intel_pstate.c 57.7 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

J
Joe Perches 已提交
13 14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
30
#include <linux/acpi.h>
31
#include <linux/vmalloc.h>
32 33 34 35 36
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
37
#include <asm/cpufeature.h>
38
#include <asm/intel-family.h>
39

40 41
#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000

42 43 44 45
#define ATOM_RATIOS		0x66a
#define ATOM_VIDS		0x66b
#define ATOM_TURBO_RATIOS	0x66c
#define ATOM_TURBO_VIDS		0x66d
46

47 48 49 50
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
#endif

51
#define FRAC_BITS 8
52 53
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
54

55 56
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
57 58
#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
59

60 61 62 63 64
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

65
static inline int32_t div_fp(s64 x, s64 y)
66
{
67
	return div64_s64((int64_t)x << FRAC_BITS, y);
68 69
}

70 71 72 73 74 75 76 77 78 79 80
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

81 82 83 84 85 86 87 88 89 90
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

91 92
/**
 * struct sample -	Store performance sample
93
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
94 95
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
96
 *			P state. This can be different than core_avg_perf
97 98 99 100 101 102 103 104 105 106 107 108
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
109
struct sample {
110
	int32_t core_avg_perf;
111
	int32_t busy_scaled;
112 113
	u64 aperf;
	u64 mperf;
114
	u64 tsc;
115
	u64 time;
116 117
};

118 119 120 121 122 123 124 125 126 127 128
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
129 130
 * @max_freq:		@max_pstate frequency in cpufreq units
 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
131 132 133
 *
 * Stores the per cpu model P state limits and current P state.
 */
134 135 136 137
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
138
	int	max_pstate_physical;
139
	int	scaling;
140
	int	turbo_pstate;
141 142
	unsigned int max_freq;
	unsigned int turbo_freq;
143 144
};

145 146 147 148 149 150 151 152 153 154 155 156 157
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
158
struct vid_data {
159 160 161
	int min;
	int max;
	int turbo;
162 163 164
	int32_t ratio;
};

165 166 167 168 169 170 171 172 173 174 175 176
/**
 * struct _pid -	Stores PID data
 * @setpoint:		Target set point for busyness or performance
 * @integral:		Storage for accumulated error values
 * @p_gain:		PID proportional gain
 * @i_gain:		PID integral gain
 * @d_gain:		PID derivative gain
 * @deadband:		PID deadband
 * @last_err:		Last error storage for integral part of PID calculation
 *
 * Stores PID coefficients and last error for PID controller.
 */
177 178 179 180 181 182 183
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
184
	int32_t last_err;
185 186
};

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
/**
 * struct perf_limits - Store user and policy limits
 * @no_turbo:		User requested turbo state from intel_pstate sysfs
 * @turbo_disabled:	Platform turbo status either from msr
 *			MSR_IA32_MISC_ENABLE or when maximum available pstate
 *			matches the maximum turbo pstate
 * @max_perf_pct:	Effective maximum performance limit in percentage, this
 *			is minimum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @min_perf_pct:	Effective minimum performance limit in percentage, this
 *			is maximum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @max_perf:		This is a scaled value between 0 to 255 for max_perf_pct
 *			This value is used to limit max pstate
 * @min_perf:		This is a scaled value between 0 to 255 for min_perf_pct
 *			This value is used to limit min pstate
 * @max_policy_pct:	The maximum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @max_sysfs_pct:	The maximum performance in percentage enforced by
 *			intel pstate sysfs interface, unused when per cpu
 *			controls are enforced
 * @min_policy_pct:	The minimum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @min_sysfs_pct:	The minimum performance in percentage enforced by
 *			intel pstate sysfs interface, unused when per cpu
 *			controls are enforced
 *
 * Storage for user and policy defined limits.
 */
struct perf_limits {
	int no_turbo;
	int turbo_disabled;
	int max_perf_pct;
	int min_perf_pct;
	int32_t max_perf;
	int32_t min_perf;
	int max_policy_pct;
	int max_sysfs_pct;
	int min_policy_pct;
	int min_sysfs_pct;
};

229 230 231
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
232
 * @policy:		CPUFreq policy value
233
 * @update_util:	CPUFreq utility callback information
234
 * @update_util_set:	CPUFreq utility callback is set
235 236
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
237 238 239 240 241 242 243 244 245 246
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @pid:		Stores PID parameters for this CPU
 * @last_sample_time:	Last Sample time
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
247 248 249
 * @perf_limits:	Pointer to perf_limit unique to this CPU
 *			Not all field in the structure are applicable
 *			when per cpu controls are enforced
250 251
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
252 253 254
 * @epp_saved:		Last saved HWP energy performance preference
 *			(EPP) or energy performance bias (EPB)
 * @epp_policy:		Last saved policy used to set EPP/EPB
255 256 257
 *
 * This structure stores per CPU instance data for all CPUs.
 */
258 259 260
struct cpudata {
	int cpu;

261
	unsigned int policy;
262
	struct update_util_data update_util;
263
	bool   update_util_set;
264 265

	struct pstate_data pstate;
266
	struct vid_data vid;
267 268
	struct _pid pid;

269
	u64	last_update;
270
	u64	last_sample_time;
271 272
	u64	prev_aperf;
	u64	prev_mperf;
273
	u64	prev_tsc;
274
	u64	prev_cummulative_iowait;
275
	struct sample sample;
276
	struct perf_limits *perf_limits;
277 278 279 280
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
281
	unsigned int iowait_boost;
282 283
	s16 epp_saved;
	s16 epp_policy;
284 285 286
};

static struct cpudata **all_cpu_data;
287 288

/**
289
 * struct pstate_adjust_policy - Stores static PID configuration data
290 291 292 293 294 295 296 297 298 299
 * @sample_rate_ms:	PID calculation sample rate in ms
 * @sample_rate_ns:	Sample rate calculation in ns
 * @deadband:		PID deadband
 * @setpoint:		PID Setpoint
 * @p_gain_pct:		PID proportional gain
 * @i_gain_pct:		PID integral gain
 * @d_gain_pct:		PID derivative gain
 *
 * Stores per CPU model static PID configuration data.
 */
300 301
struct pstate_adjust_policy {
	int sample_rate_ms;
302
	s64 sample_rate_ns;
303 304 305 306 307 308 309
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

310 311 312 313 314 315 316 317 318 319 320 321 322 323
/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 * @get_target_pstate:	Callback to a function to calculate next P state to use
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
324 325
struct pstate_funcs {
	int (*get_max)(void);
326
	int (*get_max_physical)(void);
327 328
	int (*get_min)(void);
	int (*get_turbo)(void);
329
	int (*get_scaling)(void);
330
	u64 (*get_val)(struct cpudata*, int pstate);
331
	void (*get_vid)(struct cpudata *);
332
	int32_t (*get_target_pstate)(struct cpudata *);
333 334
};

335 336 337 338 339
/**
 * struct cpu_defaults- Per CPU model default config data
 * @pid_policy:	PID config data
 * @funcs:		Callback function data
 */
340 341 342
struct cpu_defaults {
	struct pstate_adjust_policy pid_policy;
	struct pstate_funcs funcs;
343 344
};

345
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
346
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
347

348 349 350
static struct pstate_adjust_policy pid_params __read_mostly;
static struct pstate_funcs pstate_funcs __read_mostly;
static int hwp_active __read_mostly;
351
static bool per_cpu_limits __read_mostly;
352

353 354 355
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
356

357 358 359 360
static struct perf_limits performance_limits = {
	.no_turbo = 0,
	.turbo_disabled = 0,
	.max_perf_pct = 100,
361
	.max_perf = int_ext_tofp(1),
362
	.min_perf_pct = 100,
363
	.min_perf = int_ext_tofp(1),
364 365 366 367 368 369 370
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
};

static struct perf_limits powersave_limits = {
371
	.no_turbo = 0,
372
	.turbo_disabled = 0,
373
	.max_perf_pct = 100,
374
	.max_perf = int_ext_tofp(1),
375 376
	.min_perf_pct = 0,
	.min_perf = 0,
377 378
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
379 380
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
381 382
};

383 384 385 386 387 388
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
static struct perf_limits *limits = &performance_limits;
#else
static struct perf_limits *limits = &powersave_limits;
#endif

389 390
static DEFINE_MUTEX(intel_pstate_limits_lock);

391
#ifdef CONFIG_ACPI
392 393 394 395 396 397 398 399 400 401

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

	return acpi_ppc;
}

402 403 404 405 406 407
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

408 409 410
	if (hwp_active)
		return;

411
	if (!intel_pstate_get_ppc_enable_status())
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
454
	 * correct max turbo frequency based on the turbo state.
455 456
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
457
	if (!limits->turbo_disabled)
458 459 460
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
461
	pr_debug("_PPC limits will be enforced\n");
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}

#else
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
}

486
static inline int intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
487 488 489 490
{
}
#endif

491
static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
492
			     int deadband, int integral) {
493 494
	pid->setpoint = int_tofp(setpoint);
	pid->deadband  = int_tofp(deadband);
495
	pid->integral  = int_tofp(integral);
496
	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
497 498 499 500
}

static inline void pid_p_gain_set(struct _pid *pid, int percent)
{
501
	pid->p_gain = div_fp(percent, 100);
502 503 504 505
}

static inline void pid_i_gain_set(struct _pid *pid, int percent)
{
506
	pid->i_gain = div_fp(percent, 100);
507 508 509 510
}

static inline void pid_d_gain_set(struct _pid *pid, int percent)
{
511
	pid->d_gain = div_fp(percent, 100);
512 513
}

514
static signed int pid_calc(struct _pid *pid, int32_t busy)
515
{
516
	signed int result;
517 518 519
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

520
	fp_error = pid->setpoint - busy;
521

522
	if (abs(fp_error) <= pid->deadband)
523 524 525 526 527 528
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

529 530 531 532 533 534 535 536
	/*
	 * We limit the integral here so that it will never
	 * get higher than 30.  This prevents it from becoming
	 * too large an input over long periods of time and allows
	 * it to get factored out sooner.
	 *
	 * The value of 30 was chosen through experimentation.
	 */
537 538 539 540 541 542
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

543 544
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
545 546

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
547
	result = result + (1 << (FRAC_BITS-1));
548 549 550 551 552
	return (signed int)fp_toint(result);
}

static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
{
553 554 555
	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
556

557
	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
558 559 560 561 562
}

static inline void intel_pstate_reset_all_pid(void)
{
	unsigned int cpu;
563

564 565 566 567 568 569
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu])
			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
	}
}

570 571 572 573 574 575 576
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
577
	limits->turbo_disabled =
578 579 580 581
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
{
	u64 epb;
	int ret;

	if (!static_cpu_has(X86_FEATURE_EPB))
		return -ENXIO;

	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return (s16)ret;

	return (s16)(epb & 0x0f);
}

static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
{
	s16 epp;

	if (static_cpu_has(X86_FEATURE_HWP_EPP))
		epp = (hwp_req_data >> 24) & 0xff;
	else
		/* When there is no EPP present, HWP uses EPB settings */
		epp = intel_pstate_get_epb(cpu_data);

	return epp;
}

static void intel_pstate_set_epb(int cpu, s16 pref)
{
	u64 epb;

	if (!static_cpu_has(X86_FEATURE_EPB))
		return;

	if (rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb))
		return;

	epb = (epb & ~0x0f) | pref;
	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
}

624
static void intel_pstate_hwp_set(const struct cpumask *cpumask)
D
Dirk Brandewie 已提交
625
{
626
	int min, hw_min, max, hw_max, cpu, range, adj_range;
627
	struct perf_limits *perf_limits = limits;
628 629
	u64 value, cap;

630
	for_each_cpu(cpu, cpumask) {
631
		int max_perf_pct, min_perf_pct;
632 633
		struct cpudata *cpu_data = all_cpu_data[cpu];
		s16 epp;
634 635 636 637

		if (per_cpu_limits)
			perf_limits = all_cpu_data[cpu]->perf_limits;

638 639 640 641 642
		rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
		hw_min = HWP_LOWEST_PERF(cap);
		hw_max = HWP_HIGHEST_PERF(cap);
		range = hw_max - hw_min;

643 644 645
		max_perf_pct = perf_limits->max_perf_pct;
		min_perf_pct = perf_limits->min_perf_pct;

D
Dirk Brandewie 已提交
646
		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
647
		adj_range = min_perf_pct * range / 100;
648
		min = hw_min + adj_range;
D
Dirk Brandewie 已提交
649 650 651
		value &= ~HWP_MIN_PERF(~0L);
		value |= HWP_MIN_PERF(min);

652
		adj_range = max_perf_pct * range / 100;
653
		max = hw_min + adj_range;
654
		if (limits->no_turbo) {
655 656 657
			hw_max = HWP_GUARANTEED_PERF(cap);
			if (hw_max < max)
				max = hw_max;
D
Dirk Brandewie 已提交
658 659 660 661
		}

		value &= ~HWP_MAX_PERF(~0L);
		value |= HWP_MAX_PERF(max);
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703

		if (cpu_data->epp_policy == cpu_data->policy)
			goto skip_epp;

		cpu_data->epp_policy = cpu_data->policy;

		if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
			epp = intel_pstate_get_epp(cpu_data, value);
			/* If EPP read was failed, then don't try to write */
			if (epp < 0) {
				cpu_data->epp_saved = epp;
				goto skip_epp;
			}

			cpu_data->epp_saved = epp;

			epp = 0;
		} else {
			/* skip setting EPP, when saved value is invalid */
			if (cpu_data->epp_saved < 0)
				goto skip_epp;

			/*
			 * No need to restore EPP when it is not zero. This
			 * means:
			 *  - Policy is not changed
			 *  - user has manually changed
			 *  - Error reading EPB
			 */
			epp = intel_pstate_get_epp(cpu_data, value);
			if (epp)
				goto skip_epp;

			epp = cpu_data->epp_saved;
		}
		if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
			value &= ~GENMASK_ULL(31, 24);
			value |= (u64)epp << 24;
		} else {
			intel_pstate_set_epb(cpu, epp);
		}
skip_epp:
D
Dirk Brandewie 已提交
704 705
		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
	}
706
}
D
Dirk Brandewie 已提交
707

708 709 710 711 712 713 714 715
static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
{
	if (hwp_active)
		intel_pstate_hwp_set(policy->cpus);

	return 0;
}

716 717 718 719 720 721 722 723 724 725 726
static int intel_pstate_resume(struct cpufreq_policy *policy)
{
	if (!hwp_active)
		return 0;

	all_cpu_data[policy->cpu]->epp_policy = 0;
	all_cpu_data[policy->cpu]->epp_saved = -EINVAL;

	return intel_pstate_hwp_set_policy(policy);
}

727 728 729 730
static void intel_pstate_hwp_set_online_cpus(void)
{
	get_online_cpus();
	intel_pstate_hwp_set(cpu_online_mask);
D
Dirk Brandewie 已提交
731 732 733
	put_online_cpus();
}

734 735 736 737 738 739 740
/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
	*(u32 *)data = val;
	intel_pstate_reset_all_pid();
	return 0;
}
741

742 743 744 745 746
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
747
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
748 749 750 751 752 753 754

struct pid_param {
	char *name;
	void *value;
};

static struct pid_param pid_files[] = {
755 756 757 758 759 760
	{"sample_rate_ms", &pid_params.sample_rate_ms},
	{"d_gain_pct", &pid_params.d_gain_pct},
	{"i_gain_pct", &pid_params.i_gain_pct},
	{"deadband", &pid_params.deadband},
	{"setpoint", &pid_params.setpoint},
	{"p_gain_pct", &pid_params.p_gain_pct},
761 762 763
	{NULL, NULL}
};

764
static void __init intel_pstate_debug_expose_params(void)
765
{
766
	struct dentry *debugfs_parent;
767 768
	int i = 0;

769 770
	if (hwp_active ||
	    pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load)
D
Dirk Brandewie 已提交
771
		return;
772

773 774 775 776 777
	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
	while (pid_files[i].name) {
		debugfs_create_file(pid_files[i].name, 0660,
778 779
				    debugfs_parent, pid_files[i].value,
				    &fops_pid_param);
780 781 782 783 784 785 786 787 788 789 790
		i++;
	}
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
791
		return sprintf(buf, "%u\n", limits->object);		\
792 793
	}

794 795 796 797 798 799 800 801 802 803 804
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
805
	turbo_fp = div_fp(no_turbo, total);
806 807 808 809
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
	return sprintf(buf, "%u\n", turbo_pct);
}

810 811 812 813 814 815 816 817 818 819 820
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	return sprintf(buf, "%u\n", total);
}

821 822 823 824 825 826
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

	update_turbo_state();
827 828
	if (limits->turbo_disabled)
		ret = sprintf(buf, "%u\n", limits->turbo_disabled);
829
	else
830
		ret = sprintf(buf, "%u\n", limits->no_turbo);
831 832 833 834

	return ret;
}

835
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
836
			      const char *buf, size_t count)
837 838 839
{
	unsigned int input;
	int ret;
840

841 842 843
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
844

845 846
	mutex_lock(&intel_pstate_limits_lock);

847
	update_turbo_state();
848
	if (limits->turbo_disabled) {
J
Joe Perches 已提交
849
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
850
		mutex_unlock(&intel_pstate_limits_lock);
851
		return -EPERM;
852
	}
D
Dirk Brandewie 已提交
853

854
	limits->no_turbo = clamp_t(int, input, 0, 1);
855

856 857
	mutex_unlock(&intel_pstate_limits_lock);

D
Dirk Brandewie 已提交
858
	if (hwp_active)
859
		intel_pstate_hwp_set_online_cpus();
D
Dirk Brandewie 已提交
860

861 862 863 864
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
865
				  const char *buf, size_t count)
866 867 868
{
	unsigned int input;
	int ret;
869

870 871 872 873
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

874 875
	mutex_lock(&intel_pstate_limits_lock);

876 877 878 879 880 881 882
	limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);
	limits->max_perf_pct = max(limits->min_perf_pct,
				   limits->max_perf_pct);
883
	limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
884

885 886
	mutex_unlock(&intel_pstate_limits_lock);

D
Dirk Brandewie 已提交
887
	if (hwp_active)
888
		intel_pstate_hwp_set_online_cpus();
889 890 891 892
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
893
				  const char *buf, size_t count)
894 895 896
{
	unsigned int input;
	int ret;
897

898 899 900
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
901

902 903
	mutex_lock(&intel_pstate_limits_lock);

904 905 906 907 908 909 910
	limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->min_perf_pct = min(limits->max_perf_pct,
				   limits->min_perf_pct);
911
	limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
912

913 914
	mutex_unlock(&intel_pstate_limits_lock);

D
Dirk Brandewie 已提交
915
	if (hwp_active)
916
		intel_pstate_hwp_set_online_cpus();
917 918 919 920 921 922 923 924 925
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
926
define_one_global_ro(turbo_pct);
927
define_one_global_ro(num_pstates);
928 929 930

static struct attribute *intel_pstate_attributes[] = {
	&no_turbo.attr,
931
	&turbo_pct.attr,
932
	&num_pstates.attr,
933 934 935 936 937 938 939
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};

940
static void __init intel_pstate_sysfs_expose_params(void)
941
{
942
	struct kobject *intel_pstate_kobject;
943 944 945 946
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
947 948 949
	if (WARN_ON(!intel_pstate_kobject))
		return;

950
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
	if (WARN_ON(rc))
		return;

	/*
	 * If per cpu limits are enforced there are no global limits, so
	 * return without creating max/min_perf_pct attributes
	 */
	if (per_cpu_limits)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
	WARN_ON(rc);

	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
	WARN_ON(rc);

967 968
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
969

970
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
971
{
972
	/* First disable HWP notification interrupt as we don't process them */
973 974
	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
975

976
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
977 978
	cpudata->epp_policy = 0;
	cpudata->epp_saved = -EINVAL;
D
Dirk Brandewie 已提交
979 980
}

981
static int atom_get_min_pstate(void)
982 983
{
	u64 value;
984

985
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
986
	return (value >> 8) & 0x7F;
987 988
}

989
static int atom_get_max_pstate(void)
990 991
{
	u64 value;
992

993
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
994
	return (value >> 16) & 0x7F;
995
}
996

997
static int atom_get_turbo_pstate(void)
998 999
{
	u64 value;
1000

1001
	rdmsrl(ATOM_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
1002
	return value & 0x7F;
1003 1004
}

1005
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1006 1007 1008 1009 1010
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

1011
	val = (u64)pstate << 8;
1012
	if (limits->no_turbo && !limits->turbo_disabled)
1013 1014 1015 1016 1017 1018 1019
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1020
	vid = ceiling_fp(vid_fp);
1021

1022 1023 1024
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

1025
	return val | vid;
1026 1027
}

1028
static int silvermont_get_scaling(void)
1029 1030 1031
{
	u64 value;
	int i;
1032 1033 1034
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
1035 1036

	rdmsrl(MSR_FSB_FREQ, value);
1037 1038
	i = value & 0x7;
	WARN_ON(i > 4);
1039

1040 1041
	return silvermont_freq_table[i];
}
1042

1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
1057 1058
}

1059
static void atom_get_vid(struct cpudata *cpudata)
1060 1061 1062
{
	u64 value;

1063
	rdmsrl(ATOM_VIDS, value);
D
Dirk Brandewie 已提交
1064 1065
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1066 1067 1068 1069
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
1070

1071
	rdmsrl(ATOM_TURBO_VIDS, value);
1072
	cpudata->vid.turbo = value & 0x7f;
1073 1074
}

1075
static int core_get_min_pstate(void)
1076 1077
{
	u64 value;
1078

1079
	rdmsrl(MSR_PLATFORM_INFO, value);
1080 1081 1082
	return (value >> 40) & 0xFF;
}

1083
static int core_get_max_pstate_physical(void)
1084 1085
{
	u64 value;
1086

1087
	rdmsrl(MSR_PLATFORM_INFO, value);
1088 1089 1090
	return (value >> 8) & 0xFF;
}

1091
static int core_get_max_pstate(void)
1092
{
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
	u64 tar;
	u64 plat_info;
	int max_pstate;
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
		/* Do some sanity checking for safety */
		if (plat_info & 0x600000000) {
			u64 tdp_ctrl;
			u64 tdp_ratio;
			int tdp_msr;

			err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
			if (err)
				goto skip_tar;

1113
			tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x3);
1114 1115 1116 1117
			err = rdmsrl_safe(tdp_msr, &tdp_ratio);
			if (err)
				goto skip_tar;

1118 1119 1120 1121 1122
			/* For level 1 and 2, bits[23:16] contain the ratio */
			if (tdp_ctrl)
				tdp_ratio >>= 16;

			tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1123 1124 1125 1126 1127 1128 1129 1130
			if (tdp_ratio - 1 == tar) {
				max_pstate = tar;
				pr_debug("max_pstate=TAC %x\n", max_pstate);
			} else {
				goto skip_tar;
			}
		}
	}
1131

1132 1133
skip_tar:
	return max_pstate;
1134 1135
}

1136
static int core_get_turbo_pstate(void)
1137 1138 1139
{
	u64 value;
	int nont, ret;
1140

1141
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1142
	nont = core_get_max_pstate();
1143
	ret = (value) & 255;
1144 1145 1146 1147 1148
	if (ret <= nont)
		ret = nont;
	return ret;
}

1149 1150 1151 1152 1153
static inline int core_get_scaling(void)
{
	return 100000;
}

1154
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1155 1156 1157
{
	u64 val;

1158
	val = (u64)pstate << 8;
1159
	if (limits->no_turbo && !limits->turbo_disabled)
1160 1161
		val |= (u64)1 << 32;

1162
	return val;
1163 1164
}

1165 1166 1167 1168 1169
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1170
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1171 1172 1173 1174 1175 1176 1177
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
static struct cpu_defaults core_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
1189
		.get_max_physical = core_get_max_pstate_physical,
1190 1191
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
1192
		.get_scaling = core_get_scaling,
1193
		.get_val = core_get_val,
1194
		.get_target_pstate = get_target_pstate_use_performance,
1195 1196 1197
	},
};

1198
static const struct cpu_defaults silvermont_params = {
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1212
		.get_val = atom_get_val,
1213 1214
		.get_scaling = silvermont_get_scaling,
		.get_vid = atom_get_vid,
1215
		.get_target_pstate = get_target_pstate_use_cpu_load,
1216 1217 1218
	},
};

1219
static const struct cpu_defaults airmont_params = {
1220 1221 1222
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
1223
		.setpoint = 60,
1224 1225 1226 1227 1228
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
1229 1230 1231 1232
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1233
		.get_val = atom_get_val,
1234
		.get_scaling = airmont_get_scaling,
1235
		.get_vid = atom_get_vid,
1236
		.get_target_pstate = get_target_pstate_use_cpu_load,
1237 1238 1239
	},
};

1240
static const struct cpu_defaults knl_params = {
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
1251
		.get_max_physical = core_get_max_pstate_physical,
1252 1253
		.get_min = core_get_min_pstate,
		.get_turbo = knl_get_turbo_pstate,
1254
		.get_scaling = core_get_scaling,
1255
		.get_val = core_get_val,
1256
		.get_target_pstate = get_target_pstate_use_performance,
1257 1258 1259
	},
};

1260
static const struct cpu_defaults bxt_params = {
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
		.get_max_physical = core_get_max_pstate_physical,
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
		.get_scaling = core_get_scaling,
		.get_val = core_get_val,
		.get_target_pstate = get_target_pstate_use_cpu_load,
	},
};

1280 1281 1282
static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
1283
	int max_perf_adj;
1284
	int min_perf;
1285
	struct perf_limits *perf_limits = limits;
1286

1287
	if (limits->no_turbo || limits->turbo_disabled)
1288 1289
		max_perf = cpu->pstate.max_pstate;

1290 1291 1292
	if (per_cpu_limits)
		perf_limits = cpu->perf_limits;

1293 1294 1295 1296 1297
	/*
	 * performance can be limited by user through sysfs, by cpufreq
	 * policy, or by cpu specific default values determined through
	 * experimentation.
	 */
1298
	max_perf_adj = fp_ext_toint(max_perf * perf_limits->max_perf);
1299 1300
	*max = clamp_t(int, max_perf_adj,
			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1301

1302
	min_perf = fp_ext_toint(max_perf * perf_limits->min_perf);
1303
	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1304 1305
}

1306
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1307
{
1308 1309
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1310 1311 1312 1313 1314 1315 1316
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1317 1318
}

1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
	int min_pstate, max_pstate;

	update_turbo_state();
	intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
	intel_pstate_set_pstate(cpu, max_pstate);
}

1333 1334
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1335 1336
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1337
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1338
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1339
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1340 1341
	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1342

1343 1344
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1345 1346

	intel_pstate_set_min_pstate(cpu);
1347 1348
}

1349
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1350
{
1351
	struct sample *sample = &cpu->sample;
1352

1353
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1354 1355
}

1356
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1357 1358
{
	u64 aperf, mperf;
1359
	unsigned long flags;
1360
	u64 tsc;
1361

1362
	local_irq_save(flags);
1363 1364
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1365
	tsc = rdtsc();
1366
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1367
		local_irq_restore(flags);
1368
		return false;
1369
	}
1370
	local_irq_restore(flags);
1371

1372
	cpu->last_sample_time = cpu->sample.time;
1373
	cpu->sample.time = time;
1374 1375
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1376
	cpu->sample.tsc =  tsc;
1377 1378
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1379
	cpu->sample.tsc -= cpu->prev_tsc;
1380

1381 1382
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1383
	cpu->prev_tsc = tsc;
1384 1385 1386 1387 1388 1389 1390 1391
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
	return !!cpu->last_sample_time;
1392 1393
}

1394 1395
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1396 1397
	return mul_ext_fp(cpu->sample.core_avg_perf,
			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1398 1399
}

1400 1401
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1402 1403
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1404 1405
}

1406 1407 1408
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
{
	struct sample *sample = &cpu->sample;
1409
	int32_t busy_frac, boost;
1410
	int target, avg_pstate;
1411

1412
	busy_frac = div_fp(sample->mperf, sample->tsc);
1413

1414 1415
	boost = cpu->iowait_boost;
	cpu->iowait_boost >>= 1;
1416

1417 1418
	if (busy_frac < boost)
		busy_frac = boost;
1419

1420
	sample->busy_scaled = busy_frac * 100;
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440

	target = limits->no_turbo || limits->turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1441 1442
}

1443
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1444
{
1445
	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1446
	u64 duration_ns;
1447

1448
	/*
1449 1450 1451 1452 1453
	 * perf_scaled is the ratio of the average P-state during the last
	 * sampling period to the P-state requested last time (in percent).
	 *
	 * That measures the system's response to the previous P-state
	 * selection.
1454
	 */
1455 1456
	max_pstate = cpu->pstate.max_pstate_physical;
	current_pstate = cpu->pstate.current_pstate;
1457
	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1458
			       div_fp(100 * max_pstate, current_pstate));
1459

1460
	/*
1461 1462 1463
	 * Since our utilization update callback will not run unless we are
	 * in C0, check if the actual elapsed time is significantly greater (3x)
	 * than our sample interval.  If it is, then we were idle for a long
1464
	 * enough period of time to adjust our performance metric.
1465
	 */
1466
	duration_ns = cpu->sample.time - cpu->last_sample_time;
1467
	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1468
		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1469
		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1470 1471 1472
	} else {
		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
		if (sample_ratio < int_tofp(1))
1473
			perf_scaled = 0;
1474 1475
	}

1476 1477
	cpu->sample.busy_scaled = perf_scaled;
	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1478 1479
}

1480
static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1481 1482 1483 1484 1485
{
	int max_perf, min_perf;

	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
	pstate = clamp_t(int, pstate, min_perf, max_perf);
1486
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1487 1488 1489 1490 1491 1492
	return pstate;
}

static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
	pstate = intel_pstate_prepare_request(cpu, pstate);
1493 1494 1495
	if (pstate == cpu->pstate.current_pstate)
		return;

1496
	cpu->pstate.current_pstate = pstate;
1497 1498 1499
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1500 1501
static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
{
1502
	int from, target_pstate;
1503 1504 1505
	struct sample *sample;

	from = cpu->pstate.current_pstate;
1506

1507 1508
	target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
		cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
1509

1510 1511
	update_turbo_state();

1512
	intel_pstate_update_pstate(cpu, target_pstate);
1513 1514

	sample = &cpu->sample;
1515
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1516
		fp_toint(sample->busy_scaled),
1517 1518 1519 1520 1521
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1522 1523
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1524 1525
}

1526
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1527
				     unsigned int flags)
1528
{
1529
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1530 1531
	u64 delta_ns;

1532
	if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
		if (flags & SCHED_CPUFREQ_IOWAIT) {
			cpu->iowait_boost = int_tofp(1);
		} else if (cpu->iowait_boost) {
			/* Clear iowait_boost if the CPU may have been idle. */
			delta_ns = time - cpu->last_update;
			if (delta_ns > TICK_NSEC)
				cpu->iowait_boost = 0;
		}
		cpu->last_update = time;
	}
1543

1544
	delta_ns = time - cpu->sample.time;
1545
	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1546 1547
		bool sample_taken = intel_pstate_sample(cpu, time);

1548
		if (sample_taken) {
1549
			intel_pstate_calc_avg_perf(cpu);
1550 1551 1552
			if (!hwp_active)
				intel_pstate_adjust_busy_pstate(cpu);
		}
1553
	}
1554 1555 1556
}

#define ICPU(model, policy) \
1557 1558
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1559 1560

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_params),
	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_params),
	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_params),
	ICPU(INTEL_FAM6_IVYBRIDGE,		core_params),
	ICPU(INTEL_FAM6_HASWELL_CORE,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_params),
	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_params),
	ICPU(INTEL_FAM6_HASWELL_X,		core_params),
	ICPU(INTEL_FAM6_HASWELL_ULT,		core_params),
	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_params),
	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_params),
	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_X,		core_params),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_params),
	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_params),
	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_params),
1578
	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_params),
1579 1580 1581 1582
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

1583
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1584
	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1585 1586
	ICPU(INTEL_FAM6_BROADWELL_X, core_params),
	ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
D
Dirk Brandewie 已提交
1587 1588 1589
	{}
};

1590 1591 1592 1593
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
	cpu = all_cpu_data[cpunum];

	if (!cpu) {
		unsigned int size = sizeof(struct cpudata);

		if (per_cpu_limits)
			size += sizeof(struct perf_limits);

		cpu = kzalloc(size, GFP_KERNEL);
		if (!cpu)
			return -ENOMEM;

		all_cpu_data[cpunum] = cpu;
		if (per_cpu_limits)
			cpu->perf_limits = (struct perf_limits *)(cpu + 1);

	}
1611 1612 1613 1614

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1615

1616
	if (hwp_active) {
1617
		intel_pstate_hwp_enable(cpu);
1618 1619 1620
		pid_params.sample_rate_ms = 50;
		pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
	}
1621

1622
	intel_pstate_get_cpu_pstates(cpu);
1623

1624 1625
	intel_pstate_busy_pid_reset(cpu);

J
Joe Perches 已提交
1626
	pr_debug("controlling: cpu %d\n", cpunum);
1627 1628 1629 1630 1631 1632

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
1633
	struct cpudata *cpu = all_cpu_data[cpu_num];
1634

1635
	return cpu ? get_avg_frequency(cpu) : 0;
1636 1637
}

1638
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1639
{
1640 1641
	struct cpudata *cpu = all_cpu_data[cpu_num];

1642 1643 1644
	if (cpu->update_util_set)
		return;

1645 1646
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
1647 1648
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
				     intel_pstate_update_util);
1649
	cpu->update_util_set = true;
1650 1651 1652 1653
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
1654 1655 1656 1657 1658
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

1659
	cpufreq_remove_update_util_hook(cpu);
1660
	cpu_data->update_util_set = false;
1661 1662 1663
	synchronize_sched();
}

1664 1665
static void intel_pstate_set_performance_limits(struct perf_limits *limits)
{
1666
	mutex_lock(&intel_pstate_limits_lock);
1667 1668 1669
	limits->no_turbo = 0;
	limits->turbo_disabled = 0;
	limits->max_perf_pct = 100;
1670
	limits->max_perf = int_ext_tofp(1);
1671
	limits->min_perf_pct = 100;
1672
	limits->min_perf = int_ext_tofp(1);
1673 1674 1675 1676
	limits->max_policy_pct = 100;
	limits->max_sysfs_pct = 100;
	limits->min_policy_pct = 0;
	limits->min_sysfs_pct = 0;
1677
	mutex_unlock(&intel_pstate_limits_lock);
1678 1679
}

1680 1681 1682
static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
					    struct perf_limits *limits)
{
1683 1684 1685

	mutex_lock(&intel_pstate_limits_lock);

1686 1687 1688
	limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
					      policy->cpuinfo.max_freq);
	limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0, 100);
1689 1690 1691
	if (policy->max == policy->min) {
		limits->min_policy_pct = limits->max_policy_pct;
	} else {
1692 1693
		limits->min_policy_pct = DIV_ROUND_UP(policy->min * 100,
						      policy->cpuinfo.max_freq);
1694 1695 1696
		limits->min_policy_pct = clamp_t(int, limits->min_policy_pct,
						 0, 100);
	}
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710

	/* Normalize user input to [min_policy_pct, max_policy_pct] */
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);

	/* Make sure min_perf_pct <= max_perf_pct */
	limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);

1711 1712 1713 1714
	limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
	limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
	limits->max_perf = round_up(limits->max_perf, EXT_FRAC_BITS);
	limits->min_perf = round_up(limits->min_perf, EXT_FRAC_BITS);
1715

1716 1717
	mutex_unlock(&intel_pstate_limits_lock);

1718 1719 1720 1721
	pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
		 limits->max_perf_pct, limits->min_perf_pct);
}

1722 1723
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
1724
	struct cpudata *cpu;
1725
	struct perf_limits *perf_limits = NULL;
1726

1727 1728 1729
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

1730 1731 1732
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

1733
	cpu = all_cpu_data[policy->cpu];
1734 1735
	cpu->policy = policy->policy;

1736 1737 1738 1739 1740
	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
1741 1742
	}

1743 1744 1745 1746 1747 1748 1749 1750
	if (per_cpu_limits)
		perf_limits = cpu->perf_limits;

	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
		if (!perf_limits) {
			limits = &performance_limits;
			perf_limits = limits;
		}
1751
		if (policy->max >= policy->cpuinfo.max_freq) {
J
Joe Perches 已提交
1752
			pr_debug("set performance\n");
1753
			intel_pstate_set_performance_limits(perf_limits);
1754 1755 1756
			goto out;
		}
	} else {
J
Joe Perches 已提交
1757
		pr_debug("set powersave\n");
1758 1759 1760 1761
		if (!perf_limits) {
			limits = &powersave_limits;
			perf_limits = limits;
		}
1762

1763
	}
1764

1765
	intel_pstate_update_perf_limits(policy, perf_limits);
1766
 out:
1767
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
1768 1769 1770 1771 1772 1773 1774 1775
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
	}

1776 1777
	intel_pstate_set_update_util_hook(policy->cpu);

1778
	intel_pstate_hwp_set_policy(policy);
D
Dirk Brandewie 已提交
1779

1780 1781 1782 1783 1784
	return 0;
}

static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
1785
	cpufreq_verify_within_cpu_limits(policy);
1786

1787
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1788
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1789 1790 1791 1792 1793
		return -EINVAL;

	return 0;
}

1794 1795 1796 1797 1798
static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
{
	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
}

1799
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1800
{
1801
	pr_debug("CPU %d exiting\n", policy->cpu);
1802

1803 1804 1805 1806
	intel_pstate_clear_update_util_hook(policy->cpu);
	if (!hwp_active)
		intel_cpufreq_stop_cpu(policy);
}
1807

1808 1809 1810
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);
1811

1812
	policy->fast_switch_possible = false;
D
Dirk Brandewie 已提交
1813

1814
	return 0;
1815 1816
}

1817
static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
1818 1819
{
	struct cpudata *cpu;
1820
	int rc;
1821 1822 1823 1824 1825 1826 1827

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

1828 1829 1830 1831 1832 1833 1834 1835
	/*
	 * We need sane value in the cpu->perf_limits, so inherit from global
	 * perf_limits limits, which are seeded with values based on the
	 * CONFIG_CPU_FREQ_DEFAULT_GOV_*, during boot up.
	 */
	if (per_cpu_limits)
		memcpy(cpu->perf_limits, limits, sizeof(struct perf_limits));

1836 1837
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1838 1839

	/* cpuinfo and default policy values */
1840
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1841 1842 1843 1844 1845
	update_turbo_state();
	policy->cpuinfo.max_freq = limits->turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

1846
	intel_pstate_init_acpi_perf_limits(policy);
1847 1848
	cpumask_set_cpu(policy->cpu, policy->cpus);

1849 1850
	policy->fast_switch_possible = true;

1851 1852 1853
	return 0;
}

1854
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1855
{
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
	if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;
1866 1867 1868 1869

	return 0;
}

1870
static struct cpufreq_driver intel_pstate = {
1871 1872 1873
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
1874
	.resume		= intel_pstate_resume,
1875 1876
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
1877
	.exit		= intel_pstate_cpu_exit,
1878
	.stop_cpu	= intel_pstate_stop_cpu,
1879 1880 1881
	.name		= "intel_pstate",
};

1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct perf_limits *perf_limits = limits;

	update_turbo_state();
	policy->cpuinfo.max_freq = limits->turbo_disabled ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;

	cpufreq_verify_within_cpu_limits(policy);

	if (per_cpu_limits)
		perf_limits = cpu->perf_limits;

	intel_pstate_update_perf_limits(policy, perf_limits);

	return 0;
}

static unsigned int intel_cpufreq_turbo_update(struct cpudata *cpu,
					       struct cpufreq_policy *policy,
					       unsigned int target_freq)
{
	unsigned int max_freq;

	update_turbo_state();

	max_freq = limits->no_turbo || limits->turbo_disabled ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
	policy->cpuinfo.max_freq = max_freq;
	if (policy->max > max_freq)
		policy->max = max_freq;

	if (target_freq > max_freq)
		target_freq = max_freq;

	return target_freq;
}

static int intel_cpufreq_target(struct cpufreq_policy *policy,
				unsigned int target_freq,
				unsigned int relation)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct cpufreq_freqs freqs;
	int target_pstate;

	freqs.old = policy->cur;
	freqs.new = intel_cpufreq_turbo_update(cpu, policy, target_freq);

	cpufreq_freq_transition_begin(policy, &freqs);
	switch (relation) {
	case CPUFREQ_RELATION_L:
		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
		break;
	case CPUFREQ_RELATION_H:
		target_pstate = freqs.new / cpu->pstate.scaling;
		break;
	default:
		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
		break;
	}
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	if (target_pstate != cpu->pstate.current_pstate) {
		cpu->pstate.current_pstate = target_pstate;
		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
			      pstate_funcs.get_val(cpu, target_pstate));
	}
	cpufreq_freq_transition_end(policy, &freqs, false);

	return 0;
}

static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
					      unsigned int target_freq)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	int target_pstate;

	target_freq = intel_cpufreq_turbo_update(cpu, policy, target_freq);
	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
	intel_pstate_update_pstate(cpu, target_pstate);
	return target_freq;
}

static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
	policy->cur = policy->cpuinfo.min_freq;

	return 0;
}

static struct cpufreq_driver intel_cpufreq = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_cpufreq_verify_policy,
	.target		= intel_cpufreq_target,
	.fast_switch	= intel_cpufreq_fast_switch,
	.init		= intel_cpufreq_cpu_init,
	.exit		= intel_pstate_cpu_exit,
	.stop_cpu	= intel_cpufreq_stop_cpu,
	.name		= "intel_cpufreq",
};

static struct cpufreq_driver *intel_pstate_driver = &intel_pstate;

1994 1995 1996
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
1997
static unsigned int force_load __initdata;
1998

1999
static int __init intel_pstate_msrs_not_valid(void)
2000
{
2001
	if (!pstate_funcs.get_max() ||
2002 2003
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
2004 2005 2006 2007
		return -ENODEV;

	return 0;
}
2008

2009
static void __init copy_pid_params(struct pstate_adjust_policy *policy)
2010 2011
{
	pid_params.sample_rate_ms = policy->sample_rate_ms;
2012
	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
2013 2014 2015 2016 2017 2018 2019
	pid_params.p_gain_pct = policy->p_gain_pct;
	pid_params.i_gain_pct = policy->i_gain_pct;
	pid_params.d_gain_pct = policy->d_gain_pct;
	pid_params.deadband = policy->deadband;
	pid_params.setpoint = policy->setpoint;
}

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
#ifdef CONFIG_ACPI
static void intel_pstate_use_acpi_profile(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_MOBILE)
		pstate_funcs.get_target_pstate =
				get_target_pstate_use_cpu_load;
}
#else
static void intel_pstate_use_acpi_profile(void)
{
}
#endif

2033
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2034 2035
{
	pstate_funcs.get_max   = funcs->get_max;
2036
	pstate_funcs.get_max_physical = funcs->get_max_physical;
2037 2038
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
2039
	pstate_funcs.get_scaling = funcs->get_scaling;
2040
	pstate_funcs.get_val   = funcs->get_val;
2041
	pstate_funcs.get_vid   = funcs->get_vid;
2042 2043
	pstate_funcs.get_target_pstate = funcs->get_target_pstate;

2044
	intel_pstate_use_acpi_profile();
2045 2046
}

2047
#ifdef CONFIG_ACPI
2048

2049
static bool __init intel_pstate_no_acpi_pss(void)
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

2078
static bool __init intel_pstate_has_acpi_ppc(void)
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

2098 2099 2100 2101
struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2102
	int  oem_pwr_table;
2103 2104 2105
};

/* Hardware vendor-specific info that has its own power management modes */
2106
static struct hw_vendor_info vendor_info[] __initdata = {
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
	{1, "HP    ", "ProLiant", PSS},
	{1, "ORACLE", "X4-2    ", PPC},
	{1, "ORACLE", "X4-2L   ", PPC},
	{1, "ORACLE", "X4-2B   ", PPC},
	{1, "ORACLE", "X3-2    ", PPC},
	{1, "ORACLE", "X3-2L   ", PPC},
	{1, "ORACLE", "X3-2B   ", PPC},
	{1, "ORACLE", "X4470M2 ", PPC},
	{1, "ORACLE", "X4270M3 ", PPC},
	{1, "ORACLE", "X4270M2 ", PPC},
	{1, "ORACLE", "X4170M2 ", PPC},
2118 2119 2120 2121
	{1, "ORACLE", "X4170 M3", PPC},
	{1, "ORACLE", "X4275 M3", PPC},
	{1, "ORACLE", "X6-2    ", PPC},
	{1, "ORACLE", "Sudbury ", PPC},
2122 2123 2124
	{0, "", ""},
};

2125
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2126 2127 2128
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;
D
Dirk Brandewie 已提交
2129 2130 2131 2132 2133 2134 2135 2136 2137
	const struct x86_cpu_id *id;
	u64 misc_pwr;

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
2138

2139 2140
	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2141 2142 2143
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
2144
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2145 2146 2147 2148 2149 2150
			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
						ACPI_OEM_TABLE_ID_SIZE))
			switch (v_info->oem_pwr_table) {
			case PSS:
				return intel_pstate_no_acpi_pss();
			case PPC:
2151 2152
				return intel_pstate_has_acpi_ppc() &&
					(!force_load);
2153
			}
2154 2155 2156 2157
	}

	return false;
}
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167

static void intel_pstate_request_control_from_smm(void)
{
	/*
	 * It may be unsafe to request P-states control from SMM if _PPC support
	 * has not been enabled.
	 */
	if (acpi_ppc)
		acpi_processor_pstate_control();
}
2168 2169
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2170
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2171
static inline void intel_pstate_request_control_from_smm(void) {}
2172 2173
#endif /* CONFIG_ACPI */

2174 2175 2176 2177 2178
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
	{}
};

2179 2180
static int __init intel_pstate_init(void)
{
2181
	int cpu, rc = 0;
2182
	const struct x86_cpu_id *id;
2183
	struct cpu_defaults *cpu_def;
2184

2185 2186 2187
	if (no_load)
		return -ENODEV;

2188 2189 2190 2191 2192 2193
	if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
		copy_cpu_funcs(&core_params.funcs);
		hwp_active++;
		goto hwp_cpu_matched;
	}

2194 2195 2196 2197
	id = x86_match_cpu(intel_pstate_cpu_ids);
	if (!id)
		return -ENODEV;

2198
	cpu_def = (struct cpu_defaults *)id->driver_data;
2199

2200 2201
	copy_pid_params(&cpu_def->pid_policy);
	copy_cpu_funcs(&cpu_def->funcs);
2202

2203 2204 2205
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

2206 2207 2208 2209 2210 2211 2212 2213
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

J
Joe Perches 已提交
2214
	pr_info("Intel P-state driver initializing\n");
2215

2216
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2217 2218 2219
	if (!all_cpu_data)
		return -ENOMEM;

2220 2221 2222
	if (!hwp_active && hwp_only)
		goto out;

2223 2224
	intel_pstate_request_control_from_smm();

2225
	rc = cpufreq_register_driver(intel_pstate_driver);
2226 2227 2228 2229 2230
	if (rc)
		goto out;

	intel_pstate_debug_expose_params();
	intel_pstate_sysfs_expose_params();
2231

2232
	if (hwp_active)
J
Joe Perches 已提交
2233
		pr_info("HWP enabled\n");
2234

2235 2236
	return rc;
out:
2237 2238 2239
	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
2240 2241 2242
			if (intel_pstate_driver == &intel_pstate)
				intel_pstate_clear_update_util_hook(cpu);

2243 2244 2245 2246 2247 2248
			kfree(all_cpu_data[cpu]);
		}
	}

	put_online_cpus();
	vfree(all_cpu_data);
2249 2250 2251 2252
	return -ENODEV;
}
device_initcall(intel_pstate_init);

2253 2254 2255 2256 2257
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

2258
	if (!strcmp(str, "disable")) {
2259
		no_load = 1;
2260 2261 2262 2263 2264
	} else if (!strcmp(str, "passive")) {
		pr_info("Passive mode enabled\n");
		intel_pstate_driver = &intel_cpufreq;
		no_hwp = 1;
	}
2265
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
2266
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
2267
		no_hwp = 1;
2268
	}
2269 2270
	if (!strcmp(str, "force"))
		force_load = 1;
2271 2272
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
2273 2274
	if (!strcmp(str, "per_cpu_perf_limits"))
		per_cpu_limits = true;
2275 2276 2277 2278 2279 2280

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

2281 2282 2283 2284
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

2285 2286 2287
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");