate_show_status(char *buf)
{
2074
	if (!intel_pstate_driver)
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
		return sprintf(buf, "off\n");

	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
					"active" : "passive");
}

static int intel_pstate_update_status(const char *buf, size_t size)
{
	int ret;

	if (size == 3 && !strncmp(buf, "off", size))
2086
		return intel_pstate_driver ?
2087 2088 2089
			intel_pstate_unregister_driver() : -EINVAL;

	if (size == 6 && !strncmp(buf, "active", size)) {
2090
		if (intel_pstate_driver) {
2091 2092 2093 2094 2095 2096 2097 2098
			if (intel_pstate_driver == &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2099
		return intel_pstate_register_driver(&intel_pstate);
2100 2101 2102
	}

	if (size == 7 && !strncmp(buf, "passive", size)) {
2103
		if (intel_pstate_driver) {
2104
			if (intel_pstate_driver == &intel_cpufreq)
2105 2106 2107 2108 2109 2110 2111
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2112
		return intel_pstate_register_driver(&intel_cpufreq);
2113 2114 2115 2116 2117
	}

	return -EINVAL;
}

2118 2119 2120
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
2121
static unsigned int force_load __initdata;
2122

2123
static int __init intel_pstate_msrs_not_valid(void)
2124
{
2125
	if (!pstate_funcs.get_max() ||
2126 2127
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
2128 2129 2130 2131
		return -ENODEV;

	return 0;
}
2132

2133
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2134 2135
{
	pstate_funcs.get_max   = funcs->get_max;
2136
	pstate_funcs.get_max_physical = funcs->get_max_physical;
2137 2138
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
2139
	pstate_funcs.get_scaling = funcs->get_scaling;
2140
	pstate_funcs.get_val   = funcs->get_val;
2141
	pstate_funcs.get_vid   = funcs->get_vid;
2142
	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2143 2144
}

2145
#ifdef CONFIG_ACPI
2146

2147
static bool __init intel_pstate_no_acpi_pss(void)
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

2176
static bool __init intel_pstate_has_acpi_ppc(void)
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

2196 2197 2198 2199
struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2200
	int  oem_pwr_table;
2201 2202 2203
};

/* Hardware vendor-specific info that has its own power management modes */
2204
static struct hw_vendor_info vendor_info[] __initdata = {
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
	{1, "HP    ", "ProLiant", PSS},
	{1, "ORACLE", "X4-2    ", PPC},
	{1, "ORACLE", "X4-2L   ", PPC},
	{1, "ORACLE", "X4-2B   ", PPC},
	{1, "ORACLE", "X3-2    ", PPC},
	{1, "ORACLE", "X3-2L   ", PPC},
	{1, "ORACLE", "X3-2B   ", PPC},
	{1, "ORACLE", "X4470M2 ", PPC},
	{1, "ORACLE", "X4270M3 ", PPC},
	{1, "ORACLE", "X4270M2 ", PPC},
	{1, "ORACLE", "X4170M2 ", PPC},
2216 2217 2218 2219
	{1, "ORACLE", "X4170 M3", PPC},
	{1, "ORACLE", "X4275 M3", PPC},
	{1, "ORACLE", "X6-2    ", PPC},
	{1, "ORACLE", "Sudbury ", PPC},
2220 2221 2222
	{0, "", ""},
};

2223
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2224 2225 2226
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;
D
Dirk Brandewie 已提交
2227 2228 2229 2230 2231 2232 2233 2234 2235
	const struct x86_cpu_id *id;
	u64 misc_pwr;

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
2236

2237 2238
	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2239 2240 2241
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
2242
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2243 2244 2245 2246 2247 2248
			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
						ACPI_OEM_TABLE_ID_SIZE))
			switch (v_info->oem_pwr_table) {
			case PSS:
				return intel_pstate_no_acpi_pss();
			case PPC:
2249 2250
				return intel_pstate_has_acpi_ppc() &&
					(!force_load);
2251
			}
2252 2253 2254 2255
	}

	return false;
}
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265

static void intel_pstate_request_control_from_smm(void)
{
	/*
	 * It may be unsafe to request P-states control from SMM if _PPC support
	 * has not been enabled.
	 */
	if (acpi_ppc)
		acpi_processor_pstate_control();
}
2266 2267
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2268
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2269
static inline void intel_pstate_request_control_from_smm(void) {}
2270 2271
#endif /* CONFIG_ACPI */

2272 2273 2274 2275 2276
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
	{}
};

2277 2278
static int __init intel_pstate_init(void)
{
2279
	int rc;
2280

2281 2282 2283
	if (no_load)
		return -ENODEV;

2284
	if (x86_match_cpu(hwp_support_ids)) {
2285
		copy_cpu_funcs(&core_funcs);
2286
		if (!no_hwp) {
2287 2288 2289 2290 2291 2292
			hwp_active++;
			intel_pstate.attr = hwp_cpufreq_attrs;
			goto hwp_cpu_matched;
		}
	} else {
		const struct x86_cpu_id *id;
2293

2294 2295 2296
		id = x86_match_cpu(intel_pstate_cpu_ids);
		if (!id)
			return -ENODEV;
2297

2298
		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2299
	}
2300

2301 2302 2303
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

2304 2305 2306 2307 2308 2309 2310 2311
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

2312 2313 2314
	if (!hwp_active && hwp_only)
		return -ENOTSUPP;

J
Joe Perches 已提交
2315
	pr_info("Intel P-state driver initializing\n");
2316

2317
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2318 2319 2320
	if (!all_cpu_data)
		return -ENOMEM;

2321 2322
	intel_pstate_request_control_from_smm();

2323
	intel_pstate_sysfs_expose_params();
2324

2325
	mutex_lock(&intel_pstate_driver_lock);
2326
	rc = intel_pstate_register_driver(default_driver);
2327
	mutex_unlock(&intel_pstate_driver_lock);
2328 2329
	if (rc)
		return rc;
2330

2331
	if (hwp_active)
J
Joe Perches 已提交
2332
		pr_info("HWP enabled\n");
2333

2334
	return 0;
2335 2336 2337
}
device_initcall(intel_pstate_init);

2338 2339 2340 2341 2342
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

2343
	if (!strcmp(str, "disable")) {
2344
		no_load = 1;
2345 2346
	} else if (!strcmp(str, "passive")) {
		pr_info("Passive mode enabled\n");
2347
		default_driver = &intel_cpufreq;
2348 2349
		no_hwp = 1;
	}
2350
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
2351
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
2352
		no_hwp = 1;
2353
	}
2354 2355
	if (!strcmp(str, "force"))
		force_load = 1;
2356 2357
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
2358 2359
	if (!strcmp(str, "per_cpu_perf_limits"))
		per_cpu_limits = true;
2360 2361 2362 2363 2364 2365

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

2366 2367 2368 2369
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

2370 2371 2372
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");