intel_pstate.c 64.5 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

J
Joe Perches 已提交
13 14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

15 16 17 18 19 20 21
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
22
#include <linux/sched/cpufreq.h>
23 24 25 26 27 28 29
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
30
#include <linux/acpi.h>
31
#include <linux/vmalloc.h>
32 33 34 35 36
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
37
#include <asm/cpufeature.h>
38
#include <asm/intel-family.h>
39

40 41 42
#define INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
#define INTEL_PSTATE_HWP_SAMPLING_INTERVAL	(50 * NSEC_PER_MSEC)

43 44
#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000

45 46
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
47
#include <acpi/cppc_acpi.h>
48 49
#endif

50
#define FRAC_BITS 8
51 52
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
53

54 55
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
56 57
#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
58

59 60 61 62 63
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

64
static inline int32_t div_fp(s64 x, s64 y)
65
{
66
	return div64_s64((int64_t)x << FRAC_BITS, y);
67 68
}

69 70 71 72 73 74 75 76 77 78 79
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

80 81 82 83 84
static inline int32_t percent_fp(int percent)
{
	return div_fp(percent, 100);
}

85 86 87 88 89 90 91 92 93 94
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

95 96 97 98 99
static inline int32_t percent_ext_fp(int percent)
{
	return div_ext_fp(percent, 100);
}

100 101
/**
 * struct sample -	Store performance sample
102
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
103 104
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
105
 *			P state. This can be different than core_avg_perf
106 107 108 109 110 111 112 113 114 115 116 117
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
118
struct sample {
119
	int32_t core_avg_perf;
120
	int32_t busy_scaled;
121 122
	u64 aperf;
	u64 mperf;
123
	u64 tsc;
124
	u64 time;
125 126
};

127 128 129 130 131 132 133 134 135 136 137
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
138 139
 * @max_freq:		@max_pstate frequency in cpufreq units
 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
140 141 142
 *
 * Stores the per cpu model P state limits and current P state.
 */
143 144 145 146
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
147
	int	max_pstate_physical;
148
	int	scaling;
149
	int	turbo_pstate;
150 151
	unsigned int max_freq;
	unsigned int turbo_freq;
152 153
};

154 155 156 157 158 159 160 161 162 163 164 165 166
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
167
struct vid_data {
168 169 170
	int min;
	int max;
	int turbo;
171 172 173
	int32_t ratio;
};

174 175 176 177 178 179 180 181 182 183 184 185
/**
 * struct _pid -	Stores PID data
 * @setpoint:		Target set point for busyness or performance
 * @integral:		Storage for accumulated error values
 * @p_gain:		PID proportional gain
 * @i_gain:		PID integral gain
 * @d_gain:		PID derivative gain
 * @deadband:		PID deadband
 * @last_err:		Last error storage for integral part of PID calculation
 *
 * Stores PID coefficients and last error for PID controller.
 */
186 187 188 189 190 191 192
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
193
	int32_t last_err;
194 195
};

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
/**
 * struct global_params - Global parameters, mostly tunable via sysfs.
 * @no_turbo:		Whether or not to use turbo P-states.
 * @turbo_disabled:	Whethet or not turbo P-states are available at all,
 *			based on the MSR_IA32_MISC_ENABLE value and whether or
 *			not the maximum reported turbo P-state is different from
 *			the maximum reported non-turbo one.
 * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 */
struct global_params {
	bool no_turbo;
	bool turbo_disabled;
	int max_perf_pct;
	int min_perf_pct;
213 214
};

215 216 217
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
218
 * @policy:		CPUFreq policy value
219
 * @update_util:	CPUFreq utility callback information
220
 * @update_util_set:	CPUFreq utility callback is set
221 222
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
223 224 225 226 227 228 229 230 231 232
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @pid:		Stores PID parameters for this CPU
 * @last_sample_time:	Last Sample time
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
233 234 235 236
 * @min_perf:		Minimum capacity limit as a fraction of the maximum
 *			turbo P-state capacity.
 * @max_perf:		Maximum capacity limit as a fraction of the maximum
 *			turbo P-state capacity.
237 238
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
239 240 241
 * @epp_powersave:	Last saved HWP energy performance preference
 *			(EPP) or energy performance bias (EPB),
 *			when policy switched to performance
242
 * @epp_policy:		Last saved policy used to set EPP/EPB
243 244 245 246
 * @epp_default:	Power on default HWP energy performance
 *			preference/bias
 * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
 *			operation
247 248 249
 *
 * This structure stores per CPU instance data for all CPUs.
 */
250 251 252
struct cpudata {
	int cpu;

253
	unsigned int policy;
254
	struct update_util_data update_util;
255
	bool   update_util_set;
256 257

	struct pstate_data pstate;
258
	struct vid_data vid;
259 260
	struct _pid pid;

261
	u64	last_update;
262
	u64	last_sample_time;
263 264
	u64	prev_aperf;
	u64	prev_mperf;
265
	u64	prev_tsc;
266
	u64	prev_cummulative_iowait;
267
	struct sample sample;
268 269
	int32_t	min_perf;
	int32_t	max_perf;
270 271 272 273
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
274
	unsigned int iowait_boost;
275
	s16 epp_powersave;
276
	s16 epp_policy;
277 278
	s16 epp_default;
	s16 epp_saved;
279 280 281
};

static struct cpudata **all_cpu_data;
282 283

/**
284
 * struct pstate_adjust_policy - Stores static PID configuration data
285 286 287 288 289 290 291 292 293 294
 * @sample_rate_ms:	PID calculation sample rate in ms
 * @sample_rate_ns:	Sample rate calculation in ns
 * @deadband:		PID deadband
 * @setpoint:		PID Setpoint
 * @p_gain_pct:		PID proportional gain
 * @i_gain_pct:		PID integral gain
 * @d_gain_pct:		PID derivative gain
 *
 * Stores per CPU model static PID configuration data.
 */
295 296
struct pstate_adjust_policy {
	int sample_rate_ms;
297
	s64 sample_rate_ns;
298 299 300 301 302 303 304
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

305 306 307 308 309 310 311 312 313
/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
314
 * @update_util:	Active mode utilization update callback.
315 316 317 318
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
319 320
struct pstate_funcs {
	int (*get_max)(void);
321
	int (*get_max_physical)(void);
322 323
	int (*get_min)(void);
	int (*get_turbo)(void);
324
	int (*get_scaling)(void);
325
	u64 (*get_val)(struct cpudata*, int pstate);
326
	void (*get_vid)(struct cpudata *);
327 328
	void (*update_util)(struct update_util_data *data, u64 time,
			    unsigned int flags);
329 330
};

331
static struct pstate_funcs pstate_funcs __read_mostly;
332 333 334 335 336 337 338 339 340 341
static struct pstate_adjust_policy pid_params __read_mostly = {
	.sample_rate_ms = 10,
	.sample_rate_ns = 10 * NSEC_PER_MSEC,
	.deadband = 0,
	.setpoint = 97,
	.p_gain_pct = 20,
	.d_gain_pct = 0,
	.i_gain_pct = 0,
};

342
static int hwp_active __read_mostly;
343
static bool per_cpu_limits __read_mostly;
344

345
static struct cpufreq_driver *intel_pstate_driver __read_mostly;
346

347 348 349
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
350

351
static struct global_params global;
352

353
static DEFINE_MUTEX(intel_pstate_driver_lock);
354 355
static DEFINE_MUTEX(intel_pstate_limits_lock);

356
#ifdef CONFIG_ACPI
357 358 359 360 361 362 363 364 365 366

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

	return acpi_ppc;
}

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
#ifdef CONFIG_ACPI_CPPC_LIB

/* The work item is needed to avoid CPU hotplug locking issues */
static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
{
	sched_set_itmt_support();
}

static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);

static void intel_pstate_set_itmt_prio(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return;

	/*
	 * The priorities can be set regardless of whether or not
	 * sched_set_itmt_support(true) has been called and it is valid to
	 * update them at any time after it has been called.
	 */
	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);

	if (max_highest_perf <= min_highest_perf) {
		if (cppc_perf.highest_perf > max_highest_perf)
			max_highest_perf = cppc_perf.highest_perf;

		if (cppc_perf.highest_perf < min_highest_perf)
			min_highest_perf = cppc_perf.highest_perf;

		if (max_highest_perf > min_highest_perf) {
			/*
			 * This code can be run during CPU online under the
			 * CPU hotplug locks, so sched_set_itmt_support()
			 * cannot be called from here.  Queue up a work item
			 * to invoke it.
			 */
			schedule_work(&sched_itmt_work);
		}
	}
}
#else
static void intel_pstate_set_itmt_prio(int cpu)
{
}
#endif

418 419 420 421 422 423
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

424 425
	if (hwp_active) {
		intel_pstate_set_itmt_prio(policy->cpu);
426
		return;
427
	}
428

429
	if (!intel_pstate_get_ppc_enable_status())
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
472
	 * correct max turbo frequency based on the turbo state.
473 474
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
475
	if (!global.turbo_disabled)
476 477 478
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
479
	pr_debug("_PPC limits will be enforced\n");
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}
#else
499
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
500 501 502
{
}

503
static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
504 505 506 507
{
}
#endif

508
static signed int pid_calc(struct _pid *pid, int32_t busy)
509
{
510
	signed int result;
511 512 513
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

514
	fp_error = pid->setpoint - busy;
515

516
	if (abs(fp_error) <= pid->deadband)
517 518 519 520 521 522
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

523 524 525 526 527 528 529 530
	/*
	 * We limit the integral here so that it will never
	 * get higher than 30.  This prevents it from becoming
	 * too large an input over long periods of time and allows
	 * it to get factored out sooner.
	 *
	 * The value of 30 was chosen through experimentation.
	 */
531 532 533 534 535 536
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

537 538
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
539 540

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
541
	result = result + (1 << (FRAC_BITS-1));
542 543 544
	return (signed int)fp_toint(result);
}

545
static inline void intel_pstate_pid_reset(struct cpudata *cpu)
546
{
547
	struct _pid *pid = &cpu->pid;
548

549 550 551 552 553 554 555
	pid->p_gain = percent_fp(pid_params.p_gain_pct);
	pid->d_gain = percent_fp(pid_params.d_gain_pct);
	pid->i_gain = percent_fp(pid_params.i_gain_pct);
	pid->setpoint = int_tofp(pid_params.setpoint);
	pid->last_err  = pid->setpoint - int_tofp(100);
	pid->deadband  = int_tofp(pid_params.deadband);
	pid->integral  = 0;
556 557
}

558 559 560 561 562 563 564
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
565
	global.turbo_disabled =
566 567 568 569
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

570 571 572 573 574 575 576 577
static int min_perf_pct_min(void)
{
	struct cpudata *cpu = all_cpu_data[0];

	return DIV_ROUND_UP(cpu->pstate.min_pstate * 100,
			    cpu->pstate.turbo_pstate);
}

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
{
	u64 epb;
	int ret;

	if (!static_cpu_has(X86_FEATURE_EPB))
		return -ENXIO;

	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return (s16)ret;

	return (s16)(epb & 0x0f);
}

static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
{
	s16 epp;

597 598 599 600 601 602 603 604 605 606 607
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * When hwp_req_data is 0, means that caller didn't read
		 * MSR_HWP_REQUEST, so need to read and get EPP.
		 */
		if (!hwp_req_data) {
			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
					    &hwp_req_data);
			if (epp)
				return epp;
		}
608
		epp = (hwp_req_data >> 24) & 0xff;
609
	} else {
610 611
		/* When there is no EPP present, HWP uses EPB settings */
		epp = intel_pstate_get_epb(cpu_data);
612
	}
613 614 615 616

	return epp;
}

617
static int intel_pstate_set_epb(int cpu, s16 pref)
618 619
{
	u64 epb;
620
	int ret;
621 622

	if (!static_cpu_has(X86_FEATURE_EPB))
623
		return -ENXIO;
624

625 626 627
	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return ret;
628 629 630

	epb = (epb & ~0x0f) | pref;
	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
631 632

	return 0;
633 634
}

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
/*
 * EPP/EPB display strings corresponding to EPP index in the
 * energy_perf_strings[]
 *	index		String
 *-------------------------------------
 *	0		default
 *	1		performance
 *	2		balance_performance
 *	3		balance_power
 *	4		power
 */
static const char * const energy_perf_strings[] = {
	"default",
	"performance",
	"balance_performance",
	"balance_power",
	"power",
	NULL
};

static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
{
	s16 epp;
	int index = -EINVAL;

	epp = intel_pstate_get_epp(cpu_data, 0);
	if (epp < 0)
		return epp;

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * Range:
		 *	0x00-0x3F	:	Performance
		 *	0x40-0x7F	:	Balance performance
		 *	0x80-0xBF	:	Balance power
		 *	0xC0-0xFF	:	Power
		 * The EPP is a 8 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 6) + 1;
	} else if (static_cpu_has(X86_FEATURE_EPB)) {
		/*
		 * Range:
		 *	0x00-0x03	:	Performance
		 *	0x04-0x07	:	Balance performance
		 *	0x08-0x0B	:	Balance power
		 *	0x0C-0x0F	:	Power
		 * The EPB is a 4 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 2) + 1;
	}

	return index;
}

static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
					      int pref_index)
{
	int epp = -EINVAL;
	int ret;

	if (!pref_index)
		epp = cpu_data->epp_default;

	mutex_lock(&intel_pstate_limits_lock);

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		u64 value;

		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
		if (ret)
			goto return_pref;

		value &= ~GENMASK_ULL(31, 24);

		/*
		 * If epp is not default, convert from index into
		 * energy_perf_strings to epp value, by shifting 6
		 * bits left to use only top two bits in epp.
		 * The resultant epp need to shifted by 24 bits to
		 * epp position in MSR_HWP_REQUEST.
		 */
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 6;

		value |= (u64)epp << 24;
		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
	} else {
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 2;
		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
	}
return_pref:
	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
}

static ssize_t show_energy_performance_available_preferences(
				struct cpufreq_policy *policy, char *buf)
{
	int i = 0;
	int ret = 0;

	while (energy_perf_strings[i] != NULL)
		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);

	ret += sprintf(&buf[ret], "\n");

	return ret;
}

cpufreq_freq_attr_ro(energy_performance_available_preferences);

static ssize_t store_energy_performance_preference(
		struct cpufreq_policy *policy, const char *buf, size_t count)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	char str_preference[21];
	int ret, i = 0;

	ret = sscanf(buf, "%20s", str_preference);
	if (ret != 1)
		return -EINVAL;

	while (energy_perf_strings[i] != NULL) {
		if (!strcmp(str_preference, energy_perf_strings[i])) {
			intel_pstate_set_energy_pref_index(cpu_data, i);
			return count;
		}
		++i;
	}

	return -EINVAL;
}

static ssize_t show_energy_performance_preference(
				struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	int preference;

	preference = intel_pstate_get_energy_pref_index(cpu_data);
	if (preference < 0)
		return preference;

	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
}

cpufreq_freq_attr_rw(energy_performance_preference);

static struct freq_attr *hwp_cpufreq_attrs[] = {
	&energy_performance_preference,
	&energy_performance_available_preferences,
	NULL,
};

795
static void intel_pstate_hwp_set(unsigned int cpu)
D
Dirk Brandewie 已提交
796
{
797 798
	struct cpudata *cpu_data = all_cpu_data[cpu];
	int min, hw_min, max, hw_max;
799
	u64 value, cap;
800
	s16 epp;
801

802 803 804 805 806 807
	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
	hw_min = HWP_LOWEST_PERF(cap);
	if (global.no_turbo)
		hw_max = HWP_GUARANTEED_PERF(cap);
	else
		hw_max = HWP_HIGHEST_PERF(cap);
808

809 810 811 812 813
	max = fp_ext_toint(hw_max * cpu_data->max_perf);
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
		min = max;
	else
		min = fp_ext_toint(hw_max * cpu_data->min_perf);
814

815
	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
D
Dirk Brandewie 已提交
816

817 818
	value &= ~HWP_MIN_PERF(~0L);
	value |= HWP_MIN_PERF(min);
819

820 821
	value &= ~HWP_MAX_PERF(~0L);
	value |= HWP_MAX_PERF(max);
822

823 824
	if (cpu_data->epp_policy == cpu_data->policy)
		goto skip_epp;
825

826
	cpu_data->epp_policy = cpu_data->policy;
827

828 829 830 831 832
	if (cpu_data->epp_saved >= 0) {
		epp = cpu_data->epp_saved;
		cpu_data->epp_saved = -EINVAL;
		goto update_epp;
	}
833

834 835 836 837 838 839
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
		epp = intel_pstate_get_epp(cpu_data, value);
		cpu_data->epp_powersave = epp;
		/* If EPP read was failed, then don't try to write */
		if (epp < 0)
			goto skip_epp;
840

841 842 843 844 845
		epp = 0;
	} else {
		/* skip setting EPP, when saved value is invalid */
		if (cpu_data->epp_powersave < 0)
			goto skip_epp;
846

847 848 849 850 851 852 853 854 855 856
		/*
		 * No need to restore EPP when it is not zero. This
		 * means:
		 *  - Policy is not changed
		 *  - user has manually changed
		 *  - Error reading EPB
		 */
		epp = intel_pstate_get_epp(cpu_data, value);
		if (epp)
			goto skip_epp;
857

858 859
		epp = cpu_data->epp_powersave;
	}
860
update_epp:
861 862 863 864 865
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		value &= ~GENMASK_ULL(31, 24);
		value |= (u64)epp << 24;
	} else {
		intel_pstate_set_epb(cpu, epp);
D
Dirk Brandewie 已提交
866
	}
867 868
skip_epp:
	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
869
}
D
Dirk Brandewie 已提交
870

871 872 873 874 875 876 877 878 879 880 881 882
static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];

	if (!hwp_active)
		return 0;

	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);

	return 0;
}

883 884 885 886 887
static int intel_pstate_resume(struct cpufreq_policy *policy)
{
	if (!hwp_active)
		return 0;

888 889
	mutex_lock(&intel_pstate_limits_lock);

890
	all_cpu_data[policy->cpu]->epp_policy = 0;
891
	intel_pstate_hwp_set(policy->cpu);
892 893 894

	mutex_unlock(&intel_pstate_limits_lock);

895
	return 0;
896 897
}

898
static void intel_pstate_update_policies(void)
899
{
900 901 902 903
	int cpu;

	for_each_possible_cpu(cpu)
		cpufreq_update_policy(cpu);
D
Dirk Brandewie 已提交
904 905
}

906 907 908
/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
909 910
	unsigned int cpu;

911
	*(u32 *)data = val;
912
	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
913 914
	for_each_possible_cpu(cpu)
		if (all_cpu_data[cpu])
915
			intel_pstate_pid_reset(all_cpu_data[cpu]);
916

917 918
	return 0;
}
919

920 921 922 923 924
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
925
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
926

927 928
static struct dentry *debugfs_parent;

929 930 931
struct pid_param {
	char *name;
	void *value;
932
	struct dentry *dentry;
933 934 935
};

static struct pid_param pid_files[] = {
936 937 938 939 940 941 942
	{"sample_rate_ms", &pid_params.sample_rate_ms, },
	{"d_gain_pct", &pid_params.d_gain_pct, },
	{"i_gain_pct", &pid_params.i_gain_pct, },
	{"deadband", &pid_params.deadband, },
	{"setpoint", &pid_params.setpoint, },
	{"p_gain_pct", &pid_params.p_gain_pct, },
	{NULL, NULL, }
943 944
};

945
static void intel_pstate_debug_expose_params(void)
946
{
947
	int i;
948 949 950 951

	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
952 953 954 955 956 957 958 959 960

	for (i = 0; pid_files[i].name; i++) {
		struct dentry *dentry;

		dentry = debugfs_create_file(pid_files[i].name, 0660,
					     debugfs_parent, pid_files[i].value,
					     &fops_pid_param);
		if (!IS_ERR(dentry))
			pid_files[i].dentry = dentry;
961 962 963
	}
}

964 965 966 967 968 969 970 971 972 973
static void intel_pstate_debug_hide_params(void)
{
	int i;

	if (IS_ERR_OR_NULL(debugfs_parent))
		return;

	for (i = 0; pid_files[i].name; i++) {
		debugfs_remove(pid_files[i].dentry);
		pid_files[i].dentry = NULL;
974
	}
975 976 977

	debugfs_remove(debugfs_parent);
	debugfs_parent = NULL;
978 979 980 981 982 983 984 985 986
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
987
		return sprintf(buf, "%u\n", global.object);		\
988 989
	}

990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
static ssize_t intel_pstate_show_status(char *buf);
static int intel_pstate_update_status(const char *buf, size_t size);

static ssize_t show_status(struct kobject *kobj,
			   struct attribute *attr, char *buf)
{
	ssize_t ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_show_status(buf);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret;
}

static ssize_t store_status(struct kobject *a, struct attribute *b,
			    const char *buf, size_t count)
{
	char *p = memchr(buf, '\n', count);
	int ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_update_status(buf, p ? p - buf : count);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret < 0 ? ret : count;
}

1018 1019 1020 1021 1022 1023 1024
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

1025 1026
	mutex_lock(&intel_pstate_driver_lock);

1027
	if (!intel_pstate_driver) {
1028 1029 1030 1031
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1032 1033 1034 1035
	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1036
	turbo_fp = div_fp(no_turbo, total);
1037
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1038 1039 1040

	mutex_unlock(&intel_pstate_driver_lock);

1041 1042 1043
	return sprintf(buf, "%u\n", turbo_pct);
}

1044 1045 1046 1047 1048 1049
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

1050 1051
	mutex_lock(&intel_pstate_driver_lock);

1052
	if (!intel_pstate_driver) {
1053 1054 1055 1056
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1057 1058
	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1059 1060 1061

	mutex_unlock(&intel_pstate_driver_lock);

1062 1063 1064
	return sprintf(buf, "%u\n", total);
}

1065 1066 1067 1068 1069
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

1070 1071
	mutex_lock(&intel_pstate_driver_lock);

1072
	if (!intel_pstate_driver) {
1073 1074 1075 1076
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1077
	update_turbo_state();
1078 1079
	if (global.turbo_disabled)
		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1080
	else
1081
		ret = sprintf(buf, "%u\n", global.no_turbo);
1082

1083 1084
	mutex_unlock(&intel_pstate_driver_lock);

1085 1086 1087
	return ret;
}

1088
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1089
			      const char *buf, size_t count)
1090 1091 1092
{
	unsigned int input;
	int ret;
1093

1094 1095 1096
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1097

1098 1099
	mutex_lock(&intel_pstate_driver_lock);

1100
	if (!intel_pstate_driver) {
1101 1102 1103 1104
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1105 1106
	mutex_lock(&intel_pstate_limits_lock);

1107
	update_turbo_state();
1108
	if (global.turbo_disabled) {
J
Joe Perches 已提交
1109
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1110
		mutex_unlock(&intel_pstate_limits_lock);
1111
		mutex_unlock(&intel_pstate_driver_lock);
1112
		return -EPERM;
1113
	}
D
Dirk Brandewie 已提交
1114

1115
	global.no_turbo = clamp_t(int, input, 0, 1);
1116

1117 1118 1119 1120 1121 1122 1123 1124 1125
	if (global.no_turbo) {
		struct cpudata *cpu = all_cpu_data[0];
		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;

		/* Squash the global minimum into the permitted range. */
		if (global.min_perf_pct > pct)
			global.min_perf_pct = pct;
	}

1126 1127
	mutex_unlock(&intel_pstate_limits_lock);

1128 1129
	intel_pstate_update_policies();

1130 1131
	mutex_unlock(&intel_pstate_driver_lock);

1132 1133 1134 1135
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1136
				  const char *buf, size_t count)
1137 1138 1139
{
	unsigned int input;
	int ret;
1140

1141 1142 1143 1144
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

1145 1146
	mutex_lock(&intel_pstate_driver_lock);

1147
	if (!intel_pstate_driver) {
1148 1149 1150 1151
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1152 1153
	mutex_lock(&intel_pstate_limits_lock);

1154
	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1155

1156 1157
	mutex_unlock(&intel_pstate_limits_lock);

1158 1159
	intel_pstate_update_policies();

1160 1161
	mutex_unlock(&intel_pstate_driver_lock);

1162 1163 1164 1165
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1166
				  const char *buf, size_t count)
1167 1168 1169
{
	unsigned int input;
	int ret;
1170

1171 1172 1173
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1174

1175 1176
	mutex_lock(&intel_pstate_driver_lock);

1177
	if (!intel_pstate_driver) {
1178 1179 1180 1181
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1182 1183
	mutex_lock(&intel_pstate_limits_lock);

1184 1185
	global.min_perf_pct = clamp_t(int, input,
				      min_perf_pct_min(), global.max_perf_pct);
1186

1187 1188
	mutex_unlock(&intel_pstate_limits_lock);

1189 1190
	intel_pstate_update_policies();

1191 1192
	mutex_unlock(&intel_pstate_driver_lock);

1193 1194 1195 1196 1197 1198
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

1199
define_one_global_rw(status);
1200 1201 1202
define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
1203
define_one_global_ro(turbo_pct);
1204
define_one_global_ro(num_pstates);
1205 1206

static struct attribute *intel_pstate_attributes[] = {
1207
	&status.attr,
1208
	&no_turbo.attr,
1209
	&turbo_pct.attr,
1210
	&num_pstates.attr,
1211 1212 1213 1214 1215 1216 1217
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};

1218
static void __init intel_pstate_sysfs_expose_params(void)
1219
{
1220
	struct kobject *intel_pstate_kobject;
1221 1222 1223 1224
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
1225 1226 1227
	if (WARN_ON(!intel_pstate_kobject))
		return;

1228
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
	if (WARN_ON(rc))
		return;

	/*
	 * If per cpu limits are enforced there are no global limits, so
	 * return without creating max/min_perf_pct attributes
	 */
	if (per_cpu_limits)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
	WARN_ON(rc);

	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
	WARN_ON(rc);

1245 1246
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
1247

1248
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
1249
{
1250
	/* First disable HWP notification interrupt as we don't process them */
1251 1252
	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1253

1254
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1255
	cpudata->epp_policy = 0;
1256 1257
	if (cpudata->epp_default == -EINVAL)
		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
D
Dirk Brandewie 已提交
1258 1259
}

1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
#define MSR_IA32_POWER_CTL_BIT_EE	19

/* Disable energy efficiency optimization */
static void intel_pstate_disable_ee(int cpu)
{
	u64 power_ctl;
	int ret;

	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
	if (ret)
		return;

	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
		pr_info("Disabling energy efficiency optimization\n");
		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
	}
}

1279
static int atom_get_min_pstate(void)
1280 1281
{
	u64 value;
1282

1283
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1284
	return (value >> 8) & 0x7F;
1285 1286
}

1287
static int atom_get_max_pstate(void)
1288 1289
{
	u64 value;
1290

1291
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1292
	return (value >> 16) & 0x7F;
1293
}
1294

1295
static int atom_get_turbo_pstate(void)
1296 1297
{
	u64 value;
1298

1299
	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
1300
	return value & 0x7F;
1301 1302
}

1303
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1304 1305 1306 1307 1308
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

1309
	val = (u64)pstate << 8;
1310
	if (global.no_turbo && !global.turbo_disabled)
1311 1312 1313 1314 1315 1316 1317
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1318
	vid = ceiling_fp(vid_fp);
1319

1320 1321 1322
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

1323
	return val | vid;
1324 1325
}

1326
static int silvermont_get_scaling(void)
1327 1328 1329
{
	u64 value;
	int i;
1330 1331 1332
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
1333 1334

	rdmsrl(MSR_FSB_FREQ, value);
1335 1336
	i = value & 0x7;
	WARN_ON(i > 4);
1337

1338 1339
	return silvermont_freq_table[i];
}
1340

1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
1355 1356
}

1357
static void atom_get_vid(struct cpudata *cpudata)
1358 1359 1360
{
	u64 value;

1361
	rdmsrl(MSR_ATOM_CORE_VIDS, value);
D
Dirk Brandewie 已提交
1362 1363
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1364 1365 1366 1367
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
1368

1369
	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1370
	cpudata->vid.turbo = value & 0x7f;
1371 1372
}

1373
static int core_get_min_pstate(void)
1374 1375
{
	u64 value;
1376

1377
	rdmsrl(MSR_PLATFORM_INFO, value);
1378 1379 1380
	return (value >> 40) & 0xFF;
}

1381
static int core_get_max_pstate_physical(void)
1382 1383
{
	u64 value;
1384

1385
	rdmsrl(MSR_PLATFORM_INFO, value);
1386 1387 1388
	return (value >> 8) & 0xFF;
}

1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
static int core_get_tdp_ratio(u64 plat_info)
{
	/* Check how many TDP levels present */
	if (plat_info & 0x600000000) {
		u64 tdp_ctrl;
		u64 tdp_ratio;
		int tdp_msr;
		int err;

		/* Get the TDP level (0, 1, 2) to get ratios */
		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
		if (err)
			return err;

		/* TDP MSR are continuous starting at 0x648 */
		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
		if (err)
			return err;

		/* For level 1 and 2, bits[23:16] contain the ratio */
		if (tdp_ctrl & 0x03)
			tdp_ratio >>= 16;

		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);

		return (int)tdp_ratio;
	}

	return -ENXIO;
}

1422
static int core_get_max_pstate(void)
1423
{
1424 1425 1426
	u64 tar;
	u64 plat_info;
	int max_pstate;
1427
	int tdp_ratio;
1428 1429 1430 1431 1432
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

1433 1434 1435 1436 1437 1438 1439 1440 1441
	tdp_ratio = core_get_tdp_ratio(plat_info);
	if (tdp_ratio <= 0)
		return max_pstate;

	if (hwp_active) {
		/* Turbo activation ratio is not used on HWP platforms */
		return tdp_ratio;
	}

1442 1443
	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
1444 1445
		int tar_levels;

1446
		/* Do some sanity checking for safety */
1447 1448 1449 1450
		tar_levels = tar & 0xff;
		if (tdp_ratio - 1 == tar_levels) {
			max_pstate = tar_levels;
			pr_debug("max_pstate=TAC %x\n", max_pstate);
1451 1452
		}
	}
1453

1454
	return max_pstate;
1455 1456
}

1457
static int core_get_turbo_pstate(void)
1458 1459 1460
{
	u64 value;
	int nont, ret;
1461

1462
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1463
	nont = core_get_max_pstate();
1464
	ret = (value) & 255;
1465 1466 1467 1468 1469
	if (ret <= nont)
		ret = nont;
	return ret;
}

1470 1471 1472 1473 1474
static inline int core_get_scaling(void)
{
	return 100000;
}

1475
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1476 1477 1478
{
	u64 val;

1479
	val = (u64)pstate << 8;
1480
	if (global.no_turbo && !global.turbo_disabled)
1481 1482
		val |= (u64)1 << 32;

1483
	return val;
1484 1485
}

1486 1487 1488 1489 1490
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1491
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1492 1493 1494 1495 1496 1497 1498
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1499
static int intel_pstate_get_base_pstate(struct cpudata *cpu)
1500
{
1501 1502
	return global.no_turbo || global.turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1503 1504
}

1505
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1506
{
1507 1508
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1509 1510 1511 1512 1513 1514 1515
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1516 1517
}

1518 1519 1520 1521 1522 1523 1524
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
1525
	int pstate;
1526 1527

	update_turbo_state();
1528 1529 1530 1531
	pstate = intel_pstate_get_base_pstate(cpu);
	pstate = max(cpu->pstate.min_pstate,
		     fp_ext_toint(pstate * cpu->max_perf));
	intel_pstate_set_pstate(cpu, pstate);
1532 1533
}

1534 1535
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1536 1537
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1538
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1539
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1540
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1541 1542
	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1543

1544 1545
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1546 1547

	intel_pstate_set_min_pstate(cpu);
1548 1549
}

1550
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1551
{
1552
	struct sample *sample = &cpu->sample;
1553

1554
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1555 1556
}

1557
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1558 1559
{
	u64 aperf, mperf;
1560
	unsigned long flags;
1561
	u64 tsc;
1562

1563
	local_irq_save(flags);
1564 1565
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1566
	tsc = rdtsc();
1567
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1568
		local_irq_restore(flags);
1569
		return false;
1570
	}
1571
	local_irq_restore(flags);
1572

1573
	cpu->last_sample_time = cpu->sample.time;
1574
	cpu->sample.time = time;
1575 1576
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1577
	cpu->sample.tsc =  tsc;
1578 1579
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1580
	cpu->sample.tsc -= cpu->prev_tsc;
1581

1582 1583
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1584
	cpu->prev_tsc = tsc;
1585 1586 1587 1588 1589 1590 1591
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
1592 1593 1594 1595 1596
	if (cpu->last_sample_time) {
		intel_pstate_calc_avg_perf(cpu);
		return true;
	}
	return false;
1597 1598
}

1599 1600
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1601 1602
	return mul_ext_fp(cpu->sample.core_avg_perf,
			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1603 1604
}

1605 1606
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1607 1608
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1609 1610
}

1611 1612 1613
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
{
	struct sample *sample = &cpu->sample;
1614
	int32_t busy_frac, boost;
1615
	int target, avg_pstate;
1616

1617 1618 1619
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE)
		return cpu->pstate.turbo_pstate;

1620
	busy_frac = div_fp(sample->mperf, sample->tsc);
1621

1622 1623
	boost = cpu->iowait_boost;
	cpu->iowait_boost >>= 1;
1624

1625 1626
	if (busy_frac < boost)
		busy_frac = boost;
1627

1628
	sample->busy_scaled = busy_frac * 100;
1629

1630
	target = global.no_turbo || global.turbo_disabled ?
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1649 1650
}

1651
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1652
{
1653
	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1654
	u64 duration_ns;
1655

1656 1657 1658
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE)
		return cpu->pstate.turbo_pstate;

1659
	/*
1660 1661 1662 1663 1664
	 * perf_scaled is the ratio of the average P-state during the last
	 * sampling period to the P-state requested last time (in percent).
	 *
	 * That measures the system's response to the previous P-state
	 * selection.
1665
	 */
1666 1667
	max_pstate = cpu->pstate.max_pstate_physical;
	current_pstate = cpu->pstate.current_pstate;
1668
	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1669
			       div_fp(100 * max_pstate, current_pstate));
1670

1671
	/*
1672 1673 1674
	 * Since our utilization update callback will not run unless we are
	 * in C0, check if the actual elapsed time is significantly greater (3x)
	 * than our sample interval.  If it is, then we were idle for a long
1675
	 * enough period of time to adjust our performance metric.
1676
	 */
1677
	duration_ns = cpu->sample.time - cpu->last_sample_time;
1678
	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1679
		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1680
		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1681 1682 1683
	} else {
		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
		if (sample_ratio < int_tofp(1))
1684
			perf_scaled = 0;
1685 1686
	}

1687 1688
	cpu->sample.busy_scaled = perf_scaled;
	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1689 1690
}

1691
static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1692
{
1693 1694
	int max_pstate = intel_pstate_get_base_pstate(cpu);
	int min_pstate;
1695

1696 1697 1698 1699
	min_pstate = max(cpu->pstate.min_pstate,
			 fp_ext_toint(max_pstate * cpu->min_perf));
	max_pstate = max(min_pstate, fp_ext_toint(max_pstate * cpu->max_perf));
	return clamp_t(int, pstate, min_pstate, max_pstate);
1700 1701 1702 1703
}

static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
1704 1705 1706
	if (pstate == cpu->pstate.current_pstate)
		return;

1707
	cpu->pstate.current_pstate = pstate;
1708 1709 1710
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1711
static void intel_pstate_adjust_pstate(struct cpudata *cpu, int target_pstate)
1712
{
1713
	int from = cpu->pstate.current_pstate;
1714 1715
	struct sample *sample;

1716 1717
	update_turbo_state();

1718 1719
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1720
	intel_pstate_update_pstate(cpu, target_pstate);
1721 1722

	sample = &cpu->sample;
1723
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1724
		fp_toint(sample->busy_scaled),
1725 1726 1727 1728 1729
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1730 1731
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1732 1733
}

1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
static void intel_pstate_update_util_hwp(struct update_util_data *data,
					 u64 time, unsigned int flags)
{
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
	u64 delta_ns = time - cpu->sample.time;

	if ((s64)delta_ns >= INTEL_PSTATE_HWP_SAMPLING_INTERVAL)
		intel_pstate_sample(cpu, time);
}

static void intel_pstate_update_util_pid(struct update_util_data *data,
					 u64 time, unsigned int flags)
{
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
	u64 delta_ns = time - cpu->sample.time;

	if ((s64)delta_ns < pid_params.sample_rate_ns)
		return;

1753 1754 1755 1756 1757 1758
	if (intel_pstate_sample(cpu, time)) {
		int target_pstate;

		target_pstate = get_target_pstate_use_performance(cpu);
		intel_pstate_adjust_pstate(cpu, target_pstate);
	}
1759 1760
}

1761
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1762
				     unsigned int flags)
1763
{
1764
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1765 1766
	u64 delta_ns;

1767 1768 1769 1770 1771 1772 1773
	if (flags & SCHED_CPUFREQ_IOWAIT) {
		cpu->iowait_boost = int_tofp(1);
	} else if (cpu->iowait_boost) {
		/* Clear iowait_boost if the CPU may have been idle. */
		delta_ns = time - cpu->last_update;
		if (delta_ns > TICK_NSEC)
			cpu->iowait_boost = 0;
1774
	}
1775
	cpu->last_update = time;
1776
	delta_ns = time - cpu->sample.time;
1777 1778
	if ((s64)delta_ns < INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL)
		return;
1779

1780 1781
	if (intel_pstate_sample(cpu, time)) {
		int target_pstate;
1782

1783 1784 1785 1786
		target_pstate = get_target_pstate_use_cpu_load(cpu);
		intel_pstate_adjust_pstate(cpu, target_pstate);
	}
}
1787

1788 1789 1790 1791 1792 1793 1794 1795
static struct pstate_funcs core_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = core_get_turbo_pstate,
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
	.update_util = intel_pstate_update_util_pid,
1796 1797
};

1798 1799 1800 1801 1802 1803 1804 1805 1806
static const struct pstate_funcs silvermont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = silvermont_get_scaling,
	.get_vid = atom_get_vid,
	.update_util = intel_pstate_update_util,
1807 1808
};

1809 1810 1811 1812 1813 1814 1815 1816 1817
static const struct pstate_funcs airmont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = airmont_get_scaling,
	.get_vid = atom_get_vid,
	.update_util = intel_pstate_update_util,
1818 1819
};

1820 1821 1822 1823 1824 1825 1826 1827
static const struct pstate_funcs knl_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = knl_get_turbo_pstate,
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
	.update_util = intel_pstate_update_util_pid,
1828 1829
};

1830 1831 1832 1833 1834 1835 1836 1837
static const struct pstate_funcs bxt_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = core_get_turbo_pstate,
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
	.update_util = intel_pstate_update_util,
1838 1839
};

1840
#define ICPU(model, policy) \
1841 1842
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1843 1844

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_funcs),
	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_funcs),
	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_funcs),
	ICPU(INTEL_FAM6_IVYBRIDGE,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_CORE,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_funcs),
	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_X,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_ULT,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_funcs),
	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_X,		core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_funcs),
	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_funcs),
	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_funcs),
	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_funcs),
1864
	ICPU(INTEL_FAM6_ATOM_GEMINI_LAKE,       bxt_funcs),
1865 1866 1867 1868
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

1869
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1870 1871 1872
	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
D
Dirk Brandewie 已提交
1873 1874 1875
	{}
};

1876
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1877
	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1878 1879 1880
	{}
};

1881 1882
static bool pid_in_use(void);

1883 1884 1885 1886
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1887 1888 1889
	cpu = all_cpu_data[cpunum];

	if (!cpu) {
1890
		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1891 1892 1893 1894 1895
		if (!cpu)
			return -ENOMEM;

		all_cpu_data[cpunum] = cpu;

1896 1897 1898
		cpu->epp_default = -EINVAL;
		cpu->epp_powersave = -EINVAL;
		cpu->epp_saved = -EINVAL;
1899
	}
1900 1901 1902 1903

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1904

1905
	if (hwp_active) {
1906 1907 1908 1909 1910 1911
		const struct x86_cpu_id *id;

		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
		if (id)
			intel_pstate_disable_ee(cpunum);

1912
		intel_pstate_hwp_enable(cpu);
1913
	} else if (pid_in_use()) {
1914
		intel_pstate_pid_reset(cpu);
1915
	}
1916

1917
	intel_pstate_get_cpu_pstates(cpu);
1918

J
Joe Perches 已提交
1919
	pr_debug("controlling: cpu %d\n", cpunum);
1920 1921 1922 1923 1924 1925

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
1926
	struct cpudata *cpu = all_cpu_data[cpu_num];
1927

1928
	return cpu ? get_avg_frequency(cpu) : 0;
1929 1930
}

1931
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1932
{
1933 1934
	struct cpudata *cpu = all_cpu_data[cpu_num];

1935 1936 1937
	if (cpu->update_util_set)
		return;

1938 1939
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
1940 1941
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
				     pstate_funcs.update_util);
1942
	cpu->update_util_set = true;
1943 1944 1945 1946
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
1947 1948 1949 1950 1951
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

1952
	cpufreq_remove_update_util_hook(cpu);
1953
	cpu_data->update_util_set = false;
1954 1955 1956
	synchronize_sched();
}

1957 1958 1959 1960 1961 1962
static int intel_pstate_get_max_freq(struct cpudata *cpu)
{
	return global.turbo_disabled || global.no_turbo ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
}

1963
static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1964
					    struct cpudata *cpu)
1965
{
1966
	int max_freq = intel_pstate_get_max_freq(cpu);
1967
	int32_t max_policy_perf, min_policy_perf;
1968

1969
	max_policy_perf = div_ext_fp(policy->max, max_freq);
1970
	max_policy_perf = clamp_t(int32_t, max_policy_perf, 0, int_ext_tofp(1));
1971
	if (policy->max == policy->min) {
1972
		min_policy_perf = max_policy_perf;
1973
	} else {
1974
		min_policy_perf = div_ext_fp(policy->min, max_freq);
1975 1976
		min_policy_perf = clamp_t(int32_t, min_policy_perf,
					  0, max_policy_perf);
1977
	}
1978

1979
	/* Normalize user input to [min_perf, max_perf] */
1980
	if (per_cpu_limits) {
1981 1982
		cpu->min_perf = min_policy_perf;
		cpu->max_perf = max_policy_perf;
1983 1984 1985 1986 1987 1988
	} else {
		int32_t global_min, global_max;

		/* Global limits are in percent of the maximum turbo P-state. */
		global_max = percent_ext_fp(global.max_perf_pct);
		global_min = percent_ext_fp(global.min_perf_pct);
1989
		if (max_freq != cpu->pstate.turbo_freq) {
1990 1991 1992 1993 1994 1995 1996 1997
			int32_t turbo_factor;

			turbo_factor = div_ext_fp(cpu->pstate.turbo_pstate,
						  cpu->pstate.max_pstate);
			global_min = mul_ext_fp(global_min, turbo_factor);
			global_max = mul_ext_fp(global_max, turbo_factor);
		}
		global_min = clamp_t(int32_t, global_min, 0, global_max);
1998

1999 2000 2001 2002
		cpu->min_perf = max(min_policy_perf, global_min);
		cpu->min_perf = min(cpu->min_perf, max_policy_perf);
		cpu->max_perf = min(max_policy_perf, global_max);
		cpu->max_perf = max(min_policy_perf, cpu->max_perf);
2003 2004

		/* Make sure min_perf <= max_perf */
2005
		cpu->min_perf = min(cpu->min_perf, cpu->max_perf);
2006
	}
2007

2008 2009
	cpu->max_perf = round_up(cpu->max_perf, EXT_FRAC_BITS);
	cpu->min_perf = round_up(cpu->min_perf, EXT_FRAC_BITS);
2010 2011

	pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
2012 2013
		 fp_ext_toint(cpu->max_perf * 100),
		 fp_ext_toint(cpu->min_perf * 100));
2014 2015
}

2016 2017
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
2018 2019
	struct cpudata *cpu;

2020 2021 2022
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

2023 2024 2025
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

2026
	cpu = all_cpu_data[policy->cpu];
2027 2028
	cpu->policy = policy->policy;

2029 2030
	mutex_lock(&intel_pstate_limits_lock);

2031
	intel_pstate_update_perf_limits(policy, cpu);
2032

2033
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2034 2035 2036 2037 2038 2039 2040 2041
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
	}

2042 2043
	intel_pstate_set_update_util_hook(policy->cpu);

2044
	if (hwp_active)
2045
		intel_pstate_hwp_set(policy->cpu);
D
Dirk Brandewie 已提交
2046

2047 2048
	mutex_unlock(&intel_pstate_limits_lock);

2049 2050 2051
	return 0;
}

2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
					 struct cpudata *cpu)
{
	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_freq) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
	}
}

2063 2064
static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
2065 2066 2067
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2068 2069
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2070

2071
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2072
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2073 2074
		return -EINVAL;

2075 2076
	intel_pstate_adjust_policy_max(policy, cpu);

2077 2078 2079
	return 0;
}

2080 2081 2082 2083 2084
static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
{
	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
}

2085
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2086
{
2087
	pr_debug("CPU %d exiting\n", policy->cpu);
2088

2089
	intel_pstate_clear_update_util_hook(policy->cpu);
2090 2091 2092
	if (hwp_active)
		intel_pstate_hwp_save_state(policy);
	else
2093 2094
		intel_cpufreq_stop_cpu(policy);
}
2095

2096 2097 2098
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);
2099

2100
	policy->fast_switch_possible = false;
D
Dirk Brandewie 已提交
2101

2102
	return 0;
2103 2104
}

2105
static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2106 2107
{
	struct cpudata *cpu;
2108
	int rc;
2109 2110 2111 2112 2113 2114 2115

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

2116 2117
	cpu->max_perf = int_ext_tofp(1);
	cpu->min_perf = 0;
2118

2119 2120
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2121 2122

	/* cpuinfo and default policy values */
2123
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2124
	update_turbo_state();
2125
	policy->cpuinfo.max_freq = global.turbo_disabled ?
2126 2127 2128
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

2129
	intel_pstate_init_acpi_perf_limits(policy);
2130 2131
	cpumask_set_cpu(policy->cpu, policy->cpus);

2132 2133
	policy->fast_switch_possible = true;

2134 2135 2136
	return 0;
}

2137
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2138
{
2139 2140 2141 2142 2143 2144
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2145
	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2146 2147 2148
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2149 2150 2151 2152

	return 0;
}

2153
static struct cpufreq_driver intel_pstate = {
2154 2155 2156
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
2157
	.suspend	= intel_pstate_hwp_save_state,
2158
	.resume		= intel_pstate_resume,
2159 2160
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
2161
	.exit		= intel_pstate_cpu_exit,
2162
	.stop_cpu	= intel_pstate_stop_cpu,
2163 2164 2165
	.name		= "intel_pstate",
};

2166 2167 2168 2169 2170
static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2171 2172
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2173

2174
	intel_pstate_adjust_policy_max(policy, cpu);
2175

2176 2177
	intel_pstate_update_perf_limits(policy, cpu);

2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
	return 0;
}

static int intel_cpufreq_target(struct cpufreq_policy *policy,
				unsigned int target_freq,
				unsigned int relation)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct cpufreq_freqs freqs;
	int target_pstate;

2189 2190
	update_turbo_state();

2191
	freqs.old = policy->cur;
2192
	freqs.new = target_freq;
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211

	cpufreq_freq_transition_begin(policy, &freqs);
	switch (relation) {
	case CPUFREQ_RELATION_L:
		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
		break;
	case CPUFREQ_RELATION_H:
		target_pstate = freqs.new / cpu->pstate.scaling;
		break;
	default:
		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
		break;
	}
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	if (target_pstate != cpu->pstate.current_pstate) {
		cpu->pstate.current_pstate = target_pstate;
		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
			      pstate_funcs.get_val(cpu, target_pstate));
	}
2212
	freqs.new = target_pstate * cpu->pstate.scaling;
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
	cpufreq_freq_transition_end(policy, &freqs, false);

	return 0;
}

static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
					      unsigned int target_freq)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	int target_pstate;

2224 2225
	update_turbo_state();

2226
	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2227
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2228
	intel_pstate_update_pstate(cpu, target_pstate);
2229
	return target_pstate * cpu->pstate.scaling;
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
}

static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
	policy->cur = policy->cpuinfo.min_freq;

	return 0;
}

static struct cpufreq_driver intel_cpufreq = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_cpufreq_verify_policy,
	.target		= intel_cpufreq_target,
	.fast_switch	= intel_cpufreq_fast_switch,
	.init		= intel_cpufreq_cpu_init,
	.exit		= intel_pstate_cpu_exit,
	.stop_cpu	= intel_cpufreq_stop_cpu,
	.name		= "intel_cpufreq",
};

2257
static struct cpufreq_driver *default_driver = &intel_pstate;
2258

2259 2260 2261 2262 2263 2264
static bool pid_in_use(void)
{
	return intel_pstate_driver == &intel_pstate &&
		pstate_funcs.update_util == intel_pstate_update_util_pid;
}

2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
static void intel_pstate_driver_cleanup(void)
{
	unsigned int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			if (intel_pstate_driver == &intel_pstate)
				intel_pstate_clear_update_util_hook(cpu);

			kfree(all_cpu_data[cpu]);
			all_cpu_data[cpu] = NULL;
		}
	}
	put_online_cpus();
2280
	intel_pstate_driver = NULL;
2281 2282
}

2283
static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2284 2285 2286
{
	int ret;

2287 2288
	memset(&global, 0, sizeof(global));
	global.max_perf_pct = 100;
2289

2290
	intel_pstate_driver = driver;
2291 2292 2293 2294 2295 2296
	ret = cpufreq_register_driver(intel_pstate_driver);
	if (ret) {
		intel_pstate_driver_cleanup();
		return ret;
	}

2297 2298
	global.min_perf_pct = min_perf_pct_min();

2299
	if (pid_in_use())
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
		intel_pstate_debug_expose_params();

	return 0;
}

static int intel_pstate_unregister_driver(void)
{
	if (hwp_active)
		return -EBUSY;

2310
	if (pid_in_use())
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
		intel_pstate_debug_hide_params();

	cpufreq_unregister_driver(intel_pstate_driver);
	intel_pstate_driver_cleanup();

	return 0;
}

static ssize_t intel_pstate_show_status(char *buf)
{
2321
	if (!intel_pstate_driver)
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
		return sprintf(buf, "off\n");

	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
					"active" : "passive");
}

static int intel_pstate_update_status(const char *buf, size_t size)
{
	int ret;

	if (size == 3 && !strncmp(buf, "off", size))
2333
		return intel_pstate_driver ?
2334 2335 2336
			intel_pstate_unregister_driver() : -EINVAL;

	if (size == 6 && !strncmp(buf, "active", size)) {
2337
		if (intel_pstate_driver) {
2338 2339 2340 2341 2342 2343 2344 2345
			if (intel_pstate_driver == &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2346
		return intel_pstate_register_driver(&intel_pstate);
2347 2348 2349
	}

	if (size == 7 && !strncmp(buf, "passive", size)) {
2350
		if (intel_pstate_driver) {
2351
			if (intel_pstate_driver == &intel_cpufreq)
2352 2353 2354 2355 2356 2357 2358
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2359
		return intel_pstate_register_driver(&intel_cpufreq);
2360 2361 2362 2363 2364
	}

	return -EINVAL;
}

2365 2366 2367
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
2368
static unsigned int force_load __initdata;
2369

2370
static int __init intel_pstate_msrs_not_valid(void)
2371
{
2372
	if (!pstate_funcs.get_max() ||
2373 2374
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
2375 2376 2377 2378
		return -ENODEV;

	return 0;
}
2379

2380 2381 2382
#ifdef CONFIG_ACPI
static void intel_pstate_use_acpi_profile(void)
{
2383 2384 2385 2386 2387 2388
	switch (acpi_gbl_FADT.preferred_profile) {
	case PM_MOBILE:
	case PM_TABLET:
	case PM_APPLIANCE_PC:
	case PM_DESKTOP:
	case PM_WORKSTATION:
2389
		pstate_funcs.update_util = intel_pstate_update_util;
2390
	}
2391 2392 2393 2394 2395 2396 2397
}
#else
static void intel_pstate_use_acpi_profile(void)
{
}
#endif

2398
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2399 2400
{
	pstate_funcs.get_max   = funcs->get_max;
2401
	pstate_funcs.get_max_physical = funcs->get_max_physical;
2402 2403
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
2404
	pstate_funcs.get_scaling = funcs->get_scaling;
2405
	pstate_funcs.get_val   = funcs->get_val;
2406
	pstate_funcs.get_vid   = funcs->get_vid;
2407
	pstate_funcs.update_util = funcs->update_util;
2408

2409
	intel_pstate_use_acpi_profile();
2410 2411
}

2412
#ifdef CONFIG_ACPI
2413

2414
static bool __init intel_pstate_no_acpi_pss(void)
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

2443
static bool __init intel_pstate_has_acpi_ppc(void)
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

2463 2464 2465 2466
struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2467
	int  oem_pwr_table;
2468 2469 2470
};

/* Hardware vendor-specific info that has its own power management modes */
2471
static struct hw_vendor_info vendor_info[] __initdata = {
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
	{1, "HP    ", "ProLiant", PSS},
	{1, "ORACLE", "X4-2    ", PPC},
	{1, "ORACLE", "X4-2L   ", PPC},
	{1, "ORACLE", "X4-2B   ", PPC},
	{1, "ORACLE", "X3-2    ", PPC},
	{1, "ORACLE", "X3-2L   ", PPC},
	{1, "ORACLE", "X3-2B   ", PPC},
	{1, "ORACLE", "X4470M2 ", PPC},
	{1, "ORACLE", "X4270M3 ", PPC},
	{1, "ORACLE", "X4270M2 ", PPC},
	{1, "ORACLE", "X4170M2 ", PPC},
2483 2484 2485 2486
	{1, "ORACLE", "X4170 M3", PPC},
	{1, "ORACLE", "X4275 M3", PPC},
	{1, "ORACLE", "X6-2    ", PPC},
	{1, "ORACLE", "Sudbury ", PPC},
2487 2488 2489
	{0, "", ""},
};

2490
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2491 2492 2493
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;
D
Dirk Brandewie 已提交
2494 2495 2496 2497 2498 2499 2500 2501 2502
	const struct x86_cpu_id *id;
	u64 misc_pwr;

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
2503

2504 2505
	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2506 2507 2508
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
2509
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2510 2511 2512 2513 2514 2515
			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
						ACPI_OEM_TABLE_ID_SIZE))
			switch (v_info->oem_pwr_table) {
			case PSS:
				return intel_pstate_no_acpi_pss();
			case PPC:
2516 2517
				return intel_pstate_has_acpi_ppc() &&
					(!force_load);
2518
			}
2519 2520 2521 2522
	}

	return false;
}
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532

static void intel_pstate_request_control_from_smm(void)
{
	/*
	 * It may be unsafe to request P-states control from SMM if _PPC support
	 * has not been enabled.
	 */
	if (acpi_ppc)
		acpi_processor_pstate_control();
}
2533 2534
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2535
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2536
static inline void intel_pstate_request_control_from_smm(void) {}
2537 2538
#endif /* CONFIG_ACPI */

2539 2540 2541 2542 2543
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
	{}
};

2544 2545
static int __init intel_pstate_init(void)
{
2546
	int rc;
2547

2548 2549 2550
	if (no_load)
		return -ENODEV;

2551
	if (x86_match_cpu(hwp_support_ids)) {
2552
		copy_cpu_funcs(&core_funcs);
2553
		if (no_hwp) {
2554
			pstate_funcs.update_util = intel_pstate_update_util;
2555 2556 2557
		} else {
			hwp_active++;
			intel_pstate.attr = hwp_cpufreq_attrs;
2558
			pstate_funcs.update_util = intel_pstate_update_util_hwp;
2559 2560 2561 2562
			goto hwp_cpu_matched;
		}
	} else {
		const struct x86_cpu_id *id;
2563

2564 2565 2566
		id = x86_match_cpu(intel_pstate_cpu_ids);
		if (!id)
			return -ENODEV;
2567

2568
		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2569
	}
2570

2571 2572 2573
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

2574 2575 2576 2577 2578 2579 2580 2581
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

2582 2583 2584
	if (!hwp_active && hwp_only)
		return -ENOTSUPP;

J
Joe Perches 已提交
2585
	pr_info("Intel P-state driver initializing\n");
2586

2587
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2588 2589 2590
	if (!all_cpu_data)
		return -ENOMEM;

2591 2592
	intel_pstate_request_control_from_smm();

2593
	intel_pstate_sysfs_expose_params();
2594

2595
	mutex_lock(&intel_pstate_driver_lock);
2596
	rc = intel_pstate_register_driver(default_driver);
2597
	mutex_unlock(&intel_pstate_driver_lock);
2598 2599
	if (rc)
		return rc;
2600

2601
	if (hwp_active)
J
Joe Perches 已提交
2602
		pr_info("HWP enabled\n");
2603

2604
	return 0;
2605 2606 2607
}
device_initcall(intel_pstate_init);

2608 2609 2610 2611 2612
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

2613
	if (!strcmp(str, "disable")) {
2614
		no_load = 1;
2615 2616
	} else if (!strcmp(str, "passive")) {
		pr_info("Passive mode enabled\n");
2617
		default_driver = &intel_cpufreq;
2618 2619
		no_hwp = 1;
	}
2620
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
2621
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
2622
		no_hwp = 1;
2623
	}
2624 2625
	if (!strcmp(str, "force"))
		force_load = 1;
2626 2627
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
2628 2629
	if (!strcmp(str, "per_cpu_perf_limits"))
		per_cpu_limits = true;
2630 2631 2632 2633 2634 2635

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

2636 2637 2638 2639
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

2640 2641 2642
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");