intel_pstate.c 64.7 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

J
Joe Perches 已提交
13 14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

15 16 17 18 19 20 21
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
22
#include <linux/sched/cpufreq.h>
23 24 25 26 27 28 29
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
30
#include <linux/acpi.h>
31
#include <linux/vmalloc.h>
32 33 34 35 36
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
37
#include <asm/cpufeature.h>
38
#include <asm/intel-family.h>
39

40 41 42
#define INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
#define INTEL_PSTATE_HWP_SAMPLING_INTERVAL	(50 * NSEC_PER_MSEC)

43
#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
44
#define INTEL_CPUFREQ_TRANSITION_DELAY		500
45

46 47
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
48
#include <acpi/cppc_acpi.h>
49 50
#endif

51
#define FRAC_BITS 8
52 53
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
54

55 56
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
57 58
#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
59

60 61 62 63 64
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

65
static inline int32_t div_fp(s64 x, s64 y)
66
{
67
	return div64_s64((int64_t)x << FRAC_BITS, y);
68 69
}

70 71 72 73 74 75 76 77 78 79 80
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

81 82 83 84 85
static inline int32_t percent_fp(int percent)
{
	return div_fp(percent, 100);
}

86 87 88 89 90 91 92 93 94 95
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

96 97 98 99 100
static inline int32_t percent_ext_fp(int percent)
{
	return div_ext_fp(percent, 100);
}

101 102
/**
 * struct sample -	Store performance sample
103
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
104 105
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
106
 *			P state. This can be different than core_avg_perf
107 108 109 110 111 112 113 114 115 116 117 118
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
119
struct sample {
120
	int32_t core_avg_perf;
121
	int32_t busy_scaled;
122 123
	u64 aperf;
	u64 mperf;
124
	u64 tsc;
125
	u64 time;
126 127
};

128 129 130 131 132 133 134 135 136 137 138
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
139 140
 * @max_freq:		@max_pstate frequency in cpufreq units
 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
141 142 143
 *
 * Stores the per cpu model P state limits and current P state.
 */
144 145 146 147
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
148
	int	max_pstate_physical;
149
	int	scaling;
150
	int	turbo_pstate;
151 152
	unsigned int max_freq;
	unsigned int turbo_freq;
153 154
};

155 156 157 158 159 160 161 162 163 164 165 166 167
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
168
struct vid_data {
169 170 171
	int min;
	int max;
	int turbo;
172 173 174
	int32_t ratio;
};

175 176 177 178 179 180 181 182 183 184 185 186
/**
 * struct _pid -	Stores PID data
 * @setpoint:		Target set point for busyness or performance
 * @integral:		Storage for accumulated error values
 * @p_gain:		PID proportional gain
 * @i_gain:		PID integral gain
 * @d_gain:		PID derivative gain
 * @deadband:		PID deadband
 * @last_err:		Last error storage for integral part of PID calculation
 *
 * Stores PID coefficients and last error for PID controller.
 */
187 188 189 190 191 192 193
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
194
	int32_t last_err;
195 196
};

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
/**
 * struct global_params - Global parameters, mostly tunable via sysfs.
 * @no_turbo:		Whether or not to use turbo P-states.
 * @turbo_disabled:	Whethet or not turbo P-states are available at all,
 *			based on the MSR_IA32_MISC_ENABLE value and whether or
 *			not the maximum reported turbo P-state is different from
 *			the maximum reported non-turbo one.
 * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 */
struct global_params {
	bool no_turbo;
	bool turbo_disabled;
	int max_perf_pct;
	int min_perf_pct;
214 215
};

216 217 218
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
219
 * @policy:		CPUFreq policy value
220
 * @update_util:	CPUFreq utility callback information
221
 * @update_util_set:	CPUFreq utility callback is set
222 223
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
224 225 226 227 228 229 230 231 232 233
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @pid:		Stores PID parameters for this CPU
 * @last_sample_time:	Last Sample time
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
234 235 236 237
 * @min_perf:		Minimum capacity limit as a fraction of the maximum
 *			turbo P-state capacity.
 * @max_perf:		Maximum capacity limit as a fraction of the maximum
 *			turbo P-state capacity.
238 239
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
240 241 242
 * @epp_powersave:	Last saved HWP energy performance preference
 *			(EPP) or energy performance bias (EPB),
 *			when policy switched to performance
243
 * @epp_policy:		Last saved policy used to set EPP/EPB
244 245 246 247
 * @epp_default:	Power on default HWP energy performance
 *			preference/bias
 * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
 *			operation
248 249 250
 *
 * This structure stores per CPU instance data for all CPUs.
 */
251 252 253
struct cpudata {
	int cpu;

254
	unsigned int policy;
255
	struct update_util_data update_util;
256
	bool   update_util_set;
257 258

	struct pstate_data pstate;
259
	struct vid_data vid;
260 261
	struct _pid pid;

262
	u64	last_update;
263
	u64	last_sample_time;
264 265
	u64	prev_aperf;
	u64	prev_mperf;
266
	u64	prev_tsc;
267
	u64	prev_cummulative_iowait;
268
	struct sample sample;
269 270
	int32_t	min_perf;
	int32_t	max_perf;
271 272 273 274
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
275
	unsigned int iowait_boost;
276
	s16 epp_powersave;
277
	s16 epp_policy;
278 279
	s16 epp_default;
	s16 epp_saved;
280 281 282
};

static struct cpudata **all_cpu_data;
283 284

/**
285
 * struct pstate_adjust_policy - Stores static PID configuration data
286 287 288 289 290 291 292 293 294 295
 * @sample_rate_ms:	PID calculation sample rate in ms
 * @sample_rate_ns:	Sample rate calculation in ns
 * @deadband:		PID deadband
 * @setpoint:		PID Setpoint
 * @p_gain_pct:		PID proportional gain
 * @i_gain_pct:		PID integral gain
 * @d_gain_pct:		PID derivative gain
 *
 * Stores per CPU model static PID configuration data.
 */
296 297
struct pstate_adjust_policy {
	int sample_rate_ms;
298
	s64 sample_rate_ns;
299 300 301 302 303 304 305
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

306 307 308 309 310 311 312 313 314
/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
315
 * @update_util:	Active mode utilization update callback.
316 317 318 319
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
320 321
struct pstate_funcs {
	int (*get_max)(void);
322
	int (*get_max_physical)(void);
323 324
	int (*get_min)(void);
	int (*get_turbo)(void);
325
	int (*get_scaling)(void);
326
	u64 (*get_val)(struct cpudata*, int pstate);
327
	void (*get_vid)(struct cpudata *);
328 329
	void (*update_util)(struct update_util_data *data, u64 time,
			    unsigned int flags);
330 331
};

332
static struct pstate_funcs pstate_funcs __read_mostly;
333 334 335 336 337 338 339 340 341 342
static struct pstate_adjust_policy pid_params __read_mostly = {
	.sample_rate_ms = 10,
	.sample_rate_ns = 10 * NSEC_PER_MSEC,
	.deadband = 0,
	.setpoint = 97,
	.p_gain_pct = 20,
	.d_gain_pct = 0,
	.i_gain_pct = 0,
};

343
static int hwp_active __read_mostly;
344
static bool per_cpu_limits __read_mostly;
345

346
static struct cpufreq_driver *intel_pstate_driver __read_mostly;
347

348 349 350
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
351

352
static struct global_params global;
353

354
static DEFINE_MUTEX(intel_pstate_driver_lock);
355 356
static DEFINE_MUTEX(intel_pstate_limits_lock);

357
#ifdef CONFIG_ACPI
358 359 360 361 362 363 364 365 366 367

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

	return acpi_ppc;
}

368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
#ifdef CONFIG_ACPI_CPPC_LIB

/* The work item is needed to avoid CPU hotplug locking issues */
static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
{
	sched_set_itmt_support();
}

static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);

static void intel_pstate_set_itmt_prio(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return;

	/*
	 * The priorities can be set regardless of whether or not
	 * sched_set_itmt_support(true) has been called and it is valid to
	 * update them at any time after it has been called.
	 */
	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);

	if (max_highest_perf <= min_highest_perf) {
		if (cppc_perf.highest_perf > max_highest_perf)
			max_highest_perf = cppc_perf.highest_perf;

		if (cppc_perf.highest_perf < min_highest_perf)
			min_highest_perf = cppc_perf.highest_perf;

		if (max_highest_perf > min_highest_perf) {
			/*
			 * This code can be run during CPU online under the
			 * CPU hotplug locks, so sched_set_itmt_support()
			 * cannot be called from here.  Queue up a work item
			 * to invoke it.
			 */
			schedule_work(&sched_itmt_work);
		}
	}
}
#else
static void intel_pstate_set_itmt_prio(int cpu)
{
}
#endif

419 420 421 422 423 424
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

425 426
	if (hwp_active) {
		intel_pstate_set_itmt_prio(policy->cpu);
427
		return;
428
	}
429

430
	if (!intel_pstate_get_ppc_enable_status())
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
473
	 * correct max turbo frequency based on the turbo state.
474 475
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
476
	if (!global.turbo_disabled)
477 478 479
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
480
	pr_debug("_PPC limits will be enforced\n");
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}
#else
500
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
501 502 503
{
}

504
static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
505 506 507 508
{
}
#endif

509
static signed int pid_calc(struct _pid *pid, int32_t busy)
510
{
511
	signed int result;
512 513 514
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

515
	fp_error = pid->setpoint - busy;
516

517
	if (abs(fp_error) <= pid->deadband)
518 519 520 521 522 523
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

524 525 526 527 528 529 530 531
	/*
	 * We limit the integral here so that it will never
	 * get higher than 30.  This prevents it from becoming
	 * too large an input over long periods of time and allows
	 * it to get factored out sooner.
	 *
	 * The value of 30 was chosen through experimentation.
	 */
532 533 534 535 536 537
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

538 539
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
540 541

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
542
	result = result + (1 << (FRAC_BITS-1));
543 544 545
	return (signed int)fp_toint(result);
}

546
static inline void intel_pstate_pid_reset(struct cpudata *cpu)
547
{
548
	struct _pid *pid = &cpu->pid;
549

550 551 552 553 554 555 556
	pid->p_gain = percent_fp(pid_params.p_gain_pct);
	pid->d_gain = percent_fp(pid_params.d_gain_pct);
	pid->i_gain = percent_fp(pid_params.i_gain_pct);
	pid->setpoint = int_tofp(pid_params.setpoint);
	pid->last_err  = pid->setpoint - int_tofp(100);
	pid->deadband  = int_tofp(pid_params.deadband);
	pid->integral  = 0;
557 558
}

559 560 561 562 563 564 565
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
566
	global.turbo_disabled =
567 568 569 570
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

571 572 573
static int min_perf_pct_min(void)
{
	struct cpudata *cpu = all_cpu_data[0];
574
	int turbo_pstate = cpu->pstate.turbo_pstate;
575

576 577
	return turbo_pstate ?
		DIV_ROUND_UP(cpu->pstate.min_pstate * 100, turbo_pstate) : 0;
578 579
}

580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
{
	u64 epb;
	int ret;

	if (!static_cpu_has(X86_FEATURE_EPB))
		return -ENXIO;

	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return (s16)ret;

	return (s16)(epb & 0x0f);
}

static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
{
	s16 epp;

599 600 601 602 603 604 605 606 607 608 609
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * When hwp_req_data is 0, means that caller didn't read
		 * MSR_HWP_REQUEST, so need to read and get EPP.
		 */
		if (!hwp_req_data) {
			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
					    &hwp_req_data);
			if (epp)
				return epp;
		}
610
		epp = (hwp_req_data >> 24) & 0xff;
611
	} else {
612 613
		/* When there is no EPP present, HWP uses EPB settings */
		epp = intel_pstate_get_epb(cpu_data);
614
	}
615 616 617 618

	return epp;
}

619
static int intel_pstate_set_epb(int cpu, s16 pref)
620 621
{
	u64 epb;
622
	int ret;
623 624

	if (!static_cpu_has(X86_FEATURE_EPB))
625
		return -ENXIO;
626

627 628 629
	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return ret;
630 631 632

	epb = (epb & ~0x0f) | pref;
	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
633 634

	return 0;
635 636
}

637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
/*
 * EPP/EPB display strings corresponding to EPP index in the
 * energy_perf_strings[]
 *	index		String
 *-------------------------------------
 *	0		default
 *	1		performance
 *	2		balance_performance
 *	3		balance_power
 *	4		power
 */
static const char * const energy_perf_strings[] = {
	"default",
	"performance",
	"balance_performance",
	"balance_power",
	"power",
	NULL
};

static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
{
	s16 epp;
	int index = -EINVAL;

	epp = intel_pstate_get_epp(cpu_data, 0);
	if (epp < 0)
		return epp;

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * Range:
		 *	0x00-0x3F	:	Performance
		 *	0x40-0x7F	:	Balance performance
		 *	0x80-0xBF	:	Balance power
		 *	0xC0-0xFF	:	Power
		 * The EPP is a 8 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 6) + 1;
	} else if (static_cpu_has(X86_FEATURE_EPB)) {
		/*
		 * Range:
		 *	0x00-0x03	:	Performance
		 *	0x04-0x07	:	Balance performance
		 *	0x08-0x0B	:	Balance power
		 *	0x0C-0x0F	:	Power
		 * The EPB is a 4 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 2) + 1;
	}

	return index;
}

static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
					      int pref_index)
{
	int epp = -EINVAL;
	int ret;

	if (!pref_index)
		epp = cpu_data->epp_default;

	mutex_lock(&intel_pstate_limits_lock);

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		u64 value;

		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
		if (ret)
			goto return_pref;

		value &= ~GENMASK_ULL(31, 24);

		/*
		 * If epp is not default, convert from index into
		 * energy_perf_strings to epp value, by shifting 6
		 * bits left to use only top two bits in epp.
		 * The resultant epp need to shifted by 24 bits to
		 * epp position in MSR_HWP_REQUEST.
		 */
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 6;

		value |= (u64)epp << 24;
		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
	} else {
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 2;
		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
	}
return_pref:
	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
}

static ssize_t show_energy_performance_available_preferences(
				struct cpufreq_policy *policy, char *buf)
{
	int i = 0;
	int ret = 0;

	while (energy_perf_strings[i] != NULL)
		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);

	ret += sprintf(&buf[ret], "\n");

	return ret;
}

cpufreq_freq_attr_ro(energy_performance_available_preferences);

static ssize_t store_energy_performance_preference(
		struct cpufreq_policy *policy, const char *buf, size_t count)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	char str_preference[21];
	int ret, i = 0;

	ret = sscanf(buf, "%20s", str_preference);
	if (ret != 1)
		return -EINVAL;

	while (energy_perf_strings[i] != NULL) {
		if (!strcmp(str_preference, energy_perf_strings[i])) {
			intel_pstate_set_energy_pref_index(cpu_data, i);
			return count;
		}
		++i;
	}

	return -EINVAL;
}

static ssize_t show_energy_performance_preference(
				struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	int preference;

	preference = intel_pstate_get_energy_pref_index(cpu_data);
	if (preference < 0)
		return preference;

	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
}

cpufreq_freq_attr_rw(energy_performance_preference);

static struct freq_attr *hwp_cpufreq_attrs[] = {
	&energy_performance_preference,
	&energy_performance_available_preferences,
	NULL,
};

797
static void intel_pstate_hwp_set(unsigned int cpu)
D
Dirk Brandewie 已提交
798
{
799 800
	struct cpudata *cpu_data = all_cpu_data[cpu];
	int min, hw_min, max, hw_max;
801
	u64 value, cap;
802
	s16 epp;
803

804 805 806 807 808 809
	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
	hw_min = HWP_LOWEST_PERF(cap);
	if (global.no_turbo)
		hw_max = HWP_GUARANTEED_PERF(cap);
	else
		hw_max = HWP_HIGHEST_PERF(cap);
810

811 812 813 814 815
	max = fp_ext_toint(hw_max * cpu_data->max_perf);
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
		min = max;
	else
		min = fp_ext_toint(hw_max * cpu_data->min_perf);
816

817
	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
D
Dirk Brandewie 已提交
818

819 820
	value &= ~HWP_MIN_PERF(~0L);
	value |= HWP_MIN_PERF(min);
821

822 823
	value &= ~HWP_MAX_PERF(~0L);
	value |= HWP_MAX_PERF(max);
824

825 826
	if (cpu_data->epp_policy == cpu_data->policy)
		goto skip_epp;
827

828
	cpu_data->epp_policy = cpu_data->policy;
829

830 831 832 833 834
	if (cpu_data->epp_saved >= 0) {
		epp = cpu_data->epp_saved;
		cpu_data->epp_saved = -EINVAL;
		goto update_epp;
	}
835

836 837 838 839 840 841
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
		epp = intel_pstate_get_epp(cpu_data, value);
		cpu_data->epp_powersave = epp;
		/* If EPP read was failed, then don't try to write */
		if (epp < 0)
			goto skip_epp;
842

843 844 845 846 847
		epp = 0;
	} else {
		/* skip setting EPP, when saved value is invalid */
		if (cpu_data->epp_powersave < 0)
			goto skip_epp;
848

849 850 851 852 853 854 855 856 857 858
		/*
		 * No need to restore EPP when it is not zero. This
		 * means:
		 *  - Policy is not changed
		 *  - user has manually changed
		 *  - Error reading EPB
		 */
		epp = intel_pstate_get_epp(cpu_data, value);
		if (epp)
			goto skip_epp;
859

860 861
		epp = cpu_data->epp_powersave;
	}
862
update_epp:
863 864 865 866 867
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		value &= ~GENMASK_ULL(31, 24);
		value |= (u64)epp << 24;
	} else {
		intel_pstate_set_epb(cpu, epp);
D
Dirk Brandewie 已提交
868
	}
869 870
skip_epp:
	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
871
}
D
Dirk Brandewie 已提交
872

873 874 875 876 877 878 879 880 881 882 883 884
static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];

	if (!hwp_active)
		return 0;

	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);

	return 0;
}

885 886 887 888 889
static int intel_pstate_resume(struct cpufreq_policy *policy)
{
	if (!hwp_active)
		return 0;

890 891
	mutex_lock(&intel_pstate_limits_lock);

892
	all_cpu_data[policy->cpu]->epp_policy = 0;
893
	intel_pstate_hwp_set(policy->cpu);
894 895 896

	mutex_unlock(&intel_pstate_limits_lock);

897
	return 0;
898 899
}

900
static void intel_pstate_update_policies(void)
901
{
902 903 904 905
	int cpu;

	for_each_possible_cpu(cpu)
		cpufreq_update_policy(cpu);
D
Dirk Brandewie 已提交
906 907
}

908 909 910
/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
911 912
	unsigned int cpu;

913
	*(u32 *)data = val;
914
	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
915 916
	for_each_possible_cpu(cpu)
		if (all_cpu_data[cpu])
917
			intel_pstate_pid_reset(all_cpu_data[cpu]);
918

919 920
	return 0;
}
921

922 923 924 925 926
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
927
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
928

929 930
static struct dentry *debugfs_parent;

931 932 933
struct pid_param {
	char *name;
	void *value;
934
	struct dentry *dentry;
935 936 937
};

static struct pid_param pid_files[] = {
938 939 940 941 942 943 944
	{"sample_rate_ms", &pid_params.sample_rate_ms, },
	{"d_gain_pct", &pid_params.d_gain_pct, },
	{"i_gain_pct", &pid_params.i_gain_pct, },
	{"deadband", &pid_params.deadband, },
	{"setpoint", &pid_params.setpoint, },
	{"p_gain_pct", &pid_params.p_gain_pct, },
	{NULL, NULL, }
945 946
};

947
static void intel_pstate_debug_expose_params(void)
948
{
949
	int i;
950 951 952 953

	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
954 955 956 957 958 959 960 961 962

	for (i = 0; pid_files[i].name; i++) {
		struct dentry *dentry;

		dentry = debugfs_create_file(pid_files[i].name, 0660,
					     debugfs_parent, pid_files[i].value,
					     &fops_pid_param);
		if (!IS_ERR(dentry))
			pid_files[i].dentry = dentry;
963 964 965
	}
}

966 967 968 969 970 971 972 973 974 975
static void intel_pstate_debug_hide_params(void)
{
	int i;

	if (IS_ERR_OR_NULL(debugfs_parent))
		return;

	for (i = 0; pid_files[i].name; i++) {
		debugfs_remove(pid_files[i].dentry);
		pid_files[i].dentry = NULL;
976
	}
977 978 979

	debugfs_remove(debugfs_parent);
	debugfs_parent = NULL;
980 981 982 983 984 985 986 987 988
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
989
		return sprintf(buf, "%u\n", global.object);		\
990 991
	}

992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
static ssize_t intel_pstate_show_status(char *buf);
static int intel_pstate_update_status(const char *buf, size_t size);

static ssize_t show_status(struct kobject *kobj,
			   struct attribute *attr, char *buf)
{
	ssize_t ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_show_status(buf);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret;
}

static ssize_t store_status(struct kobject *a, struct attribute *b,
			    const char *buf, size_t count)
{
	char *p = memchr(buf, '\n', count);
	int ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_update_status(buf, p ? p - buf : count);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret < 0 ? ret : count;
}

1020 1021 1022 1023 1024 1025 1026
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

1027 1028
	mutex_lock(&intel_pstate_driver_lock);

1029
	if (!intel_pstate_driver) {
1030 1031 1032 1033
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1034 1035 1036 1037
	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1038
	turbo_fp = div_fp(no_turbo, total);
1039
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1040 1041 1042

	mutex_unlock(&intel_pstate_driver_lock);

1043 1044 1045
	return sprintf(buf, "%u\n", turbo_pct);
}

1046 1047 1048 1049 1050 1051
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

1052 1053
	mutex_lock(&intel_pstate_driver_lock);

1054
	if (!intel_pstate_driver) {
1055 1056 1057 1058
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1059 1060
	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1061 1062 1063

	mutex_unlock(&intel_pstate_driver_lock);

1064 1065 1066
	return sprintf(buf, "%u\n", total);
}

1067 1068 1069 1070 1071
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

1072 1073
	mutex_lock(&intel_pstate_driver_lock);

1074
	if (!intel_pstate_driver) {
1075 1076 1077 1078
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1079
	update_turbo_state();
1080 1081
	if (global.turbo_disabled)
		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1082
	else
1083
		ret = sprintf(buf, "%u\n", global.no_turbo);
1084

1085 1086
	mutex_unlock(&intel_pstate_driver_lock);

1087 1088 1089
	return ret;
}

1090
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1091
			      const char *buf, size_t count)
1092 1093 1094
{
	unsigned int input;
	int ret;
1095

1096 1097 1098
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1099

1100 1101
	mutex_lock(&intel_pstate_driver_lock);

1102
	if (!intel_pstate_driver) {
1103 1104 1105 1106
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1107 1108
	mutex_lock(&intel_pstate_limits_lock);

1109
	update_turbo_state();
1110
	if (global.turbo_disabled) {
J
Joe Perches 已提交
1111
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1112
		mutex_unlock(&intel_pstate_limits_lock);
1113
		mutex_unlock(&intel_pstate_driver_lock);
1114
		return -EPERM;
1115
	}
D
Dirk Brandewie 已提交
1116

1117
	global.no_turbo = clamp_t(int, input, 0, 1);
1118

1119 1120 1121 1122 1123 1124 1125 1126 1127
	if (global.no_turbo) {
		struct cpudata *cpu = all_cpu_data[0];
		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;

		/* Squash the global minimum into the permitted range. */
		if (global.min_perf_pct > pct)
			global.min_perf_pct = pct;
	}

1128 1129
	mutex_unlock(&intel_pstate_limits_lock);

1130 1131
	intel_pstate_update_policies();

1132 1133
	mutex_unlock(&intel_pstate_driver_lock);

1134 1135 1136 1137
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1138
				  const char *buf, size_t count)
1139 1140 1141
{
	unsigned int input;
	int ret;
1142

1143 1144 1145 1146
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

1147 1148
	mutex_lock(&intel_pstate_driver_lock);

1149
	if (!intel_pstate_driver) {
1150 1151 1152 1153
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1154 1155
	mutex_lock(&intel_pstate_limits_lock);

1156
	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1157

1158 1159
	mutex_unlock(&intel_pstate_limits_lock);

1160 1161
	intel_pstate_update_policies();

1162 1163
	mutex_unlock(&intel_pstate_driver_lock);

1164 1165 1166 1167
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1168
				  const char *buf, size_t count)
1169 1170 1171
{
	unsigned int input;
	int ret;
1172

1173 1174 1175
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1176

1177 1178
	mutex_lock(&intel_pstate_driver_lock);

1179
	if (!intel_pstate_driver) {
1180 1181 1182 1183
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1184 1185
	mutex_lock(&intel_pstate_limits_lock);

1186 1187
	global.min_perf_pct = clamp_t(int, input,
				      min_perf_pct_min(), global.max_perf_pct);
1188

1189 1190
	mutex_unlock(&intel_pstate_limits_lock);

1191 1192
	intel_pstate_update_policies();

1193 1194
	mutex_unlock(&intel_pstate_driver_lock);

1195 1196 1197 1198 1199 1200
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

1201
define_one_global_rw(status);
1202 1203 1204
define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
1205
define_one_global_ro(turbo_pct);
1206
define_one_global_ro(num_pstates);
1207 1208

static struct attribute *intel_pstate_attributes[] = {
1209
	&status.attr,
1210
	&no_turbo.attr,
1211
	&turbo_pct.attr,
1212
	&num_pstates.attr,
1213 1214 1215 1216 1217 1218 1219
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};

1220
static void __init intel_pstate_sysfs_expose_params(void)
1221
{
1222
	struct kobject *intel_pstate_kobject;
1223 1224 1225 1226
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
1227 1228 1229
	if (WARN_ON(!intel_pstate_kobject))
		return;

1230
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
	if (WARN_ON(rc))
		return;

	/*
	 * If per cpu limits are enforced there are no global limits, so
	 * return without creating max/min_perf_pct attributes
	 */
	if (per_cpu_limits)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
	WARN_ON(rc);

	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
	WARN_ON(rc);

1247 1248
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
1249

1250
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
1251
{
1252
	/* First disable HWP notification interrupt as we don't process them */
1253 1254
	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1255

1256
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1257
	cpudata->epp_policy = 0;
1258 1259
	if (cpudata->epp_default == -EINVAL)
		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
D
Dirk Brandewie 已提交
1260 1261
}

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
#define MSR_IA32_POWER_CTL_BIT_EE	19

/* Disable energy efficiency optimization */
static void intel_pstate_disable_ee(int cpu)
{
	u64 power_ctl;
	int ret;

	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
	if (ret)
		return;

	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
		pr_info("Disabling energy efficiency optimization\n");
		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
	}
}

1281
static int atom_get_min_pstate(void)
1282 1283
{
	u64 value;
1284

1285
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1286
	return (value >> 8) & 0x7F;
1287 1288
}

1289
static int atom_get_max_pstate(void)
1290 1291
{
	u64 value;
1292

1293
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1294
	return (value >> 16) & 0x7F;
1295
}
1296

1297
static int atom_get_turbo_pstate(void)
1298 1299
{
	u64 value;
1300

1301
	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
1302
	return value & 0x7F;
1303 1304
}

1305
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1306 1307 1308 1309 1310
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

1311
	val = (u64)pstate << 8;
1312
	if (global.no_turbo && !global.turbo_disabled)
1313 1314 1315 1316 1317 1318 1319
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1320
	vid = ceiling_fp(vid_fp);
1321

1322 1323 1324
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

1325
	return val | vid;
1326 1327
}

1328
static int silvermont_get_scaling(void)
1329 1330 1331
{
	u64 value;
	int i;
1332 1333 1334
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
1335 1336

	rdmsrl(MSR_FSB_FREQ, value);
1337 1338
	i = value & 0x7;
	WARN_ON(i > 4);
1339

1340 1341
	return silvermont_freq_table[i];
}
1342

1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
1357 1358
}

1359
static void atom_get_vid(struct cpudata *cpudata)
1360 1361 1362
{
	u64 value;

1363
	rdmsrl(MSR_ATOM_CORE_VIDS, value);
D
Dirk Brandewie 已提交
1364 1365
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1366 1367 1368 1369
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
1370

1371
	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1372
	cpudata->vid.turbo = value & 0x7f;
1373 1374
}

1375
static int core_get_min_pstate(void)
1376 1377
{
	u64 value;
1378

1379
	rdmsrl(MSR_PLATFORM_INFO, value);
1380 1381 1382
	return (value >> 40) & 0xFF;
}

1383
static int core_get_max_pstate_physical(void)
1384 1385
{
	u64 value;
1386

1387
	rdmsrl(MSR_PLATFORM_INFO, value);
1388 1389 1390
	return (value >> 8) & 0xFF;
}

1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
static int core_get_tdp_ratio(u64 plat_info)
{
	/* Check how many TDP levels present */
	if (plat_info & 0x600000000) {
		u64 tdp_ctrl;
		u64 tdp_ratio;
		int tdp_msr;
		int err;

		/* Get the TDP level (0, 1, 2) to get ratios */
		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
		if (err)
			return err;

		/* TDP MSR are continuous starting at 0x648 */
		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
		if (err)
			return err;

		/* For level 1 and 2, bits[23:16] contain the ratio */
		if (tdp_ctrl & 0x03)
			tdp_ratio >>= 16;

		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);

		return (int)tdp_ratio;
	}

	return -ENXIO;
}

1424
static int core_get_max_pstate(void)
1425
{
1426 1427 1428
	u64 tar;
	u64 plat_info;
	int max_pstate;
1429
	int tdp_ratio;
1430 1431 1432 1433 1434
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

1435 1436 1437 1438 1439 1440 1441 1442 1443
	tdp_ratio = core_get_tdp_ratio(plat_info);
	if (tdp_ratio <= 0)
		return max_pstate;

	if (hwp_active) {
		/* Turbo activation ratio is not used on HWP platforms */
		return tdp_ratio;
	}

1444 1445
	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
1446 1447
		int tar_levels;

1448
		/* Do some sanity checking for safety */
1449 1450 1451 1452
		tar_levels = tar & 0xff;
		if (tdp_ratio - 1 == tar_levels) {
			max_pstate = tar_levels;
			pr_debug("max_pstate=TAC %x\n", max_pstate);
1453 1454
		}
	}
1455

1456
	return max_pstate;
1457 1458
}

1459
static int core_get_turbo_pstate(void)
1460 1461 1462
{
	u64 value;
	int nont, ret;
1463

1464
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1465
	nont = core_get_max_pstate();
1466
	ret = (value) & 255;
1467 1468 1469 1470 1471
	if (ret <= nont)
		ret = nont;
	return ret;
}

1472 1473 1474 1475 1476
static inline int core_get_scaling(void)
{
	return 100000;
}

1477
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1478 1479 1480
{
	u64 val;

1481
	val = (u64)pstate << 8;
1482
	if (global.no_turbo && !global.turbo_disabled)
1483 1484
		val |= (u64)1 << 32;

1485
	return val;
1486 1487
}

1488 1489 1490 1491 1492
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1493
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1494 1495 1496 1497 1498 1499 1500
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1501
static int intel_pstate_get_base_pstate(struct cpudata *cpu)
1502
{
1503 1504
	return global.no_turbo || global.turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1505 1506
}

1507
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1508
{
1509 1510
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1511 1512 1513 1514 1515 1516 1517
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1518 1519
}

1520 1521 1522 1523 1524 1525 1526
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
1527
	int pstate;
1528 1529

	update_turbo_state();
1530 1531 1532 1533
	pstate = intel_pstate_get_base_pstate(cpu);
	pstate = max(cpu->pstate.min_pstate,
		     fp_ext_toint(pstate * cpu->max_perf));
	intel_pstate_set_pstate(cpu, pstate);
1534 1535
}

1536 1537
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1538 1539
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1540
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1541
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1542
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1543 1544
	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1545

1546 1547
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1548 1549

	intel_pstate_set_min_pstate(cpu);
1550 1551
}

1552
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1553
{
1554
	struct sample *sample = &cpu->sample;
1555

1556
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1557 1558
}

1559
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1560 1561
{
	u64 aperf, mperf;
1562
	unsigned long flags;
1563
	u64 tsc;
1564

1565
	local_irq_save(flags);
1566 1567
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1568
	tsc = rdtsc();
1569
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1570
		local_irq_restore(flags);
1571
		return false;
1572
	}
1573
	local_irq_restore(flags);
1574

1575
	cpu->last_sample_time = cpu->sample.time;
1576
	cpu->sample.time = time;
1577 1578
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1579
	cpu->sample.tsc =  tsc;
1580 1581
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1582
	cpu->sample.tsc -= cpu->prev_tsc;
1583

1584 1585
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1586
	cpu->prev_tsc = tsc;
1587 1588 1589 1590 1591 1592 1593
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
1594 1595 1596 1597 1598
	if (cpu->last_sample_time) {
		intel_pstate_calc_avg_perf(cpu);
		return true;
	}
	return false;
1599 1600
}

1601 1602
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1603 1604
	return mul_ext_fp(cpu->sample.core_avg_perf,
			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1605 1606
}

1607 1608
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1609 1610
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1611 1612
}

1613 1614 1615
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
{
	struct sample *sample = &cpu->sample;
1616
	int32_t busy_frac, boost;
1617
	int target, avg_pstate;
1618

1619 1620 1621
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE)
		return cpu->pstate.turbo_pstate;

1622
	busy_frac = div_fp(sample->mperf, sample->tsc);
1623

1624 1625
	boost = cpu->iowait_boost;
	cpu->iowait_boost >>= 1;
1626

1627 1628
	if (busy_frac < boost)
		busy_frac = boost;
1629

1630
	sample->busy_scaled = busy_frac * 100;
1631

1632
	target = global.no_turbo || global.turbo_disabled ?
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1651 1652
}

1653
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1654
{
1655
	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1656
	u64 duration_ns;
1657

1658 1659 1660
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE)
		return cpu->pstate.turbo_pstate;

1661
	/*
1662 1663 1664 1665 1666
	 * perf_scaled is the ratio of the average P-state during the last
	 * sampling period to the P-state requested last time (in percent).
	 *
	 * That measures the system's response to the previous P-state
	 * selection.
1667
	 */
1668 1669
	max_pstate = cpu->pstate.max_pstate_physical;
	current_pstate = cpu->pstate.current_pstate;
1670
	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1671
			       div_fp(100 * max_pstate, current_pstate));
1672

1673
	/*
1674 1675 1676
	 * Since our utilization update callback will not run unless we are
	 * in C0, check if the actual elapsed time is significantly greater (3x)
	 * than our sample interval.  If it is, then we were idle for a long
1677
	 * enough period of time to adjust our performance metric.
1678
	 */
1679
	duration_ns = cpu->sample.time - cpu->last_sample_time;
1680
	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1681
		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1682
		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1683 1684 1685
	} else {
		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
		if (sample_ratio < int_tofp(1))
1686
			perf_scaled = 0;
1687 1688
	}

1689 1690
	cpu->sample.busy_scaled = perf_scaled;
	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1691 1692
}

1693
static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1694
{
1695 1696
	int max_pstate = intel_pstate_get_base_pstate(cpu);
	int min_pstate;
1697

1698 1699 1700 1701
	min_pstate = max(cpu->pstate.min_pstate,
			 fp_ext_toint(max_pstate * cpu->min_perf));
	max_pstate = max(min_pstate, fp_ext_toint(max_pstate * cpu->max_perf));
	return clamp_t(int, pstate, min_pstate, max_pstate);
1702 1703 1704 1705
}

static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
1706 1707 1708
	if (pstate == cpu->pstate.current_pstate)
		return;

1709
	cpu->pstate.current_pstate = pstate;
1710 1711 1712
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1713
static void intel_pstate_adjust_pstate(struct cpudata *cpu, int target_pstate)
1714
{
1715
	int from = cpu->pstate.current_pstate;
1716 1717
	struct sample *sample;

1718 1719
	update_turbo_state();

1720 1721
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1722
	intel_pstate_update_pstate(cpu, target_pstate);
1723 1724

	sample = &cpu->sample;
1725
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1726
		fp_toint(sample->busy_scaled),
1727 1728 1729 1730 1731
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1732 1733
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1734 1735
}

1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
static void intel_pstate_update_util_hwp(struct update_util_data *data,
					 u64 time, unsigned int flags)
{
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
	u64 delta_ns = time - cpu->sample.time;

	if ((s64)delta_ns >= INTEL_PSTATE_HWP_SAMPLING_INTERVAL)
		intel_pstate_sample(cpu, time);
}

static void intel_pstate_update_util_pid(struct update_util_data *data,
					 u64 time, unsigned int flags)
{
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
	u64 delta_ns = time - cpu->sample.time;

	if ((s64)delta_ns < pid_params.sample_rate_ns)
		return;

1755 1756 1757 1758 1759 1760
	if (intel_pstate_sample(cpu, time)) {
		int target_pstate;

		target_pstate = get_target_pstate_use_performance(cpu);
		intel_pstate_adjust_pstate(cpu, target_pstate);
	}
1761 1762
}

1763
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1764
				     unsigned int flags)
1765
{
1766
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1767 1768
	u64 delta_ns;

1769 1770 1771 1772 1773 1774 1775
	if (flags & SCHED_CPUFREQ_IOWAIT) {
		cpu->iowait_boost = int_tofp(1);
	} else if (cpu->iowait_boost) {
		/* Clear iowait_boost if the CPU may have been idle. */
		delta_ns = time - cpu->last_update;
		if (delta_ns > TICK_NSEC)
			cpu->iowait_boost = 0;
1776
	}
1777
	cpu->last_update = time;
1778
	delta_ns = time - cpu->sample.time;
1779 1780
	if ((s64)delta_ns < INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL)
		return;
1781

1782 1783
	if (intel_pstate_sample(cpu, time)) {
		int target_pstate;
1784

1785 1786 1787 1788
		target_pstate = get_target_pstate_use_cpu_load(cpu);
		intel_pstate_adjust_pstate(cpu, target_pstate);
	}
}
1789

1790 1791 1792 1793 1794 1795 1796 1797
static struct pstate_funcs core_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = core_get_turbo_pstate,
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
	.update_util = intel_pstate_update_util_pid,
1798 1799
};

1800 1801 1802 1803 1804 1805 1806 1807 1808
static const struct pstate_funcs silvermont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = silvermont_get_scaling,
	.get_vid = atom_get_vid,
	.update_util = intel_pstate_update_util,
1809 1810
};

1811 1812 1813 1814 1815 1816 1817 1818 1819
static const struct pstate_funcs airmont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = airmont_get_scaling,
	.get_vid = atom_get_vid,
	.update_util = intel_pstate_update_util,
1820 1821
};

1822 1823 1824 1825 1826 1827 1828 1829
static const struct pstate_funcs knl_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = knl_get_turbo_pstate,
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
	.update_util = intel_pstate_update_util_pid,
1830 1831
};

1832 1833 1834 1835 1836 1837 1838 1839
static const struct pstate_funcs bxt_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = core_get_turbo_pstate,
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
	.update_util = intel_pstate_update_util,
1840 1841
};

1842
#define ICPU(model, policy) \
1843 1844
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1845 1846

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_funcs),
	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_funcs),
	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_funcs),
	ICPU(INTEL_FAM6_IVYBRIDGE,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_CORE,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_funcs),
	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_X,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_ULT,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_funcs),
	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_X,		core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_funcs),
	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_funcs),
	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_funcs),
	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_funcs),
1866
	ICPU(INTEL_FAM6_ATOM_GEMINI_LAKE,       bxt_funcs),
1867 1868 1869 1870
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

1871
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1872 1873 1874
	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
D
Dirk Brandewie 已提交
1875 1876 1877
	{}
};

1878
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1879
	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1880 1881 1882
	{}
};

1883 1884
static bool pid_in_use(void);

1885 1886 1887 1888
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1889 1890 1891
	cpu = all_cpu_data[cpunum];

	if (!cpu) {
1892
		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1893 1894 1895 1896 1897
		if (!cpu)
			return -ENOMEM;

		all_cpu_data[cpunum] = cpu;

1898 1899 1900
		cpu->epp_default = -EINVAL;
		cpu->epp_powersave = -EINVAL;
		cpu->epp_saved = -EINVAL;
1901
	}
1902 1903 1904 1905

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1906

1907
	if (hwp_active) {
1908 1909 1910 1911 1912 1913
		const struct x86_cpu_id *id;

		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
		if (id)
			intel_pstate_disable_ee(cpunum);

1914
		intel_pstate_hwp_enable(cpu);
1915
	} else if (pid_in_use()) {
1916
		intel_pstate_pid_reset(cpu);
1917
	}
1918

1919
	intel_pstate_get_cpu_pstates(cpu);
1920

J
Joe Perches 已提交
1921
	pr_debug("controlling: cpu %d\n", cpunum);
1922 1923 1924 1925 1926 1927

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
1928
	struct cpudata *cpu = all_cpu_data[cpu_num];
1929

1930
	return cpu ? get_avg_frequency(cpu) : 0;
1931 1932
}

1933
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1934
{
1935 1936
	struct cpudata *cpu = all_cpu_data[cpu_num];

1937 1938 1939
	if (cpu->update_util_set)
		return;

1940 1941
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
1942 1943
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
				     pstate_funcs.update_util);
1944
	cpu->update_util_set = true;
1945 1946 1947 1948
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
1949 1950 1951 1952 1953
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

1954
	cpufreq_remove_update_util_hook(cpu);
1955
	cpu_data->update_util_set = false;
1956 1957 1958
	synchronize_sched();
}

1959 1960 1961 1962 1963 1964
static int intel_pstate_get_max_freq(struct cpudata *cpu)
{
	return global.turbo_disabled || global.no_turbo ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
}

1965
static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1966
					    struct cpudata *cpu)
1967
{
1968
	int max_freq = intel_pstate_get_max_freq(cpu);
1969
	int32_t max_policy_perf, min_policy_perf;
1970

1971
	max_policy_perf = div_ext_fp(policy->max, max_freq);
1972
	max_policy_perf = clamp_t(int32_t, max_policy_perf, 0, int_ext_tofp(1));
1973
	if (policy->max == policy->min) {
1974
		min_policy_perf = max_policy_perf;
1975
	} else {
1976
		min_policy_perf = div_ext_fp(policy->min, max_freq);
1977 1978
		min_policy_perf = clamp_t(int32_t, min_policy_perf,
					  0, max_policy_perf);
1979
	}
1980

1981
	/* Normalize user input to [min_perf, max_perf] */
1982
	if (per_cpu_limits) {
1983 1984
		cpu->min_perf = min_policy_perf;
		cpu->max_perf = max_policy_perf;
1985 1986 1987 1988 1989 1990
	} else {
		int32_t global_min, global_max;

		/* Global limits are in percent of the maximum turbo P-state. */
		global_max = percent_ext_fp(global.max_perf_pct);
		global_min = percent_ext_fp(global.min_perf_pct);
1991
		if (max_freq != cpu->pstate.turbo_freq) {
1992 1993 1994 1995 1996 1997 1998 1999
			int32_t turbo_factor;

			turbo_factor = div_ext_fp(cpu->pstate.turbo_pstate,
						  cpu->pstate.max_pstate);
			global_min = mul_ext_fp(global_min, turbo_factor);
			global_max = mul_ext_fp(global_max, turbo_factor);
		}
		global_min = clamp_t(int32_t, global_min, 0, global_max);
2000

2001 2002 2003 2004
		cpu->min_perf = max(min_policy_perf, global_min);
		cpu->min_perf = min(cpu->min_perf, max_policy_perf);
		cpu->max_perf = min(max_policy_perf, global_max);
		cpu->max_perf = max(min_policy_perf, cpu->max_perf);
2005 2006

		/* Make sure min_perf <= max_perf */
2007
		cpu->min_perf = min(cpu->min_perf, cpu->max_perf);
2008
	}
2009

2010 2011
	cpu->max_perf = round_up(cpu->max_perf, EXT_FRAC_BITS);
	cpu->min_perf = round_up(cpu->min_perf, EXT_FRAC_BITS);
2012 2013

	pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
2014 2015
		 fp_ext_toint(cpu->max_perf * 100),
		 fp_ext_toint(cpu->min_perf * 100));
2016 2017
}

2018 2019
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
2020 2021
	struct cpudata *cpu;

2022 2023 2024
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

2025 2026 2027
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

2028
	cpu = all_cpu_data[policy->cpu];
2029 2030
	cpu->policy = policy->policy;

2031 2032
	mutex_lock(&intel_pstate_limits_lock);

2033
	intel_pstate_update_perf_limits(policy, cpu);
2034

2035
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2036 2037 2038 2039 2040 2041 2042 2043
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
	}

2044 2045
	intel_pstate_set_update_util_hook(policy->cpu);

2046
	if (hwp_active)
2047
		intel_pstate_hwp_set(policy->cpu);
D
Dirk Brandewie 已提交
2048

2049 2050
	mutex_unlock(&intel_pstate_limits_lock);

2051 2052 2053
	return 0;
}

2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
					 struct cpudata *cpu)
{
	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_freq) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
	}
}

2065 2066
static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
2067 2068 2069
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2070 2071
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2072

2073
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2074
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2075 2076
		return -EINVAL;

2077 2078
	intel_pstate_adjust_policy_max(policy, cpu);

2079 2080 2081
	return 0;
}

2082 2083 2084 2085 2086
static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
{
	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
}

2087
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2088
{
2089
	pr_debug("CPU %d exiting\n", policy->cpu);
2090

2091
	intel_pstate_clear_update_util_hook(policy->cpu);
2092 2093 2094
	if (hwp_active)
		intel_pstate_hwp_save_state(policy);
	else
2095 2096
		intel_cpufreq_stop_cpu(policy);
}
2097

2098 2099 2100
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);
2101

2102
	policy->fast_switch_possible = false;
D
Dirk Brandewie 已提交
2103

2104
	return 0;
2105 2106
}

2107
static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2108 2109
{
	struct cpudata *cpu;
2110
	int rc;
2111 2112 2113 2114 2115 2116 2117

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

2118 2119
	cpu->max_perf = int_ext_tofp(1);
	cpu->min_perf = 0;
2120

2121 2122
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2123 2124

	/* cpuinfo and default policy values */
2125
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2126
	update_turbo_state();
2127
	policy->cpuinfo.max_freq = global.turbo_disabled ?
2128 2129 2130
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

2131
	intel_pstate_init_acpi_perf_limits(policy);
2132 2133
	cpumask_set_cpu(policy->cpu, policy->cpus);

2134 2135
	policy->fast_switch_possible = true;

2136 2137 2138
	return 0;
}

2139
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2140
{
2141 2142 2143 2144 2145 2146
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2147
	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2148 2149 2150
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2151 2152 2153 2154

	return 0;
}

2155
static struct cpufreq_driver intel_pstate = {
2156 2157 2158
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
2159
	.suspend	= intel_pstate_hwp_save_state,
2160
	.resume		= intel_pstate_resume,
2161 2162
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
2163
	.exit		= intel_pstate_cpu_exit,
2164
	.stop_cpu	= intel_pstate_stop_cpu,
2165 2166 2167
	.name		= "intel_pstate",
};

2168 2169 2170 2171 2172
static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2173 2174
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2175

2176
	intel_pstate_adjust_policy_max(policy, cpu);
2177

2178 2179
	intel_pstate_update_perf_limits(policy, cpu);

2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
	return 0;
}

static int intel_cpufreq_target(struct cpufreq_policy *policy,
				unsigned int target_freq,
				unsigned int relation)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct cpufreq_freqs freqs;
	int target_pstate;

2191 2192
	update_turbo_state();

2193
	freqs.old = policy->cur;
2194
	freqs.new = target_freq;
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213

	cpufreq_freq_transition_begin(policy, &freqs);
	switch (relation) {
	case CPUFREQ_RELATION_L:
		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
		break;
	case CPUFREQ_RELATION_H:
		target_pstate = freqs.new / cpu->pstate.scaling;
		break;
	default:
		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
		break;
	}
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	if (target_pstate != cpu->pstate.current_pstate) {
		cpu->pstate.current_pstate = target_pstate;
		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
			      pstate_funcs.get_val(cpu, target_pstate));
	}
2214
	freqs.new = target_pstate * cpu->pstate.scaling;
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
	cpufreq_freq_transition_end(policy, &freqs, false);

	return 0;
}

static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
					      unsigned int target_freq)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	int target_pstate;

2226 2227
	update_turbo_state();

2228
	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2229
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2230
	intel_pstate_update_pstate(cpu, target_pstate);
2231
	return target_pstate * cpu->pstate.scaling;
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
}

static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2242
	policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
	policy->cur = policy->cpuinfo.min_freq;

	return 0;
}

static struct cpufreq_driver intel_cpufreq = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_cpufreq_verify_policy,
	.target		= intel_cpufreq_target,
	.fast_switch	= intel_cpufreq_fast_switch,
	.init		= intel_cpufreq_cpu_init,
	.exit		= intel_pstate_cpu_exit,
	.stop_cpu	= intel_cpufreq_stop_cpu,
	.name		= "intel_cpufreq",
};

2260
static struct cpufreq_driver *default_driver = &intel_pstate;
2261

2262 2263 2264 2265 2266 2267
static bool pid_in_use(void)
{
	return intel_pstate_driver == &intel_pstate &&
		pstate_funcs.update_util == intel_pstate_update_util_pid;
}

2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
static void intel_pstate_driver_cleanup(void)
{
	unsigned int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			if (intel_pstate_driver == &intel_pstate)
				intel_pstate_clear_update_util_hook(cpu);

			kfree(all_cpu_data[cpu]);
			all_cpu_data[cpu] = NULL;
		}
	}
	put_online_cpus();
2283
	intel_pstate_driver = NULL;
2284 2285
}

2286
static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2287 2288 2289
{
	int ret;

2290 2291
	memset(&global, 0, sizeof(global));
	global.max_perf_pct = 100;
2292

2293
	intel_pstate_driver = driver;
2294 2295 2296 2297 2298 2299
	ret = cpufreq_register_driver(intel_pstate_driver);
	if (ret) {
		intel_pstate_driver_cleanup();
		return ret;
	}

2300 2301
	global.min_perf_pct = min_perf_pct_min();

2302
	if (pid_in_use())
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
		intel_pstate_debug_expose_params();

	return 0;
}

static int intel_pstate_unregister_driver(void)
{
	if (hwp_active)
		return -EBUSY;

2313
	if (pid_in_use())
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
		intel_pstate_debug_hide_params();

	cpufreq_unregister_driver(intel_pstate_driver);
	intel_pstate_driver_cleanup();

	return 0;
}

static ssize_t intel_pstate_show_status(char *buf)
{
2324
	if (!intel_pstate_driver)
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
		return sprintf(buf, "off\n");

	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
					"active" : "passive");
}

static int intel_pstate_update_status(const char *buf, size_t size)
{
	int ret;

	if (size == 3 && !strncmp(buf, "off", size))
2336
		return intel_pstate_driver ?
2337 2338 2339
			intel_pstate_unregister_driver() : -EINVAL;

	if (size == 6 && !strncmp(buf, "active", size)) {
2340
		if (intel_pstate_driver) {
2341 2342 2343 2344 2345 2346 2347 2348
			if (intel_pstate_driver == &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2349
		return intel_pstate_register_driver(&intel_pstate);
2350 2351 2352
	}

	if (size == 7 && !strncmp(buf, "passive", size)) {
2353
		if (intel_pstate_driver) {
2354
			if (intel_pstate_driver == &intel_cpufreq)
2355 2356 2357 2358 2359 2360 2361
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2362
		return intel_pstate_register_driver(&intel_cpufreq);
2363 2364 2365 2366 2367
	}

	return -EINVAL;
}

2368 2369 2370
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
2371
static unsigned int force_load __initdata;
2372

2373
static int __init intel_pstate_msrs_not_valid(void)
2374
{
2375
	if (!pstate_funcs.get_max() ||
2376 2377
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
2378 2379 2380 2381
		return -ENODEV;

	return 0;
}
2382

2383 2384 2385
#ifdef CONFIG_ACPI
static void intel_pstate_use_acpi_profile(void)
{
2386 2387 2388 2389 2390 2391
	switch (acpi_gbl_FADT.preferred_profile) {
	case PM_MOBILE:
	case PM_TABLET:
	case PM_APPLIANCE_PC:
	case PM_DESKTOP:
	case PM_WORKSTATION:
2392
		pstate_funcs.update_util = intel_pstate_update_util;
2393
	}
2394 2395 2396 2397 2398 2399 2400
}
#else
static void intel_pstate_use_acpi_profile(void)
{
}
#endif

2401
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2402 2403
{
	pstate_funcs.get_max   = funcs->get_max;
2404
	pstate_funcs.get_max_physical = funcs->get_max_physical;
2405 2406
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
2407
	pstate_funcs.get_scaling = funcs->get_scaling;
2408
	pstate_funcs.get_val   = funcs->get_val;
2409
	pstate_funcs.get_vid   = funcs->get_vid;
2410
	pstate_funcs.update_util = funcs->update_util;
2411

2412
	intel_pstate_use_acpi_profile();
2413 2414
}

2415
#ifdef CONFIG_ACPI
2416

2417
static bool __init intel_pstate_no_acpi_pss(void)
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

2446
static bool __init intel_pstate_has_acpi_ppc(void)
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

2466 2467 2468 2469
struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2470
	int  oem_pwr_table;
2471 2472 2473
};

/* Hardware vendor-specific info that has its own power management modes */
2474
static struct hw_vendor_info vendor_info[] __initdata = {
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
	{1, "HP    ", "ProLiant", PSS},
	{1, "ORACLE", "X4-2    ", PPC},
	{1, "ORACLE", "X4-2L   ", PPC},
	{1, "ORACLE", "X4-2B   ", PPC},
	{1, "ORACLE", "X3-2    ", PPC},
	{1, "ORACLE", "X3-2L   ", PPC},
	{1, "ORACLE", "X3-2B   ", PPC},
	{1, "ORACLE", "X4470M2 ", PPC},
	{1, "ORACLE", "X4270M3 ", PPC},
	{1, "ORACLE", "X4270M2 ", PPC},
	{1, "ORACLE", "X4170M2 ", PPC},
2486 2487 2488 2489
	{1, "ORACLE", "X4170 M3", PPC},
	{1, "ORACLE", "X4275 M3", PPC},
	{1, "ORACLE", "X6-2    ", PPC},
	{1, "ORACLE", "Sudbury ", PPC},
2490 2491 2492
	{0, "", ""},
};

2493
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2494 2495 2496
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;
D
Dirk Brandewie 已提交
2497 2498 2499 2500 2501 2502 2503 2504 2505
	const struct x86_cpu_id *id;
	u64 misc_pwr;

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
2506

2507 2508
	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2509 2510 2511
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
2512
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2513 2514 2515 2516 2517 2518
			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
						ACPI_OEM_TABLE_ID_SIZE))
			switch (v_info->oem_pwr_table) {
			case PSS:
				return intel_pstate_no_acpi_pss();
			case PPC:
2519 2520
				return intel_pstate_has_acpi_ppc() &&
					(!force_load);
2521
			}
2522 2523 2524 2525
	}

	return false;
}
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535

static void intel_pstate_request_control_from_smm(void)
{
	/*
	 * It may be unsafe to request P-states control from SMM if _PPC support
	 * has not been enabled.
	 */
	if (acpi_ppc)
		acpi_processor_pstate_control();
}
2536 2537
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2538
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2539
static inline void intel_pstate_request_control_from_smm(void) {}
2540 2541
#endif /* CONFIG_ACPI */

2542 2543 2544 2545 2546
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
	{}
};

2547 2548
static int __init intel_pstate_init(void)
{
2549
	int rc;
2550

2551 2552 2553
	if (no_load)
		return -ENODEV;

2554
	if (x86_match_cpu(hwp_support_ids)) {
2555
		copy_cpu_funcs(&core_funcs);
2556
		if (no_hwp) {
2557
			pstate_funcs.update_util = intel_pstate_update_util;
2558 2559 2560
		} else {
			hwp_active++;
			intel_pstate.attr = hwp_cpufreq_attrs;
2561
			pstate_funcs.update_util = intel_pstate_update_util_hwp;
2562 2563 2564 2565
			goto hwp_cpu_matched;
		}
	} else {
		const struct x86_cpu_id *id;
2566

2567 2568 2569
		id = x86_match_cpu(intel_pstate_cpu_ids);
		if (!id)
			return -ENODEV;
2570

2571
		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2572
	}
2573

2574 2575 2576
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

2577 2578 2579 2580 2581 2582 2583 2584
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

2585 2586 2587
	if (!hwp_active && hwp_only)
		return -ENOTSUPP;

J
Joe Perches 已提交
2588
	pr_info("Intel P-state driver initializing\n");
2589

2590
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2591 2592 2593
	if (!all_cpu_data)
		return -ENOMEM;

2594 2595
	intel_pstate_request_control_from_smm();

2596
	intel_pstate_sysfs_expose_params();
2597

2598
	mutex_lock(&intel_pstate_driver_lock);
2599
	rc = intel_pstate_register_driver(default_driver);
2600
	mutex_unlock(&intel_pstate_driver_lock);
2601 2602
	if (rc)
		return rc;
2603

2604
	if (hwp_active)
J
Joe Perches 已提交
2605
		pr_info("HWP enabled\n");
2606

2607
	return 0;
2608 2609 2610
}
device_initcall(intel_pstate_init);

2611 2612 2613 2614 2615
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

2616
	if (!strcmp(str, "disable")) {
2617
		no_load = 1;
2618 2619
	} else if (!strcmp(str, "passive")) {
		pr_info("Passive mode enabled\n");
2620
		default_driver = &intel_cpufreq;
2621 2622
		no_hwp = 1;
	}
2623
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
2624
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
2625
		no_hwp = 1;
2626
	}
2627 2628
	if (!strcmp(str, "force"))
		force_load = 1;
2629 2630
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
2631 2632
	if (!strcmp(str, "per_cpu_perf_limits"))
		per_cpu_limits = true;
2633 2634 2635 2636 2637 2638

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

2639 2640 2641 2642
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

2643 2644 2645
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");