intel_pstate.c 64.5 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

J
Joe Perches 已提交
13 14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

15 16 17 18 19 20 21
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
22
#include <linux/sched/cpufreq.h>
23 24 25 26 27 28 29
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
30
#include <linux/acpi.h>
31
#include <linux/vmalloc.h>
32 33 34 35 36
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
37
#include <asm/cpufeature.h>
38
#include <asm/intel-family.h>
39

40 41 42
#define INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
#define INTEL_PSTATE_HWP_SAMPLING_INTERVAL	(50 * NSEC_PER_MSEC)

43
#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
44
#define INTEL_CPUFREQ_TRANSITION_DELAY		500
45

46 47
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
48
#include <acpi/cppc_acpi.h>
49 50
#endif

51
#define FRAC_BITS 8
52 53
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
54

55 56
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
57 58
#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
59

60 61 62 63 64
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

65
static inline int32_t div_fp(s64 x, s64 y)
66
{
67
	return div64_s64((int64_t)x << FRAC_BITS, y);
68 69
}

70 71 72 73 74 75 76 77 78 79 80
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

81 82 83 84 85
static inline int32_t percent_fp(int percent)
{
	return div_fp(percent, 100);
}

86 87 88 89 90 91 92 93 94 95
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

96 97 98 99 100
static inline int32_t percent_ext_fp(int percent)
{
	return div_ext_fp(percent, 100);
}

101 102
/**
 * struct sample -	Store performance sample
103
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
104 105
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
106
 *			P state. This can be different than core_avg_perf
107 108 109 110 111 112 113 114 115 116 117 118
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
119
struct sample {
120
	int32_t core_avg_perf;
121
	int32_t busy_scaled;
122 123
	u64 aperf;
	u64 mperf;
124
	u64 tsc;
125
	u64 time;
126 127
};

128 129 130 131 132 133 134 135 136 137 138
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
139 140
 * @max_freq:		@max_pstate frequency in cpufreq units
 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
141 142 143
 *
 * Stores the per cpu model P state limits and current P state.
 */
144 145 146 147
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
148
	int	max_pstate_physical;
149
	int	scaling;
150
	int	turbo_pstate;
151 152
	unsigned int max_freq;
	unsigned int turbo_freq;
153 154
};

155 156 157 158 159 160 161 162 163 164 165 166 167
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
168
struct vid_data {
169 170 171
	int min;
	int max;
	int turbo;
172 173 174
	int32_t ratio;
};

175 176 177 178 179 180 181 182 183 184 185 186
/**
 * struct _pid -	Stores PID data
 * @setpoint:		Target set point for busyness or performance
 * @integral:		Storage for accumulated error values
 * @p_gain:		PID proportional gain
 * @i_gain:		PID integral gain
 * @d_gain:		PID derivative gain
 * @deadband:		PID deadband
 * @last_err:		Last error storage for integral part of PID calculation
 *
 * Stores PID coefficients and last error for PID controller.
 */
187 188 189 190 191 192 193
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
194
	int32_t last_err;
195 196
};

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
/**
 * struct global_params - Global parameters, mostly tunable via sysfs.
 * @no_turbo:		Whether or not to use turbo P-states.
 * @turbo_disabled:	Whethet or not turbo P-states are available at all,
 *			based on the MSR_IA32_MISC_ENABLE value and whether or
 *			not the maximum reported turbo P-state is different from
 *			the maximum reported non-turbo one.
 * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 */
struct global_params {
	bool no_turbo;
	bool turbo_disabled;
	int max_perf_pct;
	int min_perf_pct;
214 215
};

216 217 218
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
219
 * @policy:		CPUFreq policy value
220
 * @update_util:	CPUFreq utility callback information
221
 * @update_util_set:	CPUFreq utility callback is set
222 223
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
224 225 226 227 228 229 230 231 232 233
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @pid:		Stores PID parameters for this CPU
 * @last_sample_time:	Last Sample time
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
234 235
 * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
 * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
236 237
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
238 239 240
 * @epp_powersave:	Last saved HWP energy performance preference
 *			(EPP) or energy performance bias (EPB),
 *			when policy switched to performance
241
 * @epp_policy:		Last saved policy used to set EPP/EPB
242 243 244 245
 * @epp_default:	Power on default HWP energy performance
 *			preference/bias
 * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
 *			operation
246 247 248
 *
 * This structure stores per CPU instance data for all CPUs.
 */
249 250 251
struct cpudata {
	int cpu;

252
	unsigned int policy;
253
	struct update_util_data update_util;
254
	bool   update_util_set;
255 256

	struct pstate_data pstate;
257
	struct vid_data vid;
258 259
	struct _pid pid;

260
	u64	last_update;
261
	u64	last_sample_time;
262 263
	u64	prev_aperf;
	u64	prev_mperf;
264
	u64	prev_tsc;
265
	u64	prev_cummulative_iowait;
266
	struct sample sample;
267 268
	int32_t	min_perf_ratio;
	int32_t	max_perf_ratio;
269 270 271 272
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
273
	unsigned int iowait_boost;
274
	s16 epp_powersave;
275
	s16 epp_policy;
276 277
	s16 epp_default;
	s16 epp_saved;
278 279 280
};

static struct cpudata **all_cpu_data;
281 282

/**
283
 * struct pstate_adjust_policy - Stores static PID configuration data
284 285 286 287 288 289 290 291 292 293
 * @sample_rate_ms:	PID calculation sample rate in ms
 * @sample_rate_ns:	Sample rate calculation in ns
 * @deadband:		PID deadband
 * @setpoint:		PID Setpoint
 * @p_gain_pct:		PID proportional gain
 * @i_gain_pct:		PID integral gain
 * @d_gain_pct:		PID derivative gain
 *
 * Stores per CPU model static PID configuration data.
 */
294 295
struct pstate_adjust_policy {
	int sample_rate_ms;
296
	s64 sample_rate_ns;
297 298 299 300 301 302 303
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

304 305 306 307 308 309 310 311 312
/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
313
 * @update_util:	Active mode utilization update callback.
314 315 316 317
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
318 319
struct pstate_funcs {
	int (*get_max)(void);
320
	int (*get_max_physical)(void);
321 322
	int (*get_min)(void);
	int (*get_turbo)(void);
323
	int (*get_scaling)(void);
324
	u64 (*get_val)(struct cpudata*, int pstate);
325
	void (*get_vid)(struct cpudata *);
326 327
	void (*update_util)(struct update_util_data *data, u64 time,
			    unsigned int flags);
328 329
};

330
static struct pstate_funcs pstate_funcs __read_mostly;
331 332 333 334 335 336 337 338 339 340
static struct pstate_adjust_policy pid_params __read_mostly = {
	.sample_rate_ms = 10,
	.sample_rate_ns = 10 * NSEC_PER_MSEC,
	.deadband = 0,
	.setpoint = 97,
	.p_gain_pct = 20,
	.d_gain_pct = 0,
	.i_gain_pct = 0,
};

341
static int hwp_active __read_mostly;
342
static bool per_cpu_limits __read_mostly;
343

344
static struct cpufreq_driver *intel_pstate_driver __read_mostly;
345

346 347 348
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
349

350
static struct global_params global;
351

352
static DEFINE_MUTEX(intel_pstate_driver_lock);
353 354
static DEFINE_MUTEX(intel_pstate_limits_lock);

355
#ifdef CONFIG_ACPI
356 357 358 359 360 361 362 363 364 365

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

	return acpi_ppc;
}

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
#ifdef CONFIG_ACPI_CPPC_LIB

/* The work item is needed to avoid CPU hotplug locking issues */
static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
{
	sched_set_itmt_support();
}

static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);

static void intel_pstate_set_itmt_prio(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return;

	/*
	 * The priorities can be set regardless of whether or not
	 * sched_set_itmt_support(true) has been called and it is valid to
	 * update them at any time after it has been called.
	 */
	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);

	if (max_highest_perf <= min_highest_perf) {
		if (cppc_perf.highest_perf > max_highest_perf)
			max_highest_perf = cppc_perf.highest_perf;

		if (cppc_perf.highest_perf < min_highest_perf)
			min_highest_perf = cppc_perf.highest_perf;

		if (max_highest_perf > min_highest_perf) {
			/*
			 * This code can be run during CPU online under the
			 * CPU hotplug locks, so sched_set_itmt_support()
			 * cannot be called from here.  Queue up a work item
			 * to invoke it.
			 */
			schedule_work(&sched_itmt_work);
		}
	}
}
#else
static void intel_pstate_set_itmt_prio(int cpu)
{
}
#endif

417 418 419 420 421 422
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

423 424
	if (hwp_active) {
		intel_pstate_set_itmt_prio(policy->cpu);
425
		return;
426
	}
427

428
	if (!intel_pstate_get_ppc_enable_status())
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
471
	 * correct max turbo frequency based on the turbo state.
472 473
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
474
	if (!global.turbo_disabled)
475 476 477
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
478
	pr_debug("_PPC limits will be enforced\n");
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}
#else
498
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
499 500 501
{
}

502
static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
503 504 505 506
{
}
#endif

507
static signed int pid_calc(struct _pid *pid, int32_t busy)
508
{
509
	signed int result;
510 511 512
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

513
	fp_error = pid->setpoint - busy;
514

515
	if (abs(fp_error) <= pid->deadband)
516 517 518 519 520 521
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

522 523 524 525 526 527 528 529
	/*
	 * We limit the integral here so that it will never
	 * get higher than 30.  This prevents it from becoming
	 * too large an input over long periods of time and allows
	 * it to get factored out sooner.
	 *
	 * The value of 30 was chosen through experimentation.
	 */
530 531 532 533 534 535
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

536 537
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
538 539

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
540
	result = result + (1 << (FRAC_BITS-1));
541 542 543
	return (signed int)fp_toint(result);
}

544
static inline void intel_pstate_pid_reset(struct cpudata *cpu)
545
{
546
	struct _pid *pid = &cpu->pid;
547

548 549 550 551 552 553 554
	pid->p_gain = percent_fp(pid_params.p_gain_pct);
	pid->d_gain = percent_fp(pid_params.d_gain_pct);
	pid->i_gain = percent_fp(pid_params.i_gain_pct);
	pid->setpoint = int_tofp(pid_params.setpoint);
	pid->last_err  = pid->setpoint - int_tofp(100);
	pid->deadband  = int_tofp(pid_params.deadband);
	pid->integral  = 0;
555 556
}

557 558 559 560 561 562 563
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
564
	global.turbo_disabled =
565 566 567 568
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

569 570 571
static int min_perf_pct_min(void)
{
	struct cpudata *cpu = all_cpu_data[0];
572
	int turbo_pstate = cpu->pstate.turbo_pstate;
573

574 575
	return turbo_pstate ?
		DIV_ROUND_UP(cpu->pstate.min_pstate * 100, turbo_pstate) : 0;
576 577
}

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
{
	u64 epb;
	int ret;

	if (!static_cpu_has(X86_FEATURE_EPB))
		return -ENXIO;

	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return (s16)ret;

	return (s16)(epb & 0x0f);
}

static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
{
	s16 epp;

597 598 599 600 601 602 603 604 605 606 607
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * When hwp_req_data is 0, means that caller didn't read
		 * MSR_HWP_REQUEST, so need to read and get EPP.
		 */
		if (!hwp_req_data) {
			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
					    &hwp_req_data);
			if (epp)
				return epp;
		}
608
		epp = (hwp_req_data >> 24) & 0xff;
609
	} else {
610 611
		/* When there is no EPP present, HWP uses EPB settings */
		epp = intel_pstate_get_epb(cpu_data);
612
	}
613 614 615 616

	return epp;
}

617
static int intel_pstate_set_epb(int cpu, s16 pref)
618 619
{
	u64 epb;
620
	int ret;
621 622

	if (!static_cpu_has(X86_FEATURE_EPB))
623
		return -ENXIO;
624

625 626 627
	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return ret;
628 629 630

	epb = (epb & ~0x0f) | pref;
	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
631 632

	return 0;
633 634
}

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
/*
 * EPP/EPB display strings corresponding to EPP index in the
 * energy_perf_strings[]
 *	index		String
 *-------------------------------------
 *	0		default
 *	1		performance
 *	2		balance_performance
 *	3		balance_power
 *	4		power
 */
static const char * const energy_perf_strings[] = {
	"default",
	"performance",
	"balance_performance",
	"balance_power",
	"power",
	NULL
};

static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
{
	s16 epp;
	int index = -EINVAL;

	epp = intel_pstate_get_epp(cpu_data, 0);
	if (epp < 0)
		return epp;

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * Range:
		 *	0x00-0x3F	:	Performance
		 *	0x40-0x7F	:	Balance performance
		 *	0x80-0xBF	:	Balance power
		 *	0xC0-0xFF	:	Power
		 * The EPP is a 8 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 6) + 1;
	} else if (static_cpu_has(X86_FEATURE_EPB)) {
		/*
		 * Range:
		 *	0x00-0x03	:	Performance
		 *	0x04-0x07	:	Balance performance
		 *	0x08-0x0B	:	Balance power
		 *	0x0C-0x0F	:	Power
		 * The EPB is a 4 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 2) + 1;
	}

	return index;
}

static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
					      int pref_index)
{
	int epp = -EINVAL;
	int ret;

	if (!pref_index)
		epp = cpu_data->epp_default;

	mutex_lock(&intel_pstate_limits_lock);

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		u64 value;

		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
		if (ret)
			goto return_pref;

		value &= ~GENMASK_ULL(31, 24);

		/*
		 * If epp is not default, convert from index into
		 * energy_perf_strings to epp value, by shifting 6
		 * bits left to use only top two bits in epp.
		 * The resultant epp need to shifted by 24 bits to
		 * epp position in MSR_HWP_REQUEST.
		 */
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 6;

		value |= (u64)epp << 24;
		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
	} else {
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 2;
		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
	}
return_pref:
	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
}

static ssize_t show_energy_performance_available_preferences(
				struct cpufreq_policy *policy, char *buf)
{
	int i = 0;
	int ret = 0;

	while (energy_perf_strings[i] != NULL)
		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);

	ret += sprintf(&buf[ret], "\n");

	return ret;
}

cpufreq_freq_attr_ro(energy_performance_available_preferences);

static ssize_t store_energy_performance_preference(
		struct cpufreq_policy *policy, const char *buf, size_t count)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	char str_preference[21];
	int ret, i = 0;

	ret = sscanf(buf, "%20s", str_preference);
	if (ret != 1)
		return -EINVAL;

	while (energy_perf_strings[i] != NULL) {
		if (!strcmp(str_preference, energy_perf_strings[i])) {
			intel_pstate_set_energy_pref_index(cpu_data, i);
			return count;
		}
		++i;
	}

	return -EINVAL;
}

static ssize_t show_energy_performance_preference(
				struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	int preference;

	preference = intel_pstate_get_energy_pref_index(cpu_data);
	if (preference < 0)
		return preference;

	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
}

cpufreq_freq_attr_rw(energy_performance_preference);

static struct freq_attr *hwp_cpufreq_attrs[] = {
	&energy_performance_preference,
	&energy_performance_available_preferences,
	NULL,
};

795 796
static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
				     int *current_max)
D
Dirk Brandewie 已提交
797
{
798
	u64 cap;
799

800 801
	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
	if (global.no_turbo)
802
		*current_max = HWP_GUARANTEED_PERF(cap);
803
	else
804 805 806 807 808 809 810 811 812 813 814 815 816 817
		*current_max = HWP_HIGHEST_PERF(cap);

	*phy_max = HWP_HIGHEST_PERF(cap);
}

static void intel_pstate_hwp_set(unsigned int cpu)
{
	struct cpudata *cpu_data = all_cpu_data[cpu];
	int max, min;
	u64 value;
	s16 epp;

	max = cpu_data->max_perf_ratio;
	min = cpu_data->min_perf_ratio;
818

819 820
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
		min = max;
821

822
	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
D
Dirk Brandewie 已提交
823

824 825
	value &= ~HWP_MIN_PERF(~0L);
	value |= HWP_MIN_PERF(min);
826

827 828
	value &= ~HWP_MAX_PERF(~0L);
	value |= HWP_MAX_PERF(max);
829

830 831
	if (cpu_data->epp_policy == cpu_data->policy)
		goto skip_epp;
832

833
	cpu_data->epp_policy = cpu_data->policy;
834

835 836 837 838 839
	if (cpu_data->epp_saved >= 0) {
		epp = cpu_data->epp_saved;
		cpu_data->epp_saved = -EINVAL;
		goto update_epp;
	}
840

841 842 843 844 845 846
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
		epp = intel_pstate_get_epp(cpu_data, value);
		cpu_data->epp_powersave = epp;
		/* If EPP read was failed, then don't try to write */
		if (epp < 0)
			goto skip_epp;
847

848 849 850 851 852
		epp = 0;
	} else {
		/* skip setting EPP, when saved value is invalid */
		if (cpu_data->epp_powersave < 0)
			goto skip_epp;
853

854 855 856 857 858 859 860 861 862 863
		/*
		 * No need to restore EPP when it is not zero. This
		 * means:
		 *  - Policy is not changed
		 *  - user has manually changed
		 *  - Error reading EPB
		 */
		epp = intel_pstate_get_epp(cpu_data, value);
		if (epp)
			goto skip_epp;
864

865 866
		epp = cpu_data->epp_powersave;
	}
867
update_epp:
868 869 870 871 872
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		value &= ~GENMASK_ULL(31, 24);
		value |= (u64)epp << 24;
	} else {
		intel_pstate_set_epb(cpu, epp);
D
Dirk Brandewie 已提交
873
	}
874 875
skip_epp:
	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
876
}
D
Dirk Brandewie 已提交
877

878 879 880 881 882 883 884 885 886 887 888 889
static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];

	if (!hwp_active)
		return 0;

	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);

	return 0;
}

890 891 892 893 894
static int intel_pstate_resume(struct cpufreq_policy *policy)
{
	if (!hwp_active)
		return 0;

895 896
	mutex_lock(&intel_pstate_limits_lock);

897
	all_cpu_data[policy->cpu]->epp_policy = 0;
898
	intel_pstate_hwp_set(policy->cpu);
899 900 901

	mutex_unlock(&intel_pstate_limits_lock);

902
	return 0;
903 904
}

905
static void intel_pstate_update_policies(void)
906
{
907 908 909 910
	int cpu;

	for_each_possible_cpu(cpu)
		cpufreq_update_policy(cpu);
D
Dirk Brandewie 已提交
911 912
}

913 914 915
/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
916 917
	unsigned int cpu;

918
	*(u32 *)data = val;
919
	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
920 921
	for_each_possible_cpu(cpu)
		if (all_cpu_data[cpu])
922
			intel_pstate_pid_reset(all_cpu_data[cpu]);
923

924 925
	return 0;
}
926

927 928 929 930 931
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
932
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
933

934 935
static struct dentry *debugfs_parent;

936 937 938
struct pid_param {
	char *name;
	void *value;
939
	struct dentry *dentry;
940 941 942
};

static struct pid_param pid_files[] = {
943 944 945 946 947 948 949
	{"sample_rate_ms", &pid_params.sample_rate_ms, },
	{"d_gain_pct", &pid_params.d_gain_pct, },
	{"i_gain_pct", &pid_params.i_gain_pct, },
	{"deadband", &pid_params.deadband, },
	{"setpoint", &pid_params.setpoint, },
	{"p_gain_pct", &pid_params.p_gain_pct, },
	{NULL, NULL, }
950 951
};

952
static void intel_pstate_debug_expose_params(void)
953
{
954
	int i;
955 956 957 958

	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
959 960 961 962 963 964 965 966 967

	for (i = 0; pid_files[i].name; i++) {
		struct dentry *dentry;

		dentry = debugfs_create_file(pid_files[i].name, 0660,
					     debugfs_parent, pid_files[i].value,
					     &fops_pid_param);
		if (!IS_ERR(dentry))
			pid_files[i].dentry = dentry;
968 969 970
	}
}

971 972 973 974 975 976 977 978 979 980
static void intel_pstate_debug_hide_params(void)
{
	int i;

	if (IS_ERR_OR_NULL(debugfs_parent))
		return;

	for (i = 0; pid_files[i].name; i++) {
		debugfs_remove(pid_files[i].dentry);
		pid_files[i].dentry = NULL;
981
	}
982 983 984

	debugfs_remove(debugfs_parent);
	debugfs_parent = NULL;
985 986 987 988 989 990 991 992 993
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
994
		return sprintf(buf, "%u\n", global.object);		\
995 996
	}

997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
static ssize_t intel_pstate_show_status(char *buf);
static int intel_pstate_update_status(const char *buf, size_t size);

static ssize_t show_status(struct kobject *kobj,
			   struct attribute *attr, char *buf)
{
	ssize_t ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_show_status(buf);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret;
}

static ssize_t store_status(struct kobject *a, struct attribute *b,
			    const char *buf, size_t count)
{
	char *p = memchr(buf, '\n', count);
	int ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_update_status(buf, p ? p - buf : count);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret < 0 ? ret : count;
}

1025 1026 1027 1028 1029 1030 1031
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

1032 1033
	mutex_lock(&intel_pstate_driver_lock);

1034
	if (!intel_pstate_driver) {
1035 1036 1037 1038
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1039 1040 1041 1042
	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1043
	turbo_fp = div_fp(no_turbo, total);
1044
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1045 1046 1047

	mutex_unlock(&intel_pstate_driver_lock);

1048 1049 1050
	return sprintf(buf, "%u\n", turbo_pct);
}

1051 1052 1053 1054 1055 1056
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

1057 1058
	mutex_lock(&intel_pstate_driver_lock);

1059
	if (!intel_pstate_driver) {
1060 1061 1062 1063
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1064 1065
	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1066 1067 1068

	mutex_unlock(&intel_pstate_driver_lock);

1069 1070 1071
	return sprintf(buf, "%u\n", total);
}

1072 1073 1074 1075 1076
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

1077 1078
	mutex_lock(&intel_pstate_driver_lock);

1079
	if (!intel_pstate_driver) {
1080 1081 1082 1083
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1084
	update_turbo_state();
1085 1086
	if (global.turbo_disabled)
		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1087
	else
1088
		ret = sprintf(buf, "%u\n", global.no_turbo);
1089

1090 1091
	mutex_unlock(&intel_pstate_driver_lock);

1092 1093 1094
	return ret;
}

1095
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1096
			      const char *buf, size_t count)
1097 1098 1099
{
	unsigned int input;
	int ret;
1100

1101 1102 1103
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1104

1105 1106
	mutex_lock(&intel_pstate_driver_lock);

1107
	if (!intel_pstate_driver) {
1108 1109 1110 1111
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1112 1113
	mutex_lock(&intel_pstate_limits_lock);

1114
	update_turbo_state();
1115
	if (global.turbo_disabled) {
J
Joe Perches 已提交
1116
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1117
		mutex_unlock(&intel_pstate_limits_lock);
1118
		mutex_unlock(&intel_pstate_driver_lock);
1119
		return -EPERM;
1120
	}
D
Dirk Brandewie 已提交
1121

1122
	global.no_turbo = clamp_t(int, input, 0, 1);
1123

1124 1125 1126 1127 1128 1129 1130 1131 1132
	if (global.no_turbo) {
		struct cpudata *cpu = all_cpu_data[0];
		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;

		/* Squash the global minimum into the permitted range. */
		if (global.min_perf_pct > pct)
			global.min_perf_pct = pct;
	}

1133 1134
	mutex_unlock(&intel_pstate_limits_lock);

1135 1136
	intel_pstate_update_policies();

1137 1138
	mutex_unlock(&intel_pstate_driver_lock);

1139 1140 1141 1142
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1143
				  const char *buf, size_t count)
1144 1145 1146
{
	unsigned int input;
	int ret;
1147

1148 1149 1150 1151
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

1152 1153
	mutex_lock(&intel_pstate_driver_lock);

1154
	if (!intel_pstate_driver) {
1155 1156 1157 1158
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1159 1160
	mutex_lock(&intel_pstate_limits_lock);

1161
	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1162

1163 1164
	mutex_unlock(&intel_pstate_limits_lock);

1165 1166
	intel_pstate_update_policies();

1167 1168
	mutex_unlock(&intel_pstate_driver_lock);

1169 1170 1171 1172
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1173
				  const char *buf, size_t count)
1174 1175 1176
{
	unsigned int input;
	int ret;
1177

1178 1179 1180
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1181

1182 1183
	mutex_lock(&intel_pstate_driver_lock);

1184
	if (!intel_pstate_driver) {
1185 1186 1187 1188
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1189 1190
	mutex_lock(&intel_pstate_limits_lock);

1191 1192
	global.min_perf_pct = clamp_t(int, input,
				      min_perf_pct_min(), global.max_perf_pct);
1193

1194 1195
	mutex_unlock(&intel_pstate_limits_lock);

1196 1197
	intel_pstate_update_policies();

1198 1199
	mutex_unlock(&intel_pstate_driver_lock);

1200 1201 1202 1203 1204 1205
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

1206
define_one_global_rw(status);
1207 1208 1209
define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
1210
define_one_global_ro(turbo_pct);
1211
define_one_global_ro(num_pstates);
1212 1213

static struct attribute *intel_pstate_attributes[] = {
1214
	&status.attr,
1215
	&no_turbo.attr,
1216
	&turbo_pct.attr,
1217
	&num_pstates.attr,
1218 1219 1220 1221 1222 1223 1224
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};

1225
static void __init intel_pstate_sysfs_expose_params(void)
1226
{
1227
	struct kobject *intel_pstate_kobject;
1228 1229 1230 1231
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
1232 1233 1234
	if (WARN_ON(!intel_pstate_kobject))
		return;

1235
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
	if (WARN_ON(rc))
		return;

	/*
	 * If per cpu limits are enforced there are no global limits, so
	 * return without creating max/min_perf_pct attributes
	 */
	if (per_cpu_limits)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
	WARN_ON(rc);

	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
	WARN_ON(rc);

1252 1253
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
1254

1255
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
1256
{
1257
	/* First disable HWP notification interrupt as we don't process them */
1258 1259
	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1260

1261
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1262
	cpudata->epp_policy = 0;
1263 1264
	if (cpudata->epp_default == -EINVAL)
		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
D
Dirk Brandewie 已提交
1265 1266
}

1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
#define MSR_IA32_POWER_CTL_BIT_EE	19

/* Disable energy efficiency optimization */
static void intel_pstate_disable_ee(int cpu)
{
	u64 power_ctl;
	int ret;

	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
	if (ret)
		return;

	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
		pr_info("Disabling energy efficiency optimization\n");
		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
	}
}

1286
static int atom_get_min_pstate(void)
1287 1288
{
	u64 value;
1289

1290
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1291
	return (value >> 8) & 0x7F;
1292 1293
}

1294
static int atom_get_max_pstate(void)
1295 1296
{
	u64 value;
1297

1298
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1299
	return (value >> 16) & 0x7F;
1300
}
1301

1302
static int atom_get_turbo_pstate(void)
1303 1304
{
	u64 value;
1305

1306
	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
1307
	return value & 0x7F;
1308 1309
}

1310
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1311 1312 1313 1314 1315
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

1316
	val = (u64)pstate << 8;
1317
	if (global.no_turbo && !global.turbo_disabled)
1318 1319 1320 1321 1322 1323 1324
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1325
	vid = ceiling_fp(vid_fp);
1326

1327 1328 1329
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

1330
	return val | vid;
1331 1332
}

1333
static int silvermont_get_scaling(void)
1334 1335 1336
{
	u64 value;
	int i;
1337 1338 1339
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
1340 1341

	rdmsrl(MSR_FSB_FREQ, value);
1342 1343
	i = value & 0x7;
	WARN_ON(i > 4);
1344

1345 1346
	return silvermont_freq_table[i];
}
1347

1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
1362 1363
}

1364
static void atom_get_vid(struct cpudata *cpudata)
1365 1366 1367
{
	u64 value;

1368
	rdmsrl(MSR_ATOM_CORE_VIDS, value);
D
Dirk Brandewie 已提交
1369 1370
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1371 1372 1373 1374
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
1375

1376
	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1377
	cpudata->vid.turbo = value & 0x7f;
1378 1379
}

1380
static int core_get_min_pstate(void)
1381 1382
{
	u64 value;
1383

1384
	rdmsrl(MSR_PLATFORM_INFO, value);
1385 1386 1387
	return (value >> 40) & 0xFF;
}

1388
static int core_get_max_pstate_physical(void)
1389 1390
{
	u64 value;
1391

1392
	rdmsrl(MSR_PLATFORM_INFO, value);
1393 1394 1395
	return (value >> 8) & 0xFF;
}

1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
static int core_get_tdp_ratio(u64 plat_info)
{
	/* Check how many TDP levels present */
	if (plat_info & 0x600000000) {
		u64 tdp_ctrl;
		u64 tdp_ratio;
		int tdp_msr;
		int err;

		/* Get the TDP level (0, 1, 2) to get ratios */
		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
		if (err)
			return err;

		/* TDP MSR are continuous starting at 0x648 */
		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
		if (err)
			return err;

		/* For level 1 and 2, bits[23:16] contain the ratio */
		if (tdp_ctrl & 0x03)
			tdp_ratio >>= 16;

		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);

		return (int)tdp_ratio;
	}

	return -ENXIO;
}

1429
static int core_get_max_pstate(void)
1430
{
1431 1432 1433
	u64 tar;
	u64 plat_info;
	int max_pstate;
1434
	int tdp_ratio;
1435 1436 1437 1438 1439
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

1440 1441 1442 1443 1444 1445 1446 1447 1448
	tdp_ratio = core_get_tdp_ratio(plat_info);
	if (tdp_ratio <= 0)
		return max_pstate;

	if (hwp_active) {
		/* Turbo activation ratio is not used on HWP platforms */
		return tdp_ratio;
	}

1449 1450
	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
1451 1452
		int tar_levels;

1453
		/* Do some sanity checking for safety */
1454 1455 1456 1457
		tar_levels = tar & 0xff;
		if (tdp_ratio - 1 == tar_levels) {
			max_pstate = tar_levels;
			pr_debug("max_pstate=TAC %x\n", max_pstate);
1458 1459
		}
	}
1460

1461
	return max_pstate;
1462 1463
}

1464
static int core_get_turbo_pstate(void)
1465 1466 1467
{
	u64 value;
	int nont, ret;
1468

1469
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1470
	nont = core_get_max_pstate();
1471
	ret = (value) & 255;
1472 1473 1474 1475 1476
	if (ret <= nont)
		ret = nont;
	return ret;
}

1477 1478 1479 1480 1481
static inline int core_get_scaling(void)
{
	return 100000;
}

1482
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1483 1484 1485
{
	u64 val;

1486
	val = (u64)pstate << 8;
1487
	if (global.no_turbo && !global.turbo_disabled)
1488 1489
		val |= (u64)1 << 32;

1490
	return val;
1491 1492
}

1493 1494 1495 1496 1497
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1498
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1499 1500 1501 1502 1503 1504 1505
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1506
static int intel_pstate_get_base_pstate(struct cpudata *cpu)
1507
{
1508 1509
	return global.no_turbo || global.turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1510 1511
}

1512
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1513
{
1514 1515
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1516 1517 1518 1519 1520 1521 1522
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1523 1524
}

1525 1526 1527 1528 1529 1530 1531
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
1532
	int pstate;
1533 1534

	update_turbo_state();
1535
	pstate = intel_pstate_get_base_pstate(cpu);
1536
	pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1537
	intel_pstate_set_pstate(cpu, pstate);
1538 1539
}

1540 1541
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1542 1543
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1544
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1545
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1546
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1547 1548
	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1549

1550 1551
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1552 1553

	intel_pstate_set_min_pstate(cpu);
1554 1555
}

1556
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1557
{
1558
	struct sample *sample = &cpu->sample;
1559

1560
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1561 1562
}

1563
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1564 1565
{
	u64 aperf, mperf;
1566
	unsigned long flags;
1567
	u64 tsc;
1568

1569
	local_irq_save(flags);
1570 1571
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1572
	tsc = rdtsc();
1573
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1574
		local_irq_restore(flags);
1575
		return false;
1576
	}
1577
	local_irq_restore(flags);
1578

1579
	cpu->last_sample_time = cpu->sample.time;
1580
	cpu->sample.time = time;
1581 1582
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1583
	cpu->sample.tsc =  tsc;
1584 1585
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1586
	cpu->sample.tsc -= cpu->prev_tsc;
1587

1588 1589
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1590
	cpu->prev_tsc = tsc;
1591 1592 1593 1594 1595 1596 1597
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
1598 1599 1600 1601 1602
	if (cpu->last_sample_time) {
		intel_pstate_calc_avg_perf(cpu);
		return true;
	}
	return false;
1603 1604
}

1605 1606
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1607 1608
	return mul_ext_fp(cpu->sample.core_avg_perf,
			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1609 1610
}

1611 1612
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1613 1614
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1615 1616
}

1617 1618 1619
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
{
	struct sample *sample = &cpu->sample;
1620
	int32_t busy_frac, boost;
1621
	int target, avg_pstate;
1622

1623 1624 1625
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE)
		return cpu->pstate.turbo_pstate;

1626
	busy_frac = div_fp(sample->mperf, sample->tsc);
1627

1628 1629
	boost = cpu->iowait_boost;
	cpu->iowait_boost >>= 1;
1630

1631 1632
	if (busy_frac < boost)
		busy_frac = boost;
1633

1634
	sample->busy_scaled = busy_frac * 100;
1635

1636
	target = global.no_turbo || global.turbo_disabled ?
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1655 1656
}

1657
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1658
{
1659
	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1660
	u64 duration_ns;
1661

1662 1663 1664
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE)
		return cpu->pstate.turbo_pstate;

1665
	/*
1666 1667 1668 1669 1670
	 * perf_scaled is the ratio of the average P-state during the last
	 * sampling period to the P-state requested last time (in percent).
	 *
	 * That measures the system's response to the previous P-state
	 * selection.
1671
	 */
1672 1673
	max_pstate = cpu->pstate.max_pstate_physical;
	current_pstate = cpu->pstate.current_pstate;
1674
	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1675
			       div_fp(100 * max_pstate, current_pstate));
1676

1677
	/*
1678 1679 1680
	 * Since our utilization update callback will not run unless we are
	 * in C0, check if the actual elapsed time is significantly greater (3x)
	 * than our sample interval.  If it is, then we were idle for a long
1681
	 * enough period of time to adjust our performance metric.
1682
	 */
1683
	duration_ns = cpu->sample.time - cpu->last_sample_time;
1684
	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1685
		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1686
		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1687 1688 1689
	} else {
		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
		if (sample_ratio < int_tofp(1))
1690
			perf_scaled = 0;
1691 1692
	}

1693 1694
	cpu->sample.busy_scaled = perf_scaled;
	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1695 1696
}

1697
static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1698
{
1699 1700
	int max_pstate = intel_pstate_get_base_pstate(cpu);
	int min_pstate;
1701

1702 1703
	min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
	max_pstate = max(min_pstate, cpu->max_perf_ratio);
1704
	return clamp_t(int, pstate, min_pstate, max_pstate);
1705 1706 1707 1708
}

static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
1709 1710 1711
	if (pstate == cpu->pstate.current_pstate)
		return;

1712
	cpu->pstate.current_pstate = pstate;
1713 1714 1715
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1716
static void intel_pstate_adjust_pstate(struct cpudata *cpu, int target_pstate)
1717
{
1718
	int from = cpu->pstate.current_pstate;
1719 1720
	struct sample *sample;

1721 1722
	update_turbo_state();

1723 1724
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1725
	intel_pstate_update_pstate(cpu, target_pstate);
1726 1727

	sample = &cpu->sample;
1728
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1729
		fp_toint(sample->busy_scaled),
1730 1731 1732 1733 1734
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1735 1736
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1737 1738
}

1739 1740 1741 1742 1743 1744 1745 1746 1747
static void intel_pstate_update_util_pid(struct update_util_data *data,
					 u64 time, unsigned int flags)
{
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
	u64 delta_ns = time - cpu->sample.time;

	if ((s64)delta_ns < pid_params.sample_rate_ns)
		return;

1748 1749 1750 1751 1752 1753
	if (intel_pstate_sample(cpu, time)) {
		int target_pstate;

		target_pstate = get_target_pstate_use_performance(cpu);
		intel_pstate_adjust_pstate(cpu, target_pstate);
	}
1754 1755
}

1756
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1757
				     unsigned int flags)
1758
{
1759
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1760 1761
	u64 delta_ns;

1762 1763 1764 1765 1766 1767 1768
	if (flags & SCHED_CPUFREQ_IOWAIT) {
		cpu->iowait_boost = int_tofp(1);
	} else if (cpu->iowait_boost) {
		/* Clear iowait_boost if the CPU may have been idle. */
		delta_ns = time - cpu->last_update;
		if (delta_ns > TICK_NSEC)
			cpu->iowait_boost = 0;
1769
	}
1770
	cpu->last_update = time;
1771
	delta_ns = time - cpu->sample.time;
1772 1773
	if ((s64)delta_ns < INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL)
		return;
1774

1775 1776
	if (intel_pstate_sample(cpu, time)) {
		int target_pstate;
1777

1778 1779 1780 1781
		target_pstate = get_target_pstate_use_cpu_load(cpu);
		intel_pstate_adjust_pstate(cpu, target_pstate);
	}
}
1782

1783 1784 1785 1786 1787 1788 1789 1790
static struct pstate_funcs core_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = core_get_turbo_pstate,
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
	.update_util = intel_pstate_update_util_pid,
1791 1792
};

1793 1794 1795 1796 1797 1798 1799 1800 1801
static const struct pstate_funcs silvermont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = silvermont_get_scaling,
	.get_vid = atom_get_vid,
	.update_util = intel_pstate_update_util,
1802 1803
};

1804 1805 1806 1807 1808 1809 1810 1811 1812
static const struct pstate_funcs airmont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = airmont_get_scaling,
	.get_vid = atom_get_vid,
	.update_util = intel_pstate_update_util,
1813 1814
};

1815 1816 1817 1818 1819 1820 1821 1822
static const struct pstate_funcs knl_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = knl_get_turbo_pstate,
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
	.update_util = intel_pstate_update_util_pid,
1823 1824
};

1825 1826 1827 1828 1829 1830 1831 1832
static const struct pstate_funcs bxt_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = core_get_turbo_pstate,
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
	.update_util = intel_pstate_update_util,
1833 1834
};

1835
#define ICPU(model, policy) \
1836 1837
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1838 1839

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_funcs),
	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_funcs),
	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_funcs),
	ICPU(INTEL_FAM6_IVYBRIDGE,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_CORE,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_funcs),
	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_X,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_ULT,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_funcs),
	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_X,		core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_funcs),
	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_funcs),
	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_funcs),
	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_funcs),
1859
	ICPU(INTEL_FAM6_ATOM_GEMINI_LAKE,       bxt_funcs),
1860 1861 1862 1863
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

1864
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1865 1866 1867
	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
D
Dirk Brandewie 已提交
1868 1869 1870
	{}
};

1871
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1872
	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1873 1874 1875
	{}
};

1876 1877
static bool pid_in_use(void);

1878 1879 1880 1881
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1882 1883 1884
	cpu = all_cpu_data[cpunum];

	if (!cpu) {
1885
		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1886 1887 1888 1889 1890
		if (!cpu)
			return -ENOMEM;

		all_cpu_data[cpunum] = cpu;

1891 1892 1893
		cpu->epp_default = -EINVAL;
		cpu->epp_powersave = -EINVAL;
		cpu->epp_saved = -EINVAL;
1894
	}
1895 1896 1897 1898

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1899

1900
	if (hwp_active) {
1901 1902 1903 1904 1905 1906
		const struct x86_cpu_id *id;

		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
		if (id)
			intel_pstate_disable_ee(cpunum);

1907
		intel_pstate_hwp_enable(cpu);
1908
	} else if (pid_in_use()) {
1909
		intel_pstate_pid_reset(cpu);
1910
	}
1911

1912
	intel_pstate_get_cpu_pstates(cpu);
1913

J
Joe Perches 已提交
1914
	pr_debug("controlling: cpu %d\n", cpunum);
1915 1916 1917 1918 1919 1920

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
1921
	struct cpudata *cpu = all_cpu_data[cpu_num];
1922

1923
	return cpu ? get_avg_frequency(cpu) : 0;
1924 1925
}

1926
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1927
{
1928 1929
	struct cpudata *cpu = all_cpu_data[cpu_num];

1930 1931 1932
	if (hwp_active)
		return;

1933 1934 1935
	if (cpu->update_util_set)
		return;

1936 1937
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
1938 1939
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
				     pstate_funcs.update_util);
1940
	cpu->update_util_set = true;
1941 1942 1943 1944
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
1945 1946 1947 1948 1949
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

1950
	cpufreq_remove_update_util_hook(cpu);
1951
	cpu_data->update_util_set = false;
1952 1953 1954
	synchronize_sched();
}

1955 1956 1957 1958 1959 1960
static int intel_pstate_get_max_freq(struct cpudata *cpu)
{
	return global.turbo_disabled || global.no_turbo ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
}

1961
static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1962
					    struct cpudata *cpu)
1963
{
1964
	int max_freq = intel_pstate_get_max_freq(cpu);
1965
	int32_t max_policy_perf, min_policy_perf;
1966
	int max_state, turbo_max;
1967

1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
	/*
	 * HWP needs some special consideration, because on BDX the
	 * HWP_REQUEST uses abstract value to represent performance
	 * rather than pure ratios.
	 */
	if (hwp_active) {
		intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
	} else {
		max_state = intel_pstate_get_base_pstate(cpu);
		turbo_max = cpu->pstate.turbo_pstate;
	}

	max_policy_perf = max_state * policy->max / max_freq;
1981
	if (policy->max == policy->min) {
1982
		min_policy_perf = max_policy_perf;
1983
	} else {
1984
		min_policy_perf = max_state * policy->min / max_freq;
1985 1986
		min_policy_perf = clamp_t(int32_t, min_policy_perf,
					  0, max_policy_perf);
1987
	}
1988

1989 1990 1991 1992
	pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
		 policy->cpu, max_state,
		 min_policy_perf, max_policy_perf);

1993
	/* Normalize user input to [min_perf, max_perf] */
1994
	if (per_cpu_limits) {
1995 1996
		cpu->min_perf_ratio = min_policy_perf;
		cpu->max_perf_ratio = max_policy_perf;
1997 1998 1999 2000
	} else {
		int32_t global_min, global_max;

		/* Global limits are in percent of the maximum turbo P-state. */
2001 2002
		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2003
		global_min = clamp_t(int32_t, global_min, 0, global_max);
2004

2005 2006
		pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
			 global_min, global_max);
2007

2008 2009 2010 2011
		cpu->min_perf_ratio = max(min_policy_perf, global_min);
		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
		cpu->max_perf_ratio = min(max_policy_perf, global_max);
		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2012

2013 2014 2015
		/* Make sure min_perf <= max_perf */
		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
					  cpu->max_perf_ratio);
2016

2017 2018 2019 2020
	}
	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
		 cpu->max_perf_ratio,
		 cpu->min_perf_ratio);
2021 2022
}

2023 2024
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
2025 2026
	struct cpudata *cpu;

2027 2028 2029
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

2030 2031 2032
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

2033
	cpu = all_cpu_data[policy->cpu];
2034 2035
	cpu->policy = policy->policy;

2036 2037
	mutex_lock(&intel_pstate_limits_lock);

2038
	intel_pstate_update_perf_limits(policy, cpu);
2039

2040
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2041 2042 2043 2044 2045 2046 2047 2048
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
	}

2049 2050
	intel_pstate_set_update_util_hook(policy->cpu);

2051
	if (hwp_active)
2052
		intel_pstate_hwp_set(policy->cpu);
D
Dirk Brandewie 已提交
2053

2054 2055
	mutex_unlock(&intel_pstate_limits_lock);

2056 2057 2058
	return 0;
}

2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
					 struct cpudata *cpu)
{
	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_freq) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
	}
}

2070 2071
static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
2072 2073 2074
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2075 2076
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2077

2078
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2079
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2080 2081
		return -EINVAL;

2082 2083
	intel_pstate_adjust_policy_max(policy, cpu);

2084 2085 2086
	return 0;
}

2087 2088 2089 2090 2091
static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
{
	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
}

2092
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2093
{
2094
	pr_debug("CPU %d exiting\n", policy->cpu);
2095

2096
	intel_pstate_clear_update_util_hook(policy->cpu);
2097 2098 2099
	if (hwp_active)
		intel_pstate_hwp_save_state(policy);
	else
2100 2101
		intel_cpufreq_stop_cpu(policy);
}
2102

2103 2104 2105
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);
2106

2107
	policy->fast_switch_possible = false;
D
Dirk Brandewie 已提交
2108

2109
	return 0;
2110 2111
}

2112
static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2113 2114
{
	struct cpudata *cpu;
2115
	int rc;
2116 2117 2118 2119 2120 2121 2122

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

2123 2124
	cpu->max_perf_ratio = 0xFF;
	cpu->min_perf_ratio = 0;
2125

2126 2127
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2128 2129

	/* cpuinfo and default policy values */
2130
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2131
	update_turbo_state();
2132
	policy->cpuinfo.max_freq = global.turbo_disabled ?
2133 2134 2135
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

2136
	intel_pstate_init_acpi_perf_limits(policy);
2137 2138
	cpumask_set_cpu(policy->cpu, policy->cpus);

2139 2140
	policy->fast_switch_possible = true;

2141 2142 2143
	return 0;
}

2144
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2145
{
2146 2147 2148 2149 2150 2151
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2152
	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2153 2154 2155
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2156 2157 2158 2159

	return 0;
}

2160
static struct cpufreq_driver intel_pstate = {
2161 2162 2163
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
2164
	.suspend	= intel_pstate_hwp_save_state,
2165
	.resume		= intel_pstate_resume,
2166 2167
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
2168
	.exit		= intel_pstate_cpu_exit,
2169
	.stop_cpu	= intel_pstate_stop_cpu,
2170 2171 2172
	.name		= "intel_pstate",
};

2173 2174 2175 2176 2177
static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2178 2179
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2180

2181
	intel_pstate_adjust_policy_max(policy, cpu);
2182

2183 2184
	intel_pstate_update_perf_limits(policy, cpu);

2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
	return 0;
}

static int intel_cpufreq_target(struct cpufreq_policy *policy,
				unsigned int target_freq,
				unsigned int relation)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct cpufreq_freqs freqs;
	int target_pstate;

2196 2197
	update_turbo_state();

2198
	freqs.old = policy->cur;
2199
	freqs.new = target_freq;
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218

	cpufreq_freq_transition_begin(policy, &freqs);
	switch (relation) {
	case CPUFREQ_RELATION_L:
		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
		break;
	case CPUFREQ_RELATION_H:
		target_pstate = freqs.new / cpu->pstate.scaling;
		break;
	default:
		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
		break;
	}
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	if (target_pstate != cpu->pstate.current_pstate) {
		cpu->pstate.current_pstate = target_pstate;
		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
			      pstate_funcs.get_val(cpu, target_pstate));
	}
2219
	freqs.new = target_pstate * cpu->pstate.scaling;
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
	cpufreq_freq_transition_end(policy, &freqs, false);

	return 0;
}

static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
					      unsigned int target_freq)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	int target_pstate;

2231 2232
	update_turbo_state();

2233
	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2234
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2235
	intel_pstate_update_pstate(cpu, target_pstate);
2236
	return target_pstate * cpu->pstate.scaling;
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
}

static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2247
	policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
	policy->cur = policy->cpuinfo.min_freq;

	return 0;
}

static struct cpufreq_driver intel_cpufreq = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_cpufreq_verify_policy,
	.target		= intel_cpufreq_target,
	.fast_switch	= intel_cpufreq_fast_switch,
	.init		= intel_cpufreq_cpu_init,
	.exit		= intel_pstate_cpu_exit,
	.stop_cpu	= intel_cpufreq_stop_cpu,
	.name		= "intel_cpufreq",
};

2265
static struct cpufreq_driver *default_driver = &intel_pstate;
2266

2267 2268 2269 2270 2271 2272
static bool pid_in_use(void)
{
	return intel_pstate_driver == &intel_pstate &&
		pstate_funcs.update_util == intel_pstate_update_util_pid;
}

2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
static void intel_pstate_driver_cleanup(void)
{
	unsigned int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			if (intel_pstate_driver == &intel_pstate)
				intel_pstate_clear_update_util_hook(cpu);

			kfree(all_cpu_data[cpu]);
			all_cpu_data[cpu] = NULL;
		}
	}
	put_online_cpus();
2288
	intel_pstate_driver = NULL;
2289 2290
}

2291
static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2292 2293 2294
{
	int ret;

2295 2296
	memset(&global, 0, sizeof(global));
	global.max_perf_pct = 100;
2297

2298
	intel_pstate_driver = driver;
2299 2300 2301 2302 2303 2304
	ret = cpufreq_register_driver(intel_pstate_driver);
	if (ret) {
		intel_pstate_driver_cleanup();
		return ret;
	}

2305 2306
	global.min_perf_pct = min_perf_pct_min();

2307
	if (pid_in_use())
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
		intel_pstate_debug_expose_params();

	return 0;
}

static int intel_pstate_unregister_driver(void)
{
	if (hwp_active)
		return -EBUSY;

2318
	if (pid_in_use())
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
		intel_pstate_debug_hide_params();

	cpufreq_unregister_driver(intel_pstate_driver);
	intel_pstate_driver_cleanup();

	return 0;
}

static ssize_t intel_pstate_show_status(char *buf)
{
2329
	if (!intel_pstate_driver)
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
		return sprintf(buf, "off\n");

	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
					"active" : "passive");
}

static int intel_pstate_update_status(const char *buf, size_t size)
{
	int ret;

	if (size == 3 && !strncmp(buf, "off", size))
2341
		return intel_pstate_driver ?
2342 2343 2344
			intel_pstate_unregister_driver() : -EINVAL;

	if (size == 6 && !strncmp(buf, "active", size)) {
2345
		if (intel_pstate_driver) {
2346 2347 2348 2349 2350 2351 2352 2353
			if (intel_pstate_driver == &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2354
		return intel_pstate_register_driver(&intel_pstate);
2355 2356 2357
	}

	if (size == 7 && !strncmp(buf, "passive", size)) {
2358
		if (intel_pstate_driver) {
2359
			if (intel_pstate_driver == &intel_cpufreq)
2360 2361 2362 2363 2364 2365 2366
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2367
		return intel_pstate_register_driver(&intel_cpufreq);
2368 2369 2370 2371 2372
	}

	return -EINVAL;
}

2373 2374 2375
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
2376
static unsigned int force_load __initdata;
2377

2378
static int __init intel_pstate_msrs_not_valid(void)
2379
{
2380
	if (!pstate_funcs.get_max() ||
2381 2382
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
2383 2384 2385 2386
		return -ENODEV;

	return 0;
}
2387

2388 2389 2390
#ifdef CONFIG_ACPI
static void intel_pstate_use_acpi_profile(void)
{
2391 2392 2393 2394 2395 2396
	switch (acpi_gbl_FADT.preferred_profile) {
	case PM_MOBILE:
	case PM_TABLET:
	case PM_APPLIANCE_PC:
	case PM_DESKTOP:
	case PM_WORKSTATION:
2397
		pstate_funcs.update_util = intel_pstate_update_util;
2398
	}
2399 2400 2401 2402 2403 2404 2405
}
#else
static void intel_pstate_use_acpi_profile(void)
{
}
#endif

2406
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2407 2408
{
	pstate_funcs.get_max   = funcs->get_max;
2409
	pstate_funcs.get_max_physical = funcs->get_max_physical;
2410 2411
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
2412
	pstate_funcs.get_scaling = funcs->get_scaling;
2413
	pstate_funcs.get_val   = funcs->get_val;
2414
	pstate_funcs.get_vid   = funcs->get_vid;
2415
	pstate_funcs.update_util = funcs->update_util;
2416

2417
	intel_pstate_use_acpi_profile();
2418 2419
}

2420
#ifdef CONFIG_ACPI
2421

2422
static bool __init intel_pstate_no_acpi_pss(void)
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

2451
static bool __init intel_pstate_has_acpi_ppc(void)
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

2471 2472 2473 2474
struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2475
	int  oem_pwr_table;
2476 2477 2478
};

/* Hardware vendor-specific info that has its own power management modes */
2479
static struct hw_vendor_info vendor_info[] __initdata = {
2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
	{1, "HP    ", "ProLiant", PSS},
	{1, "ORACLE", "X4-2    ", PPC},
	{1, "ORACLE", "X4-2L   ", PPC},
	{1, "ORACLE", "X4-2B   ", PPC},
	{1, "ORACLE", "X3-2    ", PPC},
	{1, "ORACLE", "X3-2L   ", PPC},
	{1, "ORACLE", "X3-2B   ", PPC},
	{1, "ORACLE", "X4470M2 ", PPC},
	{1, "ORACLE", "X4270M3 ", PPC},
	{1, "ORACLE", "X4270M2 ", PPC},
	{1, "ORACLE", "X4170M2 ", PPC},
2491 2492 2493 2494
	{1, "ORACLE", "X4170 M3", PPC},
	{1, "ORACLE", "X4275 M3", PPC},
	{1, "ORACLE", "X6-2    ", PPC},
	{1, "ORACLE", "Sudbury ", PPC},
2495 2496 2497
	{0, "", ""},
};

2498
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2499 2500 2501
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;
D
Dirk Brandewie 已提交
2502 2503 2504 2505 2506 2507 2508 2509 2510
	const struct x86_cpu_id *id;
	u64 misc_pwr;

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
2511

2512 2513
	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2514 2515 2516
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
2517
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2518 2519 2520 2521 2522 2523
			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
						ACPI_OEM_TABLE_ID_SIZE))
			switch (v_info->oem_pwr_table) {
			case PSS:
				return intel_pstate_no_acpi_pss();
			case PPC:
2524 2525
				return intel_pstate_has_acpi_ppc() &&
					(!force_load);
2526
			}
2527 2528 2529 2530
	}

	return false;
}
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540

static void intel_pstate_request_control_from_smm(void)
{
	/*
	 * It may be unsafe to request P-states control from SMM if _PPC support
	 * has not been enabled.
	 */
	if (acpi_ppc)
		acpi_processor_pstate_control();
}
2541 2542
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2543
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2544
static inline void intel_pstate_request_control_from_smm(void) {}
2545 2546
#endif /* CONFIG_ACPI */

2547 2548 2549 2550 2551
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
	{}
};

2552 2553
static int __init intel_pstate_init(void)
{
2554
	int rc;
2555

2556 2557 2558
	if (no_load)
		return -ENODEV;

2559
	if (x86_match_cpu(hwp_support_ids)) {
2560
		copy_cpu_funcs(&core_funcs);
2561
		if (no_hwp) {
2562
			pstate_funcs.update_util = intel_pstate_update_util;
2563 2564 2565 2566 2567 2568 2569
		} else {
			hwp_active++;
			intel_pstate.attr = hwp_cpufreq_attrs;
			goto hwp_cpu_matched;
		}
	} else {
		const struct x86_cpu_id *id;
2570

2571 2572 2573
		id = x86_match_cpu(intel_pstate_cpu_ids);
		if (!id)
			return -ENODEV;
2574

2575
		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2576
	}
2577

2578 2579 2580
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

2581 2582 2583 2584 2585 2586 2587 2588
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

2589 2590 2591
	if (!hwp_active && hwp_only)
		return -ENOTSUPP;

J
Joe Perches 已提交
2592
	pr_info("Intel P-state driver initializing\n");
2593

2594
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2595 2596 2597
	if (!all_cpu_data)
		return -ENOMEM;

2598 2599
	intel_pstate_request_control_from_smm();

2600
	intel_pstate_sysfs_expose_params();
2601

2602
	mutex_lock(&intel_pstate_driver_lock);
2603
	rc = intel_pstate_register_driver(default_driver);
2604
	mutex_unlock(&intel_pstate_driver_lock);
2605 2606
	if (rc)
		return rc;
2607

2608
	if (hwp_active)
J
Joe Perches 已提交
2609
		pr_info("HWP enabled\n");
2610

2611
	return 0;
2612 2613 2614
}
device_initcall(intel_pstate_init);

2615 2616 2617 2618 2619
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

2620
	if (!strcmp(str, "disable")) {
2621
		no_load = 1;
2622 2623
	} else if (!strcmp(str, "passive")) {
		pr_info("Passive mode enabled\n");
2624
		default_driver = &intel_cpufreq;
2625 2626
		no_hwp = 1;
	}
2627
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
2628
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
2629
		no_hwp = 1;
2630
	}
2631 2632
	if (!strcmp(str, "force"))
		force_load = 1;
2633 2634
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
2635 2636
	if (!strcmp(str, "per_cpu_perf_limits"))
		per_cpu_limits = true;
2637 2638 2639 2640 2641 2642

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

2643 2644 2645 2646
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

2647 2648 2649
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");