intel_pstate.c 68.4 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

J
Joe Perches 已提交
13 14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
30
#include <linux/acpi.h>
31
#include <linux/vmalloc.h>
32 33 34 35 36
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
37
#include <asm/cpufeature.h>
38
#include <asm/intel-family.h>
39

40 41
#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000

42 43 44 45
#define ATOM_RATIOS		0x66a
#define ATOM_VIDS		0x66b
#define ATOM_TURBO_RATIOS	0x66c
#define ATOM_TURBO_VIDS		0x66d
46

47 48
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
49
#include <acpi/cppc_acpi.h>
50 51
#endif

52
#define FRAC_BITS 8
53 54
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
55

56 57
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
58 59
#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
60

61 62 63 64 65
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

66
static inline int32_t div_fp(s64 x, s64 y)
67
{
68
	return div64_s64((int64_t)x << FRAC_BITS, y);
69 70
}

71 72 73 74 75 76 77 78 79 80 81
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

82 83 84 85 86 87 88 89 90 91
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

92 93
/**
 * struct sample -	Store performance sample
94
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
95 96
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
97
 *			P state. This can be different than core_avg_perf
98 99 100 101 102 103 104 105 106 107 108 109
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
110
struct sample {
111
	int32_t core_avg_perf;
112
	int32_t busy_scaled;
113 114
	u64 aperf;
	u64 mperf;
115
	u64 tsc;
116
	u64 time;
117 118
};

119 120 121 122 123 124 125 126 127 128 129
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
130 131
 * @max_freq:		@max_pstate frequency in cpufreq units
 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
132 133 134
 *
 * Stores the per cpu model P state limits and current P state.
 */
135 136 137 138
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
139
	int	max_pstate_physical;
140
	int	scaling;
141
	int	turbo_pstate;
142 143
	unsigned int max_freq;
	unsigned int turbo_freq;
144 145
};

146 147 148 149 150 151 152 153 154 155 156 157 158
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
159
struct vid_data {
160 161 162
	int min;
	int max;
	int turbo;
163 164 165
	int32_t ratio;
};

166 167 168 169 170 171 172 173 174 175 176 177
/**
 * struct _pid -	Stores PID data
 * @setpoint:		Target set point for busyness or performance
 * @integral:		Storage for accumulated error values
 * @p_gain:		PID proportional gain
 * @i_gain:		PID integral gain
 * @d_gain:		PID derivative gain
 * @deadband:		PID deadband
 * @last_err:		Last error storage for integral part of PID calculation
 *
 * Stores PID coefficients and last error for PID controller.
 */
178 179 180 181 182 183 184
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
185
	int32_t last_err;
186 187
};

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
/**
 * struct perf_limits - Store user and policy limits
 * @no_turbo:		User requested turbo state from intel_pstate sysfs
 * @turbo_disabled:	Platform turbo status either from msr
 *			MSR_IA32_MISC_ENABLE or when maximum available pstate
 *			matches the maximum turbo pstate
 * @max_perf_pct:	Effective maximum performance limit in percentage, this
 *			is minimum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @min_perf_pct:	Effective minimum performance limit in percentage, this
 *			is maximum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @max_perf:		This is a scaled value between 0 to 255 for max_perf_pct
 *			This value is used to limit max pstate
 * @min_perf:		This is a scaled value between 0 to 255 for min_perf_pct
 *			This value is used to limit min pstate
 * @max_policy_pct:	The maximum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @max_sysfs_pct:	The maximum performance in percentage enforced by
 *			intel pstate sysfs interface, unused when per cpu
 *			controls are enforced
 * @min_policy_pct:	The minimum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @min_sysfs_pct:	The minimum performance in percentage enforced by
 *			intel pstate sysfs interface, unused when per cpu
 *			controls are enforced
 *
 * Storage for user and policy defined limits.
 */
struct perf_limits {
	int no_turbo;
	int turbo_disabled;
	int max_perf_pct;
	int min_perf_pct;
	int32_t max_perf;
	int32_t min_perf;
	int max_policy_pct;
	int max_sysfs_pct;
	int min_policy_pct;
	int min_sysfs_pct;
};

230 231 232
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
233
 * @policy:		CPUFreq policy value
234
 * @update_util:	CPUFreq utility callback information
235
 * @update_util_set:	CPUFreq utility callback is set
236 237
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
238 239 240 241 242 243 244 245 246 247
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @pid:		Stores PID parameters for this CPU
 * @last_sample_time:	Last Sample time
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
248 249 250
 * @perf_limits:	Pointer to perf_limit unique to this CPU
 *			Not all field in the structure are applicable
 *			when per cpu controls are enforced
251 252
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
253 254 255
 * @epp_powersave:	Last saved HWP energy performance preference
 *			(EPP) or energy performance bias (EPB),
 *			when policy switched to performance
256
 * @epp_policy:		Last saved policy used to set EPP/EPB
257 258 259 260
 * @epp_default:	Power on default HWP energy performance
 *			preference/bias
 * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
 *			operation
261 262 263
 *
 * This structure stores per CPU instance data for all CPUs.
 */
264 265 266
struct cpudata {
	int cpu;

267
	unsigned int policy;
268
	struct update_util_data update_util;
269
	bool   update_util_set;
270 271

	struct pstate_data pstate;
272
	struct vid_data vid;
273 274
	struct _pid pid;

275
	u64	last_update;
276
	u64	last_sample_time;
277 278
	u64	prev_aperf;
	u64	prev_mperf;
279
	u64	prev_tsc;
280
	u64	prev_cummulative_iowait;
281
	struct sample sample;
282
	struct perf_limits *perf_limits;
283 284 285 286
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
287
	unsigned int iowait_boost;
288
	s16 epp_powersave;
289
	s16 epp_policy;
290 291
	s16 epp_default;
	s16 epp_saved;
292 293 294
};

static struct cpudata **all_cpu_data;
295 296

/**
297
 * struct pstate_adjust_policy - Stores static PID configuration data
298 299 300 301 302 303 304 305 306 307
 * @sample_rate_ms:	PID calculation sample rate in ms
 * @sample_rate_ns:	Sample rate calculation in ns
 * @deadband:		PID deadband
 * @setpoint:		PID Setpoint
 * @p_gain_pct:		PID proportional gain
 * @i_gain_pct:		PID integral gain
 * @d_gain_pct:		PID derivative gain
 *
 * Stores per CPU model static PID configuration data.
 */
308 309
struct pstate_adjust_policy {
	int sample_rate_ms;
310
	s64 sample_rate_ns;
311 312 313 314 315 316 317
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

318 319 320 321 322 323 324 325 326 327 328 329 330 331
/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 * @get_target_pstate:	Callback to a function to calculate next P state to use
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
332 333
struct pstate_funcs {
	int (*get_max)(void);
334
	int (*get_max_physical)(void);
335 336
	int (*get_min)(void);
	int (*get_turbo)(void);
337
	int (*get_scaling)(void);
338
	u64 (*get_val)(struct cpudata*, int pstate);
339
	void (*get_vid)(struct cpudata *);
340
	int32_t (*get_target_pstate)(struct cpudata *);
341 342
};

343 344 345 346 347
/**
 * struct cpu_defaults- Per CPU model default config data
 * @pid_policy:	PID config data
 * @funcs:		Callback function data
 */
348 349 350
struct cpu_defaults {
	struct pstate_adjust_policy pid_policy;
	struct pstate_funcs funcs;
351 352
};

353
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
354
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
355

356 357 358
static struct pstate_adjust_policy pid_params __read_mostly;
static struct pstate_funcs pstate_funcs __read_mostly;
static int hwp_active __read_mostly;
359
static bool per_cpu_limits __read_mostly;
360

361 362
static bool driver_registered __read_mostly;

363 364 365
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
366

367 368 369 370
static struct perf_limits performance_limits = {
	.no_turbo = 0,
	.turbo_disabled = 0,
	.max_perf_pct = 100,
371
	.max_perf = int_ext_tofp(1),
372
	.min_perf_pct = 100,
373
	.min_perf = int_ext_tofp(1),
374 375 376 377 378 379 380
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
};

static struct perf_limits powersave_limits = {
381
	.no_turbo = 0,
382
	.turbo_disabled = 0,
383
	.max_perf_pct = 100,
384
	.max_perf = int_ext_tofp(1),
385 386
	.min_perf_pct = 0,
	.min_perf = 0,
387 388
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
389 390
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
391 392
};

393 394 395 396 397 398
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
static struct perf_limits *limits = &performance_limits;
#else
static struct perf_limits *limits = &powersave_limits;
#endif

399
static DEFINE_MUTEX(intel_pstate_driver_lock);
400 401
static DEFINE_MUTEX(intel_pstate_limits_lock);

402
#ifdef CONFIG_ACPI
403 404 405 406 407 408 409 410 411 412

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

	return acpi_ppc;
}

413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
#ifdef CONFIG_ACPI_CPPC_LIB

/* The work item is needed to avoid CPU hotplug locking issues */
static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
{
	sched_set_itmt_support();
}

static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);

static void intel_pstate_set_itmt_prio(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return;

	/*
	 * The priorities can be set regardless of whether or not
	 * sched_set_itmt_support(true) has been called and it is valid to
	 * update them at any time after it has been called.
	 */
	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);

	if (max_highest_perf <= min_highest_perf) {
		if (cppc_perf.highest_perf > max_highest_perf)
			max_highest_perf = cppc_perf.highest_perf;

		if (cppc_perf.highest_perf < min_highest_perf)
			min_highest_perf = cppc_perf.highest_perf;

		if (max_highest_perf > min_highest_perf) {
			/*
			 * This code can be run during CPU online under the
			 * CPU hotplug locks, so sched_set_itmt_support()
			 * cannot be called from here.  Queue up a work item
			 * to invoke it.
			 */
			schedule_work(&sched_itmt_work);
		}
	}
}
#else
static void intel_pstate_set_itmt_prio(int cpu)
{
}
#endif

464 465 466 467 468 469
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

470 471
	if (hwp_active) {
		intel_pstate_set_itmt_prio(policy->cpu);
472
		return;
473
	}
474

475
	if (!intel_pstate_get_ppc_enable_status())
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
518
	 * correct max turbo frequency based on the turbo state.
519 520
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
521
	if (!limits->turbo_disabled)
522 523 524
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
525
	pr_debug("_PPC limits will be enforced\n");
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}
#else
545
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
546 547 548
{
}

549
static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
550 551 552 553
{
}
#endif

554
static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
555
			     int deadband, int integral) {
556 557
	pid->setpoint = int_tofp(setpoint);
	pid->deadband  = int_tofp(deadband);
558
	pid->integral  = int_tofp(integral);
559
	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
560 561 562 563
}

static inline void pid_p_gain_set(struct _pid *pid, int percent)
{
564
	pid->p_gain = div_fp(percent, 100);
565 566 567 568
}

static inline void pid_i_gain_set(struct _pid *pid, int percent)
{
569
	pid->i_gain = div_fp(percent, 100);
570 571 572 573
}

static inline void pid_d_gain_set(struct _pid *pid, int percent)
{
574
	pid->d_gain = div_fp(percent, 100);
575 576
}

577
static signed int pid_calc(struct _pid *pid, int32_t busy)
578
{
579
	signed int result;
580 581 582
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

583
	fp_error = pid->setpoint - busy;
584

585
	if (abs(fp_error) <= pid->deadband)
586 587 588 589 590 591
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

592 593 594 595 596 597 598 599
	/*
	 * We limit the integral here so that it will never
	 * get higher than 30.  This prevents it from becoming
	 * too large an input over long periods of time and allows
	 * it to get factored out sooner.
	 *
	 * The value of 30 was chosen through experimentation.
	 */
600 601 602 603 604 605
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

606 607
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
608 609

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
610
	result = result + (1 << (FRAC_BITS-1));
611 612 613 614 615
	return (signed int)fp_toint(result);
}

static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
{
616 617 618
	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
619

620
	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
621 622 623 624 625
}

static inline void intel_pstate_reset_all_pid(void)
{
	unsigned int cpu;
626

627 628 629 630 631 632
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu])
			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
	}
}

633 634 635 636 637 638 639
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
640
	limits->turbo_disabled =
641 642 643 644
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
{
	u64 epb;
	int ret;

	if (!static_cpu_has(X86_FEATURE_EPB))
		return -ENXIO;

	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return (s16)ret;

	return (s16)(epb & 0x0f);
}

static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
{
	s16 epp;

664 665 666 667 668 669 670 671 672 673 674
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * When hwp_req_data is 0, means that caller didn't read
		 * MSR_HWP_REQUEST, so need to read and get EPP.
		 */
		if (!hwp_req_data) {
			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
					    &hwp_req_data);
			if (epp)
				return epp;
		}
675
		epp = (hwp_req_data >> 24) & 0xff;
676
	} else {
677 678
		/* When there is no EPP present, HWP uses EPB settings */
		epp = intel_pstate_get_epb(cpu_data);
679
	}
680 681 682 683

	return epp;
}

684
static int intel_pstate_set_epb(int cpu, s16 pref)
685 686
{
	u64 epb;
687
	int ret;
688 689

	if (!static_cpu_has(X86_FEATURE_EPB))
690
		return -ENXIO;
691

692 693 694
	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return ret;
695 696 697

	epb = (epb & ~0x0f) | pref;
	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
698 699

	return 0;
700 701
}

702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
/*
 * EPP/EPB display strings corresponding to EPP index in the
 * energy_perf_strings[]
 *	index		String
 *-------------------------------------
 *	0		default
 *	1		performance
 *	2		balance_performance
 *	3		balance_power
 *	4		power
 */
static const char * const energy_perf_strings[] = {
	"default",
	"performance",
	"balance_performance",
	"balance_power",
	"power",
	NULL
};

static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
{
	s16 epp;
	int index = -EINVAL;

	epp = intel_pstate_get_epp(cpu_data, 0);
	if (epp < 0)
		return epp;

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * Range:
		 *	0x00-0x3F	:	Performance
		 *	0x40-0x7F	:	Balance performance
		 *	0x80-0xBF	:	Balance power
		 *	0xC0-0xFF	:	Power
		 * The EPP is a 8 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 6) + 1;
	} else if (static_cpu_has(X86_FEATURE_EPB)) {
		/*
		 * Range:
		 *	0x00-0x03	:	Performance
		 *	0x04-0x07	:	Balance performance
		 *	0x08-0x0B	:	Balance power
		 *	0x0C-0x0F	:	Power
		 * The EPB is a 4 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 2) + 1;
	}

	return index;
}

static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
					      int pref_index)
{
	int epp = -EINVAL;
	int ret;

	if (!pref_index)
		epp = cpu_data->epp_default;

	mutex_lock(&intel_pstate_limits_lock);

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		u64 value;

		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
		if (ret)
			goto return_pref;

		value &= ~GENMASK_ULL(31, 24);

		/*
		 * If epp is not default, convert from index into
		 * energy_perf_strings to epp value, by shifting 6
		 * bits left to use only top two bits in epp.
		 * The resultant epp need to shifted by 24 bits to
		 * epp position in MSR_HWP_REQUEST.
		 */
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 6;

		value |= (u64)epp << 24;
		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
	} else {
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 2;
		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
	}
return_pref:
	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
}

static ssize_t show_energy_performance_available_preferences(
				struct cpufreq_policy *policy, char *buf)
{
	int i = 0;
	int ret = 0;

	while (energy_perf_strings[i] != NULL)
		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);

	ret += sprintf(&buf[ret], "\n");

	return ret;
}

cpufreq_freq_attr_ro(energy_performance_available_preferences);

static ssize_t store_energy_performance_preference(
		struct cpufreq_policy *policy, const char *buf, size_t count)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	char str_preference[21];
	int ret, i = 0;

	ret = sscanf(buf, "%20s", str_preference);
	if (ret != 1)
		return -EINVAL;

	while (energy_perf_strings[i] != NULL) {
		if (!strcmp(str_preference, energy_perf_strings[i])) {
			intel_pstate_set_energy_pref_index(cpu_data, i);
			return count;
		}
		++i;
	}

	return -EINVAL;
}

static ssize_t show_energy_performance_preference(
				struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	int preference;

	preference = intel_pstate_get_energy_pref_index(cpu_data);
	if (preference < 0)
		return preference;

	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
}

cpufreq_freq_attr_rw(energy_performance_preference);

static struct freq_attr *hwp_cpufreq_attrs[] = {
	&energy_performance_preference,
	&energy_performance_available_preferences,
	NULL,
};

862
static void intel_pstate_hwp_set(struct cpufreq_policy *policy)
D
Dirk Brandewie 已提交
863
{
864
	int min, hw_min, max, hw_max, cpu, range, adj_range;
865
	struct perf_limits *perf_limits = limits;
866 867
	u64 value, cap;

868
	for_each_cpu(cpu, policy->cpus) {
869
		int max_perf_pct, min_perf_pct;
870 871
		struct cpudata *cpu_data = all_cpu_data[cpu];
		s16 epp;
872 873 874 875

		if (per_cpu_limits)
			perf_limits = all_cpu_data[cpu]->perf_limits;

876 877 878 879 880
		rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
		hw_min = HWP_LOWEST_PERF(cap);
		hw_max = HWP_HIGHEST_PERF(cap);
		range = hw_max - hw_min;

881 882 883
		max_perf_pct = perf_limits->max_perf_pct;
		min_perf_pct = perf_limits->min_perf_pct;

D
Dirk Brandewie 已提交
884
		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
885
		adj_range = min_perf_pct * range / 100;
886
		min = hw_min + adj_range;
D
Dirk Brandewie 已提交
887 888 889
		value &= ~HWP_MIN_PERF(~0L);
		value |= HWP_MIN_PERF(min);

890
		adj_range = max_perf_pct * range / 100;
891
		max = hw_min + adj_range;
892
		if (limits->no_turbo) {
893 894 895
			hw_max = HWP_GUARANTEED_PERF(cap);
			if (hw_max < max)
				max = hw_max;
D
Dirk Brandewie 已提交
896 897 898 899
		}

		value &= ~HWP_MAX_PERF(~0L);
		value |= HWP_MAX_PERF(max);
900 901 902 903 904 905

		if (cpu_data->epp_policy == cpu_data->policy)
			goto skip_epp;

		cpu_data->epp_policy = cpu_data->policy;

906 907 908 909 910 911
		if (cpu_data->epp_saved >= 0) {
			epp = cpu_data->epp_saved;
			cpu_data->epp_saved = -EINVAL;
			goto update_epp;
		}

912 913
		if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
			epp = intel_pstate_get_epp(cpu_data, value);
914
			cpu_data->epp_powersave = epp;
915
			/* If EPP read was failed, then don't try to write */
916
			if (epp < 0)
917 918 919 920 921 922
				goto skip_epp;


			epp = 0;
		} else {
			/* skip setting EPP, when saved value is invalid */
923
			if (cpu_data->epp_powersave < 0)
924 925 926 927 928 929 930 931 932 933 934 935 936
				goto skip_epp;

			/*
			 * No need to restore EPP when it is not zero. This
			 * means:
			 *  - Policy is not changed
			 *  - user has manually changed
			 *  - Error reading EPB
			 */
			epp = intel_pstate_get_epp(cpu_data, value);
			if (epp)
				goto skip_epp;

937
			epp = cpu_data->epp_powersave;
938
		}
939
update_epp:
940 941 942 943 944 945 946
		if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
			value &= ~GENMASK_ULL(31, 24);
			value |= (u64)epp << 24;
		} else {
			intel_pstate_set_epb(cpu, epp);
		}
skip_epp:
D
Dirk Brandewie 已提交
947 948
		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
	}
949
}
D
Dirk Brandewie 已提交
950

951 952 953
static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
{
	if (hwp_active)
954
		intel_pstate_hwp_set(policy);
955 956 957 958

	return 0;
}

959 960 961 962 963 964 965 966 967 968 969 970
static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];

	if (!hwp_active)
		return 0;

	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);

	return 0;
}

971 972
static int intel_pstate_resume(struct cpufreq_policy *policy)
{
973 974
	int ret;

975 976 977
	if (!hwp_active)
		return 0;

978 979
	mutex_lock(&intel_pstate_limits_lock);

980 981
	all_cpu_data[policy->cpu]->epp_policy = 0;

982 983 984 985 986
	ret = intel_pstate_hwp_set_policy(policy);

	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
987 988
}

989
static void intel_pstate_update_policies(void)
990
{
991 992 993 994
	int cpu;

	for_each_possible_cpu(cpu)
		cpufreq_update_policy(cpu);
D
Dirk Brandewie 已提交
995 996
}

997 998 999 1000 1001 1002 1003
/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
	*(u32 *)data = val;
	intel_pstate_reset_all_pid();
	return 0;
}
1004

1005 1006 1007 1008 1009
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
1010
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
1011

1012 1013
static struct dentry *debugfs_parent;

1014 1015 1016
struct pid_param {
	char *name;
	void *value;
1017
	struct dentry *dentry;
1018 1019 1020
};

static struct pid_param pid_files[] = {
1021 1022 1023 1024 1025 1026 1027
	{"sample_rate_ms", &pid_params.sample_rate_ms, },
	{"d_gain_pct", &pid_params.d_gain_pct, },
	{"i_gain_pct", &pid_params.i_gain_pct, },
	{"deadband", &pid_params.deadband, },
	{"setpoint", &pid_params.setpoint, },
	{"p_gain_pct", &pid_params.p_gain_pct, },
	{NULL, NULL, }
1028 1029
};

1030
static void intel_pstate_debug_expose_params(void)
1031
{
1032
	int i;
1033 1034 1035 1036

	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058

	for (i = 0; pid_files[i].name; i++) {
		struct dentry *dentry;

		dentry = debugfs_create_file(pid_files[i].name, 0660,
					     debugfs_parent, pid_files[i].value,
					     &fops_pid_param);
		if (!IS_ERR(dentry))
			pid_files[i].dentry = dentry;
	}
}

static void intel_pstate_debug_hide_params(void)
{
	int i;

	if (IS_ERR_OR_NULL(debugfs_parent))
		return;

	for (i = 0; pid_files[i].name; i++) {
		debugfs_remove(pid_files[i].dentry);
		pid_files[i].dentry = NULL;
1059
	}
1060 1061 1062

	debugfs_remove(debugfs_parent);
	debugfs_parent = NULL;
1063 1064 1065 1066 1067 1068 1069 1070 1071
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
1072
		return sprintf(buf, "%u\n", limits->object);		\
1073 1074
	}

1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
static ssize_t intel_pstate_show_status(char *buf);
static int intel_pstate_update_status(const char *buf, size_t size);

static ssize_t show_status(struct kobject *kobj,
			   struct attribute *attr, char *buf)
{
	ssize_t ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_show_status(buf);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret;
}

static ssize_t store_status(struct kobject *a, struct attribute *b,
			    const char *buf, size_t count)
{
	char *p = memchr(buf, '\n', count);
	int ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_update_status(buf, p ? p - buf : count);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret < 0 ? ret : count;
}

1103 1104 1105 1106 1107 1108 1109
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

1110 1111 1112 1113 1114 1115 1116
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1117 1118 1119 1120
	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1121
	turbo_fp = div_fp(no_turbo, total);
1122
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1123 1124 1125

	mutex_unlock(&intel_pstate_driver_lock);

1126 1127 1128
	return sprintf(buf, "%u\n", turbo_pct);
}

1129 1130 1131 1132 1133 1134
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

1135 1136 1137 1138 1139 1140 1141
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1142 1143
	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1144 1145 1146

	mutex_unlock(&intel_pstate_driver_lock);

1147 1148 1149
	return sprintf(buf, "%u\n", total);
}

1150 1151 1152 1153 1154
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

1155 1156 1157 1158 1159 1160 1161
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1162
	update_turbo_state();
1163 1164
	if (limits->turbo_disabled)
		ret = sprintf(buf, "%u\n", limits->turbo_disabled);
1165
	else
1166
		ret = sprintf(buf, "%u\n", limits->no_turbo);
1167

1168 1169
	mutex_unlock(&intel_pstate_driver_lock);

1170 1171 1172
	return ret;
}

1173
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1174
			      const char *buf, size_t count)
1175 1176 1177
{
	unsigned int input;
	int ret;
1178

1179 1180 1181
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1182

1183 1184 1185 1186 1187 1188 1189
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1190 1191
	mutex_lock(&intel_pstate_limits_lock);

1192
	update_turbo_state();
1193
	if (limits->turbo_disabled) {
J
Joe Perches 已提交
1194
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1195
		mutex_unlock(&intel_pstate_limits_lock);
1196
		mutex_unlock(&intel_pstate_driver_lock);
1197
		return -EPERM;
1198
	}
D
Dirk Brandewie 已提交
1199

1200
	limits->no_turbo = clamp_t(int, input, 0, 1);
1201

1202 1203
	mutex_unlock(&intel_pstate_limits_lock);

1204 1205
	intel_pstate_update_policies();

1206 1207
	mutex_unlock(&intel_pstate_driver_lock);

1208 1209 1210 1211
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1212
				  const char *buf, size_t count)
1213 1214 1215
{
	unsigned int input;
	int ret;
1216

1217 1218 1219 1220
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

1221 1222 1223 1224 1225 1226 1227
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1228 1229
	mutex_lock(&intel_pstate_limits_lock);

1230 1231 1232 1233 1234 1235 1236
	limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);
	limits->max_perf_pct = max(limits->min_perf_pct,
				   limits->max_perf_pct);
1237
	limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
1238

1239 1240
	mutex_unlock(&intel_pstate_limits_lock);

1241 1242
	intel_pstate_update_policies();

1243 1244
	mutex_unlock(&intel_pstate_driver_lock);

1245 1246 1247 1248
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1249
				  const char *buf, size_t count)
1250 1251 1252
{
	unsigned int input;
	int ret;
1253

1254 1255 1256
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1257

1258 1259 1260 1261 1262 1263 1264
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1265 1266
	mutex_lock(&intel_pstate_limits_lock);

1267 1268 1269 1270 1271 1272 1273
	limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->min_perf_pct = min(limits->max_perf_pct,
				   limits->min_perf_pct);
1274
	limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
1275

1276 1277
	mutex_unlock(&intel_pstate_limits_lock);

1278 1279
	intel_pstate_update_policies();

1280 1281
	mutex_unlock(&intel_pstate_driver_lock);

1282 1283 1284 1285 1286 1287
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

1288
define_one_global_rw(status);
1289 1290 1291
define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
1292
define_one_global_ro(turbo_pct);
1293
define_one_global_ro(num_pstates);
1294 1295

static struct attribute *intel_pstate_attributes[] = {
1296
	&status.attr,
1297
	&no_turbo.attr,
1298
	&turbo_pct.attr,
1299
	&num_pstates.attr,
1300 1301 1302 1303 1304 1305 1306
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};

1307
static void __init intel_pstate_sysfs_expose_params(void)
1308
{
1309
	struct kobject *intel_pstate_kobject;
1310 1311 1312 1313
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
1314 1315 1316
	if (WARN_ON(!intel_pstate_kobject))
		return;

1317
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
	if (WARN_ON(rc))
		return;

	/*
	 * If per cpu limits are enforced there are no global limits, so
	 * return without creating max/min_perf_pct attributes
	 */
	if (per_cpu_limits)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
	WARN_ON(rc);

	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
	WARN_ON(rc);

1334 1335
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
1336

1337
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
1338
{
1339
	/* First disable HWP notification interrupt as we don't process them */
1340 1341
	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1342

1343
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1344
	cpudata->epp_policy = 0;
1345 1346
	if (cpudata->epp_default == -EINVAL)
		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
D
Dirk Brandewie 已提交
1347 1348
}

1349
static int atom_get_min_pstate(void)
1350 1351
{
	u64 value;
1352

1353
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
1354
	return (value >> 8) & 0x7F;
1355 1356
}

1357
static int atom_get_max_pstate(void)
1358 1359
{
	u64 value;
1360

1361
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
1362
	return (value >> 16) & 0x7F;
1363
}
1364

1365
static int atom_get_turbo_pstate(void)
1366 1367
{
	u64 value;
1368

1369
	rdmsrl(ATOM_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
1370
	return value & 0x7F;
1371 1372
}

1373
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1374 1375 1376 1377 1378
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

1379
	val = (u64)pstate << 8;
1380
	if (limits->no_turbo && !limits->turbo_disabled)
1381 1382 1383 1384 1385 1386 1387
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1388
	vid = ceiling_fp(vid_fp);
1389

1390 1391 1392
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

1393
	return val | vid;
1394 1395
}

1396
static int silvermont_get_scaling(void)
1397 1398 1399
{
	u64 value;
	int i;
1400 1401 1402
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
1403 1404

	rdmsrl(MSR_FSB_FREQ, value);
1405 1406
	i = value & 0x7;
	WARN_ON(i > 4);
1407

1408 1409
	return silvermont_freq_table[i];
}
1410

1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
1425 1426
}

1427
static void atom_get_vid(struct cpudata *cpudata)
1428 1429 1430
{
	u64 value;

1431
	rdmsrl(ATOM_VIDS, value);
D
Dirk Brandewie 已提交
1432 1433
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1434 1435 1436 1437
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
1438

1439
	rdmsrl(ATOM_TURBO_VIDS, value);
1440
	cpudata->vid.turbo = value & 0x7f;
1441 1442
}

1443
static int core_get_min_pstate(void)
1444 1445
{
	u64 value;
1446

1447
	rdmsrl(MSR_PLATFORM_INFO, value);
1448 1449 1450
	return (value >> 40) & 0xFF;
}

1451
static int core_get_max_pstate_physical(void)
1452 1453
{
	u64 value;
1454

1455
	rdmsrl(MSR_PLATFORM_INFO, value);
1456 1457 1458
	return (value >> 8) & 0xFF;
}

1459
static int core_get_max_pstate(void)
1460
{
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
	u64 tar;
	u64 plat_info;
	int max_pstate;
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
		/* Do some sanity checking for safety */
		if (plat_info & 0x600000000) {
			u64 tdp_ctrl;
			u64 tdp_ratio;
			int tdp_msr;

			err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
			if (err)
				goto skip_tar;

1481
			tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x3);
1482 1483 1484 1485
			err = rdmsrl_safe(tdp_msr, &tdp_ratio);
			if (err)
				goto skip_tar;

1486 1487 1488 1489 1490
			/* For level 1 and 2, bits[23:16] contain the ratio */
			if (tdp_ctrl)
				tdp_ratio >>= 16;

			tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1491 1492 1493 1494 1495 1496 1497 1498
			if (tdp_ratio - 1 == tar) {
				max_pstate = tar;
				pr_debug("max_pstate=TAC %x\n", max_pstate);
			} else {
				goto skip_tar;
			}
		}
	}
1499

1500 1501
skip_tar:
	return max_pstate;
1502 1503
}

1504
static int core_get_turbo_pstate(void)
1505 1506 1507
{
	u64 value;
	int nont, ret;
1508

1509
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1510
	nont = core_get_max_pstate();
1511
	ret = (value) & 255;
1512 1513 1514 1515 1516
	if (ret <= nont)
		ret = nont;
	return ret;
}

1517 1518 1519 1520 1521
static inline int core_get_scaling(void)
{
	return 100000;
}

1522
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1523 1524 1525
{
	u64 val;

1526
	val = (u64)pstate << 8;
1527
	if (limits->no_turbo && !limits->turbo_disabled)
1528 1529
		val |= (u64)1 << 32;

1530
	return val;
1531 1532
}

1533 1534 1535 1536 1537
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1538
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1539 1540 1541 1542 1543 1544 1545
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
static struct cpu_defaults core_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
1557
		.get_max_physical = core_get_max_pstate_physical,
1558 1559
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
1560
		.get_scaling = core_get_scaling,
1561
		.get_val = core_get_val,
1562
		.get_target_pstate = get_target_pstate_use_performance,
1563 1564 1565
	},
};

1566
static const struct cpu_defaults silvermont_params = {
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1580
		.get_val = atom_get_val,
1581 1582
		.get_scaling = silvermont_get_scaling,
		.get_vid = atom_get_vid,
1583
		.get_target_pstate = get_target_pstate_use_cpu_load,
1584 1585 1586
	},
};

1587
static const struct cpu_defaults airmont_params = {
1588 1589 1590
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
1591
		.setpoint = 60,
1592 1593 1594 1595 1596
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
1597 1598 1599 1600
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1601
		.get_val = atom_get_val,
1602
		.get_scaling = airmont_get_scaling,
1603
		.get_vid = atom_get_vid,
1604
		.get_target_pstate = get_target_pstate_use_cpu_load,
1605 1606 1607
	},
};

1608
static const struct cpu_defaults knl_params = {
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
1619
		.get_max_physical = core_get_max_pstate_physical,
1620 1621
		.get_min = core_get_min_pstate,
		.get_turbo = knl_get_turbo_pstate,
1622
		.get_scaling = core_get_scaling,
1623
		.get_val = core_get_val,
1624
		.get_target_pstate = get_target_pstate_use_performance,
1625 1626 1627
	},
};

1628
static const struct cpu_defaults bxt_params = {
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
		.get_max_physical = core_get_max_pstate_physical,
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
		.get_scaling = core_get_scaling,
		.get_val = core_get_val,
		.get_target_pstate = get_target_pstate_use_cpu_load,
	},
};

1648 1649 1650
static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
1651
	int max_perf_adj;
1652
	int min_perf;
1653
	struct perf_limits *perf_limits = limits;
1654

1655
	if (limits->no_turbo || limits->turbo_disabled)
1656 1657
		max_perf = cpu->pstate.max_pstate;

1658 1659 1660
	if (per_cpu_limits)
		perf_limits = cpu->perf_limits;

1661 1662 1663 1664 1665
	/*
	 * performance can be limited by user through sysfs, by cpufreq
	 * policy, or by cpu specific default values determined through
	 * experimentation.
	 */
1666
	max_perf_adj = fp_ext_toint(max_perf * perf_limits->max_perf);
1667 1668
	*max = clamp_t(int, max_perf_adj,
			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1669

1670
	min_perf = fp_ext_toint(max_perf * perf_limits->min_perf);
1671
	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1672 1673
}

1674
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1675
{
1676 1677
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1678 1679 1680 1681 1682 1683 1684
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1685 1686
}

1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
	int min_pstate, max_pstate;

	update_turbo_state();
	intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
	intel_pstate_set_pstate(cpu, max_pstate);
}

1701 1702
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1703 1704
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1705
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1706
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1707
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1708 1709
	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1710

1711 1712
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1713 1714

	intel_pstate_set_min_pstate(cpu);
1715 1716
}

1717
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1718
{
1719
	struct sample *sample = &cpu->sample;
1720

1721
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1722 1723
}

1724
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1725 1726
{
	u64 aperf, mperf;
1727
	unsigned long flags;
1728
	u64 tsc;
1729

1730
	local_irq_save(flags);
1731 1732
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1733
	tsc = rdtsc();
1734
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1735
		local_irq_restore(flags);
1736
		return false;
1737
	}
1738
	local_irq_restore(flags);
1739

1740
	cpu->last_sample_time = cpu->sample.time;
1741
	cpu->sample.time = time;
1742 1743
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1744
	cpu->sample.tsc =  tsc;
1745 1746
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1747
	cpu->sample.tsc -= cpu->prev_tsc;
1748

1749 1750
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1751
	cpu->prev_tsc = tsc;
1752 1753 1754 1755 1756 1757 1758 1759
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
	return !!cpu->last_sample_time;
1760 1761
}

1762 1763
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1764 1765
	return mul_ext_fp(cpu->sample.core_avg_perf,
			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1766 1767
}

1768 1769
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1770 1771
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1772 1773
}

1774 1775 1776
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
{
	struct sample *sample = &cpu->sample;
1777
	int32_t busy_frac, boost;
1778
	int target, avg_pstate;
1779

1780
	busy_frac = div_fp(sample->mperf, sample->tsc);
1781

1782 1783
	boost = cpu->iowait_boost;
	cpu->iowait_boost >>= 1;
1784

1785 1786
	if (busy_frac < boost)
		busy_frac = boost;
1787

1788
	sample->busy_scaled = busy_frac * 100;
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808

	target = limits->no_turbo || limits->turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1809 1810
}

1811
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1812
{
1813
	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1814
	u64 duration_ns;
1815

1816
	/*
1817 1818 1819 1820 1821
	 * perf_scaled is the ratio of the average P-state during the last
	 * sampling period to the P-state requested last time (in percent).
	 *
	 * That measures the system's response to the previous P-state
	 * selection.
1822
	 */
1823 1824
	max_pstate = cpu->pstate.max_pstate_physical;
	current_pstate = cpu->pstate.current_pstate;
1825
	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1826
			       div_fp(100 * max_pstate, current_pstate));
1827

1828
	/*
1829 1830 1831
	 * Since our utilization update callback will not run unless we are
	 * in C0, check if the actual elapsed time is significantly greater (3x)
	 * than our sample interval.  If it is, then we were idle for a long
1832
	 * enough period of time to adjust our performance metric.
1833
	 */
1834
	duration_ns = cpu->sample.time - cpu->last_sample_time;
1835
	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1836
		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1837
		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1838 1839 1840
	} else {
		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
		if (sample_ratio < int_tofp(1))
1841
			perf_scaled = 0;
1842 1843
	}

1844 1845
	cpu->sample.busy_scaled = perf_scaled;
	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1846 1847
}

1848
static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1849 1850 1851 1852 1853
{
	int max_perf, min_perf;

	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
	pstate = clamp_t(int, pstate, min_perf, max_perf);
1854
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1855 1856 1857 1858 1859 1860
	return pstate;
}

static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
	pstate = intel_pstate_prepare_request(cpu, pstate);
1861 1862 1863
	if (pstate == cpu->pstate.current_pstate)
		return;

1864
	cpu->pstate.current_pstate = pstate;
1865 1866 1867
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1868 1869
static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
{
1870
	int from, target_pstate;
1871 1872 1873
	struct sample *sample;

	from = cpu->pstate.current_pstate;
1874

1875 1876
	target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
		cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
1877

1878 1879
	update_turbo_state();

1880
	intel_pstate_update_pstate(cpu, target_pstate);
1881 1882

	sample = &cpu->sample;
1883
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1884
		fp_toint(sample->busy_scaled),
1885 1886 1887 1888 1889
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1890 1891
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1892 1893
}

1894
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1895
				     unsigned int flags)
1896
{
1897
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1898 1899
	u64 delta_ns;

1900
	if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
		if (flags & SCHED_CPUFREQ_IOWAIT) {
			cpu->iowait_boost = int_tofp(1);
		} else if (cpu->iowait_boost) {
			/* Clear iowait_boost if the CPU may have been idle. */
			delta_ns = time - cpu->last_update;
			if (delta_ns > TICK_NSEC)
				cpu->iowait_boost = 0;
		}
		cpu->last_update = time;
	}
1911

1912
	delta_ns = time - cpu->sample.time;
1913
	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1914 1915
		bool sample_taken = intel_pstate_sample(cpu, time);

1916
		if (sample_taken) {
1917
			intel_pstate_calc_avg_perf(cpu);
1918 1919 1920
			if (!hwp_active)
				intel_pstate_adjust_busy_pstate(cpu);
		}
1921
	}
1922 1923 1924
}

#define ICPU(model, policy) \
1925 1926
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1927 1928

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_params),
	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_params),
	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_params),
	ICPU(INTEL_FAM6_IVYBRIDGE,		core_params),
	ICPU(INTEL_FAM6_HASWELL_CORE,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_params),
	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_params),
	ICPU(INTEL_FAM6_HASWELL_X,		core_params),
	ICPU(INTEL_FAM6_HASWELL_ULT,		core_params),
	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_params),
	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_params),
	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_X,		core_params),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_params),
	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_params),
	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_params),
1946
	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_params),
1947
	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_params),
1948 1949 1950 1951
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

1952
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1953
	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1954 1955
	ICPU(INTEL_FAM6_BROADWELL_X, core_params),
	ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
D
Dirk Brandewie 已提交
1956 1957 1958
	{}
};

1959 1960 1961 1962
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
	cpu = all_cpu_data[cpunum];

	if (!cpu) {
		unsigned int size = sizeof(struct cpudata);

		if (per_cpu_limits)
			size += sizeof(struct perf_limits);

		cpu = kzalloc(size, GFP_KERNEL);
		if (!cpu)
			return -ENOMEM;

		all_cpu_data[cpunum] = cpu;
		if (per_cpu_limits)
			cpu->perf_limits = (struct perf_limits *)(cpu + 1);

1979 1980 1981
		cpu->epp_default = -EINVAL;
		cpu->epp_powersave = -EINVAL;
		cpu->epp_saved = -EINVAL;
1982
	}
1983 1984 1985 1986

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1987

1988
	if (hwp_active) {
1989
		intel_pstate_hwp_enable(cpu);
1990 1991 1992
		pid_params.sample_rate_ms = 50;
		pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
	}
1993

1994
	intel_pstate_get_cpu_pstates(cpu);
1995

1996 1997
	intel_pstate_busy_pid_reset(cpu);

J
Joe Perches 已提交
1998
	pr_debug("controlling: cpu %d\n", cpunum);
1999 2000 2001 2002 2003 2004

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
2005
	struct cpudata *cpu = all_cpu_data[cpu_num];
2006

2007
	return cpu ? get_avg_frequency(cpu) : 0;
2008 2009
}

2010
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2011
{
2012 2013
	struct cpudata *cpu = all_cpu_data[cpu_num];

2014 2015 2016
	if (cpu->update_util_set)
		return;

2017 2018
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
2019 2020
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
				     intel_pstate_update_util);
2021
	cpu->update_util_set = true;
2022 2023 2024 2025
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
2026 2027 2028 2029 2030
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

2031
	cpufreq_remove_update_util_hook(cpu);
2032
	cpu_data->update_util_set = false;
2033 2034 2035
	synchronize_sched();
}

2036 2037 2038 2039 2040
static void intel_pstate_set_performance_limits(struct perf_limits *limits)
{
	limits->no_turbo = 0;
	limits->turbo_disabled = 0;
	limits->max_perf_pct = 100;
2041
	limits->max_perf = int_ext_tofp(1);
2042
	limits->min_perf_pct = 100;
2043
	limits->min_perf = int_ext_tofp(1);
2044 2045 2046 2047 2048 2049
	limits->max_policy_pct = 100;
	limits->max_sysfs_pct = 100;
	limits->min_policy_pct = 0;
	limits->min_sysfs_pct = 0;
}

2050 2051 2052
static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
					    struct perf_limits *limits)
{
2053

2054 2055 2056
	limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
					      policy->cpuinfo.max_freq);
	limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0, 100);
2057 2058 2059
	if (policy->max == policy->min) {
		limits->min_policy_pct = limits->max_policy_pct;
	} else {
2060 2061
		limits->min_policy_pct = DIV_ROUND_UP(policy->min * 100,
						      policy->cpuinfo.max_freq);
2062 2063 2064
		limits->min_policy_pct = clamp_t(int, limits->min_policy_pct,
						 0, 100);
	}
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078

	/* Normalize user input to [min_policy_pct, max_policy_pct] */
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);

	/* Make sure min_perf_pct <= max_perf_pct */
	limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);

2079 2080 2081 2082
	limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
	limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
	limits->max_perf = round_up(limits->max_perf, EXT_FRAC_BITS);
	limits->min_perf = round_up(limits->min_perf, EXT_FRAC_BITS);
2083 2084 2085 2086 2087

	pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
		 limits->max_perf_pct, limits->min_perf_pct);
}

2088 2089
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
2090
	struct cpudata *cpu;
2091
	struct perf_limits *perf_limits = NULL;
2092

2093 2094 2095
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

2096 2097 2098
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

2099
	cpu = all_cpu_data[policy->cpu];
2100 2101
	cpu->policy = policy->policy;

2102 2103 2104 2105 2106
	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
2107 2108
	}

2109 2110 2111
	if (per_cpu_limits)
		perf_limits = cpu->perf_limits;

2112 2113
	mutex_lock(&intel_pstate_limits_lock);

2114 2115 2116 2117 2118
	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
		if (!perf_limits) {
			limits = &performance_limits;
			perf_limits = limits;
		}
2119 2120
		if (policy->max >= policy->cpuinfo.max_freq &&
		    !limits->no_turbo) {
J
Joe Perches 已提交
2121
			pr_debug("set performance\n");
2122
			intel_pstate_set_performance_limits(perf_limits);
2123 2124 2125
			goto out;
		}
	} else {
J
Joe Perches 已提交
2126
		pr_debug("set powersave\n");
2127 2128 2129 2130
		if (!perf_limits) {
			limits = &powersave_limits;
			perf_limits = limits;
		}
2131

2132
	}
2133

2134
	intel_pstate_update_perf_limits(policy, perf_limits);
2135
 out:
2136
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2137 2138 2139 2140 2141 2142 2143 2144
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
	}

2145 2146
	intel_pstate_set_update_util_hook(policy->cpu);

2147
	intel_pstate_hwp_set_policy(policy);
D
Dirk Brandewie 已提交
2148

2149 2150
	mutex_unlock(&intel_pstate_limits_lock);

2151 2152 2153 2154 2155
	return 0;
}

static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
2156
	cpufreq_verify_within_cpu_limits(policy);
2157

2158
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2159
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2160 2161
		return -EINVAL;

2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
	/* When per-CPU limits are used, sysfs limits are not used */
	if (!per_cpu_limits) {
		unsigned int max_freq, min_freq;

		max_freq = policy->cpuinfo.max_freq *
						limits->max_sysfs_pct / 100;
		min_freq = policy->cpuinfo.max_freq *
						limits->min_sysfs_pct / 100;
		cpufreq_verify_within_limits(policy, min_freq, max_freq);
	}

2173 2174 2175
	return 0;
}

2176 2177 2178 2179 2180
static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
{
	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
}

2181
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2182
{
2183
	pr_debug("CPU %d exiting\n", policy->cpu);
2184

2185
	intel_pstate_clear_update_util_hook(policy->cpu);
2186 2187 2188
	if (hwp_active)
		intel_pstate_hwp_save_state(policy);
	else
2189 2190
		intel_cpufreq_stop_cpu(policy);
}
2191

2192 2193 2194
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);
2195

2196
	policy->fast_switch_possible = false;
D
Dirk Brandewie 已提交
2197

2198
	return 0;
2199 2200
}

2201
static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2202 2203
{
	struct cpudata *cpu;
2204
	int rc;
2205 2206 2207 2208 2209 2210 2211

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

2212 2213 2214 2215 2216 2217 2218
	/*
	 * We need sane value in the cpu->perf_limits, so inherit from global
	 * perf_limits limits, which are seeded with values based on the
	 * CONFIG_CPU_FREQ_DEFAULT_GOV_*, during boot up.
	 */
	if (per_cpu_limits)
		memcpy(cpu->perf_limits, limits, sizeof(struct perf_limits));
2219

2220 2221
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2222 2223

	/* cpuinfo and default policy values */
2224
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2225 2226 2227 2228 2229
	update_turbo_state();
	policy->cpuinfo.max_freq = limits->turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

2230
	intel_pstate_init_acpi_perf_limits(policy);
2231 2232
	cpumask_set_cpu(policy->cpu, policy->cpus);

2233 2234
	policy->fast_switch_possible = true;

2235 2236 2237
	return 0;
}

2238
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2239
{
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
	if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2250 2251 2252 2253

	return 0;
}

2254
static struct cpufreq_driver intel_pstate = {
2255 2256 2257
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
2258
	.suspend	= intel_pstate_hwp_save_state,
2259
	.resume		= intel_pstate_resume,
2260 2261
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
2262
	.exit		= intel_pstate_cpu_exit,
2263
	.stop_cpu	= intel_pstate_stop_cpu,
2264 2265 2266
	.name		= "intel_pstate",
};

2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct perf_limits *perf_limits = limits;

	update_turbo_state();
	policy->cpuinfo.max_freq = limits->turbo_disabled ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;

	cpufreq_verify_within_cpu_limits(policy);

	if (per_cpu_limits)
		perf_limits = cpu->perf_limits;

2281 2282
	mutex_lock(&intel_pstate_limits_lock);

2283 2284
	intel_pstate_update_perf_limits(policy, perf_limits);

2285 2286
	mutex_unlock(&intel_pstate_limits_lock);

2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
	return 0;
}

static unsigned int intel_cpufreq_turbo_update(struct cpudata *cpu,
					       struct cpufreq_policy *policy,
					       unsigned int target_freq)
{
	unsigned int max_freq;

	update_turbo_state();

	max_freq = limits->no_turbo || limits->turbo_disabled ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
	policy->cpuinfo.max_freq = max_freq;
	if (policy->max > max_freq)
		policy->max = max_freq;

	if (target_freq > max_freq)
		target_freq = max_freq;

	return target_freq;
}

static int intel_cpufreq_target(struct cpufreq_policy *policy,
				unsigned int target_freq,
				unsigned int relation)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct cpufreq_freqs freqs;
	int target_pstate;

	freqs.old = policy->cur;
	freqs.new = intel_cpufreq_turbo_update(cpu, policy, target_freq);

	cpufreq_freq_transition_begin(policy, &freqs);
	switch (relation) {
	case CPUFREQ_RELATION_L:
		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
		break;
	case CPUFREQ_RELATION_H:
		target_pstate = freqs.new / cpu->pstate.scaling;
		break;
	default:
		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
		break;
	}
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	if (target_pstate != cpu->pstate.current_pstate) {
		cpu->pstate.current_pstate = target_pstate;
		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
			      pstate_funcs.get_val(cpu, target_pstate));
	}
	cpufreq_freq_transition_end(policy, &freqs, false);

	return 0;
}

static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
					      unsigned int target_freq)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	int target_pstate;

	target_freq = intel_cpufreq_turbo_update(cpu, policy, target_freq);
	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
	intel_pstate_update_pstate(cpu, target_pstate);
	return target_freq;
}

static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
	policy->cur = policy->cpuinfo.min_freq;

	return 0;
}

static struct cpufreq_driver intel_cpufreq = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_cpufreq_verify_policy,
	.target		= intel_cpufreq_target,
	.fast_switch	= intel_cpufreq_fast_switch,
	.init		= intel_cpufreq_cpu_init,
	.exit		= intel_pstate_cpu_exit,
	.stop_cpu	= intel_cpufreq_stop_cpu,
	.name		= "intel_cpufreq",
};

static struct cpufreq_driver *intel_pstate_driver = &intel_pstate;

2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
static void intel_pstate_driver_cleanup(void)
{
	unsigned int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			if (intel_pstate_driver == &intel_pstate)
				intel_pstate_clear_update_util_hook(cpu);

			kfree(all_cpu_data[cpu]);
			all_cpu_data[cpu] = NULL;
		}
	}
	put_online_cpus();
}

static int intel_pstate_register_driver(void)
{
	int ret;

	ret = cpufreq_register_driver(intel_pstate_driver);
	if (ret) {
		intel_pstate_driver_cleanup();
		return ret;
	}

	mutex_lock(&intel_pstate_limits_lock);
	driver_registered = true;
	mutex_unlock(&intel_pstate_limits_lock);

	if (intel_pstate_driver == &intel_pstate && !hwp_active &&
	    pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
		intel_pstate_debug_expose_params();

	return 0;
}

static int intel_pstate_unregister_driver(void)
{
	if (hwp_active)
		return -EBUSY;

	if (intel_pstate_driver == &intel_pstate && !hwp_active &&
	    pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
		intel_pstate_debug_hide_params();

	mutex_lock(&intel_pstate_limits_lock);
	driver_registered = false;
	mutex_unlock(&intel_pstate_limits_lock);

	cpufreq_unregister_driver(intel_pstate_driver);
	intel_pstate_driver_cleanup();

	return 0;
}

static ssize_t intel_pstate_show_status(char *buf)
{
	if (!driver_registered)
		return sprintf(buf, "off\n");

	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
					"active" : "passive");
}

static int intel_pstate_update_status(const char *buf, size_t size)
{
	int ret;

	if (size == 3 && !strncmp(buf, "off", size))
		return driver_registered ?
			intel_pstate_unregister_driver() : -EINVAL;

	if (size == 6 && !strncmp(buf, "active", size)) {
		if (driver_registered) {
			if (intel_pstate_driver == &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

		intel_pstate_driver = &intel_pstate;
		return intel_pstate_register_driver();
	}

	if (size == 7 && !strncmp(buf, "passive", size)) {
		if (driver_registered) {
			if (intel_pstate_driver != &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

		intel_pstate_driver = &intel_cpufreq;
		return intel_pstate_register_driver();
	}

	return -EINVAL;
}

2488 2489 2490
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
2491
static unsigned int force_load __initdata;
2492

2493
static int __init intel_pstate_msrs_not_valid(void)
2494
{
2495
	if (!pstate_funcs.get_max() ||
2496 2497
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
2498 2499 2500 2501
		return -ENODEV;

	return 0;
}
2502

2503
static void __init copy_pid_params(struct pstate_adjust_policy *policy)
2504 2505
{
	pid_params.sample_rate_ms = policy->sample_rate_ms;
2506
	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
2507 2508 2509 2510 2511 2512 2513
	pid_params.p_gain_pct = policy->p_gain_pct;
	pid_params.i_gain_pct = policy->i_gain_pct;
	pid_params.d_gain_pct = policy->d_gain_pct;
	pid_params.deadband = policy->deadband;
	pid_params.setpoint = policy->setpoint;
}

2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
#ifdef CONFIG_ACPI
static void intel_pstate_use_acpi_profile(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_MOBILE)
		pstate_funcs.get_target_pstate =
				get_target_pstate_use_cpu_load;
}
#else
static void intel_pstate_use_acpi_profile(void)
{
}
#endif

2527
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2528 2529
{
	pstate_funcs.get_max   = funcs->get_max;
2530
	pstate_funcs.get_max_physical = funcs->get_max_physical;
2531 2532
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
2533
	pstate_funcs.get_scaling = funcs->get_scaling;
2534
	pstate_funcs.get_val   = funcs->get_val;
2535
	pstate_funcs.get_vid   = funcs->get_vid;
2536 2537
	pstate_funcs.get_target_pstate = funcs->get_target_pstate;

2538
	intel_pstate_use_acpi_profile();
2539 2540
}

2541
#ifdef CONFIG_ACPI
2542

2543
static bool __init intel_pstate_no_acpi_pss(void)
2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

2572
static bool __init intel_pstate_has_acpi_ppc(void)
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

2592 2593 2594 2595
struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2596
	int  oem_pwr_table;
2597 2598 2599
};

/* Hardware vendor-specific info that has its own power management modes */
2600
static struct hw_vendor_info vendor_info[] __initdata = {
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
	{1, "HP    ", "ProLiant", PSS},
	{1, "ORACLE", "X4-2    ", PPC},
	{1, "ORACLE", "X4-2L   ", PPC},
	{1, "ORACLE", "X4-2B   ", PPC},
	{1, "ORACLE", "X3-2    ", PPC},
	{1, "ORACLE", "X3-2L   ", PPC},
	{1, "ORACLE", "X3-2B   ", PPC},
	{1, "ORACLE", "X4470M2 ", PPC},
	{1, "ORACLE", "X4270M3 ", PPC},
	{1, "ORACLE", "X4270M2 ", PPC},
	{1, "ORACLE", "X4170M2 ", PPC},
2612 2613 2614 2615
	{1, "ORACLE", "X4170 M3", PPC},
	{1, "ORACLE", "X4275 M3", PPC},
	{1, "ORACLE", "X6-2    ", PPC},
	{1, "ORACLE", "Sudbury ", PPC},
2616 2617 2618
	{0, "", ""},
};

2619
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2620 2621 2622
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;
D
Dirk Brandewie 已提交
2623 2624 2625 2626 2627 2628 2629 2630 2631
	const struct x86_cpu_id *id;
	u64 misc_pwr;

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
2632

2633 2634
	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2635 2636 2637
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
2638
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2639 2640 2641 2642 2643 2644
			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
						ACPI_OEM_TABLE_ID_SIZE))
			switch (v_info->oem_pwr_table) {
			case PSS:
				return intel_pstate_no_acpi_pss();
			case PPC:
2645 2646
				return intel_pstate_has_acpi_ppc() &&
					(!force_load);
2647
			}
2648 2649 2650 2651
	}

	return false;
}
2652 2653 2654 2655 2656 2657 2658 2659 2660 2661

static void intel_pstate_request_control_from_smm(void)
{
	/*
	 * It may be unsafe to request P-states control from SMM if _PPC support
	 * has not been enabled.
	 */
	if (acpi_ppc)
		acpi_processor_pstate_control();
}
2662 2663
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2664
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2665
static inline void intel_pstate_request_control_from_smm(void) {}
2666 2667
#endif /* CONFIG_ACPI */

2668 2669 2670 2671 2672
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
	{}
};

2673 2674 2675
static int __init intel_pstate_init(void)
{
	const struct x86_cpu_id *id;
2676
	struct cpu_defaults *cpu_def;
2677
	int rc = 0;
2678

2679 2680 2681
	if (no_load)
		return -ENODEV;

2682 2683 2684
	if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
		copy_cpu_funcs(&core_params.funcs);
		hwp_active++;
2685
		intel_pstate.attr = hwp_cpufreq_attrs;
2686 2687 2688
		goto hwp_cpu_matched;
	}

2689 2690 2691 2692
	id = x86_match_cpu(intel_pstate_cpu_ids);
	if (!id)
		return -ENODEV;

2693
	cpu_def = (struct cpu_defaults *)id->driver_data;
2694

2695 2696
	copy_pid_params(&cpu_def->pid_policy);
	copy_cpu_funcs(&cpu_def->funcs);
2697

2698 2699 2700
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

2701 2702 2703 2704 2705 2706 2707 2708
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

2709 2710 2711
	if (!hwp_active && hwp_only)
		return -ENOTSUPP;

J
Joe Perches 已提交
2712
	pr_info("Intel P-state driver initializing\n");
2713

2714
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2715 2716 2717
	if (!all_cpu_data)
		return -ENOMEM;

2718 2719
	intel_pstate_request_control_from_smm();

2720 2721 2722
	intel_pstate_sysfs_expose_params();

	mutex_lock(&intel_pstate_driver_lock);
2723
	rc = intel_pstate_register_driver();
2724
	mutex_unlock(&intel_pstate_driver_lock);
2725 2726
	if (rc)
		return rc;
2727

2728
	if (hwp_active)
J
Joe Perches 已提交
2729
		pr_info("HWP enabled\n");
2730

2731
	return 0;
2732 2733 2734
}
device_initcall(intel_pstate_init);

2735 2736 2737 2738 2739
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

2740
	if (!strcmp(str, "disable")) {
2741
		no_load = 1;
2742 2743 2744 2745 2746
	} else if (!strcmp(str, "passive")) {
		pr_info("Passive mode enabled\n");
		intel_pstate_driver = &intel_cpufreq;
		no_hwp = 1;
	}
2747
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
2748
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
2749
		no_hwp = 1;
2750
	}
2751 2752
	if (!strcmp(str, "force"))
		force_load = 1;
2753 2754
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
2755 2756
	if (!strcmp(str, "per_cpu_perf_limits"))
		per_cpu_limits = true;
2757 2758 2759 2760 2761 2762

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

2763 2764 2765 2766
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

2767 2768 2769
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");