intel_pstate.c 63.2 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

J
Joe Perches 已提交
13 14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

15 16 17 18 19 20 21
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
22
#include <linux/sched/cpufreq.h>
23 24 25 26 27 28
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
29
#include <linux/acpi.h>
30
#include <linux/vmalloc.h>
31 32 33 34 35
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
36
#include <asm/cpufeature.h>
37
#include <asm/intel-family.h>
38

39
#define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
40

41
#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
42
#define INTEL_CPUFREQ_TRANSITION_DELAY		500
43

44 45
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
46
#include <acpi/cppc_acpi.h>
47 48
#endif

49
#define FRAC_BITS 8
50 51
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
52

53 54
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55 56
#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
57

58 59 60 61 62
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

63
static inline int32_t div_fp(s64 x, s64 y)
64
{
65
	return div64_s64((int64_t)x << FRAC_BITS, y);
66 67
}

68 69 70 71 72 73 74 75 76 77 78
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

79 80 81 82 83
static inline int32_t percent_fp(int percent)
{
	return div_fp(percent, 100);
}

84 85 86 87 88 89 90 91 92 93
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

94 95 96 97 98
static inline int32_t percent_ext_fp(int percent)
{
	return div_ext_fp(percent, 100);
}

99 100
/**
 * struct sample -	Store performance sample
101
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
102 103
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
104
 *			P state. This can be different than core_avg_perf
105 106 107 108 109 110 111 112 113 114 115 116
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
117
struct sample {
118
	int32_t core_avg_perf;
119
	int32_t busy_scaled;
120 121
	u64 aperf;
	u64 mperf;
122
	u64 tsc;
123
	u64 time;
124 125
};

126 127 128 129 130 131 132 133 134 135 136
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
137 138
 * @max_freq:		@max_pstate frequency in cpufreq units
 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
139 140 141
 *
 * Stores the per cpu model P state limits and current P state.
 */
142 143 144 145
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
146
	int	max_pstate_physical;
147
	int	scaling;
148
	int	turbo_pstate;
149 150
	unsigned int max_freq;
	unsigned int turbo_freq;
151 152
};

153 154 155 156 157 158 159 160 161 162 163 164 165
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
166
struct vid_data {
167 168 169
	int min;
	int max;
	int turbo;
170 171 172
	int32_t ratio;
};

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
/**
 * struct global_params - Global parameters, mostly tunable via sysfs.
 * @no_turbo:		Whether or not to use turbo P-states.
 * @turbo_disabled:	Whethet or not turbo P-states are available at all,
 *			based on the MSR_IA32_MISC_ENABLE value and whether or
 *			not the maximum reported turbo P-state is different from
 *			the maximum reported non-turbo one.
 * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 */
struct global_params {
	bool no_turbo;
	bool turbo_disabled;
	int max_perf_pct;
	int min_perf_pct;
190 191
};

192 193 194
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
195
 * @policy:		CPUFreq policy value
196
 * @update_util:	CPUFreq utility callback information
197
 * @update_util_set:	CPUFreq utility callback is set
198 199
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
200 201 202
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @last_sample_time:	Last Sample time
203 204 205
 * @aperf_mperf_shift:	Number of clock cycles after aperf, merf is incremented
 *			This shift is a multiplier to mperf delta to
 *			calculate CPU busy.
206 207 208 209 210 211
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
212 213
 * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
 * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
214 215
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
216 217 218
 * @epp_powersave:	Last saved HWP energy performance preference
 *			(EPP) or energy performance bias (EPB),
 *			when policy switched to performance
219
 * @epp_policy:		Last saved policy used to set EPP/EPB
220 221 222 223
 * @epp_default:	Power on default HWP energy performance
 *			preference/bias
 * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
 *			operation
224 225
 * @hwp_req_cached:	Cached value of the last HWP Request MSR
 * @hwp_cap_cached:	Cached value of the last HWP Capabilities MSR
226 227
 * @last_io_update:	Last time when IO wake flag was set
 * @sched_flags:	Store scheduler flags for possible cross CPU update
228
 * @hwp_boost_min:	Last HWP boosted min performance
229 230 231
 *
 * This structure stores per CPU instance data for all CPUs.
 */
232 233 234
struct cpudata {
	int cpu;

235
	unsigned int policy;
236
	struct update_util_data update_util;
237
	bool   update_util_set;
238 239

	struct pstate_data pstate;
240
	struct vid_data vid;
241

242
	u64	last_update;
243
	u64	last_sample_time;
244
	u64	aperf_mperf_shift;
245 246
	u64	prev_aperf;
	u64	prev_mperf;
247
	u64	prev_tsc;
248
	u64	prev_cummulative_iowait;
249
	struct sample sample;
250 251
	int32_t	min_perf_ratio;
	int32_t	max_perf_ratio;
252 253 254 255
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
256
	unsigned int iowait_boost;
257
	s16 epp_powersave;
258
	s16 epp_policy;
259 260
	s16 epp_default;
	s16 epp_saved;
261 262
	u64 hwp_req_cached;
	u64 hwp_cap_cached;
263 264
	u64 last_io_update;
	unsigned int sched_flags;
265
	u32 hwp_boost_min;
266 267 268
};

static struct cpudata **all_cpu_data;
269 270 271 272 273 274 275 276 277 278 279 280 281 282

/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
283 284
struct pstate_funcs {
	int (*get_max)(void);
285
	int (*get_max_physical)(void);
286 287
	int (*get_min)(void);
	int (*get_turbo)(void);
288
	int (*get_scaling)(void);
289
	int (*get_aperf_mperf_shift)(void);
290
	u64 (*get_val)(struct cpudata*, int pstate);
291
	void (*get_vid)(struct cpudata *);
292 293
};

294
static struct pstate_funcs pstate_funcs __read_mostly;
295

296
static int hwp_active __read_mostly;
297
static bool per_cpu_limits __read_mostly;
298
static bool hwp_boost __read_mostly;
299

300
static struct cpufreq_driver *intel_pstate_driver __read_mostly;
301

302 303 304
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
305

306
static struct global_params global;
307

308
static DEFINE_MUTEX(intel_pstate_driver_lock);
309 310
static DEFINE_MUTEX(intel_pstate_limits_lock);

311
#ifdef CONFIG_ACPI
312 313 314 315 316 317 318 319 320 321

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

	return acpi_ppc;
}

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
#ifdef CONFIG_ACPI_CPPC_LIB

/* The work item is needed to avoid CPU hotplug locking issues */
static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
{
	sched_set_itmt_support();
}

static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);

static void intel_pstate_set_itmt_prio(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return;

	/*
	 * The priorities can be set regardless of whether or not
	 * sched_set_itmt_support(true) has been called and it is valid to
	 * update them at any time after it has been called.
	 */
	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);

	if (max_highest_perf <= min_highest_perf) {
		if (cppc_perf.highest_perf > max_highest_perf)
			max_highest_perf = cppc_perf.highest_perf;

		if (cppc_perf.highest_perf < min_highest_perf)
			min_highest_perf = cppc_perf.highest_perf;

		if (max_highest_perf > min_highest_perf) {
			/*
			 * This code can be run during CPU online under the
			 * CPU hotplug locks, so sched_set_itmt_support()
			 * cannot be called from here.  Queue up a work item
			 * to invoke it.
			 */
			schedule_work(&sched_itmt_work);
		}
	}
}
#else
static void intel_pstate_set_itmt_prio(int cpu)
{
}
#endif

373 374 375 376 377 378
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

379 380
	if (hwp_active) {
		intel_pstate_set_itmt_prio(policy->cpu);
381
		return;
382
	}
383

384
	if (!intel_pstate_get_ppc_enable_status())
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
427
	 * correct max turbo frequency based on the turbo state.
428 429
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
430
	if (!global.turbo_disabled)
431 432 433
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
434
	pr_debug("_PPC limits will be enforced\n");
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}
#else
454
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
455 456 457
{
}

458
static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
459 460 461 462
{
}
#endif

463 464 465 466 467 468 469
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
470
	global.turbo_disabled =
471 472 473 474
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

475 476 477
static int min_perf_pct_min(void)
{
	struct cpudata *cpu = all_cpu_data[0];
478
	int turbo_pstate = cpu->pstate.turbo_pstate;
479

480
	return turbo_pstate ?
481
		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
482 483
}

484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
{
	u64 epb;
	int ret;

	if (!static_cpu_has(X86_FEATURE_EPB))
		return -ENXIO;

	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return (s16)ret;

	return (s16)(epb & 0x0f);
}

static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
{
	s16 epp;

503 504 505 506 507 508 509 510 511 512 513
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * When hwp_req_data is 0, means that caller didn't read
		 * MSR_HWP_REQUEST, so need to read and get EPP.
		 */
		if (!hwp_req_data) {
			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
					    &hwp_req_data);
			if (epp)
				return epp;
		}
514
		epp = (hwp_req_data >> 24) & 0xff;
515
	} else {
516 517
		/* When there is no EPP present, HWP uses EPB settings */
		epp = intel_pstate_get_epb(cpu_data);
518
	}
519 520 521 522

	return epp;
}

523
static int intel_pstate_set_epb(int cpu, s16 pref)
524 525
{
	u64 epb;
526
	int ret;
527 528

	if (!static_cpu_has(X86_FEATURE_EPB))
529
		return -ENXIO;
530

531 532 533
	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return ret;
534 535 536

	epb = (epb & ~0x0f) | pref;
	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
537 538

	return 0;
539 540
}

541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
/*
 * EPP/EPB display strings corresponding to EPP index in the
 * energy_perf_strings[]
 *	index		String
 *-------------------------------------
 *	0		default
 *	1		performance
 *	2		balance_performance
 *	3		balance_power
 *	4		power
 */
static const char * const energy_perf_strings[] = {
	"default",
	"performance",
	"balance_performance",
	"balance_power",
	"power",
	NULL
};
560 561 562 563 564 565
static const unsigned int epp_values[] = {
	HWP_EPP_PERFORMANCE,
	HWP_EPP_BALANCE_PERFORMANCE,
	HWP_EPP_BALANCE_POWERSAVE,
	HWP_EPP_POWERSAVE
};
566 567 568 569 570 571 572 573 574 575 576

static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
{
	s16 epp;
	int index = -EINVAL;

	epp = intel_pstate_get_epp(cpu_data, 0);
	if (epp < 0)
		return epp;

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
577 578 579 580 581 582 583 584
		if (epp == HWP_EPP_PERFORMANCE)
			return 1;
		if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
			return 2;
		if (epp <= HWP_EPP_BALANCE_POWERSAVE)
			return 3;
		else
			return 4;
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
	} else if (static_cpu_has(X86_FEATURE_EPB)) {
		/*
		 * Range:
		 *	0x00-0x03	:	Performance
		 *	0x04-0x07	:	Balance performance
		 *	0x08-0x0B	:	Balance power
		 *	0x0C-0x0F	:	Power
		 * The EPB is a 4 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 2) + 1;
	}

	return index;
}

static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
					      int pref_index)
{
	int epp = -EINVAL;
	int ret;

	if (!pref_index)
		epp = cpu_data->epp_default;

	mutex_lock(&intel_pstate_limits_lock);

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		u64 value;

		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
		if (ret)
			goto return_pref;

		value &= ~GENMASK_ULL(31, 24);

		if (epp == -EINVAL)
623
			epp = epp_values[pref_index - 1];
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696

		value |= (u64)epp << 24;
		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
	} else {
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 2;
		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
	}
return_pref:
	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
}

static ssize_t show_energy_performance_available_preferences(
				struct cpufreq_policy *policy, char *buf)
{
	int i = 0;
	int ret = 0;

	while (energy_perf_strings[i] != NULL)
		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);

	ret += sprintf(&buf[ret], "\n");

	return ret;
}

cpufreq_freq_attr_ro(energy_performance_available_preferences);

static ssize_t store_energy_performance_preference(
		struct cpufreq_policy *policy, const char *buf, size_t count)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	char str_preference[21];
	int ret, i = 0;

	ret = sscanf(buf, "%20s", str_preference);
	if (ret != 1)
		return -EINVAL;

	while (energy_perf_strings[i] != NULL) {
		if (!strcmp(str_preference, energy_perf_strings[i])) {
			intel_pstate_set_energy_pref_index(cpu_data, i);
			return count;
		}
		++i;
	}

	return -EINVAL;
}

static ssize_t show_energy_performance_preference(
				struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	int preference;

	preference = intel_pstate_get_energy_pref_index(cpu_data);
	if (preference < 0)
		return preference;

	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
}

cpufreq_freq_attr_rw(energy_performance_preference);

static struct freq_attr *hwp_cpufreq_attrs[] = {
	&energy_performance_preference,
	&energy_performance_available_preferences,
	NULL,
};

697 698
static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
				     int *current_max)
D
Dirk Brandewie 已提交
699
{
700
	u64 cap;
701

702
	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
703
	WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
704
	if (global.no_turbo)
705
		*current_max = HWP_GUARANTEED_PERF(cap);
706
	else
707 708 709 710 711 712 713 714 715 716 717 718 719 720
		*current_max = HWP_HIGHEST_PERF(cap);

	*phy_max = HWP_HIGHEST_PERF(cap);
}

static void intel_pstate_hwp_set(unsigned int cpu)
{
	struct cpudata *cpu_data = all_cpu_data[cpu];
	int max, min;
	u64 value;
	s16 epp;

	max = cpu_data->max_perf_ratio;
	min = cpu_data->min_perf_ratio;
721

722 723
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
		min = max;
724

725
	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
D
Dirk Brandewie 已提交
726

727 728
	value &= ~HWP_MIN_PERF(~0L);
	value |= HWP_MIN_PERF(min);
729

730 731
	value &= ~HWP_MAX_PERF(~0L);
	value |= HWP_MAX_PERF(max);
732

733 734
	if (cpu_data->epp_policy == cpu_data->policy)
		goto skip_epp;
735

736
	cpu_data->epp_policy = cpu_data->policy;
737

738 739 740 741 742
	if (cpu_data->epp_saved >= 0) {
		epp = cpu_data->epp_saved;
		cpu_data->epp_saved = -EINVAL;
		goto update_epp;
	}
743

744 745 746 747 748 749
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
		epp = intel_pstate_get_epp(cpu_data, value);
		cpu_data->epp_powersave = epp;
		/* If EPP read was failed, then don't try to write */
		if (epp < 0)
			goto skip_epp;
750

751 752 753 754 755
		epp = 0;
	} else {
		/* skip setting EPP, when saved value is invalid */
		if (cpu_data->epp_powersave < 0)
			goto skip_epp;
756

757 758 759 760 761 762 763 764 765 766
		/*
		 * No need to restore EPP when it is not zero. This
		 * means:
		 *  - Policy is not changed
		 *  - user has manually changed
		 *  - Error reading EPB
		 */
		epp = intel_pstate_get_epp(cpu_data, value);
		if (epp)
			goto skip_epp;
767

768 769
		epp = cpu_data->epp_powersave;
	}
770
update_epp:
771 772 773 774 775
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		value &= ~GENMASK_ULL(31, 24);
		value |= (u64)epp << 24;
	} else {
		intel_pstate_set_epb(cpu, epp);
D
Dirk Brandewie 已提交
776
	}
777
skip_epp:
778
	WRITE_ONCE(cpu_data->hwp_req_cached, value);
779
	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
780
}
D
Dirk Brandewie 已提交
781

782 783 784 785 786 787 788 789 790 791 792 793
static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];

	if (!hwp_active)
		return 0;

	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);

	return 0;
}

794 795
static void intel_pstate_hwp_enable(struct cpudata *cpudata);

796 797 798 799 800
static int intel_pstate_resume(struct cpufreq_policy *policy)
{
	if (!hwp_active)
		return 0;

801 802
	mutex_lock(&intel_pstate_limits_lock);

803 804 805
	if (policy->cpu == 0)
		intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);

806
	all_cpu_data[policy->cpu]->epp_policy = 0;
807
	intel_pstate_hwp_set(policy->cpu);
808 809 810

	mutex_unlock(&intel_pstate_limits_lock);

811
	return 0;
812 813
}

814
static void intel_pstate_update_policies(void)
815
{
816 817 818 819
	int cpu;

	for_each_possible_cpu(cpu)
		cpufreq_update_policy(cpu);
D
Dirk Brandewie 已提交
820 821
}

822 823 824 825 826
/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
827
		return sprintf(buf, "%u\n", global.object);		\
828 829
	}

830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
static ssize_t intel_pstate_show_status(char *buf);
static int intel_pstate_update_status(const char *buf, size_t size);

static ssize_t show_status(struct kobject *kobj,
			   struct attribute *attr, char *buf)
{
	ssize_t ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_show_status(buf);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret;
}

static ssize_t store_status(struct kobject *a, struct attribute *b,
			    const char *buf, size_t count)
{
	char *p = memchr(buf, '\n', count);
	int ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_update_status(buf, p ? p - buf : count);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret < 0 ? ret : count;
}

858 859 860 861 862 863 864
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

865 866
	mutex_lock(&intel_pstate_driver_lock);

867
	if (!intel_pstate_driver) {
868 869 870 871
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

872 873 874 875
	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
876
	turbo_fp = div_fp(no_turbo, total);
877
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
878 879 880

	mutex_unlock(&intel_pstate_driver_lock);

881 882 883
	return sprintf(buf, "%u\n", turbo_pct);
}

884 885 886 887 888 889
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

890 891
	mutex_lock(&intel_pstate_driver_lock);

892
	if (!intel_pstate_driver) {
893 894 895 896
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

897 898
	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
899 900 901

	mutex_unlock(&intel_pstate_driver_lock);

902 903 904
	return sprintf(buf, "%u\n", total);
}

905 906 907 908 909
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

910 911
	mutex_lock(&intel_pstate_driver_lock);

912
	if (!intel_pstate_driver) {
913 914 915 916
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

917
	update_turbo_state();
918 919
	if (global.turbo_disabled)
		ret = sprintf(buf, "%u\n", global.turbo_disabled);
920
	else
921
		ret = sprintf(buf, "%u\n", global.no_turbo);
922

923 924
	mutex_unlock(&intel_pstate_driver_lock);

925 926 927
	return ret;
}

928
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
929
			      const char *buf, size_t count)
930 931 932
{
	unsigned int input;
	int ret;
933

934 935 936
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
937

938 939
	mutex_lock(&intel_pstate_driver_lock);

940
	if (!intel_pstate_driver) {
941 942 943 944
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

945 946
	mutex_lock(&intel_pstate_limits_lock);

947
	update_turbo_state();
948
	if (global.turbo_disabled) {
J
Joe Perches 已提交
949
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
950
		mutex_unlock(&intel_pstate_limits_lock);
951
		mutex_unlock(&intel_pstate_driver_lock);
952
		return -EPERM;
953
	}
D
Dirk Brandewie 已提交
954

955
	global.no_turbo = clamp_t(int, input, 0, 1);
956

957 958 959 960 961 962 963 964 965
	if (global.no_turbo) {
		struct cpudata *cpu = all_cpu_data[0];
		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;

		/* Squash the global minimum into the permitted range. */
		if (global.min_perf_pct > pct)
			global.min_perf_pct = pct;
	}

966 967
	mutex_unlock(&intel_pstate_limits_lock);

968 969
	intel_pstate_update_policies();

970 971
	mutex_unlock(&intel_pstate_driver_lock);

972 973 974 975
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
976
				  const char *buf, size_t count)
977 978 979
{
	unsigned int input;
	int ret;
980

981 982 983 984
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

985 986
	mutex_lock(&intel_pstate_driver_lock);

987
	if (!intel_pstate_driver) {
988 989 990 991
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

992 993
	mutex_lock(&intel_pstate_limits_lock);

994
	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
995

996 997
	mutex_unlock(&intel_pstate_limits_lock);

998 999
	intel_pstate_update_policies();

1000 1001
	mutex_unlock(&intel_pstate_driver_lock);

1002 1003 1004 1005
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1006
				  const char *buf, size_t count)
1007 1008 1009
{
	unsigned int input;
	int ret;
1010

1011 1012 1013
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1014

1015 1016
	mutex_lock(&intel_pstate_driver_lock);

1017
	if (!intel_pstate_driver) {
1018 1019 1020 1021
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1022 1023
	mutex_lock(&intel_pstate_limits_lock);

1024 1025
	global.min_perf_pct = clamp_t(int, input,
				      min_perf_pct_min(), global.max_perf_pct);
1026

1027 1028
	mutex_unlock(&intel_pstate_limits_lock);

1029 1030
	intel_pstate_update_policies();

1031 1032
	mutex_unlock(&intel_pstate_driver_lock);

1033 1034 1035
	return count;
}

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	return sprintf(buf, "%u\n", hwp_boost);
}

static ssize_t store_hwp_dynamic_boost(struct kobject *a, struct attribute *b,
				       const char *buf, size_t count)
{
	unsigned int input;
	int ret;

	ret = kstrtouint(buf, 10, &input);
	if (ret)
		return ret;

	mutex_lock(&intel_pstate_driver_lock);
	hwp_boost = !!input;
	intel_pstate_update_policies();
	mutex_unlock(&intel_pstate_driver_lock);

	return count;
}

1060 1061 1062
show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

1063
define_one_global_rw(status);
1064 1065 1066
define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
1067
define_one_global_ro(turbo_pct);
1068
define_one_global_ro(num_pstates);
1069
define_one_global_rw(hwp_dynamic_boost);
1070 1071

static struct attribute *intel_pstate_attributes[] = {
1072
	&status.attr,
1073
	&no_turbo.attr,
1074
	&turbo_pct.attr,
1075
	&num_pstates.attr,
1076 1077 1078
	NULL
};

1079
static const struct attribute_group intel_pstate_attr_group = {
1080 1081 1082
	.attrs = intel_pstate_attributes,
};

1083
static void __init intel_pstate_sysfs_expose_params(void)
1084
{
1085
	struct kobject *intel_pstate_kobject;
1086 1087 1088 1089
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
1090 1091 1092
	if (WARN_ON(!intel_pstate_kobject))
		return;

1093
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
	if (WARN_ON(rc))
		return;

	/*
	 * If per cpu limits are enforced there are no global limits, so
	 * return without creating max/min_perf_pct attributes
	 */
	if (per_cpu_limits)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
	WARN_ON(rc);

	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
	WARN_ON(rc);

1110 1111 1112 1113 1114
	if (hwp_active) {
		rc = sysfs_create_file(intel_pstate_kobject,
				       &hwp_dynamic_boost.attr);
		WARN_ON(rc);
	}
1115 1116
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
1117

1118
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
1119
{
1120
	/* First disable HWP notification interrupt as we don't process them */
1121 1122
	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1123

1124
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1125
	cpudata->epp_policy = 0;
1126 1127
	if (cpudata->epp_default == -EINVAL)
		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
D
Dirk Brandewie 已提交
1128 1129
}

1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
#define MSR_IA32_POWER_CTL_BIT_EE	19

/* Disable energy efficiency optimization */
static void intel_pstate_disable_ee(int cpu)
{
	u64 power_ctl;
	int ret;

	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
	if (ret)
		return;

	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
		pr_info("Disabling energy efficiency optimization\n");
		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
	}
}

1149
static int atom_get_min_pstate(void)
1150 1151
{
	u64 value;
1152

1153
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1154
	return (value >> 8) & 0x7F;
1155 1156
}

1157
static int atom_get_max_pstate(void)
1158 1159
{
	u64 value;
1160

1161
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1162
	return (value >> 16) & 0x7F;
1163
}
1164

1165
static int atom_get_turbo_pstate(void)
1166 1167
{
	u64 value;
1168

1169
	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
1170
	return value & 0x7F;
1171 1172
}

1173
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1174 1175 1176 1177 1178
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

1179
	val = (u64)pstate << 8;
1180
	if (global.no_turbo && !global.turbo_disabled)
1181 1182 1183 1184 1185 1186 1187
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1188
	vid = ceiling_fp(vid_fp);
1189

1190 1191 1192
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

1193
	return val | vid;
1194 1195
}

1196
static int silvermont_get_scaling(void)
1197 1198 1199
{
	u64 value;
	int i;
1200 1201 1202
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
1203 1204

	rdmsrl(MSR_FSB_FREQ, value);
1205 1206
	i = value & 0x7;
	WARN_ON(i > 4);
1207

1208 1209
	return silvermont_freq_table[i];
}
1210

1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
1225 1226
}

1227
static void atom_get_vid(struct cpudata *cpudata)
1228 1229 1230
{
	u64 value;

1231
	rdmsrl(MSR_ATOM_CORE_VIDS, value);
D
Dirk Brandewie 已提交
1232 1233
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1234 1235 1236 1237
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
1238

1239
	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1240
	cpudata->vid.turbo = value & 0x7f;
1241 1242
}

1243
static int core_get_min_pstate(void)
1244 1245
{
	u64 value;
1246

1247
	rdmsrl(MSR_PLATFORM_INFO, value);
1248 1249 1250
	return (value >> 40) & 0xFF;
}

1251
static int core_get_max_pstate_physical(void)
1252 1253
{
	u64 value;
1254

1255
	rdmsrl(MSR_PLATFORM_INFO, value);
1256 1257 1258
	return (value >> 8) & 0xFF;
}

1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
static int core_get_tdp_ratio(u64 plat_info)
{
	/* Check how many TDP levels present */
	if (plat_info & 0x600000000) {
		u64 tdp_ctrl;
		u64 tdp_ratio;
		int tdp_msr;
		int err;

		/* Get the TDP level (0, 1, 2) to get ratios */
		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
		if (err)
			return err;

		/* TDP MSR are continuous starting at 0x648 */
		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
		if (err)
			return err;

		/* For level 1 and 2, bits[23:16] contain the ratio */
		if (tdp_ctrl & 0x03)
			tdp_ratio >>= 16;

		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);

		return (int)tdp_ratio;
	}

	return -ENXIO;
}

1292
static int core_get_max_pstate(void)
1293
{
1294 1295 1296
	u64 tar;
	u64 plat_info;
	int max_pstate;
1297
	int tdp_ratio;
1298 1299 1300 1301 1302
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

1303 1304 1305 1306 1307 1308 1309 1310 1311
	tdp_ratio = core_get_tdp_ratio(plat_info);
	if (tdp_ratio <= 0)
		return max_pstate;

	if (hwp_active) {
		/* Turbo activation ratio is not used on HWP platforms */
		return tdp_ratio;
	}

1312 1313
	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
1314 1315
		int tar_levels;

1316
		/* Do some sanity checking for safety */
1317 1318 1319 1320
		tar_levels = tar & 0xff;
		if (tdp_ratio - 1 == tar_levels) {
			max_pstate = tar_levels;
			pr_debug("max_pstate=TAC %x\n", max_pstate);
1321 1322
		}
	}
1323

1324
	return max_pstate;
1325 1326
}

1327
static int core_get_turbo_pstate(void)
1328 1329 1330
{
	u64 value;
	int nont, ret;
1331

1332
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1333
	nont = core_get_max_pstate();
1334
	ret = (value) & 255;
1335 1336 1337 1338 1339
	if (ret <= nont)
		ret = nont;
	return ret;
}

1340 1341 1342 1343 1344
static inline int core_get_scaling(void)
{
	return 100000;
}

1345
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1346 1347 1348
{
	u64 val;

1349
	val = (u64)pstate << 8;
1350
	if (global.no_turbo && !global.turbo_disabled)
1351 1352
		val |= (u64)1 << 32;

1353
	return val;
1354 1355
}

1356 1357 1358 1359 1360
static int knl_get_aperf_mperf_shift(void)
{
	return 10;
}

1361 1362 1363 1364 1365
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1366
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1367 1368 1369 1370 1371 1372 1373
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1374
static int intel_pstate_get_base_pstate(struct cpudata *cpu)
1375
{
1376 1377
	return global.no_turbo || global.turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1378 1379
}

1380
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1381
{
1382 1383
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1384 1385 1386 1387 1388 1389 1390
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1391 1392
}

1393 1394 1395 1396 1397 1398 1399
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
1400
	int pstate;
1401 1402

	update_turbo_state();
1403
	pstate = intel_pstate_get_base_pstate(cpu);
1404
	pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1405
	intel_pstate_set_pstate(cpu, pstate);
1406 1407
}

1408 1409
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1410 1411
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1412
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1413
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1414
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1415 1416
	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1417

1418 1419 1420
	if (pstate_funcs.get_aperf_mperf_shift)
		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();

1421 1422
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1423 1424

	intel_pstate_set_min_pstate(cpu);
1425 1426
}

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
/*
 * Long hold time will keep high perf limits for long time,
 * which negatively impacts perf/watt for some workloads,
 * like specpower. 3ms is based on experiements on some
 * workoads.
 */
static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;

static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
{
	u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
	u32 max_limit = (hwp_req & 0xff00) >> 8;
	u32 min_limit = (hwp_req & 0xff);
	u32 boost_level1;

	/*
	 * Cases to consider (User changes via sysfs or boot time):
	 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
	 *	No boost, return.
	 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
	 *     Should result in one level boost only for P0.
	 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
	 *     Should result in two level boost:
	 *         (min + p1)/2 and P1.
	 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
	 *     Should result in three level boost:
	 *        (min + p1)/2, P1 and P0.
	 */

	/* If max and min are equal or already at max, nothing to boost */
	if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
		return;

	if (!cpu->hwp_boost_min)
		cpu->hwp_boost_min = min_limit;

	/* level at half way mark between min and guranteed */
	boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;

	if (cpu->hwp_boost_min < boost_level1)
		cpu->hwp_boost_min = boost_level1;
	else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
		cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
	else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
		 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
		cpu->hwp_boost_min = max_limit;
	else
		return;

	hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
	wrmsrl(MSR_HWP_REQUEST, hwp_req);
	cpu->last_update = cpu->sample.time;
}

static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
{
	if (cpu->hwp_boost_min) {
		bool expired;

		/* Check if we are idle for hold time to boost down */
		expired = time_after64(cpu->sample.time, cpu->last_update +
				       hwp_boost_hold_time_ns);
		if (expired) {
			wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
			cpu->hwp_boost_min = 0;
		}
	}
	cpu->last_update = cpu->sample.time;
}

1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
						      u64 time)
{
	cpu->sample.time = time;

	if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
		bool do_io = false;

		cpu->sched_flags = 0;
		/*
		 * Set iowait_boost flag and update time. Since IO WAIT flag
		 * is set all the time, we can't just conclude that there is
		 * some IO bound activity is scheduled on this CPU with just
		 * one occurrence. If we receive at least two in two
		 * consecutive ticks, then we treat as boost candidate.
		 */
		if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
			do_io = true;

		cpu->last_io_update = time;

		if (do_io)
			intel_pstate_hwp_boost_up(cpu);

	} else {
		intel_pstate_hwp_boost_down(cpu);
	}
}

1526 1527 1528
static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
						u64 time, unsigned int flags)
{
1529 1530 1531 1532 1533 1534
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);

	cpu->sched_flags |= flags;

	if (smp_processor_id() == cpu->cpu)
		intel_pstate_update_util_hwp_local(cpu, time);
1535 1536
}

1537
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1538
{
1539
	struct sample *sample = &cpu->sample;
1540

1541
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1542 1543
}

1544
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1545 1546
{
	u64 aperf, mperf;
1547
	unsigned long flags;
1548
	u64 tsc;
1549

1550
	local_irq_save(flags);
1551 1552
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1553
	tsc = rdtsc();
1554
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1555
		local_irq_restore(flags);
1556
		return false;
1557
	}
1558
	local_irq_restore(flags);
1559

1560
	cpu->last_sample_time = cpu->sample.time;
1561
	cpu->sample.time = time;
1562 1563
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1564
	cpu->sample.tsc =  tsc;
1565 1566
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1567
	cpu->sample.tsc -= cpu->prev_tsc;
1568

1569 1570
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1571
	cpu->prev_tsc = tsc;
1572 1573 1574 1575 1576 1577 1578
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
1579 1580 1581 1582 1583
	if (cpu->last_sample_time) {
		intel_pstate_calc_avg_perf(cpu);
		return true;
	}
	return false;
1584 1585
}

1586 1587
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1588
	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1589 1590
}

1591 1592
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1593 1594
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1595 1596
}

1597
static inline int32_t get_target_pstate(struct cpudata *cpu)
1598 1599
{
	struct sample *sample = &cpu->sample;
1600
	int32_t busy_frac, boost;
1601
	int target, avg_pstate;
1602

1603 1604
	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
			   sample->tsc);
1605

1606 1607
	boost = cpu->iowait_boost;
	cpu->iowait_boost >>= 1;
1608

1609 1610
	if (busy_frac < boost)
		busy_frac = boost;
1611

1612
	sample->busy_scaled = busy_frac * 100;
1613

1614
	target = global.no_turbo || global.turbo_disabled ?
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1633 1634
}

1635
static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1636
{
1637 1638
	int max_pstate = intel_pstate_get_base_pstate(cpu);
	int min_pstate;
1639

1640 1641
	min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
	max_pstate = max(min_pstate, cpu->max_perf_ratio);
1642
	return clamp_t(int, pstate, min_pstate, max_pstate);
1643 1644 1645 1646
}

static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
1647 1648 1649
	if (pstate == cpu->pstate.current_pstate)
		return;

1650
	cpu->pstate.current_pstate = pstate;
1651 1652 1653
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1654
static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1655
{
1656
	int from = cpu->pstate.current_pstate;
1657
	struct sample *sample;
1658
	int target_pstate;
1659

1660 1661
	update_turbo_state();

1662
	target_pstate = get_target_pstate(cpu);
1663 1664
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1665
	intel_pstate_update_pstate(cpu, target_pstate);
1666 1667

	sample = &cpu->sample;
1668
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1669
		fp_toint(sample->busy_scaled),
1670 1671 1672 1673 1674
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1675 1676
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1677 1678
}

1679
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1680
				     unsigned int flags)
1681
{
1682
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1683 1684
	u64 delta_ns;

1685 1686 1687 1688
	/* Don't allow remote callbacks */
	if (smp_processor_id() != cpu->cpu)
		return;

1689 1690
	if (flags & SCHED_CPUFREQ_IOWAIT) {
		cpu->iowait_boost = int_tofp(1);
1691 1692 1693 1694 1695 1696 1697 1698 1699
		cpu->last_update = time;
		/*
		 * The last time the busy was 100% so P-state was max anyway
		 * so avoid overhead of computation.
		 */
		if (fp_toint(cpu->sample.busy_scaled) == 100)
			return;

		goto set_pstate;
1700 1701 1702 1703 1704
	} else if (cpu->iowait_boost) {
		/* Clear iowait_boost if the CPU may have been idle. */
		delta_ns = time - cpu->last_update;
		if (delta_ns > TICK_NSEC)
			cpu->iowait_boost = 0;
1705
	}
1706
	cpu->last_update = time;
1707
	delta_ns = time - cpu->sample.time;
1708
	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1709
		return;
1710

1711
set_pstate:
1712 1713
	if (intel_pstate_sample(cpu, time))
		intel_pstate_adjust_pstate(cpu);
1714
}
1715

1716 1717 1718 1719 1720 1721 1722
static struct pstate_funcs core_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = core_get_turbo_pstate,
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
1723 1724
};

1725 1726 1727 1728 1729 1730 1731 1732
static const struct pstate_funcs silvermont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = silvermont_get_scaling,
	.get_vid = atom_get_vid,
1733 1734
};

1735 1736 1737 1738 1739 1740 1741 1742
static const struct pstate_funcs airmont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = airmont_get_scaling,
	.get_vid = atom_get_vid,
1743 1744
};

1745 1746 1747 1748 1749
static const struct pstate_funcs knl_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = knl_get_turbo_pstate,
1750
	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1751 1752
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
1753 1754
};

1755
#define ICPU(model, policy) \
1756 1757
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1758 1759

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_funcs),
	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_funcs),
	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_funcs),
	ICPU(INTEL_FAM6_IVYBRIDGE,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_CORE,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_funcs),
	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_X,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_ULT,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_funcs),
	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_X,		core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_funcs),
	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_funcs),
	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_funcs),
1778 1779
	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		core_funcs),
	ICPU(INTEL_FAM6_ATOM_GEMINI_LAKE,       core_funcs),
1780
	ICPU(INTEL_FAM6_SKYLAKE_X,		core_funcs),
1781 1782 1783 1784
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

1785
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1786 1787 1788
	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
D
Dirk Brandewie 已提交
1789 1790 1791
	{}
};

1792
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1793
	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1794 1795 1796
	{}
};

1797 1798 1799 1800
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1801 1802 1803
	cpu = all_cpu_data[cpunum];

	if (!cpu) {
1804
		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1805 1806 1807 1808 1809
		if (!cpu)
			return -ENOMEM;

		all_cpu_data[cpunum] = cpu;

1810 1811 1812
		cpu->epp_default = -EINVAL;
		cpu->epp_powersave = -EINVAL;
		cpu->epp_saved = -EINVAL;
1813
	}
1814 1815 1816 1817

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1818

1819
	if (hwp_active) {
1820 1821 1822 1823 1824 1825
		const struct x86_cpu_id *id;

		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
		if (id)
			intel_pstate_disable_ee(cpunum);

1826
		intel_pstate_hwp_enable(cpu);
1827
	}
1828

1829
	intel_pstate_get_cpu_pstates(cpu);
1830

J
Joe Perches 已提交
1831
	pr_debug("controlling: cpu %d\n", cpunum);
1832 1833 1834 1835

	return 0;
}

1836
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1837
{
1838 1839
	struct cpudata *cpu = all_cpu_data[cpu_num];

1840
	if (hwp_active && !hwp_boost)
1841 1842
		return;

1843 1844 1845
	if (cpu->update_util_set)
		return;

1846 1847
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
1848
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1849 1850 1851
				     (hwp_active ?
				      intel_pstate_update_util_hwp :
				      intel_pstate_update_util));
1852
	cpu->update_util_set = true;
1853 1854 1855 1856
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
1857 1858 1859 1860 1861
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

1862
	cpufreq_remove_update_util_hook(cpu);
1863
	cpu_data->update_util_set = false;
1864 1865 1866
	synchronize_sched();
}

1867 1868 1869 1870 1871 1872
static int intel_pstate_get_max_freq(struct cpudata *cpu)
{
	return global.turbo_disabled || global.no_turbo ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
}

1873
static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1874
					    struct cpudata *cpu)
1875
{
1876
	int max_freq = intel_pstate_get_max_freq(cpu);
1877
	int32_t max_policy_perf, min_policy_perf;
1878
	int max_state, turbo_max;
1879

1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
	/*
	 * HWP needs some special consideration, because on BDX the
	 * HWP_REQUEST uses abstract value to represent performance
	 * rather than pure ratios.
	 */
	if (hwp_active) {
		intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
	} else {
		max_state = intel_pstate_get_base_pstate(cpu);
		turbo_max = cpu->pstate.turbo_pstate;
	}

	max_policy_perf = max_state * policy->max / max_freq;
1893
	if (policy->max == policy->min) {
1894
		min_policy_perf = max_policy_perf;
1895
	} else {
1896
		min_policy_perf = max_state * policy->min / max_freq;
1897 1898
		min_policy_perf = clamp_t(int32_t, min_policy_perf,
					  0, max_policy_perf);
1899
	}
1900

1901 1902 1903 1904
	pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
		 policy->cpu, max_state,
		 min_policy_perf, max_policy_perf);

1905
	/* Normalize user input to [min_perf, max_perf] */
1906
	if (per_cpu_limits) {
1907 1908
		cpu->min_perf_ratio = min_policy_perf;
		cpu->max_perf_ratio = max_policy_perf;
1909 1910 1911 1912
	} else {
		int32_t global_min, global_max;

		/* Global limits are in percent of the maximum turbo P-state. */
1913 1914
		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
1915
		global_min = clamp_t(int32_t, global_min, 0, global_max);
1916

1917 1918
		pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
			 global_min, global_max);
1919

1920 1921 1922 1923
		cpu->min_perf_ratio = max(min_policy_perf, global_min);
		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
		cpu->max_perf_ratio = min(max_policy_perf, global_max);
		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
1924

1925 1926 1927
		/* Make sure min_perf <= max_perf */
		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
					  cpu->max_perf_ratio);
1928

1929 1930 1931 1932
	}
	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
		 cpu->max_perf_ratio,
		 cpu->min_perf_ratio);
1933 1934
}

1935 1936
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
1937 1938
	struct cpudata *cpu;

1939 1940 1941
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

1942 1943 1944
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

1945
	cpu = all_cpu_data[policy->cpu];
1946 1947
	cpu->policy = policy->policy;

1948 1949
	mutex_lock(&intel_pstate_limits_lock);

1950
	intel_pstate_update_perf_limits(policy, cpu);
1951

1952
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
1953 1954 1955 1956 1957 1958
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
1959 1960
	} else {
		intel_pstate_set_update_util_hook(policy->cpu);
1961 1962
	}

1963 1964 1965 1966 1967 1968 1969 1970
	if (hwp_active) {
		/*
		 * When hwp_boost was active before and dynamically it
		 * was turned off, in that case we need to clear the
		 * update util hook.
		 */
		if (!hwp_boost)
			intel_pstate_clear_update_util_hook(policy->cpu);
1971
		intel_pstate_hwp_set(policy->cpu);
1972
	}
D
Dirk Brandewie 已提交
1973

1974 1975
	mutex_unlock(&intel_pstate_limits_lock);

1976 1977 1978
	return 0;
}

1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
					 struct cpudata *cpu)
{
	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_freq) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
	}
}

1990 1991
static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
1992 1993 1994
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
1995 1996
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
1997

1998
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1999
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2000 2001
		return -EINVAL;

2002 2003
	intel_pstate_adjust_policy_max(policy, cpu);

2004 2005 2006
	return 0;
}

2007 2008 2009 2010 2011
static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
{
	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
}

2012
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2013
{
2014
	pr_debug("CPU %d exiting\n", policy->cpu);
2015

2016
	intel_pstate_clear_update_util_hook(policy->cpu);
2017 2018 2019
	if (hwp_active)
		intel_pstate_hwp_save_state(policy);
	else
2020 2021
		intel_cpufreq_stop_cpu(policy);
}
2022

2023 2024 2025
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);
2026

2027
	policy->fast_switch_possible = false;
D
Dirk Brandewie 已提交
2028

2029
	return 0;
2030 2031
}

2032
static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2033 2034
{
	struct cpudata *cpu;
2035
	int rc;
2036 2037 2038 2039 2040 2041 2042

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

2043 2044
	cpu->max_perf_ratio = 0xFF;
	cpu->min_perf_ratio = 0;
2045

2046 2047
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2048 2049

	/* cpuinfo and default policy values */
2050
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2051
	update_turbo_state();
2052
	policy->cpuinfo.max_freq = global.turbo_disabled ?
2053 2054 2055
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

2056
	intel_pstate_init_acpi_perf_limits(policy);
2057

2058 2059
	policy->fast_switch_possible = true;

2060 2061 2062
	return 0;
}

2063
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2064
{
2065 2066 2067 2068 2069
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

2070
	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2071 2072 2073
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2074 2075 2076 2077

	return 0;
}

2078
static struct cpufreq_driver intel_pstate = {
2079 2080 2081
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
2082
	.suspend	= intel_pstate_hwp_save_state,
2083
	.resume		= intel_pstate_resume,
2084
	.init		= intel_pstate_cpu_init,
2085
	.exit		= intel_pstate_cpu_exit,
2086
	.stop_cpu	= intel_pstate_stop_cpu,
2087 2088 2089
	.name		= "intel_pstate",
};

2090 2091 2092 2093 2094
static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2095 2096
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2097

2098
	intel_pstate_adjust_policy_max(policy, cpu);
2099

2100 2101
	intel_pstate_update_perf_limits(policy, cpu);

2102 2103 2104
	return 0;
}

2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
/* Use of trace in passive mode:
 *
 * In passive mode the trace core_busy field (also known as the
 * performance field, and lablelled as such on the graphs; also known as
 * core_avg_perf) is not needed and so is re-assigned to indicate if the
 * driver call was via the normal or fast switch path. Various graphs
 * output from the intel_pstate_tracer.py utility that include core_busy
 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
 * so we use 10 to indicate the the normal path through the driver, and
 * 90 to indicate the fast switch path through the driver.
 * The scaled_busy field is not used, and is set to 0.
 */

#define	INTEL_PSTATE_TRACE_TARGET 10
#define	INTEL_PSTATE_TRACE_FAST_SWITCH 90

static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
{
	struct sample *sample;

	if (!trace_pstate_sample_enabled())
		return;

	if (!intel_pstate_sample(cpu, ktime_get()))
		return;

	sample = &cpu->sample;
	trace_pstate_sample(trace_type,
		0,
		old_pstate,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
}

2143 2144 2145 2146 2147 2148
static int intel_cpufreq_target(struct cpufreq_policy *policy,
				unsigned int target_freq,
				unsigned int relation)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct cpufreq_freqs freqs;
2149
	int target_pstate, old_pstate;
2150

2151 2152
	update_turbo_state();

2153
	freqs.old = policy->cur;
2154
	freqs.new = target_freq;
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168

	cpufreq_freq_transition_begin(policy, &freqs);
	switch (relation) {
	case CPUFREQ_RELATION_L:
		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
		break;
	case CPUFREQ_RELATION_H:
		target_pstate = freqs.new / cpu->pstate.scaling;
		break;
	default:
		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
		break;
	}
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2169
	old_pstate = cpu->pstate.current_pstate;
2170 2171 2172 2173 2174
	if (target_pstate != cpu->pstate.current_pstate) {
		cpu->pstate.current_pstate = target_pstate;
		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
			      pstate_funcs.get_val(cpu, target_pstate));
	}
2175
	freqs.new = target_pstate * cpu->pstate.scaling;
2176
	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2177 2178 2179 2180 2181 2182 2183 2184 2185
	cpufreq_freq_transition_end(policy, &freqs, false);

	return 0;
}

static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
					      unsigned int target_freq)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
2186
	int target_pstate, old_pstate;
2187

2188 2189
	update_turbo_state();

2190
	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2191
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2192
	old_pstate = cpu->pstate.current_pstate;
2193
	intel_pstate_update_pstate(cpu, target_pstate);
2194
	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2195
	return target_pstate * cpu->pstate.scaling;
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
}

static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2206
	policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
	policy->cur = policy->cpuinfo.min_freq;

	return 0;
}

static struct cpufreq_driver intel_cpufreq = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_cpufreq_verify_policy,
	.target		= intel_cpufreq_target,
	.fast_switch	= intel_cpufreq_fast_switch,
	.init		= intel_cpufreq_cpu_init,
	.exit		= intel_pstate_cpu_exit,
	.stop_cpu	= intel_cpufreq_stop_cpu,
	.name		= "intel_cpufreq",
};

2224
static struct cpufreq_driver *default_driver = &intel_pstate;
2225

2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
static void intel_pstate_driver_cleanup(void)
{
	unsigned int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			if (intel_pstate_driver == &intel_pstate)
				intel_pstate_clear_update_util_hook(cpu);

			kfree(all_cpu_data[cpu]);
			all_cpu_data[cpu] = NULL;
		}
	}
	put_online_cpus();
2241
	intel_pstate_driver = NULL;
2242 2243
}

2244
static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2245 2246 2247
{
	int ret;

2248 2249
	memset(&global, 0, sizeof(global));
	global.max_perf_pct = 100;
2250

2251
	intel_pstate_driver = driver;
2252 2253 2254 2255 2256 2257
	ret = cpufreq_register_driver(intel_pstate_driver);
	if (ret) {
		intel_pstate_driver_cleanup();
		return ret;
	}

2258 2259
	global.min_perf_pct = min_perf_pct_min();

2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
	return 0;
}

static int intel_pstate_unregister_driver(void)
{
	if (hwp_active)
		return -EBUSY;

	cpufreq_unregister_driver(intel_pstate_driver);
	intel_pstate_driver_cleanup();

	return 0;
}

static ssize_t intel_pstate_show_status(char *buf)
{
2276
	if (!intel_pstate_driver)
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
		return sprintf(buf, "off\n");

	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
					"active" : "passive");
}

static int intel_pstate_update_status(const char *buf, size_t size)
{
	int ret;

	if (size == 3 && !strncmp(buf, "off", size))
2288
		return intel_pstate_driver ?
2289 2290 2291
			intel_pstate_unregister_driver() : -EINVAL;

	if (size == 6 && !strncmp(buf, "active", size)) {
2292
		if (intel_pstate_driver) {
2293 2294 2295 2296 2297 2298 2299 2300
			if (intel_pstate_driver == &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2301
		return intel_pstate_register_driver(&intel_pstate);
2302 2303 2304
	}

	if (size == 7 && !strncmp(buf, "passive", size)) {
2305
		if (intel_pstate_driver) {
2306
			if (intel_pstate_driver == &intel_cpufreq)
2307 2308 2309 2310 2311 2312 2313
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2314
		return intel_pstate_register_driver(&intel_cpufreq);
2315 2316 2317 2318 2319
	}

	return -EINVAL;
}

2320 2321 2322
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
2323
static unsigned int force_load __initdata;
2324

2325
static int __init intel_pstate_msrs_not_valid(void)
2326
{
2327
	if (!pstate_funcs.get_max() ||
2328 2329
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
2330 2331 2332 2333
		return -ENODEV;

	return 0;
}
2334

2335
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2336 2337
{
	pstate_funcs.get_max   = funcs->get_max;
2338
	pstate_funcs.get_max_physical = funcs->get_max_physical;
2339 2340
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
2341
	pstate_funcs.get_scaling = funcs->get_scaling;
2342
	pstate_funcs.get_val   = funcs->get_val;
2343
	pstate_funcs.get_vid   = funcs->get_vid;
2344
	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2345 2346
}

2347
#ifdef CONFIG_ACPI
2348

2349
static bool __init intel_pstate_no_acpi_pss(void)
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

2378
static bool __init intel_pstate_has_acpi_ppc(void)
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

2398
/* Hardware vendor-specific info that has its own power management modes */
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
static struct acpi_platform_list plat_info[] __initdata = {
	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{ } /* End */
2416 2417
};

2418
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2419
{
D
Dirk Brandewie 已提交
2420 2421
	const struct x86_cpu_id *id;
	u64 misc_pwr;
2422
	int idx;
D
Dirk Brandewie 已提交
2423 2424 2425 2426 2427 2428 2429

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
2430

2431 2432
	idx = acpi_match_platform_list(plat_info);
	if (idx < 0)
2433 2434
		return false;

2435 2436 2437 2438 2439
	switch (plat_info[idx].data) {
	case PSS:
		return intel_pstate_no_acpi_pss();
	case PPC:
		return intel_pstate_has_acpi_ppc() && !force_load;
2440 2441 2442 2443
	}

	return false;
}
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453

static void intel_pstate_request_control_from_smm(void)
{
	/*
	 * It may be unsafe to request P-states control from SMM if _PPC support
	 * has not been enabled.
	 */
	if (acpi_ppc)
		acpi_processor_pstate_control();
}
2454 2455
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2456
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2457
static inline void intel_pstate_request_control_from_smm(void) {}
2458 2459
#endif /* CONFIG_ACPI */

2460 2461 2462 2463 2464
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
	{}
};

2465 2466
static int __init intel_pstate_init(void)
{
2467
	int rc;
2468

2469 2470 2471
	if (no_load)
		return -ENODEV;

2472
	if (x86_match_cpu(hwp_support_ids)) {
2473
		copy_cpu_funcs(&core_funcs);
2474
		if (!no_hwp) {
2475 2476 2477 2478 2479 2480
			hwp_active++;
			intel_pstate.attr = hwp_cpufreq_attrs;
			goto hwp_cpu_matched;
		}
	} else {
		const struct x86_cpu_id *id;
2481

2482 2483 2484
		id = x86_match_cpu(intel_pstate_cpu_ids);
		if (!id)
			return -ENODEV;
2485

2486
		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2487
	}
2488

2489 2490 2491
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

2492 2493 2494 2495 2496 2497 2498 2499
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

2500 2501 2502
	if (!hwp_active && hwp_only)
		return -ENOTSUPP;

J
Joe Perches 已提交
2503
	pr_info("Intel P-state driver initializing\n");
2504

2505
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2506 2507 2508
	if (!all_cpu_data)
		return -ENOMEM;

2509 2510
	intel_pstate_request_control_from_smm();

2511
	intel_pstate_sysfs_expose_params();
2512

2513
	mutex_lock(&intel_pstate_driver_lock);
2514
	rc = intel_pstate_register_driver(default_driver);
2515
	mutex_unlock(&intel_pstate_driver_lock);
2516 2517
	if (rc)
		return rc;
2518

2519
	if (hwp_active)
J
Joe Perches 已提交
2520
		pr_info("HWP enabled\n");
2521

2522
	return 0;
2523 2524 2525
}
device_initcall(intel_pstate_init);

2526 2527 2528 2529 2530
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

2531
	if (!strcmp(str, "disable")) {
2532
		no_load = 1;
2533 2534
	} else if (!strcmp(str, "passive")) {
		pr_info("Passive mode enabled\n");
2535
		default_driver = &intel_cpufreq;
2536 2537
		no_hwp = 1;
	}
2538
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
2539
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
2540
		no_hwp = 1;
2541
	}
2542 2543
	if (!strcmp(str, "force"))
		force_load = 1;
2544 2545
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
2546 2547
	if (!strcmp(str, "per_cpu_perf_limits"))
		per_cpu_limits = true;
2548 2549 2550 2551 2552 2553

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

2554 2555 2556 2557
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

2558 2559 2560
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");