intel_pstate.c 64.3 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

J
Joe Perches 已提交
13 14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

15 16 17 18 19 20 21
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
22
#include <linux/sched/cpufreq.h>
23 24 25 26 27 28
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
29
#include <linux/acpi.h>
30
#include <linux/vmalloc.h>
31 32 33 34 35
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
36
#include <asm/cpufeature.h>
37
#include <asm/intel-family.h>
38

39
#define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
40

41
#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
42
#define INTEL_CPUFREQ_TRANSITION_DELAY		500
43

44 45
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
46
#include <acpi/cppc_acpi.h>
47 48
#endif

49
#define FRAC_BITS 8
50 51
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
52

53 54
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55 56
#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
57

58 59 60 61 62
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

63
static inline int32_t div_fp(s64 x, s64 y)
64
{
65
	return div64_s64((int64_t)x << FRAC_BITS, y);
66 67
}

68 69 70 71 72 73 74 75 76 77 78
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

79 80 81 82 83
static inline int32_t percent_fp(int percent)
{
	return div_fp(percent, 100);
}

84 85 86 87 88 89 90 91 92 93
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

94 95 96 97 98
static inline int32_t percent_ext_fp(int percent)
{
	return div_ext_fp(percent, 100);
}

99 100
/**
 * struct sample -	Store performance sample
101
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
102 103
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
104
 *			P state. This can be different than core_avg_perf
105 106 107 108 109 110 111 112 113 114 115 116
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
117
struct sample {
118
	int32_t core_avg_perf;
119
	int32_t busy_scaled;
120 121
	u64 aperf;
	u64 mperf;
122
	u64 tsc;
123
	u64 time;
124 125
};

126 127 128 129 130 131 132 133 134 135 136
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
137 138
 * @max_freq:		@max_pstate frequency in cpufreq units
 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
139 140 141
 *
 * Stores the per cpu model P state limits and current P state.
 */
142 143 144 145
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
146
	int	max_pstate_physical;
147
	int	scaling;
148
	int	turbo_pstate;
149 150
	unsigned int max_freq;
	unsigned int turbo_freq;
151 152
};

153 154 155 156 157 158 159 160 161 162 163 164 165
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
166
struct vid_data {
167 168 169
	int min;
	int max;
	int turbo;
170 171 172
	int32_t ratio;
};

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
/**
 * struct global_params - Global parameters, mostly tunable via sysfs.
 * @no_turbo:		Whether or not to use turbo P-states.
 * @turbo_disabled:	Whethet or not turbo P-states are available at all,
 *			based on the MSR_IA32_MISC_ENABLE value and whether or
 *			not the maximum reported turbo P-state is different from
 *			the maximum reported non-turbo one.
 * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 */
struct global_params {
	bool no_turbo;
	bool turbo_disabled;
	int max_perf_pct;
	int min_perf_pct;
190 191
};

192 193 194
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
195
 * @policy:		CPUFreq policy value
196
 * @update_util:	CPUFreq utility callback information
197
 * @update_util_set:	CPUFreq utility callback is set
198 199
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
200 201 202
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @last_sample_time:	Last Sample time
203 204 205
 * @aperf_mperf_shift:	Number of clock cycles after aperf, merf is incremented
 *			This shift is a multiplier to mperf delta to
 *			calculate CPU busy.
206 207 208 209 210 211
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
212 213
 * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
 * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
214 215
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
216 217 218
 * @epp_powersave:	Last saved HWP energy performance preference
 *			(EPP) or energy performance bias (EPB),
 *			when policy switched to performance
219
 * @epp_policy:		Last saved policy used to set EPP/EPB
220 221 222 223
 * @epp_default:	Power on default HWP energy performance
 *			preference/bias
 * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
 *			operation
224 225
 * @hwp_req_cached:	Cached value of the last HWP Request MSR
 * @hwp_cap_cached:	Cached value of the last HWP Capabilities MSR
226 227
 * @last_io_update:	Last time when IO wake flag was set
 * @sched_flags:	Store scheduler flags for possible cross CPU update
228
 * @hwp_boost_min:	Last HWP boosted min performance
229 230 231
 *
 * This structure stores per CPU instance data for all CPUs.
 */
232 233 234
struct cpudata {
	int cpu;

235
	unsigned int policy;
236
	struct update_util_data update_util;
237
	bool   update_util_set;
238 239

	struct pstate_data pstate;
240
	struct vid_data vid;
241

242
	u64	last_update;
243
	u64	last_sample_time;
244
	u64	aperf_mperf_shift;
245 246
	u64	prev_aperf;
	u64	prev_mperf;
247
	u64	prev_tsc;
248
	u64	prev_cummulative_iowait;
249
	struct sample sample;
250 251
	int32_t	min_perf_ratio;
	int32_t	max_perf_ratio;
252 253 254 255
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
256
	unsigned int iowait_boost;
257
	s16 epp_powersave;
258
	s16 epp_policy;
259 260
	s16 epp_default;
	s16 epp_saved;
261 262
	u64 hwp_req_cached;
	u64 hwp_cap_cached;
263 264
	u64 last_io_update;
	unsigned int sched_flags;
265
	u32 hwp_boost_min;
266 267 268
};

static struct cpudata **all_cpu_data;
269 270 271 272 273 274 275 276 277 278 279 280 281 282

/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
283 284
struct pstate_funcs {
	int (*get_max)(void);
285
	int (*get_max_physical)(void);
286 287
	int (*get_min)(void);
	int (*get_turbo)(void);
288
	int (*get_scaling)(void);
289
	int (*get_aperf_mperf_shift)(void);
290
	u64 (*get_val)(struct cpudata*, int pstate);
291
	void (*get_vid)(struct cpudata *);
292 293
};

294
static struct pstate_funcs pstate_funcs __read_mostly;
295

296
static int hwp_active __read_mostly;
297
static int hwp_mode_bdw __read_mostly;
298
static bool per_cpu_limits __read_mostly;
299
static bool hwp_boost __read_mostly;
300

301
static struct cpufreq_driver *intel_pstate_driver __read_mostly;
302

303 304 305
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
306

307
static struct global_params global;
308

309
static DEFINE_MUTEX(intel_pstate_driver_lock);
310 311
static DEFINE_MUTEX(intel_pstate_limits_lock);

312
#ifdef CONFIG_ACPI
313 314 315 316 317 318 319 320 321 322

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

	return acpi_ppc;
}

323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
#ifdef CONFIG_ACPI_CPPC_LIB

/* The work item is needed to avoid CPU hotplug locking issues */
static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
{
	sched_set_itmt_support();
}

static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);

static void intel_pstate_set_itmt_prio(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return;

	/*
	 * The priorities can be set regardless of whether or not
	 * sched_set_itmt_support(true) has been called and it is valid to
	 * update them at any time after it has been called.
	 */
	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);

	if (max_highest_perf <= min_highest_perf) {
		if (cppc_perf.highest_perf > max_highest_perf)
			max_highest_perf = cppc_perf.highest_perf;

		if (cppc_perf.highest_perf < min_highest_perf)
			min_highest_perf = cppc_perf.highest_perf;

		if (max_highest_perf > min_highest_perf) {
			/*
			 * This code can be run during CPU online under the
			 * CPU hotplug locks, so sched_set_itmt_support()
			 * cannot be called from here.  Queue up a work item
			 * to invoke it.
			 */
			schedule_work(&sched_itmt_work);
		}
	}
}
#else
static void intel_pstate_set_itmt_prio(int cpu)
{
}
#endif

374 375 376 377 378 379
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

380 381
	if (hwp_active) {
		intel_pstate_set_itmt_prio(policy->cpu);
382
		return;
383
	}
384

385
	if (!intel_pstate_get_ppc_enable_status())
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
428
	 * correct max turbo frequency based on the turbo state.
429 430
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
431
	if (!global.turbo_disabled)
432 433 434
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
435
	pr_debug("_PPC limits will be enforced\n");
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}
#else
455
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
456 457 458
{
}

459
static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
460 461 462 463
{
}
#endif

464 465 466 467 468 469 470
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
471
	global.turbo_disabled =
472 473 474 475
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

476 477 478
static int min_perf_pct_min(void)
{
	struct cpudata *cpu = all_cpu_data[0];
479
	int turbo_pstate = cpu->pstate.turbo_pstate;
480

481
	return turbo_pstate ?
482
		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
483 484
}

485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
{
	u64 epb;
	int ret;

	if (!static_cpu_has(X86_FEATURE_EPB))
		return -ENXIO;

	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return (s16)ret;

	return (s16)(epb & 0x0f);
}

static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
{
	s16 epp;

504 505 506 507 508 509 510 511 512 513 514
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * When hwp_req_data is 0, means that caller didn't read
		 * MSR_HWP_REQUEST, so need to read and get EPP.
		 */
		if (!hwp_req_data) {
			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
					    &hwp_req_data);
			if (epp)
				return epp;
		}
515
		epp = (hwp_req_data >> 24) & 0xff;
516
	} else {
517 518
		/* When there is no EPP present, HWP uses EPB settings */
		epp = intel_pstate_get_epb(cpu_data);
519
	}
520 521 522 523

	return epp;
}

524
static int intel_pstate_set_epb(int cpu, s16 pref)
525 526
{
	u64 epb;
527
	int ret;
528 529

	if (!static_cpu_has(X86_FEATURE_EPB))
530
		return -ENXIO;
531

532 533 534
	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return ret;
535 536 537

	epb = (epb & ~0x0f) | pref;
	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
538 539

	return 0;
540 541
}

542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
/*
 * EPP/EPB display strings corresponding to EPP index in the
 * energy_perf_strings[]
 *	index		String
 *-------------------------------------
 *	0		default
 *	1		performance
 *	2		balance_performance
 *	3		balance_power
 *	4		power
 */
static const char * const energy_perf_strings[] = {
	"default",
	"performance",
	"balance_performance",
	"balance_power",
	"power",
	NULL
};
561 562 563 564 565 566
static const unsigned int epp_values[] = {
	HWP_EPP_PERFORMANCE,
	HWP_EPP_BALANCE_PERFORMANCE,
	HWP_EPP_BALANCE_POWERSAVE,
	HWP_EPP_POWERSAVE
};
567 568 569 570 571 572 573 574 575 576 577

static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
{
	s16 epp;
	int index = -EINVAL;

	epp = intel_pstate_get_epp(cpu_data, 0);
	if (epp < 0)
		return epp;

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
578 579 580 581 582 583 584 585
		if (epp == HWP_EPP_PERFORMANCE)
			return 1;
		if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
			return 2;
		if (epp <= HWP_EPP_BALANCE_POWERSAVE)
			return 3;
		else
			return 4;
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
	} else if (static_cpu_has(X86_FEATURE_EPB)) {
		/*
		 * Range:
		 *	0x00-0x03	:	Performance
		 *	0x04-0x07	:	Balance performance
		 *	0x08-0x0B	:	Balance power
		 *	0x0C-0x0F	:	Power
		 * The EPB is a 4 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 2) + 1;
	}

	return index;
}

static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
					      int pref_index)
{
	int epp = -EINVAL;
	int ret;

	if (!pref_index)
		epp = cpu_data->epp_default;

	mutex_lock(&intel_pstate_limits_lock);

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		u64 value;

		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
		if (ret)
			goto return_pref;

		value &= ~GENMASK_ULL(31, 24);

		if (epp == -EINVAL)
624
			epp = epp_values[pref_index - 1];
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697

		value |= (u64)epp << 24;
		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
	} else {
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 2;
		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
	}
return_pref:
	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
}

static ssize_t show_energy_performance_available_preferences(
				struct cpufreq_policy *policy, char *buf)
{
	int i = 0;
	int ret = 0;

	while (energy_perf_strings[i] != NULL)
		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);

	ret += sprintf(&buf[ret], "\n");

	return ret;
}

cpufreq_freq_attr_ro(energy_performance_available_preferences);

static ssize_t store_energy_performance_preference(
		struct cpufreq_policy *policy, const char *buf, size_t count)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	char str_preference[21];
	int ret, i = 0;

	ret = sscanf(buf, "%20s", str_preference);
	if (ret != 1)
		return -EINVAL;

	while (energy_perf_strings[i] != NULL) {
		if (!strcmp(str_preference, energy_perf_strings[i])) {
			intel_pstate_set_energy_pref_index(cpu_data, i);
			return count;
		}
		++i;
	}

	return -EINVAL;
}

static ssize_t show_energy_performance_preference(
				struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	int preference;

	preference = intel_pstate_get_energy_pref_index(cpu_data);
	if (preference < 0)
		return preference;

	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
}

cpufreq_freq_attr_rw(energy_performance_preference);

static struct freq_attr *hwp_cpufreq_attrs[] = {
	&energy_performance_preference,
	&energy_performance_available_preferences,
	NULL,
};

698 699
static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
				     int *current_max)
D
Dirk Brandewie 已提交
700
{
701
	u64 cap;
702

703
	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
704
	WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
705
	if (global.no_turbo)
706
		*current_max = HWP_GUARANTEED_PERF(cap);
707
	else
708 709 710 711 712 713 714 715 716 717 718 719 720 721
		*current_max = HWP_HIGHEST_PERF(cap);

	*phy_max = HWP_HIGHEST_PERF(cap);
}

static void intel_pstate_hwp_set(unsigned int cpu)
{
	struct cpudata *cpu_data = all_cpu_data[cpu];
	int max, min;
	u64 value;
	s16 epp;

	max = cpu_data->max_perf_ratio;
	min = cpu_data->min_perf_ratio;
722

723 724
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
		min = max;
725

726
	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
D
Dirk Brandewie 已提交
727

728 729
	value &= ~HWP_MIN_PERF(~0L);
	value |= HWP_MIN_PERF(min);
730

731 732
	value &= ~HWP_MAX_PERF(~0L);
	value |= HWP_MAX_PERF(max);
733

734 735
	if (cpu_data->epp_policy == cpu_data->policy)
		goto skip_epp;
736

737
	cpu_data->epp_policy = cpu_data->policy;
738

739 740 741 742 743
	if (cpu_data->epp_saved >= 0) {
		epp = cpu_data->epp_saved;
		cpu_data->epp_saved = -EINVAL;
		goto update_epp;
	}
744

745 746 747 748 749 750
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
		epp = intel_pstate_get_epp(cpu_data, value);
		cpu_data->epp_powersave = epp;
		/* If EPP read was failed, then don't try to write */
		if (epp < 0)
			goto skip_epp;
751

752 753 754 755 756
		epp = 0;
	} else {
		/* skip setting EPP, when saved value is invalid */
		if (cpu_data->epp_powersave < 0)
			goto skip_epp;
757

758 759 760 761 762 763 764 765 766 767
		/*
		 * No need to restore EPP when it is not zero. This
		 * means:
		 *  - Policy is not changed
		 *  - user has manually changed
		 *  - Error reading EPB
		 */
		epp = intel_pstate_get_epp(cpu_data, value);
		if (epp)
			goto skip_epp;
768

769 770
		epp = cpu_data->epp_powersave;
	}
771
update_epp:
772 773 774 775 776
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		value &= ~GENMASK_ULL(31, 24);
		value |= (u64)epp << 24;
	} else {
		intel_pstate_set_epb(cpu, epp);
D
Dirk Brandewie 已提交
777
	}
778
skip_epp:
779
	WRITE_ONCE(cpu_data->hwp_req_cached, value);
780
	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
781
}
D
Dirk Brandewie 已提交
782

783 784 785 786 787 788 789 790 791 792 793 794
static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];

	if (!hwp_active)
		return 0;

	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);

	return 0;
}

795 796
static void intel_pstate_hwp_enable(struct cpudata *cpudata);

797 798 799 800 801
static int intel_pstate_resume(struct cpufreq_policy *policy)
{
	if (!hwp_active)
		return 0;

802 803
	mutex_lock(&intel_pstate_limits_lock);

804 805 806
	if (policy->cpu == 0)
		intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);

807
	all_cpu_data[policy->cpu]->epp_policy = 0;
808
	intel_pstate_hwp_set(policy->cpu);
809 810 811

	mutex_unlock(&intel_pstate_limits_lock);

812
	return 0;
813 814
}

815
static void intel_pstate_update_policies(void)
816
{
817 818 819 820
	int cpu;

	for_each_possible_cpu(cpu)
		cpufreq_update_policy(cpu);
D
Dirk Brandewie 已提交
821 822
}

823 824 825 826 827
/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
828
		return sprintf(buf, "%u\n", global.object);		\
829 830
	}

831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
static ssize_t intel_pstate_show_status(char *buf);
static int intel_pstate_update_status(const char *buf, size_t size);

static ssize_t show_status(struct kobject *kobj,
			   struct attribute *attr, char *buf)
{
	ssize_t ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_show_status(buf);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret;
}

static ssize_t store_status(struct kobject *a, struct attribute *b,
			    const char *buf, size_t count)
{
	char *p = memchr(buf, '\n', count);
	int ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_update_status(buf, p ? p - buf : count);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret < 0 ? ret : count;
}

859 860 861 862 863 864 865
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

866 867
	mutex_lock(&intel_pstate_driver_lock);

868
	if (!intel_pstate_driver) {
869 870 871 872
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

873 874 875 876
	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
877
	turbo_fp = div_fp(no_turbo, total);
878
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
879 880 881

	mutex_unlock(&intel_pstate_driver_lock);

882 883 884
	return sprintf(buf, "%u\n", turbo_pct);
}

885 886 887 888 889 890
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

891 892
	mutex_lock(&intel_pstate_driver_lock);

893
	if (!intel_pstate_driver) {
894 895 896 897
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

898 899
	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
900 901 902

	mutex_unlock(&intel_pstate_driver_lock);

903 904 905
	return sprintf(buf, "%u\n", total);
}

906 907 908 909 910
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

911 912
	mutex_lock(&intel_pstate_driver_lock);

913
	if (!intel_pstate_driver) {
914 915 916 917
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

918
	update_turbo_state();
919 920
	if (global.turbo_disabled)
		ret = sprintf(buf, "%u\n", global.turbo_disabled);
921
	else
922
		ret = sprintf(buf, "%u\n", global.no_turbo);
923

924 925
	mutex_unlock(&intel_pstate_driver_lock);

926 927 928
	return ret;
}

929
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
930
			      const char *buf, size_t count)
931 932 933
{
	unsigned int input;
	int ret;
934

935 936 937
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
938

939 940
	mutex_lock(&intel_pstate_driver_lock);

941
	if (!intel_pstate_driver) {
942 943 944 945
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

946 947
	mutex_lock(&intel_pstate_limits_lock);

948
	update_turbo_state();
949
	if (global.turbo_disabled) {
J
Joe Perches 已提交
950
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
951
		mutex_unlock(&intel_pstate_limits_lock);
952
		mutex_unlock(&intel_pstate_driver_lock);
953
		return -EPERM;
954
	}
D
Dirk Brandewie 已提交
955

956
	global.no_turbo = clamp_t(int, input, 0, 1);
957

958 959 960 961 962 963 964 965 966
	if (global.no_turbo) {
		struct cpudata *cpu = all_cpu_data[0];
		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;

		/* Squash the global minimum into the permitted range. */
		if (global.min_perf_pct > pct)
			global.min_perf_pct = pct;
	}

967 968
	mutex_unlock(&intel_pstate_limits_lock);

969 970
	intel_pstate_update_policies();

971 972
	mutex_unlock(&intel_pstate_driver_lock);

973 974 975 976
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
977
				  const char *buf, size_t count)
978 979 980
{
	unsigned int input;
	int ret;
981

982 983 984 985
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

986 987
	mutex_lock(&intel_pstate_driver_lock);

988
	if (!intel_pstate_driver) {
989 990 991 992
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

993 994
	mutex_lock(&intel_pstate_limits_lock);

995
	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
996

997 998
	mutex_unlock(&intel_pstate_limits_lock);

999 1000
	intel_pstate_update_policies();

1001 1002
	mutex_unlock(&intel_pstate_driver_lock);

1003 1004 1005 1006
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1007
				  const char *buf, size_t count)
1008 1009 1010
{
	unsigned int input;
	int ret;
1011

1012 1013 1014
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1015

1016 1017
	mutex_lock(&intel_pstate_driver_lock);

1018
	if (!intel_pstate_driver) {
1019 1020 1021 1022
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1023 1024
	mutex_lock(&intel_pstate_limits_lock);

1025 1026
	global.min_perf_pct = clamp_t(int, input,
				      min_perf_pct_min(), global.max_perf_pct);
1027

1028 1029
	mutex_unlock(&intel_pstate_limits_lock);

1030 1031
	intel_pstate_update_policies();

1032 1033
	mutex_unlock(&intel_pstate_driver_lock);

1034 1035 1036
	return count;
}

1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	return sprintf(buf, "%u\n", hwp_boost);
}

static ssize_t store_hwp_dynamic_boost(struct kobject *a, struct attribute *b,
				       const char *buf, size_t count)
{
	unsigned int input;
	int ret;

	ret = kstrtouint(buf, 10, &input);
	if (ret)
		return ret;

	mutex_lock(&intel_pstate_driver_lock);
	hwp_boost = !!input;
	intel_pstate_update_policies();
	mutex_unlock(&intel_pstate_driver_lock);

	return count;
}

1061 1062 1063
show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

1064
define_one_global_rw(status);
1065 1066 1067
define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
1068
define_one_global_ro(turbo_pct);
1069
define_one_global_ro(num_pstates);
1070
define_one_global_rw(hwp_dynamic_boost);
1071 1072

static struct attribute *intel_pstate_attributes[] = {
1073
	&status.attr,
1074
	&no_turbo.attr,
1075
	&turbo_pct.attr,
1076
	&num_pstates.attr,
1077 1078 1079
	NULL
};

1080
static const struct attribute_group intel_pstate_attr_group = {
1081 1082 1083
	.attrs = intel_pstate_attributes,
};

1084
static void __init intel_pstate_sysfs_expose_params(void)
1085
{
1086
	struct kobject *intel_pstate_kobject;
1087 1088 1089 1090
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
1091 1092 1093
	if (WARN_ON(!intel_pstate_kobject))
		return;

1094
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
	if (WARN_ON(rc))
		return;

	/*
	 * If per cpu limits are enforced there are no global limits, so
	 * return without creating max/min_perf_pct attributes
	 */
	if (per_cpu_limits)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
	WARN_ON(rc);

	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
	WARN_ON(rc);

1111 1112 1113 1114 1115
	if (hwp_active) {
		rc = sysfs_create_file(intel_pstate_kobject,
				       &hwp_dynamic_boost.attr);
		WARN_ON(rc);
	}
1116 1117
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
1118

1119
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
1120
{
1121
	/* First disable HWP notification interrupt as we don't process them */
1122 1123
	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1124

1125
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1126
	cpudata->epp_policy = 0;
1127 1128
	if (cpudata->epp_default == -EINVAL)
		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
D
Dirk Brandewie 已提交
1129 1130
}

1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
#define MSR_IA32_POWER_CTL_BIT_EE	19

/* Disable energy efficiency optimization */
static void intel_pstate_disable_ee(int cpu)
{
	u64 power_ctl;
	int ret;

	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
	if (ret)
		return;

	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
		pr_info("Disabling energy efficiency optimization\n");
		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
	}
}

1150
static int atom_get_min_pstate(void)
1151 1152
{
	u64 value;
1153

1154
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1155
	return (value >> 8) & 0x7F;
1156 1157
}

1158
static int atom_get_max_pstate(void)
1159 1160
{
	u64 value;
1161

1162
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1163
	return (value >> 16) & 0x7F;
1164
}
1165

1166
static int atom_get_turbo_pstate(void)
1167 1168
{
	u64 value;
1169

1170
	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
1171
	return value & 0x7F;
1172 1173
}

1174
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1175 1176 1177 1178 1179
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

1180
	val = (u64)pstate << 8;
1181
	if (global.no_turbo && !global.turbo_disabled)
1182 1183 1184 1185 1186 1187 1188
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1189
	vid = ceiling_fp(vid_fp);
1190

1191 1192 1193
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

1194
	return val | vid;
1195 1196
}

1197
static int silvermont_get_scaling(void)
1198 1199 1200
{
	u64 value;
	int i;
1201 1202 1203
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
1204 1205

	rdmsrl(MSR_FSB_FREQ, value);
1206 1207
	i = value & 0x7;
	WARN_ON(i > 4);
1208

1209 1210
	return silvermont_freq_table[i];
}
1211

1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
1226 1227
}

1228
static void atom_get_vid(struct cpudata *cpudata)
1229 1230 1231
{
	u64 value;

1232
	rdmsrl(MSR_ATOM_CORE_VIDS, value);
D
Dirk Brandewie 已提交
1233 1234
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1235 1236 1237 1238
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
1239

1240
	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1241
	cpudata->vid.turbo = value & 0x7f;
1242 1243
}

1244
static int core_get_min_pstate(void)
1245 1246
{
	u64 value;
1247

1248
	rdmsrl(MSR_PLATFORM_INFO, value);
1249 1250 1251
	return (value >> 40) & 0xFF;
}

1252
static int core_get_max_pstate_physical(void)
1253 1254
{
	u64 value;
1255

1256
	rdmsrl(MSR_PLATFORM_INFO, value);
1257 1258 1259
	return (value >> 8) & 0xFF;
}

1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
static int core_get_tdp_ratio(u64 plat_info)
{
	/* Check how many TDP levels present */
	if (plat_info & 0x600000000) {
		u64 tdp_ctrl;
		u64 tdp_ratio;
		int tdp_msr;
		int err;

		/* Get the TDP level (0, 1, 2) to get ratios */
		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
		if (err)
			return err;

		/* TDP MSR are continuous starting at 0x648 */
		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
		if (err)
			return err;

		/* For level 1 and 2, bits[23:16] contain the ratio */
		if (tdp_ctrl & 0x03)
			tdp_ratio >>= 16;

		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);

		return (int)tdp_ratio;
	}

	return -ENXIO;
}

1293
static int core_get_max_pstate(void)
1294
{
1295 1296 1297
	u64 tar;
	u64 plat_info;
	int max_pstate;
1298
	int tdp_ratio;
1299 1300 1301 1302 1303
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

1304 1305 1306 1307 1308 1309 1310 1311 1312
	tdp_ratio = core_get_tdp_ratio(plat_info);
	if (tdp_ratio <= 0)
		return max_pstate;

	if (hwp_active) {
		/* Turbo activation ratio is not used on HWP platforms */
		return tdp_ratio;
	}

1313 1314
	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
1315 1316
		int tar_levels;

1317
		/* Do some sanity checking for safety */
1318 1319 1320 1321
		tar_levels = tar & 0xff;
		if (tdp_ratio - 1 == tar_levels) {
			max_pstate = tar_levels;
			pr_debug("max_pstate=TAC %x\n", max_pstate);
1322 1323
		}
	}
1324

1325
	return max_pstate;
1326 1327
}

1328
static int core_get_turbo_pstate(void)
1329 1330 1331
{
	u64 value;
	int nont, ret;
1332

1333
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1334
	nont = core_get_max_pstate();
1335
	ret = (value) & 255;
1336 1337 1338 1339 1340
	if (ret <= nont)
		ret = nont;
	return ret;
}

1341 1342 1343 1344 1345
static inline int core_get_scaling(void)
{
	return 100000;
}

1346
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1347 1348 1349
{
	u64 val;

1350
	val = (u64)pstate << 8;
1351
	if (global.no_turbo && !global.turbo_disabled)
1352 1353
		val |= (u64)1 << 32;

1354
	return val;
1355 1356
}

1357 1358 1359 1360 1361
static int knl_get_aperf_mperf_shift(void)
{
	return 10;
}

1362 1363 1364 1365 1366
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1367
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1368 1369 1370 1371 1372 1373 1374
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1375
static int intel_pstate_get_base_pstate(struct cpudata *cpu)
1376
{
1377 1378
	return global.no_turbo || global.turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1379 1380
}

1381
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1382
{
1383 1384
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1385 1386 1387 1388 1389 1390 1391
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1392 1393
}

1394 1395 1396 1397 1398 1399 1400
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
1401
	int pstate;
1402 1403

	update_turbo_state();
1404
	pstate = intel_pstate_get_base_pstate(cpu);
1405
	pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1406
	intel_pstate_set_pstate(cpu, pstate);
1407 1408
}

1409 1410
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1411 1412
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1413
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1414
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1415
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1416
	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1417 1418 1419 1420 1421 1422 1423 1424 1425

	if (hwp_active && !hwp_mode_bdw) {
		unsigned int phy_max, current_max;

		intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
		cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
	} else {
		cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
	}
1426

1427 1428 1429
	if (pstate_funcs.get_aperf_mperf_shift)
		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();

1430 1431
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1432 1433

	intel_pstate_set_min_pstate(cpu);
1434 1435
}

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
/*
 * Long hold time will keep high perf limits for long time,
 * which negatively impacts perf/watt for some workloads,
 * like specpower. 3ms is based on experiements on some
 * workoads.
 */
static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;

static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
{
	u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
	u32 max_limit = (hwp_req & 0xff00) >> 8;
	u32 min_limit = (hwp_req & 0xff);
	u32 boost_level1;

	/*
	 * Cases to consider (User changes via sysfs or boot time):
	 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
	 *	No boost, return.
	 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
	 *     Should result in one level boost only for P0.
	 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
	 *     Should result in two level boost:
	 *         (min + p1)/2 and P1.
	 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
	 *     Should result in three level boost:
	 *        (min + p1)/2, P1 and P0.
	 */

	/* If max and min are equal or already at max, nothing to boost */
	if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
		return;

	if (!cpu->hwp_boost_min)
		cpu->hwp_boost_min = min_limit;

	/* level at half way mark between min and guranteed */
	boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;

	if (cpu->hwp_boost_min < boost_level1)
		cpu->hwp_boost_min = boost_level1;
	else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
		cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
	else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
		 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
		cpu->hwp_boost_min = max_limit;
	else
		return;

	hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
	wrmsrl(MSR_HWP_REQUEST, hwp_req);
	cpu->last_update = cpu->sample.time;
}

static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
{
	if (cpu->hwp_boost_min) {
		bool expired;

		/* Check if we are idle for hold time to boost down */
		expired = time_after64(cpu->sample.time, cpu->last_update +
				       hwp_boost_hold_time_ns);
		if (expired) {
			wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
			cpu->hwp_boost_min = 0;
		}
	}
	cpu->last_update = cpu->sample.time;
}

1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
						      u64 time)
{
	cpu->sample.time = time;

	if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
		bool do_io = false;

		cpu->sched_flags = 0;
		/*
		 * Set iowait_boost flag and update time. Since IO WAIT flag
		 * is set all the time, we can't just conclude that there is
		 * some IO bound activity is scheduled on this CPU with just
		 * one occurrence. If we receive at least two in two
		 * consecutive ticks, then we treat as boost candidate.
		 */
		if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
			do_io = true;

		cpu->last_io_update = time;

		if (do_io)
			intel_pstate_hwp_boost_up(cpu);

	} else {
		intel_pstate_hwp_boost_down(cpu);
	}
}

1535 1536 1537
static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
						u64 time, unsigned int flags)
{
1538 1539 1540 1541 1542 1543
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);

	cpu->sched_flags |= flags;

	if (smp_processor_id() == cpu->cpu)
		intel_pstate_update_util_hwp_local(cpu, time);
1544 1545
}

1546
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1547
{
1548
	struct sample *sample = &cpu->sample;
1549

1550
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1551 1552
}

1553
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1554 1555
{
	u64 aperf, mperf;
1556
	unsigned long flags;
1557
	u64 tsc;
1558

1559
	local_irq_save(flags);
1560 1561
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1562
	tsc = rdtsc();
1563
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1564
		local_irq_restore(flags);
1565
		return false;
1566
	}
1567
	local_irq_restore(flags);
1568

1569
	cpu->last_sample_time = cpu->sample.time;
1570
	cpu->sample.time = time;
1571 1572
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1573
	cpu->sample.tsc =  tsc;
1574 1575
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1576
	cpu->sample.tsc -= cpu->prev_tsc;
1577

1578 1579
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1580
	cpu->prev_tsc = tsc;
1581 1582 1583 1584 1585 1586 1587
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
1588 1589 1590 1591 1592
	if (cpu->last_sample_time) {
		intel_pstate_calc_avg_perf(cpu);
		return true;
	}
	return false;
1593 1594
}

1595 1596
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1597
	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1598 1599
}

1600 1601
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1602 1603
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1604 1605
}

1606
static inline int32_t get_target_pstate(struct cpudata *cpu)
1607 1608
{
	struct sample *sample = &cpu->sample;
1609
	int32_t busy_frac, boost;
1610
	int target, avg_pstate;
1611

1612 1613
	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
			   sample->tsc);
1614

1615 1616
	boost = cpu->iowait_boost;
	cpu->iowait_boost >>= 1;
1617

1618 1619
	if (busy_frac < boost)
		busy_frac = boost;
1620

1621
	sample->busy_scaled = busy_frac * 100;
1622

1623
	target = global.no_turbo || global.turbo_disabled ?
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1642 1643
}

1644
static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1645
{
1646 1647
	int max_pstate = intel_pstate_get_base_pstate(cpu);
	int min_pstate;
1648

1649 1650
	min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
	max_pstate = max(min_pstate, cpu->max_perf_ratio);
1651
	return clamp_t(int, pstate, min_pstate, max_pstate);
1652 1653 1654 1655
}

static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
1656 1657 1658
	if (pstate == cpu->pstate.current_pstate)
		return;

1659
	cpu->pstate.current_pstate = pstate;
1660 1661 1662
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1663
static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1664
{
1665
	int from = cpu->pstate.current_pstate;
1666
	struct sample *sample;
1667
	int target_pstate;
1668

1669 1670
	update_turbo_state();

1671
	target_pstate = get_target_pstate(cpu);
1672 1673
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1674
	intel_pstate_update_pstate(cpu, target_pstate);
1675 1676

	sample = &cpu->sample;
1677
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1678
		fp_toint(sample->busy_scaled),
1679 1680 1681 1682 1683
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1684 1685
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1686 1687
}

1688
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1689
				     unsigned int flags)
1690
{
1691
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1692 1693
	u64 delta_ns;

1694 1695 1696 1697
	/* Don't allow remote callbacks */
	if (smp_processor_id() != cpu->cpu)
		return;

1698 1699
	if (flags & SCHED_CPUFREQ_IOWAIT) {
		cpu->iowait_boost = int_tofp(1);
1700 1701 1702 1703 1704 1705 1706 1707 1708
		cpu->last_update = time;
		/*
		 * The last time the busy was 100% so P-state was max anyway
		 * so avoid overhead of computation.
		 */
		if (fp_toint(cpu->sample.busy_scaled) == 100)
			return;

		goto set_pstate;
1709 1710 1711 1712 1713
	} else if (cpu->iowait_boost) {
		/* Clear iowait_boost if the CPU may have been idle. */
		delta_ns = time - cpu->last_update;
		if (delta_ns > TICK_NSEC)
			cpu->iowait_boost = 0;
1714
	}
1715
	cpu->last_update = time;
1716
	delta_ns = time - cpu->sample.time;
1717
	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1718
		return;
1719

1720
set_pstate:
1721 1722
	if (intel_pstate_sample(cpu, time))
		intel_pstate_adjust_pstate(cpu);
1723
}
1724

1725 1726 1727 1728 1729 1730 1731
static struct pstate_funcs core_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = core_get_turbo_pstate,
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
1732 1733
};

1734 1735 1736 1737 1738 1739 1740 1741
static const struct pstate_funcs silvermont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = silvermont_get_scaling,
	.get_vid = atom_get_vid,
1742 1743
};

1744 1745 1746 1747 1748 1749 1750 1751
static const struct pstate_funcs airmont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = airmont_get_scaling,
	.get_vid = atom_get_vid,
1752 1753
};

1754 1755 1756 1757 1758
static const struct pstate_funcs knl_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = knl_get_turbo_pstate,
1759
	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1760 1761
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
1762 1763
};

1764
#define ICPU(model, policy) \
1765 1766
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1767 1768

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_funcs),
	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_funcs),
	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_funcs),
	ICPU(INTEL_FAM6_IVYBRIDGE,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_CORE,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_funcs),
	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_X,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_ULT,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_funcs),
	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_X,		core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_funcs),
	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_funcs),
	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_funcs),
1787 1788
	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		core_funcs),
	ICPU(INTEL_FAM6_ATOM_GEMINI_LAKE,       core_funcs),
1789
	ICPU(INTEL_FAM6_SKYLAKE_X,		core_funcs),
1790 1791 1792 1793
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

1794
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1795 1796 1797
	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
D
Dirk Brandewie 已提交
1798 1799 1800
	{}
};

1801
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1802
	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1803 1804 1805
	{}
};

1806 1807 1808 1809 1810 1811
static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_funcs),
	{}
};

1812 1813 1814 1815
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1816 1817 1818
	cpu = all_cpu_data[cpunum];

	if (!cpu) {
1819
		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1820 1821 1822 1823 1824
		if (!cpu)
			return -ENOMEM;

		all_cpu_data[cpunum] = cpu;

1825 1826 1827
		cpu->epp_default = -EINVAL;
		cpu->epp_powersave = -EINVAL;
		cpu->epp_saved = -EINVAL;
1828
	}
1829 1830 1831 1832

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1833

1834
	if (hwp_active) {
1835 1836 1837 1838 1839 1840
		const struct x86_cpu_id *id;

		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
		if (id)
			intel_pstate_disable_ee(cpunum);

1841
		intel_pstate_hwp_enable(cpu);
1842 1843 1844 1845

		id = x86_match_cpu(intel_pstate_hwp_boost_ids);
		if (id)
			hwp_boost = true;
1846
	}
1847

1848
	intel_pstate_get_cpu_pstates(cpu);
1849

J
Joe Perches 已提交
1850
	pr_debug("controlling: cpu %d\n", cpunum);
1851 1852 1853 1854

	return 0;
}

1855
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1856
{
1857 1858
	struct cpudata *cpu = all_cpu_data[cpu_num];

1859
	if (hwp_active && !hwp_boost)
1860 1861
		return;

1862 1863 1864
	if (cpu->update_util_set)
		return;

1865 1866
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
1867
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1868 1869 1870
				     (hwp_active ?
				      intel_pstate_update_util_hwp :
				      intel_pstate_update_util));
1871
	cpu->update_util_set = true;
1872 1873 1874 1875
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
1876 1877 1878 1879 1880
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

1881
	cpufreq_remove_update_util_hook(cpu);
1882
	cpu_data->update_util_set = false;
1883 1884 1885
	synchronize_sched();
}

1886 1887 1888 1889 1890 1891
static int intel_pstate_get_max_freq(struct cpudata *cpu)
{
	return global.turbo_disabled || global.no_turbo ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
}

1892
static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1893
					    struct cpudata *cpu)
1894
{
1895
	int max_freq = intel_pstate_get_max_freq(cpu);
1896
	int32_t max_policy_perf, min_policy_perf;
1897
	int max_state, turbo_max;
1898

1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
	/*
	 * HWP needs some special consideration, because on BDX the
	 * HWP_REQUEST uses abstract value to represent performance
	 * rather than pure ratios.
	 */
	if (hwp_active) {
		intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
	} else {
		max_state = intel_pstate_get_base_pstate(cpu);
		turbo_max = cpu->pstate.turbo_pstate;
	}

	max_policy_perf = max_state * policy->max / max_freq;
1912
	if (policy->max == policy->min) {
1913
		min_policy_perf = max_policy_perf;
1914
	} else {
1915
		min_policy_perf = max_state * policy->min / max_freq;
1916 1917
		min_policy_perf = clamp_t(int32_t, min_policy_perf,
					  0, max_policy_perf);
1918
	}
1919

1920 1921 1922 1923
	pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
		 policy->cpu, max_state,
		 min_policy_perf, max_policy_perf);

1924
	/* Normalize user input to [min_perf, max_perf] */
1925
	if (per_cpu_limits) {
1926 1927
		cpu->min_perf_ratio = min_policy_perf;
		cpu->max_perf_ratio = max_policy_perf;
1928 1929 1930 1931
	} else {
		int32_t global_min, global_max;

		/* Global limits are in percent of the maximum turbo P-state. */
1932 1933
		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
1934
		global_min = clamp_t(int32_t, global_min, 0, global_max);
1935

1936 1937
		pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
			 global_min, global_max);
1938

1939 1940 1941 1942
		cpu->min_perf_ratio = max(min_policy_perf, global_min);
		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
		cpu->max_perf_ratio = min(max_policy_perf, global_max);
		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
1943

1944 1945 1946
		/* Make sure min_perf <= max_perf */
		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
					  cpu->max_perf_ratio);
1947

1948 1949 1950 1951
	}
	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
		 cpu->max_perf_ratio,
		 cpu->min_perf_ratio);
1952 1953
}

1954 1955
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
1956 1957
	struct cpudata *cpu;

1958 1959 1960
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

1961 1962 1963
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

1964
	cpu = all_cpu_data[policy->cpu];
1965 1966
	cpu->policy = policy->policy;

1967 1968
	mutex_lock(&intel_pstate_limits_lock);

1969
	intel_pstate_update_perf_limits(policy, cpu);
1970

1971
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
1972 1973 1974 1975 1976 1977
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
1978 1979
	} else {
		intel_pstate_set_update_util_hook(policy->cpu);
1980 1981
	}

1982 1983 1984 1985 1986 1987 1988 1989
	if (hwp_active) {
		/*
		 * When hwp_boost was active before and dynamically it
		 * was turned off, in that case we need to clear the
		 * update util hook.
		 */
		if (!hwp_boost)
			intel_pstate_clear_update_util_hook(policy->cpu);
1990
		intel_pstate_hwp_set(policy->cpu);
1991
	}
D
Dirk Brandewie 已提交
1992

1993 1994
	mutex_unlock(&intel_pstate_limits_lock);

1995 1996 1997
	return 0;
}

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
					 struct cpudata *cpu)
{
	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_freq) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
	}
}

2009 2010
static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
2011 2012 2013
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2014 2015
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2016

2017
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2018
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2019 2020
		return -EINVAL;

2021 2022
	intel_pstate_adjust_policy_max(policy, cpu);

2023 2024 2025
	return 0;
}

2026 2027 2028 2029 2030
static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
{
	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
}

2031
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2032
{
2033
	pr_debug("CPU %d exiting\n", policy->cpu);
2034

2035
	intel_pstate_clear_update_util_hook(policy->cpu);
2036 2037 2038
	if (hwp_active)
		intel_pstate_hwp_save_state(policy);
	else
2039 2040
		intel_cpufreq_stop_cpu(policy);
}
2041

2042 2043 2044
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);
2045

2046
	policy->fast_switch_possible = false;
D
Dirk Brandewie 已提交
2047

2048
	return 0;
2049 2050
}

2051
static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2052 2053
{
	struct cpudata *cpu;
2054
	int rc;
2055 2056 2057 2058 2059 2060 2061

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

2062 2063
	cpu->max_perf_ratio = 0xFF;
	cpu->min_perf_ratio = 0;
2064

2065 2066
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2067 2068

	/* cpuinfo and default policy values */
2069
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2070
	update_turbo_state();
2071
	policy->cpuinfo.max_freq = global.turbo_disabled ?
2072 2073 2074
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

2075
	intel_pstate_init_acpi_perf_limits(policy);
2076

2077 2078
	policy->fast_switch_possible = true;

2079 2080 2081
	return 0;
}

2082
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2083
{
2084 2085 2086 2087 2088
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

2089
	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2090 2091 2092
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2093 2094 2095 2096

	return 0;
}

2097
static struct cpufreq_driver intel_pstate = {
2098 2099 2100
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
2101
	.suspend	= intel_pstate_hwp_save_state,
2102
	.resume		= intel_pstate_resume,
2103
	.init		= intel_pstate_cpu_init,
2104
	.exit		= intel_pstate_cpu_exit,
2105
	.stop_cpu	= intel_pstate_stop_cpu,
2106 2107 2108
	.name		= "intel_pstate",
};

2109 2110 2111 2112 2113
static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2114 2115
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2116

2117
	intel_pstate_adjust_policy_max(policy, cpu);
2118

2119 2120
	intel_pstate_update_perf_limits(policy, cpu);

2121 2122 2123
	return 0;
}

2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
/* Use of trace in passive mode:
 *
 * In passive mode the trace core_busy field (also known as the
 * performance field, and lablelled as such on the graphs; also known as
 * core_avg_perf) is not needed and so is re-assigned to indicate if the
 * driver call was via the normal or fast switch path. Various graphs
 * output from the intel_pstate_tracer.py utility that include core_busy
 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
 * so we use 10 to indicate the the normal path through the driver, and
 * 90 to indicate the fast switch path through the driver.
 * The scaled_busy field is not used, and is set to 0.
 */

#define	INTEL_PSTATE_TRACE_TARGET 10
#define	INTEL_PSTATE_TRACE_FAST_SWITCH 90

static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
{
	struct sample *sample;

	if (!trace_pstate_sample_enabled())
		return;

	if (!intel_pstate_sample(cpu, ktime_get()))
		return;

	sample = &cpu->sample;
	trace_pstate_sample(trace_type,
		0,
		old_pstate,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
}

2162 2163 2164 2165 2166 2167
static int intel_cpufreq_target(struct cpufreq_policy *policy,
				unsigned int target_freq,
				unsigned int relation)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct cpufreq_freqs freqs;
2168
	int target_pstate, old_pstate;
2169

2170 2171
	update_turbo_state();

2172
	freqs.old = policy->cur;
2173
	freqs.new = target_freq;
2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187

	cpufreq_freq_transition_begin(policy, &freqs);
	switch (relation) {
	case CPUFREQ_RELATION_L:
		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
		break;
	case CPUFREQ_RELATION_H:
		target_pstate = freqs.new / cpu->pstate.scaling;
		break;
	default:
		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
		break;
	}
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2188
	old_pstate = cpu->pstate.current_pstate;
2189 2190 2191 2192 2193
	if (target_pstate != cpu->pstate.current_pstate) {
		cpu->pstate.current_pstate = target_pstate;
		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
			      pstate_funcs.get_val(cpu, target_pstate));
	}
2194
	freqs.new = target_pstate * cpu->pstate.scaling;
2195
	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2196 2197 2198 2199 2200 2201 2202 2203 2204
	cpufreq_freq_transition_end(policy, &freqs, false);

	return 0;
}

static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
					      unsigned int target_freq)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
2205
	int target_pstate, old_pstate;
2206

2207 2208
	update_turbo_state();

2209
	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2210
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2211
	old_pstate = cpu->pstate.current_pstate;
2212
	intel_pstate_update_pstate(cpu, target_pstate);
2213
	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2214
	return target_pstate * cpu->pstate.scaling;
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
}

static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2225
	policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
	policy->cur = policy->cpuinfo.min_freq;

	return 0;
}

static struct cpufreq_driver intel_cpufreq = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_cpufreq_verify_policy,
	.target		= intel_cpufreq_target,
	.fast_switch	= intel_cpufreq_fast_switch,
	.init		= intel_cpufreq_cpu_init,
	.exit		= intel_pstate_cpu_exit,
	.stop_cpu	= intel_cpufreq_stop_cpu,
	.name		= "intel_cpufreq",
};

2243
static struct cpufreq_driver *default_driver = &intel_pstate;
2244

2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
static void intel_pstate_driver_cleanup(void)
{
	unsigned int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			if (intel_pstate_driver == &intel_pstate)
				intel_pstate_clear_update_util_hook(cpu);

			kfree(all_cpu_data[cpu]);
			all_cpu_data[cpu] = NULL;
		}
	}
	put_online_cpus();
2260
	intel_pstate_driver = NULL;
2261 2262
}

2263
static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2264 2265 2266
{
	int ret;

2267 2268
	memset(&global, 0, sizeof(global));
	global.max_perf_pct = 100;
2269

2270
	intel_pstate_driver = driver;
2271 2272 2273 2274 2275 2276
	ret = cpufreq_register_driver(intel_pstate_driver);
	if (ret) {
		intel_pstate_driver_cleanup();
		return ret;
	}

2277 2278
	global.min_perf_pct = min_perf_pct_min();

2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
	return 0;
}

static int intel_pstate_unregister_driver(void)
{
	if (hwp_active)
		return -EBUSY;

	cpufreq_unregister_driver(intel_pstate_driver);
	intel_pstate_driver_cleanup();

	return 0;
}

static ssize_t intel_pstate_show_status(char *buf)
{
2295
	if (!intel_pstate_driver)
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
		return sprintf(buf, "off\n");

	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
					"active" : "passive");
}

static int intel_pstate_update_status(const char *buf, size_t size)
{
	int ret;

	if (size == 3 && !strncmp(buf, "off", size))
2307
		return intel_pstate_driver ?
2308 2309 2310
			intel_pstate_unregister_driver() : -EINVAL;

	if (size == 6 && !strncmp(buf, "active", size)) {
2311
		if (intel_pstate_driver) {
2312 2313 2314 2315 2316 2317 2318 2319
			if (intel_pstate_driver == &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2320
		return intel_pstate_register_driver(&intel_pstate);
2321 2322 2323
	}

	if (size == 7 && !strncmp(buf, "passive", size)) {
2324
		if (intel_pstate_driver) {
2325
			if (intel_pstate_driver == &intel_cpufreq)
2326 2327 2328 2329 2330 2331 2332
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2333
		return intel_pstate_register_driver(&intel_cpufreq);
2334 2335 2336 2337 2338
	}

	return -EINVAL;
}

2339 2340 2341
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
2342
static unsigned int force_load __initdata;
2343

2344
static int __init intel_pstate_msrs_not_valid(void)
2345
{
2346
	if (!pstate_funcs.get_max() ||
2347 2348
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
2349 2350 2351 2352
		return -ENODEV;

	return 0;
}
2353

2354
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2355 2356
{
	pstate_funcs.get_max   = funcs->get_max;
2357
	pstate_funcs.get_max_physical = funcs->get_max_physical;
2358 2359
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
2360
	pstate_funcs.get_scaling = funcs->get_scaling;
2361
	pstate_funcs.get_val   = funcs->get_val;
2362
	pstate_funcs.get_vid   = funcs->get_vid;
2363
	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2364 2365
}

2366
#ifdef CONFIG_ACPI
2367

2368
static bool __init intel_pstate_no_acpi_pss(void)
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
static bool __init intel_pstate_no_acpi_pcch(void)
{
	acpi_status status;
	acpi_handle handle;

	status = acpi_get_handle(NULL, "\\_SB", &handle);
	if (ACPI_FAILURE(status))
		return true;

	return !acpi_has_method(handle, "PCCH");
}

2409
static bool __init intel_pstate_has_acpi_ppc(void)
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

2429
/* Hardware vendor-specific info that has its own power management modes */
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
static struct acpi_platform_list plat_info[] __initdata = {
	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{ } /* End */
2447 2448
};

2449
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2450
{
D
Dirk Brandewie 已提交
2451 2452
	const struct x86_cpu_id *id;
	u64 misc_pwr;
2453
	int idx;
D
Dirk Brandewie 已提交
2454 2455 2456 2457 2458 2459 2460

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
2461

2462 2463
	idx = acpi_match_platform_list(plat_info);
	if (idx < 0)
2464 2465
		return false;

2466 2467
	switch (plat_info[idx].data) {
	case PSS:
2468 2469 2470 2471
		if (!intel_pstate_no_acpi_pss())
			return false;

		return intel_pstate_no_acpi_pcch();
2472 2473
	case PPC:
		return intel_pstate_has_acpi_ppc() && !force_load;
2474 2475 2476 2477
	}

	return false;
}
2478 2479 2480 2481 2482 2483 2484 2485 2486 2487

static void intel_pstate_request_control_from_smm(void)
{
	/*
	 * It may be unsafe to request P-states control from SMM if _PPC support
	 * has not been enabled.
	 */
	if (acpi_ppc)
		acpi_processor_pstate_control();
}
2488 2489
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2490
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2491
static inline void intel_pstate_request_control_from_smm(void) {}
2492 2493
#endif /* CONFIG_ACPI */

2494 2495 2496 2497 2498
#define INTEL_PSTATE_HWP_BROADWELL	0x01

#define ICPU_HWP(model, hwp_mode) \
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_HWP, hwp_mode }

2499
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2500 2501 2502
	ICPU_HWP(INTEL_FAM6_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
	ICPU_HWP(INTEL_FAM6_BROADWELL_XEON_D, INTEL_PSTATE_HWP_BROADWELL),
	ICPU_HWP(X86_MODEL_ANY, 0),
2503 2504 2505
	{}
};

2506 2507
static int __init intel_pstate_init(void)
{
2508
	const struct x86_cpu_id *id;
2509
	int rc;
2510

2511 2512 2513
	if (no_load)
		return -ENODEV;

2514 2515
	id = x86_match_cpu(hwp_support_ids);
	if (id) {
2516
		copy_cpu_funcs(&core_funcs);
2517
		if (!no_hwp) {
2518
			hwp_active++;
2519
			hwp_mode_bdw = id->driver_data;
2520 2521 2522 2523 2524 2525 2526
			intel_pstate.attr = hwp_cpufreq_attrs;
			goto hwp_cpu_matched;
		}
	} else {
		id = x86_match_cpu(intel_pstate_cpu_ids);
		if (!id)
			return -ENODEV;
2527

2528
		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2529
	}
2530

2531 2532 2533
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

2534 2535 2536 2537 2538 2539 2540 2541
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

2542 2543 2544
	if (!hwp_active && hwp_only)
		return -ENOTSUPP;

J
Joe Perches 已提交
2545
	pr_info("Intel P-state driver initializing\n");
2546

2547
	all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2548 2549 2550
	if (!all_cpu_data)
		return -ENOMEM;

2551 2552
	intel_pstate_request_control_from_smm();

2553
	intel_pstate_sysfs_expose_params();
2554

2555
	mutex_lock(&intel_pstate_driver_lock);
2556
	rc = intel_pstate_register_driver(default_driver);
2557
	mutex_unlock(&intel_pstate_driver_lock);
2558 2559
	if (rc)
		return rc;
2560

2561
	if (hwp_active)
J
Joe Perches 已提交
2562
		pr_info("HWP enabled\n");
2563

2564
	return 0;
2565 2566 2567
}
device_initcall(intel_pstate_init);

2568 2569 2570 2571 2572
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

2573
	if (!strcmp(str, "disable")) {
2574
		no_load = 1;
2575 2576
	} else if (!strcmp(str, "passive")) {
		pr_info("Passive mode enabled\n");
2577
		default_driver = &intel_cpufreq;
2578 2579
		no_hwp = 1;
	}
2580
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
2581
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
2582
		no_hwp = 1;
2583
	}
2584 2585
	if (!strcmp(str, "force"))
		force_load = 1;
2586 2587
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
2588 2589
	if (!strcmp(str, "per_cpu_perf_limits"))
		per_cpu_limits = true;
2590 2591 2592 2593 2594 2595

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

2596 2597 2598 2599
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

2600 2601 2602
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");