intel_pstate.c 46.5 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

J
Joe Perches 已提交
13 14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
30
#include <linux/acpi.h>
31
#include <linux/vmalloc.h>
32 33 34 35 36
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
37
#include <asm/cpufeature.h>
38

39 40 41 42
#define ATOM_RATIOS		0x66a
#define ATOM_VIDS		0x66b
#define ATOM_TURBO_RATIOS	0x66c
#define ATOM_TURBO_VIDS		0x66d
43

44 45 46 47
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
#endif

48
#define FRAC_BITS 8
49 50
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
51

52 53 54 55 56
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

57
static inline int32_t div_fp(s64 x, s64 y)
58
{
59
	return div64_s64((int64_t)x << FRAC_BITS, y);
60 61
}

62 63 64 65 66 67 68 69 70 71 72
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
/**
 * struct sample -	Store performance sample
 * @core_pct_busy:	Ratio of APERF/MPERF in percent, which is actual
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
 *			P state. This can be different than core_pct_busy
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @freq:		Effective frequency calculated from APERF/MPERF
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
92
struct sample {
93
	int32_t core_pct_busy;
94
	int32_t busy_scaled;
95 96
	u64 aperf;
	u64 mperf;
97
	u64 tsc;
98
	int freq;
99
	u64 time;
100 101
};

102 103 104 105 106 107 108 109 110 111 112 113 114 115
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
 *
 * Stores the per cpu model P state limits and current P state.
 */
116 117 118 119
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
120
	int	max_pstate_physical;
121
	int	scaling;
122 123 124
	int	turbo_pstate;
};

125 126 127 128 129 130 131 132 133 134 135 136 137
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
138
struct vid_data {
139 140 141
	int min;
	int max;
	int turbo;
142 143 144
	int32_t ratio;
};

145 146 147 148 149 150 151 152 153 154 155 156
/**
 * struct _pid -	Stores PID data
 * @setpoint:		Target set point for busyness or performance
 * @integral:		Storage for accumulated error values
 * @p_gain:		PID proportional gain
 * @i_gain:		PID integral gain
 * @d_gain:		PID derivative gain
 * @deadband:		PID deadband
 * @last_err:		Last error storage for integral part of PID calculation
 *
 * Stores PID coefficients and last error for PID controller.
 */
157 158 159 160 161 162 163
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
164
	int32_t last_err;
165 166
};

167 168 169 170 171 172 173 174 175 176 177 178 179 180
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
 * @update_util:	CPUFreq utility callback information
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @pid:		Stores PID parameters for this CPU
 * @last_sample_time:	Last Sample time
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
181 182
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
183 184 185
 *
 * This structure stores per CPU instance data for all CPUs.
 */
186 187 188
struct cpudata {
	int cpu;

189
	struct update_util_data update_util;
190 191

	struct pstate_data pstate;
192
	struct vid_data vid;
193 194
	struct _pid pid;

195
	u64	last_sample_time;
196 197
	u64	prev_aperf;
	u64	prev_mperf;
198
	u64	prev_tsc;
199
	u64	prev_cummulative_iowait;
200
	struct sample sample;
201 202 203 204
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
205 206 207
};

static struct cpudata **all_cpu_data;
208 209 210 211 212 213 214 215 216 217 218 219 220

/**
 * struct pid_adjust_policy - Stores static PID configuration data
 * @sample_rate_ms:	PID calculation sample rate in ms
 * @sample_rate_ns:	Sample rate calculation in ns
 * @deadband:		PID deadband
 * @setpoint:		PID Setpoint
 * @p_gain_pct:		PID proportional gain
 * @i_gain_pct:		PID integral gain
 * @d_gain_pct:		PID derivative gain
 *
 * Stores per CPU model static PID configuration data.
 */
221 222
struct pstate_adjust_policy {
	int sample_rate_ms;
223
	s64 sample_rate_ns;
224 225 226 227 228 229 230
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

231 232 233 234 235 236 237 238 239 240 241 242 243 244
/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 * @get_target_pstate:	Callback to a function to calculate next P state to use
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
245 246
struct pstate_funcs {
	int (*get_max)(void);
247
	int (*get_max_physical)(void);
248 249
	int (*get_min)(void);
	int (*get_turbo)(void);
250
	int (*get_scaling)(void);
251
	u64 (*get_val)(struct cpudata*, int pstate);
252
	void (*get_vid)(struct cpudata *);
253
	int32_t (*get_target_pstate)(struct cpudata *);
254 255
};

256 257 258 259 260
/**
 * struct cpu_defaults- Per CPU model default config data
 * @pid_policy:	PID config data
 * @funcs:		Callback function data
 */
261 262 263
struct cpu_defaults {
	struct pstate_adjust_policy pid_policy;
	struct pstate_funcs funcs;
264 265
};

266
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
267
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
268

269 270
static struct pstate_adjust_policy pid_params;
static struct pstate_funcs pstate_funcs;
D
Dirk Brandewie 已提交
271
static int hwp_active;
272

273 274 275
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303

/**
 * struct perf_limits - Store user and policy limits
 * @no_turbo:		User requested turbo state from intel_pstate sysfs
 * @turbo_disabled:	Platform turbo status either from msr
 *			MSR_IA32_MISC_ENABLE or when maximum available pstate
 *			matches the maximum turbo pstate
 * @max_perf_pct:	Effective maximum performance limit in percentage, this
 *			is minimum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @min_perf_pct:	Effective minimum performance limit in percentage, this
 *			is maximum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @max_perf:		This is a scaled value between 0 to 255 for max_perf_pct
 *			This value is used to limit max pstate
 * @min_perf:		This is a scaled value between 0 to 255 for min_perf_pct
 *			This value is used to limit min pstate
 * @max_policy_pct:	The maximum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @max_sysfs_pct:	The maximum performance in percentage enforced by
 *			intel pstate sysfs interface
 * @min_policy_pct:	The minimum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @min_sysfs_pct:	The minimum performance in percentage enforced by
 *			intel pstate sysfs interface
 *
 * Storage for user and policy defined limits.
 */
304 305
struct perf_limits {
	int no_turbo;
306
	int turbo_disabled;
307 308 309 310
	int max_perf_pct;
	int min_perf_pct;
	int32_t max_perf;
	int32_t min_perf;
311 312
	int max_policy_pct;
	int max_sysfs_pct;
313 314
	int min_policy_pct;
	int min_sysfs_pct;
315 316
};

317 318 319 320 321 322 323 324 325 326 327 328 329 330
static struct perf_limits performance_limits = {
	.no_turbo = 0,
	.turbo_disabled = 0,
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 100,
	.min_perf = int_tofp(1),
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
};

static struct perf_limits powersave_limits = {
331
	.no_turbo = 0,
332
	.turbo_disabled = 0,
333 334 335 336
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 0,
	.min_perf = 0,
337 338
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
339 340
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
341 342
};

343 344 345 346 347 348
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
static struct perf_limits *limits = &performance_limits;
#else
static struct perf_limits *limits = &powersave_limits;
#endif

349
#ifdef CONFIG_ACPI
350 351 352 353 354 355 356 357 358 359

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

	return acpi_ppc;
}

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
/*
 * The max target pstate ratio is a 8 bit value in both PLATFORM_INFO MSR and
 * in TURBO_RATIO_LIMIT MSR, which pstate driver stores in max_pstate and
 * max_turbo_pstate fields. The PERF_CTL MSR contains 16 bit value for P state
 * ratio, out of it only high 8 bits are used. For example 0x1700 is setting
 * target ratio 0x17. The _PSS control value stores in a format which can be
 * directly written to PERF_CTL MSR. But in intel_pstate driver this shift
 * occurs during write to PERF_CTL (E.g. for cores core_set_pstate()).
 * This function converts the _PSS control value to intel pstate driver format
 * for comparison and assignment.
 */
static int convert_to_native_pstate_format(struct cpudata *cpu, int index)
{
	return cpu->acpi_perf_data.states[index].control >> 8;
}

static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int turbo_pss_ctl;
	int ret;
	int i;

383 384 385
	if (hwp_active)
		return;

386
	if (!intel_pstate_get_ppc_enable_status())
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
	 * correct max turbo frequency based on the turbo ratio.
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
	turbo_pss_ctl = convert_to_native_pstate_format(cpu, 0);
	if (turbo_pss_ctl > cpu->pstate.max_pstate)
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
	pr_info("_PPC limits will be enforced\n");

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}

#else
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
}
#endif

467
static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
468
			     int deadband, int integral) {
469 470
	pid->setpoint = int_tofp(setpoint);
	pid->deadband  = int_tofp(deadband);
471
	pid->integral  = int_tofp(integral);
472
	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
473 474 475 476
}

static inline void pid_p_gain_set(struct _pid *pid, int percent)
{
477
	pid->p_gain = div_fp(percent, 100);
478 479 480 481
}

static inline void pid_i_gain_set(struct _pid *pid, int percent)
{
482
	pid->i_gain = div_fp(percent, 100);
483 484 485 486
}

static inline void pid_d_gain_set(struct _pid *pid, int percent)
{
487
	pid->d_gain = div_fp(percent, 100);
488 489
}

490
static signed int pid_calc(struct _pid *pid, int32_t busy)
491
{
492
	signed int result;
493 494 495
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

496
	fp_error = pid->setpoint - busy;
497

498
	if (abs(fp_error) <= pid->deadband)
499 500 501 502 503 504
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

505 506 507 508 509 510 511 512
	/*
	 * We limit the integral here so that it will never
	 * get higher than 30.  This prevents it from becoming
	 * too large an input over long periods of time and allows
	 * it to get factored out sooner.
	 *
	 * The value of 30 was chosen through experimentation.
	 */
513 514 515 516 517 518
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

519 520
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
521 522

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
523
	result = result + (1 << (FRAC_BITS-1));
524 525 526 527 528
	return (signed int)fp_toint(result);
}

static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
{
529 530 531
	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
532

533
	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
534 535 536 537 538
}

static inline void intel_pstate_reset_all_pid(void)
{
	unsigned int cpu;
539

540 541 542 543 544 545
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu])
			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
	}
}

546 547 548 549 550 551 552
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
553
	limits->turbo_disabled =
554 555 556 557
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

558
static void intel_pstate_hwp_set(const struct cpumask *cpumask)
D
Dirk Brandewie 已提交
559
{
560 561 562 563 564 565 566
	int min, hw_min, max, hw_max, cpu, range, adj_range;
	u64 value, cap;

	rdmsrl(MSR_HWP_CAPABILITIES, cap);
	hw_min = HWP_LOWEST_PERF(cap);
	hw_max = HWP_HIGHEST_PERF(cap);
	range = hw_max - hw_min;
D
Dirk Brandewie 已提交
567

568
	for_each_cpu(cpu, cpumask) {
D
Dirk Brandewie 已提交
569
		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
570
		adj_range = limits->min_perf_pct * range / 100;
571
		min = hw_min + adj_range;
D
Dirk Brandewie 已提交
572 573 574
		value &= ~HWP_MIN_PERF(~0L);
		value |= HWP_MIN_PERF(min);

575
		adj_range = limits->max_perf_pct * range / 100;
576
		max = hw_min + adj_range;
577
		if (limits->no_turbo) {
578 579 580
			hw_max = HWP_GUARANTEED_PERF(cap);
			if (hw_max < max)
				max = hw_max;
D
Dirk Brandewie 已提交
581 582 583 584 585 586
		}

		value &= ~HWP_MAX_PERF(~0L);
		value |= HWP_MAX_PERF(max);
		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
	}
587
}
D
Dirk Brandewie 已提交
588

589 590 591 592 593 594 595 596
static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
{
	if (hwp_active)
		intel_pstate_hwp_set(policy->cpus);

	return 0;
}

597 598 599 600
static void intel_pstate_hwp_set_online_cpus(void)
{
	get_online_cpus();
	intel_pstate_hwp_set(cpu_online_mask);
D
Dirk Brandewie 已提交
601 602 603
	put_online_cpus();
}

604 605 606 607 608 609 610
/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
	*(u32 *)data = val;
	intel_pstate_reset_all_pid();
	return 0;
}
611

612 613 614 615 616
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
617
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
618 619 620 621 622 623 624

struct pid_param {
	char *name;
	void *value;
};

static struct pid_param pid_files[] = {
625 626 627 628 629 630
	{"sample_rate_ms", &pid_params.sample_rate_ms},
	{"d_gain_pct", &pid_params.d_gain_pct},
	{"i_gain_pct", &pid_params.i_gain_pct},
	{"deadband", &pid_params.deadband},
	{"setpoint", &pid_params.setpoint},
	{"p_gain_pct", &pid_params.p_gain_pct},
631 632 633
	{NULL, NULL}
};

634
static void __init intel_pstate_debug_expose_params(void)
635
{
636
	struct dentry *debugfs_parent;
637 638
	int i = 0;

D
Dirk Brandewie 已提交
639 640
	if (hwp_active)
		return;
641 642 643 644 645
	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
	while (pid_files[i].name) {
		debugfs_create_file(pid_files[i].name, 0660,
646 647
				    debugfs_parent, pid_files[i].value,
				    &fops_pid_param);
648 649 650 651 652 653 654 655 656 657 658
		i++;
	}
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
659
		return sprintf(buf, "%u\n", limits->object);		\
660 661
	}

662 663 664 665 666 667 668 669 670 671 672
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
673
	turbo_fp = div_fp(no_turbo, total);
674 675 676 677
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
	return sprintf(buf, "%u\n", turbo_pct);
}

678 679 680 681 682 683 684 685 686 687 688
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	return sprintf(buf, "%u\n", total);
}

689 690 691 692 693 694
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

	update_turbo_state();
695 696
	if (limits->turbo_disabled)
		ret = sprintf(buf, "%u\n", limits->turbo_disabled);
697
	else
698
		ret = sprintf(buf, "%u\n", limits->no_turbo);
699 700 701 702

	return ret;
}

703
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
704
			      const char *buf, size_t count)
705 706 707
{
	unsigned int input;
	int ret;
708

709 710 711
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
712 713

	update_turbo_state();
714
	if (limits->turbo_disabled) {
J
Joe Perches 已提交
715
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
716
		return -EPERM;
717
	}
D
Dirk Brandewie 已提交
718

719
	limits->no_turbo = clamp_t(int, input, 0, 1);
720

D
Dirk Brandewie 已提交
721
	if (hwp_active)
722
		intel_pstate_hwp_set_online_cpus();
D
Dirk Brandewie 已提交
723

724 725 726 727
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
728
				  const char *buf, size_t count)
729 730 731
{
	unsigned int input;
	int ret;
732

733 734 735 736
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

737 738 739 740 741 742 743
	limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);
	limits->max_perf_pct = max(limits->min_perf_pct,
				   limits->max_perf_pct);
744
	limits->max_perf = div_fp(limits->max_perf_pct, 100);
745

D
Dirk Brandewie 已提交
746
	if (hwp_active)
747
		intel_pstate_hwp_set_online_cpus();
748 749 750 751
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
752
				  const char *buf, size_t count)
753 754 755
{
	unsigned int input;
	int ret;
756

757 758 759
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
760

761 762 763 764 765 766 767
	limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->min_perf_pct = min(limits->max_perf_pct,
				   limits->min_perf_pct);
768
	limits->min_perf = div_fp(limits->min_perf_pct, 100);
769

D
Dirk Brandewie 已提交
770
	if (hwp_active)
771
		intel_pstate_hwp_set_online_cpus();
772 773 774 775 776 777 778 779 780
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
781
define_one_global_ro(turbo_pct);
782
define_one_global_ro(num_pstates);
783 784 785 786 787

static struct attribute *intel_pstate_attributes[] = {
	&no_turbo.attr,
	&max_perf_pct.attr,
	&min_perf_pct.attr,
788
	&turbo_pct.attr,
789
	&num_pstates.attr,
790 791 792 793 794 795 796
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};

797
static void __init intel_pstate_sysfs_expose_params(void)
798
{
799
	struct kobject *intel_pstate_kobject;
800 801 802 803 804
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
	BUG_ON(!intel_pstate_kobject);
805
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
806 807 808
	BUG_ON(rc);
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
809

810
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
811
{
812 813 814
	/* First disable HWP notification interrupt as we don't process them */
	wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);

815
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
D
Dirk Brandewie 已提交
816 817
}

818
static int atom_get_min_pstate(void)
819 820
{
	u64 value;
821

822
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
823
	return (value >> 8) & 0x7F;
824 825
}

826
static int atom_get_max_pstate(void)
827 828
{
	u64 value;
829

830
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
831
	return (value >> 16) & 0x7F;
832
}
833

834
static int atom_get_turbo_pstate(void)
835 836
{
	u64 value;
837

838
	rdmsrl(ATOM_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
839
	return value & 0x7F;
840 841
}

842
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
843 844 845 846 847
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

848
	val = (u64)pstate << 8;
849
	if (limits->no_turbo && !limits->turbo_disabled)
850 851 852 853 854 855 856
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
857
	vid = ceiling_fp(vid_fp);
858

859 860 861
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

862
	return val | vid;
863 864
}

865
static int silvermont_get_scaling(void)
866 867 868
{
	u64 value;
	int i;
869 870 871
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
872 873

	rdmsrl(MSR_FSB_FREQ, value);
874 875
	i = value & 0x7;
	WARN_ON(i > 4);
876

877 878
	return silvermont_freq_table[i];
}
879

880 881 882 883 884 885 886 887 888 889 890 891 892 893
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
894 895
}

896
static void atom_get_vid(struct cpudata *cpudata)
897 898 899
{
	u64 value;

900
	rdmsrl(ATOM_VIDS, value);
D
Dirk Brandewie 已提交
901 902
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
903 904 905 906
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
907

908
	rdmsrl(ATOM_TURBO_VIDS, value);
909
	cpudata->vid.turbo = value & 0x7f;
910 911
}

912
static int core_get_min_pstate(void)
913 914
{
	u64 value;
915

916
	rdmsrl(MSR_PLATFORM_INFO, value);
917 918 919
	return (value >> 40) & 0xFF;
}

920
static int core_get_max_pstate_physical(void)
921 922
{
	u64 value;
923

924
	rdmsrl(MSR_PLATFORM_INFO, value);
925 926 927
	return (value >> 8) & 0xFF;
}

928
static int core_get_max_pstate(void)
929
{
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
	u64 tar;
	u64 plat_info;
	int max_pstate;
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
		/* Do some sanity checking for safety */
		if (plat_info & 0x600000000) {
			u64 tdp_ctrl;
			u64 tdp_ratio;
			int tdp_msr;

			err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
			if (err)
				goto skip_tar;

			tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
			err = rdmsrl_safe(tdp_msr, &tdp_ratio);
			if (err)
				goto skip_tar;

955 956 957 958 959
			/* For level 1 and 2, bits[23:16] contain the ratio */
			if (tdp_ctrl)
				tdp_ratio >>= 16;

			tdp_ratio &= 0xff; /* ratios are only 8 bits long */
960 961 962 963 964 965 966 967
			if (tdp_ratio - 1 == tar) {
				max_pstate = tar;
				pr_debug("max_pstate=TAC %x\n", max_pstate);
			} else {
				goto skip_tar;
			}
		}
	}
968

969 970
skip_tar:
	return max_pstate;
971 972
}

973
static int core_get_turbo_pstate(void)
974 975 976
{
	u64 value;
	int nont, ret;
977

978
	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
979
	nont = core_get_max_pstate();
980
	ret = (value) & 255;
981 982 983 984 985
	if (ret <= nont)
		ret = nont;
	return ret;
}

986 987 988 989 990
static inline int core_get_scaling(void)
{
	return 100000;
}

991
static u64 core_get_val(struct cpudata *cpudata, int pstate)
992 993 994
{
	u64 val;

995
	val = (u64)pstate << 8;
996
	if (limits->no_turbo && !limits->turbo_disabled)
997 998
		val |= (u64)1 << 32;

999
	return val;
1000 1001
}

1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
static struct cpu_defaults core_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
1026
		.get_max_physical = core_get_max_pstate_physical,
1027 1028
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
1029
		.get_scaling = core_get_scaling,
1030
		.get_val = core_get_val,
1031
		.get_target_pstate = get_target_pstate_use_performance,
1032 1033 1034
	},
};

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
static struct cpu_defaults silvermont_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1049
		.get_val = atom_get_val,
1050 1051
		.get_scaling = silvermont_get_scaling,
		.get_vid = atom_get_vid,
1052
		.get_target_pstate = get_target_pstate_use_cpu_load,
1053 1054 1055 1056
	},
};

static struct cpu_defaults airmont_params = {
1057 1058 1059
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
1060
		.setpoint = 60,
1061 1062 1063 1064 1065
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
1066 1067 1068 1069
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1070
		.get_val = atom_get_val,
1071
		.get_scaling = airmont_get_scaling,
1072
		.get_vid = atom_get_vid,
1073
		.get_target_pstate = get_target_pstate_use_cpu_load,
1074 1075 1076
	},
};

1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
static struct cpu_defaults knl_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
1088
		.get_max_physical = core_get_max_pstate_physical,
1089 1090
		.get_min = core_get_min_pstate,
		.get_turbo = knl_get_turbo_pstate,
1091
		.get_scaling = core_get_scaling,
1092
		.get_val = core_get_val,
1093
		.get_target_pstate = get_target_pstate_use_performance,
1094 1095 1096
	},
};

1097 1098 1099
static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
1100
	int max_perf_adj;
1101
	int min_perf;
1102

1103
	if (limits->no_turbo || limits->turbo_disabled)
1104 1105
		max_perf = cpu->pstate.max_pstate;

1106 1107 1108 1109 1110
	/*
	 * performance can be limited by user through sysfs, by cpufreq
	 * policy, or by cpu specific default values determined through
	 * experimentation.
	 */
1111
	max_perf_adj = fp_toint(max_perf * limits->max_perf);
1112 1113
	*max = clamp_t(int, max_perf_adj,
			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1114

1115
	min_perf = fp_toint(max_perf * limits->min_perf);
1116
	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1117 1118
}

1119
static inline void intel_pstate_record_pstate(struct cpudata *cpu, int pstate)
1120
{
1121
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1122
	cpu->pstate.current_pstate = pstate;
1123
}
1124

1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	int pstate = cpu->pstate.min_pstate;

	intel_pstate_record_pstate(cpu, pstate);
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1137 1138 1139 1140
}

static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1141 1142
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1143
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1144
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1145
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1146

1147 1148
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1149 1150

	intel_pstate_set_min_pstate(cpu);
1151 1152
}

1153
static inline void intel_pstate_calc_busy(struct cpudata *cpu)
1154
{
1155
	struct sample *sample = &cpu->sample;
1156
	int64_t core_pct;
1157

1158 1159
	core_pct = sample->aperf * int_tofp(100);
	core_pct = div64_u64(core_pct, sample->mperf);
1160

1161
	sample->core_pct_busy = (int32_t)core_pct;
1162 1163
}

1164
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1165 1166
{
	u64 aperf, mperf;
1167
	unsigned long flags;
1168
	u64 tsc;
1169

1170
	local_irq_save(flags);
1171 1172
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1173
	tsc = rdtsc();
1174
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1175
		local_irq_restore(flags);
1176
		return false;
1177
	}
1178
	local_irq_restore(flags);
1179

1180
	cpu->last_sample_time = cpu->sample.time;
1181
	cpu->sample.time = time;
1182 1183
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1184
	cpu->sample.tsc =  tsc;
1185 1186
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1187
	cpu->sample.tsc -= cpu->prev_tsc;
1188

1189 1190
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1191
	cpu->prev_tsc = tsc;
1192 1193 1194 1195 1196 1197 1198 1199
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
	return !!cpu->last_sample_time;
1200 1201
}

1202 1203
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1204 1205 1206
	return fp_toint(mul_fp(cpu->sample.core_pct_busy,
			       int_tofp(cpu->pstate.max_pstate_physical *
						cpu->pstate.scaling / 100)));
1207 1208
}

1209 1210 1211 1212 1213 1214
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
	return div64_u64(cpu->pstate.max_pstate_physical * cpu->sample.aperf,
			 cpu->sample.mperf);
}

1215 1216 1217
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
{
	struct sample *sample = &cpu->sample;
1218 1219 1220
	u64 cummulative_iowait, delta_iowait_us;
	u64 delta_iowait_mperf;
	u64 mperf, now;
1221 1222
	int32_t cpu_load;

1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
	cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);

	/*
	 * Convert iowait time into number of IO cycles spent at max_freq.
	 * IO is considered as busy only for the cpu_load algorithm. For
	 * performance this is not needed since we always try to reach the
	 * maximum P-State, so we are already boosting the IOs.
	 */
	delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
	delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
		cpu->pstate.max_pstate, MSEC_PER_SEC);

	mperf = cpu->sample.mperf + delta_iowait_mperf;
	cpu->prev_cummulative_iowait = cummulative_iowait;

1238 1239 1240 1241 1242 1243
	/*
	 * The load can be estimated as the ratio of the mperf counter
	 * running at a constant frequency during active periods
	 * (C0) and the time stamp counter running at the same frequency
	 * also during C-states.
	 */
1244
	cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
1245 1246
	cpu->sample.busy_scaled = cpu_load;

1247
	return get_avg_pstate(cpu) - pid_calc(&cpu->pid, cpu_load);
1248 1249
}

1250
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1251
{
1252
	int32_t core_busy, max_pstate, current_pstate, sample_ratio;
1253
	u64 duration_ns;
1254

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
	/*
	 * core_busy is the ratio of actual performance to max
	 * max_pstate is the max non turbo pstate available
	 * current_pstate was the pstate that was requested during
	 * 	the last sample period.
	 *
	 * We normalize core_busy, which was our actual percent
	 * performance to what we requested during the last sample
	 * period. The result will be a percentage of busy at a
	 * specified pstate.
	 */
1266
	core_busy = cpu->sample.core_pct_busy;
1267 1268
	max_pstate = cpu->pstate.max_pstate_physical;
	current_pstate = cpu->pstate.current_pstate;
1269
	core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
1270

1271
	/*
1272 1273 1274 1275
	 * Since our utilization update callback will not run unless we are
	 * in C0, check if the actual elapsed time is significantly greater (3x)
	 * than our sample interval.  If it is, then we were idle for a long
	 * enough period of time to adjust our busyness.
1276
	 */
1277
	duration_ns = cpu->sample.time - cpu->last_sample_time;
1278
	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1279
		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1280
		core_busy = mul_fp(core_busy, sample_ratio);
1281 1282 1283 1284
	} else {
		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
		if (sample_ratio < int_tofp(1))
			core_busy = 0;
1285 1286
	}

1287 1288
	cpu->sample.busy_scaled = core_busy;
	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, core_busy);
1289 1290
}

1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
	int max_perf, min_perf;

	update_turbo_state();

	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
	pstate = clamp_t(int, pstate, min_perf, max_perf);
	if (pstate == cpu->pstate.current_pstate)
		return;

	intel_pstate_record_pstate(cpu, pstate);
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1306 1307
static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
{
1308
	int from, target_pstate;
1309 1310 1311
	struct sample *sample;

	from = cpu->pstate.current_pstate;
1312

1313
	target_pstate = pstate_funcs.get_target_pstate(cpu);
1314

1315
	intel_pstate_update_pstate(cpu, target_pstate);
1316 1317 1318

	sample = &cpu->sample;
	trace_pstate_sample(fp_toint(sample->core_pct_busy),
1319
		fp_toint(sample->busy_scaled),
1320 1321 1322 1323 1324
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1325
		get_avg_frequency(cpu));
1326 1327
}

1328 1329
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
				     unsigned long util, unsigned long max)
1330
{
1331 1332
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
	u64 delta_ns = time - cpu->sample.time;
1333

1334
	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1335 1336
		bool sample_taken = intel_pstate_sample(cpu, time);

1337 1338 1339 1340 1341
		if (sample_taken) {
			intel_pstate_calc_busy(cpu);
			if (!hwp_active)
				intel_pstate_adjust_busy_pstate(cpu);
		}
1342
	}
1343 1344 1345
}

#define ICPU(model, policy) \
1346 1347
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1348 1349

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1350 1351
	ICPU(0x2a, core_params),
	ICPU(0x2d, core_params),
1352
	ICPU(0x37, silvermont_params),
1353 1354
	ICPU(0x3a, core_params),
	ICPU(0x3c, core_params),
1355
	ICPU(0x3d, core_params),
1356 1357 1358 1359
	ICPU(0x3e, core_params),
	ICPU(0x3f, core_params),
	ICPU(0x45, core_params),
	ICPU(0x46, core_params),
1360
	ICPU(0x47, core_params),
1361
	ICPU(0x4c, airmont_params),
1362
	ICPU(0x4e, core_params),
1363
	ICPU(0x4f, core_params),
1364
	ICPU(0x5e, core_params),
1365
	ICPU(0x56, core_params),
1366
	ICPU(0x57, knl_params),
1367 1368 1369 1370
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

D
Dirk Brandewie 已提交
1371 1372 1373 1374 1375
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
	ICPU(0x56, core_params),
	{}
};

1376 1377 1378 1379
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1380 1381 1382
	if (!all_cpu_data[cpunum])
		all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
					       GFP_KERNEL);
1383 1384 1385 1386 1387 1388
	if (!all_cpu_data[cpunum])
		return -ENOMEM;

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1389

1390
	if (hwp_active) {
1391
		intel_pstate_hwp_enable(cpu);
1392 1393 1394
		pid_params.sample_rate_ms = 50;
		pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
	}
1395

1396
	intel_pstate_get_cpu_pstates(cpu);
1397

1398 1399
	intel_pstate_busy_pid_reset(cpu);

J
Joe Perches 已提交
1400
	pr_debug("controlling: cpu %d\n", cpunum);
1401 1402 1403 1404 1405 1406

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
1407
	struct cpudata *cpu = all_cpu_data[cpu_num];
1408

1409
	return cpu ? get_avg_frequency(cpu) : 0;
1410 1411
}

1412
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1413
{
1414 1415 1416 1417
	struct cpudata *cpu = all_cpu_data[cpu_num];

	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
1418 1419
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
				     intel_pstate_update_util);
1420 1421 1422 1423
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
1424
	cpufreq_remove_update_util_hook(cpu);
1425 1426 1427
	synchronize_sched();
}

1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
static void intel_pstate_set_performance_limits(struct perf_limits *limits)
{
	limits->no_turbo = 0;
	limits->turbo_disabled = 0;
	limits->max_perf_pct = 100;
	limits->max_perf = int_tofp(1);
	limits->min_perf_pct = 100;
	limits->min_perf = int_tofp(1);
	limits->max_policy_pct = 100;
	limits->max_sysfs_pct = 100;
	limits->min_policy_pct = 0;
	limits->min_sysfs_pct = 0;
}

1442 1443
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
1444 1445
	struct cpudata *cpu;

1446 1447 1448
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

1449 1450
	intel_pstate_clear_update_util_hook(policy->cpu);

1451 1452 1453 1454 1455 1456 1457 1458 1459
	cpu = all_cpu_data[0];
	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate) {
		if (policy->max < policy->cpuinfo.max_freq &&
		    policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
			pr_debug("policy->max > max non turbo frequency\n");
			policy->max = policy->cpuinfo.max_freq;
		}
	}

1460
	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
1461
		limits = &performance_limits;
1462
		if (policy->max >= policy->cpuinfo.max_freq) {
J
Joe Perches 已提交
1463
			pr_debug("set performance\n");
1464 1465 1466 1467
			intel_pstate_set_performance_limits(limits);
			goto out;
		}
	} else {
J
Joe Perches 已提交
1468
		pr_debug("set powersave\n");
1469
		limits = &powersave_limits;
1470
	}
D
Dirk Brandewie 已提交
1471

1472 1473
	limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
	limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1474 1475
	limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
					      policy->cpuinfo.max_freq);
1476
	limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1477 1478

	/* Normalize user input to [min_policy_pct, max_policy_pct] */
1479 1480 1481 1482 1483 1484 1485 1486
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);
1487
	limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1488 1489

	/* Make sure min_perf_pct <= max_perf_pct */
1490
	limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1491

1492 1493
	limits->min_perf = div_fp(limits->min_perf_pct, 100);
	limits->max_perf = div_fp(limits->max_perf_pct, 100);
1494

1495 1496 1497
 out:
	intel_pstate_set_update_util_hook(policy->cpu);

1498
	intel_pstate_hwp_set_policy(policy);
D
Dirk Brandewie 已提交
1499

1500 1501 1502 1503 1504
	return 0;
}

static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
1505
	cpufreq_verify_within_cpu_limits(policy);
1506

1507
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1508
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1509 1510 1511 1512 1513
		return -EINVAL;

	return 0;
}

1514
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1515
{
1516 1517
	int cpu_num = policy->cpu;
	struct cpudata *cpu = all_cpu_data[cpu_num];
1518

J
Joe Perches 已提交
1519
	pr_debug("CPU %d exiting\n", cpu_num);
1520

1521
	intel_pstate_clear_update_util_hook(cpu_num);
1522

D
Dirk Brandewie 已提交
1523 1524 1525
	if (hwp_active)
		return;

1526
	intel_pstate_set_min_pstate(cpu);
1527 1528
}

1529
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1530 1531
{
	struct cpudata *cpu;
1532
	int rc;
1533 1534 1535 1536 1537 1538 1539

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

1540
	if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1541 1542 1543 1544
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;

1545 1546
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1547 1548

	/* cpuinfo and default policy values */
1549 1550 1551
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->cpuinfo.max_freq =
		cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1552
	intel_pstate_init_acpi_perf_limits(policy);
1553 1554 1555 1556 1557 1558
	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
	cpumask_set_cpu(policy->cpu, policy->cpus);

	return 0;
}

1559 1560 1561 1562 1563 1564 1565
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);

	return 0;
}

1566 1567 1568 1569
static struct cpufreq_driver intel_pstate_driver = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
1570
	.resume		= intel_pstate_hwp_set_policy,
1571 1572
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
1573
	.exit		= intel_pstate_cpu_exit,
1574
	.stop_cpu	= intel_pstate_stop_cpu,
1575 1576 1577
	.name		= "intel_pstate",
};

1578
static int __initdata no_load;
D
Dirk Brandewie 已提交
1579
static int __initdata no_hwp;
1580
static int __initdata hwp_only;
1581
static unsigned int force_load;
1582

1583 1584
static int intel_pstate_msrs_not_valid(void)
{
1585
	if (!pstate_funcs.get_max() ||
1586 1587
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
1588 1589 1590 1591
		return -ENODEV;

	return 0;
}
1592

1593
static void copy_pid_params(struct pstate_adjust_policy *policy)
1594 1595
{
	pid_params.sample_rate_ms = policy->sample_rate_ms;
1596
	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1597 1598 1599 1600 1601 1602 1603
	pid_params.p_gain_pct = policy->p_gain_pct;
	pid_params.i_gain_pct = policy->i_gain_pct;
	pid_params.d_gain_pct = policy->d_gain_pct;
	pid_params.deadband = policy->deadband;
	pid_params.setpoint = policy->setpoint;
}

1604
static void copy_cpu_funcs(struct pstate_funcs *funcs)
1605 1606
{
	pstate_funcs.get_max   = funcs->get_max;
1607
	pstate_funcs.get_max_physical = funcs->get_max_physical;
1608 1609
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
1610
	pstate_funcs.get_scaling = funcs->get_scaling;
1611
	pstate_funcs.get_val   = funcs->get_val;
1612
	pstate_funcs.get_vid   = funcs->get_vid;
1613 1614
	pstate_funcs.get_target_pstate = funcs->get_target_pstate;

1615 1616
}

1617
#ifdef CONFIG_ACPI
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647

static bool intel_pstate_no_acpi_pss(void)
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
static bool intel_pstate_has_acpi_ppc(void)
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

1668 1669 1670 1671
struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1672
	int  oem_pwr_table;
1673 1674 1675 1676
};

/* Hardware vendor-specific info that has its own power management modes */
static struct hw_vendor_info vendor_info[] = {
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
	{1, "HP    ", "ProLiant", PSS},
	{1, "ORACLE", "X4-2    ", PPC},
	{1, "ORACLE", "X4-2L   ", PPC},
	{1, "ORACLE", "X4-2B   ", PPC},
	{1, "ORACLE", "X3-2    ", PPC},
	{1, "ORACLE", "X3-2L   ", PPC},
	{1, "ORACLE", "X3-2B   ", PPC},
	{1, "ORACLE", "X4470M2 ", PPC},
	{1, "ORACLE", "X4270M3 ", PPC},
	{1, "ORACLE", "X4270M2 ", PPC},
	{1, "ORACLE", "X4170M2 ", PPC},
1688 1689 1690 1691
	{1, "ORACLE", "X4170 M3", PPC},
	{1, "ORACLE", "X4275 M3", PPC},
	{1, "ORACLE", "X6-2    ", PPC},
	{1, "ORACLE", "Sudbury ", PPC},
1692 1693 1694 1695 1696 1697 1698
	{0, "", ""},
};

static bool intel_pstate_platform_pwr_mgmt_exists(void)
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;
D
Dirk Brandewie 已提交
1699 1700 1701 1702 1703 1704 1705 1706 1707
	const struct x86_cpu_id *id;
	u64 misc_pwr;

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
1708

1709 1710
	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1711 1712 1713
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
1714
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1715 1716 1717 1718 1719 1720
			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
						ACPI_OEM_TABLE_ID_SIZE))
			switch (v_info->oem_pwr_table) {
			case PSS:
				return intel_pstate_no_acpi_pss();
			case PPC:
1721 1722
				return intel_pstate_has_acpi_ppc() &&
					(!force_load);
1723
			}
1724 1725 1726 1727 1728 1729
	}

	return false;
}
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1730
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1731 1732
#endif /* CONFIG_ACPI */

1733 1734 1735 1736 1737
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
	{}
};

1738 1739
static int __init intel_pstate_init(void)
{
1740
	int cpu, rc = 0;
1741
	const struct x86_cpu_id *id;
1742
	struct cpu_defaults *cpu_def;
1743

1744 1745 1746
	if (no_load)
		return -ENODEV;

1747 1748 1749 1750 1751 1752
	if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
		copy_cpu_funcs(&core_params.funcs);
		hwp_active++;
		goto hwp_cpu_matched;
	}

1753 1754 1755 1756
	id = x86_match_cpu(intel_pstate_cpu_ids);
	if (!id)
		return -ENODEV;

1757
	cpu_def = (struct cpu_defaults *)id->driver_data;
1758

1759 1760
	copy_pid_params(&cpu_def->pid_policy);
	copy_cpu_funcs(&cpu_def->funcs);
1761

1762 1763 1764
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

1765 1766 1767 1768 1769 1770 1771 1772
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

J
Joe Perches 已提交
1773
	pr_info("Intel P-state driver initializing\n");
1774

1775
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1776 1777 1778
	if (!all_cpu_data)
		return -ENOMEM;

1779 1780 1781
	if (!hwp_active && hwp_only)
		goto out;

1782 1783 1784 1785 1786 1787
	rc = cpufreq_register_driver(&intel_pstate_driver);
	if (rc)
		goto out;

	intel_pstate_debug_expose_params();
	intel_pstate_sysfs_expose_params();
1788

1789
	if (hwp_active)
J
Joe Perches 已提交
1790
		pr_info("HWP enabled\n");
1791

1792 1793
	return rc;
out:
1794 1795 1796
	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
1797
			intel_pstate_clear_update_util_hook(cpu);
1798 1799 1800 1801 1802 1803
			kfree(all_cpu_data[cpu]);
		}
	}

	put_online_cpus();
	vfree(all_cpu_data);
1804 1805 1806 1807
	return -ENODEV;
}
device_initcall(intel_pstate_init);

1808 1809 1810 1811 1812 1813 1814
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

	if (!strcmp(str, "disable"))
		no_load = 1;
1815
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
1816
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
1817
		no_hwp = 1;
1818
	}
1819 1820
	if (!strcmp(str, "force"))
		force_load = 1;
1821 1822
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
1823 1824 1825 1826 1827 1828

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

1829 1830 1831 1832
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

1833 1834 1835
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");