intel_pstate.c 56.9 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

J
Joe Perches 已提交
13 14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

15 16 17 18 19 20 21
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
22
#include <linux/sched/cpufreq.h>
23 24 25 26 27 28 29
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
30
#include <linux/acpi.h>
31
#include <linux/vmalloc.h>
32 33 34 35 36
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
37
#include <asm/cpufeature.h>
38
#include <asm/intel-family.h>
39

40
#define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
41

42
#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
43
#define INTEL_CPUFREQ_TRANSITION_DELAY		500
44

45 46
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
47
#include <acpi/cppc_acpi.h>
48 49
#endif

50
#define FRAC_BITS 8
51 52
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
53

54 55
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
56 57
#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
58

59 60 61 62 63
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

64
static inline int32_t div_fp(s64 x, s64 y)
65
{
66
	return div64_s64((int64_t)x << FRAC_BITS, y);
67 68
}

69 70 71 72 73 74 75 76 77 78 79
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

80 81 82 83 84
static inline int32_t percent_fp(int percent)
{
	return div_fp(percent, 100);
}

85 86 87 88 89 90 91 92 93 94
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

95 96 97 98 99
static inline int32_t percent_ext_fp(int percent)
{
	return div_ext_fp(percent, 100);
}

100 101
/**
 * struct sample -	Store performance sample
102
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
103 104
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
105
 *			P state. This can be different than core_avg_perf
106 107 108 109 110 111 112 113 114 115 116 117
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
118
struct sample {
119
	int32_t core_avg_perf;
120
	int32_t busy_scaled;
121 122
	u64 aperf;
	u64 mperf;
123
	u64 tsc;
124
	u64 time;
125 126
};

127 128 129 130 131 132 133 134 135 136 137
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
138 139
 * @max_freq:		@max_pstate frequency in cpufreq units
 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
140 141 142
 *
 * Stores the per cpu model P state limits and current P state.
 */
143 144 145 146
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
147
	int	max_pstate_physical;
148
	int	scaling;
149
	int	turbo_pstate;
150 151
	unsigned int max_freq;
	unsigned int turbo_freq;
152 153
};

154 155 156 157 158 159 160 161 162 163 164 165 166
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
167
struct vid_data {
168 169 170
	int min;
	int max;
	int turbo;
171 172 173
	int32_t ratio;
};

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
/**
 * struct global_params - Global parameters, mostly tunable via sysfs.
 * @no_turbo:		Whether or not to use turbo P-states.
 * @turbo_disabled:	Whethet or not turbo P-states are available at all,
 *			based on the MSR_IA32_MISC_ENABLE value and whether or
 *			not the maximum reported turbo P-state is different from
 *			the maximum reported non-turbo one.
 * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 */
struct global_params {
	bool no_turbo;
	bool turbo_disabled;
	int max_perf_pct;
	int min_perf_pct;
191 192
};

193 194 195
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
196
 * @policy:		CPUFreq policy value
197
 * @update_util:	CPUFreq utility callback information
198
 * @update_util_set:	CPUFreq utility callback is set
199 200
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
201 202 203
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @last_sample_time:	Last Sample time
204 205 206
 * @aperf_mperf_shift:	Number of clock cycles after aperf, merf is incremented
 *			This shift is a multiplier to mperf delta to
 *			calculate CPU busy.
207 208 209 210 211 212
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
213 214
 * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
 * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
215 216
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
217 218 219
 * @epp_powersave:	Last saved HWP energy performance preference
 *			(EPP) or energy performance bias (EPB),
 *			when policy switched to performance
220
 * @epp_policy:		Last saved policy used to set EPP/EPB
221 222 223 224
 * @epp_default:	Power on default HWP energy performance
 *			preference/bias
 * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
 *			operation
225 226 227
 *
 * This structure stores per CPU instance data for all CPUs.
 */
228 229 230
struct cpudata {
	int cpu;

231
	unsigned int policy;
232
	struct update_util_data update_util;
233
	bool   update_util_set;
234 235

	struct pstate_data pstate;
236
	struct vid_data vid;
237

238
	u64	last_update;
239
	u64	last_sample_time;
240
	u64	aperf_mperf_shift;
241 242
	u64	prev_aperf;
	u64	prev_mperf;
243
	u64	prev_tsc;
244
	u64	prev_cummulative_iowait;
245
	struct sample sample;
246 247
	int32_t	min_perf_ratio;
	int32_t	max_perf_ratio;
248 249 250 251
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
252
	unsigned int iowait_boost;
253
	s16 epp_powersave;
254
	s16 epp_policy;
255 256
	s16 epp_default;
	s16 epp_saved;
257 258 259
};

static struct cpudata **all_cpu_data;
260 261 262 263 264 265 266 267 268 269 270 271 272 273

/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
274 275
struct pstate_funcs {
	int (*get_max)(void);
276
	int (*get_max_physical)(void);
277 278
	int (*get_min)(void);
	int (*get_turbo)(void);
279
	int (*get_scaling)(void);
280
	int (*get_aperf_mperf_shift)(void);
281
	u64 (*get_val)(struct cpudata*, int pstate);
282
	void (*get_vid)(struct cpudata *);
283 284
};

285
static struct pstate_funcs pstate_funcs __read_mostly;
286

287
static int hwp_active __read_mostly;
288
static bool per_cpu_limits __read_mostly;
289

290
static struct cpufreq_driver *intel_pstate_driver __read_mostly;
291

292 293 294
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
295

296
static struct global_params global;
297

298
static DEFINE_MUTEX(intel_pstate_driver_lock);
299 300
static DEFINE_MUTEX(intel_pstate_limits_lock);

301
#ifdef CONFIG_ACPI
302 303 304 305 306 307 308 309 310 311

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

	return acpi_ppc;
}

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
#ifdef CONFIG_ACPI_CPPC_LIB

/* The work item is needed to avoid CPU hotplug locking issues */
static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
{
	sched_set_itmt_support();
}

static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);

static void intel_pstate_set_itmt_prio(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return;

	/*
	 * The priorities can be set regardless of whether or not
	 * sched_set_itmt_support(true) has been called and it is valid to
	 * update them at any time after it has been called.
	 */
	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);

	if (max_highest_perf <= min_highest_perf) {
		if (cppc_perf.highest_perf > max_highest_perf)
			max_highest_perf = cppc_perf.highest_perf;

		if (cppc_perf.highest_perf < min_highest_perf)
			min_highest_perf = cppc_perf.highest_perf;

		if (max_highest_perf > min_highest_perf) {
			/*
			 * This code can be run during CPU online under the
			 * CPU hotplug locks, so sched_set_itmt_support()
			 * cannot be called from here.  Queue up a work item
			 * to invoke it.
			 */
			schedule_work(&sched_itmt_work);
		}
	}
}
#else
static void intel_pstate_set_itmt_prio(int cpu)
{
}
#endif

363 364 365 366 367 368
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

369 370
	if (hwp_active) {
		intel_pstate_set_itmt_prio(policy->cpu);
371
		return;
372
	}
373

374
	if (!intel_pstate_get_ppc_enable_status())
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
417
	 * correct max turbo frequency based on the turbo state.
418 419
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
420
	if (!global.turbo_disabled)
421 422 423
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
424
	pr_debug("_PPC limits will be enforced\n");
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}
#else
444
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
445 446 447
{
}

448
static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
449 450 451 452
{
}
#endif

453 454 455 456 457 458 459
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
460
	global.turbo_disabled =
461 462 463 464
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

465 466 467
static int min_perf_pct_min(void)
{
	struct cpudata *cpu = all_cpu_data[0];
468
	int turbo_pstate = cpu->pstate.turbo_pstate;
469

470
	return turbo_pstate ?
471
		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
472 473
}

474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
{
	u64 epb;
	int ret;

	if (!static_cpu_has(X86_FEATURE_EPB))
		return -ENXIO;

	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return (s16)ret;

	return (s16)(epb & 0x0f);
}

static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
{
	s16 epp;

493 494 495 496 497 498 499 500 501 502 503
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * When hwp_req_data is 0, means that caller didn't read
		 * MSR_HWP_REQUEST, so need to read and get EPP.
		 */
		if (!hwp_req_data) {
			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
					    &hwp_req_data);
			if (epp)
				return epp;
		}
504
		epp = (hwp_req_data >> 24) & 0xff;
505
	} else {
506 507
		/* When there is no EPP present, HWP uses EPB settings */
		epp = intel_pstate_get_epb(cpu_data);
508
	}
509 510 511 512

	return epp;
}

513
static int intel_pstate_set_epb(int cpu, s16 pref)
514 515
{
	u64 epb;
516
	int ret;
517 518

	if (!static_cpu_has(X86_FEATURE_EPB))
519
		return -ENXIO;
520

521 522 523
	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return ret;
524 525 526

	epb = (epb & ~0x0f) | pref;
	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
527 528

	return 0;
529 530
}

531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
/*
 * EPP/EPB display strings corresponding to EPP index in the
 * energy_perf_strings[]
 *	index		String
 *-------------------------------------
 *	0		default
 *	1		performance
 *	2		balance_performance
 *	3		balance_power
 *	4		power
 */
static const char * const energy_perf_strings[] = {
	"default",
	"performance",
	"balance_performance",
	"balance_power",
	"power",
	NULL
};
550 551 552 553 554 555
static const unsigned int epp_values[] = {
	HWP_EPP_PERFORMANCE,
	HWP_EPP_BALANCE_PERFORMANCE,
	HWP_EPP_BALANCE_POWERSAVE,
	HWP_EPP_POWERSAVE
};
556 557 558 559 560 561 562 563 564 565 566

static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
{
	s16 epp;
	int index = -EINVAL;

	epp = intel_pstate_get_epp(cpu_data, 0);
	if (epp < 0)
		return epp;

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
567 568 569 570 571 572 573 574
		if (epp == HWP_EPP_PERFORMANCE)
			return 1;
		if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
			return 2;
		if (epp <= HWP_EPP_BALANCE_POWERSAVE)
			return 3;
		else
			return 4;
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
	} else if (static_cpu_has(X86_FEATURE_EPB)) {
		/*
		 * Range:
		 *	0x00-0x03	:	Performance
		 *	0x04-0x07	:	Balance performance
		 *	0x08-0x0B	:	Balance power
		 *	0x0C-0x0F	:	Power
		 * The EPB is a 4 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 2) + 1;
	}

	return index;
}

static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
					      int pref_index)
{
	int epp = -EINVAL;
	int ret;

	if (!pref_index)
		epp = cpu_data->epp_default;

	mutex_lock(&intel_pstate_limits_lock);

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		u64 value;

		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
		if (ret)
			goto return_pref;

		value &= ~GENMASK_ULL(31, 24);

		if (epp == -EINVAL)
613
			epp = epp_values[pref_index - 1];
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686

		value |= (u64)epp << 24;
		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
	} else {
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 2;
		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
	}
return_pref:
	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
}

static ssize_t show_energy_performance_available_preferences(
				struct cpufreq_policy *policy, char *buf)
{
	int i = 0;
	int ret = 0;

	while (energy_perf_strings[i] != NULL)
		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);

	ret += sprintf(&buf[ret], "\n");

	return ret;
}

cpufreq_freq_attr_ro(energy_performance_available_preferences);

static ssize_t store_energy_performance_preference(
		struct cpufreq_policy *policy, const char *buf, size_t count)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	char str_preference[21];
	int ret, i = 0;

	ret = sscanf(buf, "%20s", str_preference);
	if (ret != 1)
		return -EINVAL;

	while (energy_perf_strings[i] != NULL) {
		if (!strcmp(str_preference, energy_perf_strings[i])) {
			intel_pstate_set_energy_pref_index(cpu_data, i);
			return count;
		}
		++i;
	}

	return -EINVAL;
}

static ssize_t show_energy_performance_preference(
				struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	int preference;

	preference = intel_pstate_get_energy_pref_index(cpu_data);
	if (preference < 0)
		return preference;

	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
}

cpufreq_freq_attr_rw(energy_performance_preference);

static struct freq_attr *hwp_cpufreq_attrs[] = {
	&energy_performance_preference,
	&energy_performance_available_preferences,
	NULL,
};

687 688
static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
				     int *current_max)
D
Dirk Brandewie 已提交
689
{
690
	u64 cap;
691

692 693
	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
	if (global.no_turbo)
694
		*current_max = HWP_GUARANTEED_PERF(cap);
695
	else
696 697 698 699 700 701 702 703 704 705 706 707 708 709
		*current_max = HWP_HIGHEST_PERF(cap);

	*phy_max = HWP_HIGHEST_PERF(cap);
}

static void intel_pstate_hwp_set(unsigned int cpu)
{
	struct cpudata *cpu_data = all_cpu_data[cpu];
	int max, min;
	u64 value;
	s16 epp;

	max = cpu_data->max_perf_ratio;
	min = cpu_data->min_perf_ratio;
710

711 712
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
		min = max;
713

714
	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
D
Dirk Brandewie 已提交
715

716 717
	value &= ~HWP_MIN_PERF(~0L);
	value |= HWP_MIN_PERF(min);
718

719 720
	value &= ~HWP_MAX_PERF(~0L);
	value |= HWP_MAX_PERF(max);
721

722 723
	if (cpu_data->epp_policy == cpu_data->policy)
		goto skip_epp;
724

725
	cpu_data->epp_policy = cpu_data->policy;
726

727 728 729 730 731
	if (cpu_data->epp_saved >= 0) {
		epp = cpu_data->epp_saved;
		cpu_data->epp_saved = -EINVAL;
		goto update_epp;
	}
732

733 734 735 736 737 738
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
		epp = intel_pstate_get_epp(cpu_data, value);
		cpu_data->epp_powersave = epp;
		/* If EPP read was failed, then don't try to write */
		if (epp < 0)
			goto skip_epp;
739

740 741 742 743 744
		epp = 0;
	} else {
		/* skip setting EPP, when saved value is invalid */
		if (cpu_data->epp_powersave < 0)
			goto skip_epp;
745

746 747 748 749 750 751 752 753 754 755
		/*
		 * No need to restore EPP when it is not zero. This
		 * means:
		 *  - Policy is not changed
		 *  - user has manually changed
		 *  - Error reading EPB
		 */
		epp = intel_pstate_get_epp(cpu_data, value);
		if (epp)
			goto skip_epp;
756

757 758
		epp = cpu_data->epp_powersave;
	}
759
update_epp:
760 761 762 763 764
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		value &= ~GENMASK_ULL(31, 24);
		value |= (u64)epp << 24;
	} else {
		intel_pstate_set_epb(cpu, epp);
D
Dirk Brandewie 已提交
765
	}
766 767
skip_epp:
	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
768
}
D
Dirk Brandewie 已提交
769

770 771 772 773 774 775 776 777 778 779 780 781
static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];

	if (!hwp_active)
		return 0;

	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);

	return 0;
}

782 783 784 785 786
static int intel_pstate_resume(struct cpufreq_policy *policy)
{
	if (!hwp_active)
		return 0;

787 788
	mutex_lock(&intel_pstate_limits_lock);

789
	all_cpu_data[policy->cpu]->epp_policy = 0;
790
	intel_pstate_hwp_set(policy->cpu);
791 792 793

	mutex_unlock(&intel_pstate_limits_lock);

794
	return 0;
795 796
}

797
static void intel_pstate_update_policies(void)
798
{
799 800 801 802
	int cpu;

	for_each_possible_cpu(cpu)
		cpufreq_update_policy(cpu);
D
Dirk Brandewie 已提交
803 804
}

805 806 807 808 809
/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
810
		return sprintf(buf, "%u\n", global.object);		\
811 812
	}

813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
static ssize_t intel_pstate_show_status(char *buf);
static int intel_pstate_update_status(const char *buf, size_t size);

static ssize_t show_status(struct kobject *kobj,
			   struct attribute *attr, char *buf)
{
	ssize_t ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_show_status(buf);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret;
}

static ssize_t store_status(struct kobject *a, struct attribute *b,
			    const char *buf, size_t count)
{
	char *p = memchr(buf, '\n', count);
	int ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_update_status(buf, p ? p - buf : count);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret < 0 ? ret : count;
}

841 842 843 844 845 846 847
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

848 849
	mutex_lock(&intel_pstate_driver_lock);

850
	if (!intel_pstate_driver) {
851 852 853 854
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

855 856 857 858
	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
859
	turbo_fp = div_fp(no_turbo, total);
860
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
861 862 863

	mutex_unlock(&intel_pstate_driver_lock);

864 865 866
	return sprintf(buf, "%u\n", turbo_pct);
}

867 868 869 870 871 872
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

873 874
	mutex_lock(&intel_pstate_driver_lock);

875
	if (!intel_pstate_driver) {
876 877 878 879
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

880 881
	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
882 883 884

	mutex_unlock(&intel_pstate_driver_lock);

885 886 887
	return sprintf(buf, "%u\n", total);
}

888 889 890 891 892
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

893 894
	mutex_lock(&intel_pstate_driver_lock);

895
	if (!intel_pstate_driver) {
896 897 898 899
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

900
	update_turbo_state();
901 902
	if (global.turbo_disabled)
		ret = sprintf(buf, "%u\n", global.turbo_disabled);
903
	else
904
		ret = sprintf(buf, "%u\n", global.no_turbo);
905

906 907
	mutex_unlock(&intel_pstate_driver_lock);

908 909 910
	return ret;
}

911
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
912
			      const char *buf, size_t count)
913 914 915
{
	unsigned int input;
	int ret;
916

917 918 919
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
920

921 922
	mutex_lock(&intel_pstate_driver_lock);

923
	if (!intel_pstate_driver) {
924 925 926 927
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

928 929
	mutex_lock(&intel_pstate_limits_lock);

930
	update_turbo_state();
931
	if (global.turbo_disabled) {
J
Joe Perches 已提交
932
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
933
		mutex_unlock(&intel_pstate_limits_lock);
934
		mutex_unlock(&intel_pstate_driver_lock);
935
		return -EPERM;
936
	}
D
Dirk Brandewie 已提交
937

938
	global.no_turbo = clamp_t(int, input, 0, 1);
939

940 941 942 943 944 945 946 947 948
	if (global.no_turbo) {
		struct cpudata *cpu = all_cpu_data[0];
		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;

		/* Squash the global minimum into the permitted range. */
		if (global.min_perf_pct > pct)
			global.min_perf_pct = pct;
	}

949 950
	mutex_unlock(&intel_pstate_limits_lock);

951 952
	intel_pstate_update_policies();

953 954
	mutex_unlock(&intel_pstate_driver_lock);

955 956 957 958
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
959
				  const char *buf, size_t count)
960 961 962
{
	unsigned int input;
	int ret;
963

964 965 966 967
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

968 969
	mutex_lock(&intel_pstate_driver_lock);

970
	if (!intel_pstate_driver) {
971 972 973 974
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

975 976
	mutex_lock(&intel_pstate_limits_lock);

977
	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
978

979 980
	mutex_unlock(&intel_pstate_limits_lock);

981 982
	intel_pstate_update_policies();

983 984
	mutex_unlock(&intel_pstate_driver_lock);

985 986 987 988
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
989
				  const char *buf, size_t count)
990 991 992
{
	unsigned int input;
	int ret;
993

994 995 996
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
997

998 999
	mutex_lock(&intel_pstate_driver_lock);

1000
	if (!intel_pstate_driver) {
1001 1002 1003 1004
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1005 1006
	mutex_lock(&intel_pstate_limits_lock);

1007 1008
	global.min_perf_pct = clamp_t(int, input,
				      min_perf_pct_min(), global.max_perf_pct);
1009

1010 1011
	mutex_unlock(&intel_pstate_limits_lock);

1012 1013
	intel_pstate_update_policies();

1014 1015
	mutex_unlock(&intel_pstate_driver_lock);

1016 1017 1018 1019 1020 1021
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

1022
define_one_global_rw(status);
1023 1024 1025
define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
1026
define_one_global_ro(turbo_pct);
1027
define_one_global_ro(num_pstates);
1028 1029

static struct attribute *intel_pstate_attributes[] = {
1030
	&status.attr,
1031
	&no_turbo.attr,
1032
	&turbo_pct.attr,
1033
	&num_pstates.attr,
1034 1035 1036
	NULL
};

1037
static const struct attribute_group intel_pstate_attr_group = {
1038 1039 1040
	.attrs = intel_pstate_attributes,
};

1041
static void __init intel_pstate_sysfs_expose_params(void)
1042
{
1043
	struct kobject *intel_pstate_kobject;
1044 1045 1046 1047
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
1048 1049 1050
	if (WARN_ON(!intel_pstate_kobject))
		return;

1051
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
	if (WARN_ON(rc))
		return;

	/*
	 * If per cpu limits are enforced there are no global limits, so
	 * return without creating max/min_perf_pct attributes
	 */
	if (per_cpu_limits)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
	WARN_ON(rc);

	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
	WARN_ON(rc);

1068 1069
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
1070

1071
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
1072
{
1073
	/* First disable HWP notification interrupt as we don't process them */
1074 1075
	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1076

1077
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1078
	cpudata->epp_policy = 0;
1079 1080
	if (cpudata->epp_default == -EINVAL)
		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
D
Dirk Brandewie 已提交
1081 1082
}

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
#define MSR_IA32_POWER_CTL_BIT_EE	19

/* Disable energy efficiency optimization */
static void intel_pstate_disable_ee(int cpu)
{
	u64 power_ctl;
	int ret;

	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
	if (ret)
		return;

	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
		pr_info("Disabling energy efficiency optimization\n");
		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
	}
}

1102
static int atom_get_min_pstate(void)
1103 1104
{
	u64 value;
1105

1106
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1107
	return (value >> 8) & 0x7F;
1108 1109
}

1110
static int atom_get_max_pstate(void)
1111 1112
{
	u64 value;
1113

1114
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1115
	return (value >> 16) & 0x7F;
1116
}
1117

1118
static int atom_get_turbo_pstate(void)
1119 1120
{
	u64 value;
1121

1122
	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
1123
	return value & 0x7F;
1124 1125
}

1126
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1127 1128 1129 1130 1131
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

1132
	val = (u64)pstate << 8;
1133
	if (global.no_turbo && !global.turbo_disabled)
1134 1135 1136 1137 1138 1139 1140
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1141
	vid = ceiling_fp(vid_fp);
1142

1143 1144 1145
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

1146
	return val | vid;
1147 1148
}

1149
static int silvermont_get_scaling(void)
1150 1151 1152
{
	u64 value;
	int i;
1153 1154 1155
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
1156 1157

	rdmsrl(MSR_FSB_FREQ, value);
1158 1159
	i = value & 0x7;
	WARN_ON(i > 4);
1160

1161 1162
	return silvermont_freq_table[i];
}
1163

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
1178 1179
}

1180
static void atom_get_vid(struct cpudata *cpudata)
1181 1182 1183
{
	u64 value;

1184
	rdmsrl(MSR_ATOM_CORE_VIDS, value);
D
Dirk Brandewie 已提交
1185 1186
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1187 1188 1189 1190
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
1191

1192
	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1193
	cpudata->vid.turbo = value & 0x7f;
1194 1195
}

1196
static int core_get_min_pstate(void)
1197 1198
{
	u64 value;
1199

1200
	rdmsrl(MSR_PLATFORM_INFO, value);
1201 1202 1203
	return (value >> 40) & 0xFF;
}

1204
static int core_get_max_pstate_physical(void)
1205 1206
{
	u64 value;
1207

1208
	rdmsrl(MSR_PLATFORM_INFO, value);
1209 1210 1211
	return (value >> 8) & 0xFF;
}

1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
static int core_get_tdp_ratio(u64 plat_info)
{
	/* Check how many TDP levels present */
	if (plat_info & 0x600000000) {
		u64 tdp_ctrl;
		u64 tdp_ratio;
		int tdp_msr;
		int err;

		/* Get the TDP level (0, 1, 2) to get ratios */
		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
		if (err)
			return err;

		/* TDP MSR are continuous starting at 0x648 */
		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
		if (err)
			return err;

		/* For level 1 and 2, bits[23:16] contain the ratio */
		if (tdp_ctrl & 0x03)
			tdp_ratio >>= 16;

		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);

		return (int)tdp_ratio;
	}

	return -ENXIO;
}

1245
static int core_get_max_pstate(void)
1246
{
1247 1248 1249
	u64 tar;
	u64 plat_info;
	int max_pstate;
1250
	int tdp_ratio;
1251 1252 1253 1254 1255
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

1256 1257 1258 1259 1260 1261 1262 1263 1264
	tdp_ratio = core_get_tdp_ratio(plat_info);
	if (tdp_ratio <= 0)
		return max_pstate;

	if (hwp_active) {
		/* Turbo activation ratio is not used on HWP platforms */
		return tdp_ratio;
	}

1265 1266
	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
1267 1268
		int tar_levels;

1269
		/* Do some sanity checking for safety */
1270 1271 1272 1273
		tar_levels = tar & 0xff;
		if (tdp_ratio - 1 == tar_levels) {
			max_pstate = tar_levels;
			pr_debug("max_pstate=TAC %x\n", max_pstate);
1274 1275
		}
	}
1276

1277
	return max_pstate;
1278 1279
}

1280
static int core_get_turbo_pstate(void)
1281 1282 1283
{
	u64 value;
	int nont, ret;
1284

1285
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1286
	nont = core_get_max_pstate();
1287
	ret = (value) & 255;
1288 1289 1290 1291 1292
	if (ret <= nont)
		ret = nont;
	return ret;
}

1293 1294 1295 1296 1297
static inline int core_get_scaling(void)
{
	return 100000;
}

1298
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1299 1300 1301
{
	u64 val;

1302
	val = (u64)pstate << 8;
1303
	if (global.no_turbo && !global.turbo_disabled)
1304 1305
		val |= (u64)1 << 32;

1306
	return val;
1307 1308
}

1309 1310 1311 1312 1313
static int knl_get_aperf_mperf_shift(void)
{
	return 10;
}

1314 1315 1316 1317 1318
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1319
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1320 1321 1322 1323 1324 1325 1326
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1327
static int intel_pstate_get_base_pstate(struct cpudata *cpu)
1328
{
1329 1330
	return global.no_turbo || global.turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1331 1332
}

1333
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1334
{
1335 1336
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1337 1338 1339 1340 1341 1342 1343
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1344 1345
}

1346 1347 1348 1349 1350 1351 1352
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
1353
	int pstate;
1354 1355

	update_turbo_state();
1356
	pstate = intel_pstate_get_base_pstate(cpu);
1357
	pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1358
	intel_pstate_set_pstate(cpu, pstate);
1359 1360
}

1361 1362
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1363 1364
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1365
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1366
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1367
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1368 1369
	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1370

1371 1372 1373
	if (pstate_funcs.get_aperf_mperf_shift)
		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();

1374 1375
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1376 1377

	intel_pstate_set_min_pstate(cpu);
1378 1379
}

1380
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1381
{
1382
	struct sample *sample = &cpu->sample;
1383

1384
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1385 1386
}

1387
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1388 1389
{
	u64 aperf, mperf;
1390
	unsigned long flags;
1391
	u64 tsc;
1392

1393
	local_irq_save(flags);
1394 1395
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1396
	tsc = rdtsc();
1397
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1398
		local_irq_restore(flags);
1399
		return false;
1400
	}
1401
	local_irq_restore(flags);
1402

1403
	cpu->last_sample_time = cpu->sample.time;
1404
	cpu->sample.time = time;
1405 1406
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1407
	cpu->sample.tsc =  tsc;
1408 1409
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1410
	cpu->sample.tsc -= cpu->prev_tsc;
1411

1412 1413
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1414
	cpu->prev_tsc = tsc;
1415 1416 1417 1418 1419 1420 1421
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
1422 1423 1424 1425 1426
	if (cpu->last_sample_time) {
		intel_pstate_calc_avg_perf(cpu);
		return true;
	}
	return false;
1427 1428
}

1429 1430
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1431
	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1432 1433
}

1434 1435
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1436 1437
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1438 1439
}

1440
static inline int32_t get_target_pstate(struct cpudata *cpu)
1441 1442
{
	struct sample *sample = &cpu->sample;
1443
	int32_t busy_frac, boost;
1444
	int target, avg_pstate;
1445

1446 1447
	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
			   sample->tsc);
1448

1449 1450
	boost = cpu->iowait_boost;
	cpu->iowait_boost >>= 1;
1451

1452 1453
	if (busy_frac < boost)
		busy_frac = boost;
1454

1455
	sample->busy_scaled = busy_frac * 100;
1456

1457
	target = global.no_turbo || global.turbo_disabled ?
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1476 1477
}

1478
static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1479
{
1480 1481
	int max_pstate = intel_pstate_get_base_pstate(cpu);
	int min_pstate;
1482

1483 1484
	min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
	max_pstate = max(min_pstate, cpu->max_perf_ratio);
1485
	return clamp_t(int, pstate, min_pstate, max_pstate);
1486 1487 1488 1489
}

static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
1490 1491 1492
	if (pstate == cpu->pstate.current_pstate)
		return;

1493
	cpu->pstate.current_pstate = pstate;
1494 1495 1496
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1497
static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1498
{
1499
	int from = cpu->pstate.current_pstate;
1500
	struct sample *sample;
1501
	int target_pstate;
1502

1503 1504
	update_turbo_state();

1505
	target_pstate = get_target_pstate(cpu);
1506 1507
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1508
	intel_pstate_update_pstate(cpu, target_pstate);
1509 1510

	sample = &cpu->sample;
1511
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1512
		fp_toint(sample->busy_scaled),
1513 1514 1515 1516 1517
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1518 1519
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1520 1521
}

1522
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1523
				     unsigned int flags)
1524
{
1525
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1526 1527
	u64 delta_ns;

1528 1529 1530 1531
	/* Don't allow remote callbacks */
	if (smp_processor_id() != cpu->cpu)
		return;

1532 1533
	if (flags & SCHED_CPUFREQ_IOWAIT) {
		cpu->iowait_boost = int_tofp(1);
1534 1535 1536 1537 1538 1539 1540 1541 1542
		cpu->last_update = time;
		/*
		 * The last time the busy was 100% so P-state was max anyway
		 * so avoid overhead of computation.
		 */
		if (fp_toint(cpu->sample.busy_scaled) == 100)
			return;

		goto set_pstate;
1543 1544 1545 1546 1547
	} else if (cpu->iowait_boost) {
		/* Clear iowait_boost if the CPU may have been idle. */
		delta_ns = time - cpu->last_update;
		if (delta_ns > TICK_NSEC)
			cpu->iowait_boost = 0;
1548
	}
1549
	cpu->last_update = time;
1550
	delta_ns = time - cpu->sample.time;
1551
	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1552
		return;
1553

1554
set_pstate:
1555 1556
	if (intel_pstate_sample(cpu, time))
		intel_pstate_adjust_pstate(cpu);
1557
}
1558

1559 1560 1561 1562 1563 1564 1565
static struct pstate_funcs core_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = core_get_turbo_pstate,
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
1566 1567
};

1568 1569 1570 1571 1572 1573 1574 1575
static const struct pstate_funcs silvermont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = silvermont_get_scaling,
	.get_vid = atom_get_vid,
1576 1577
};

1578 1579 1580 1581 1582 1583 1584 1585
static const struct pstate_funcs airmont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = airmont_get_scaling,
	.get_vid = atom_get_vid,
1586 1587
};

1588 1589 1590 1591 1592
static const struct pstate_funcs knl_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = knl_get_turbo_pstate,
1593
	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1594 1595
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
1596 1597
};

1598
#define ICPU(model, policy) \
1599 1600
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1601 1602

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_funcs),
	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_funcs),
	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_funcs),
	ICPU(INTEL_FAM6_IVYBRIDGE,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_CORE,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_funcs),
	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_X,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_ULT,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_funcs),
	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_X,		core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_funcs),
	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_funcs),
	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_funcs),
1621 1622
	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		core_funcs),
	ICPU(INTEL_FAM6_ATOM_GEMINI_LAKE,       core_funcs),
1623 1624 1625 1626
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

1627
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1628 1629 1630
	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
D
Dirk Brandewie 已提交
1631 1632 1633
	{}
};

1634
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1635
	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1636 1637 1638
	{}
};

1639 1640 1641 1642
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1643 1644 1645
	cpu = all_cpu_data[cpunum];

	if (!cpu) {
1646
		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1647 1648 1649 1650 1651
		if (!cpu)
			return -ENOMEM;

		all_cpu_data[cpunum] = cpu;

1652 1653 1654
		cpu->epp_default = -EINVAL;
		cpu->epp_powersave = -EINVAL;
		cpu->epp_saved = -EINVAL;
1655
	}
1656 1657 1658 1659

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1660

1661
	if (hwp_active) {
1662 1663 1664 1665 1666 1667
		const struct x86_cpu_id *id;

		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
		if (id)
			intel_pstate_disable_ee(cpunum);

1668
		intel_pstate_hwp_enable(cpu);
1669
	}
1670

1671
	intel_pstate_get_cpu_pstates(cpu);
1672

J
Joe Perches 已提交
1673
	pr_debug("controlling: cpu %d\n", cpunum);
1674 1675 1676 1677

	return 0;
}

1678
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1679
{
1680 1681
	struct cpudata *cpu = all_cpu_data[cpu_num];

1682 1683 1684
	if (hwp_active)
		return;

1685 1686 1687
	if (cpu->update_util_set)
		return;

1688 1689
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
1690
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1691
				     intel_pstate_update_util);
1692
	cpu->update_util_set = true;
1693 1694 1695 1696
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
1697 1698 1699 1700 1701
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

1702
	cpufreq_remove_update_util_hook(cpu);
1703
	cpu_data->update_util_set = false;
1704 1705 1706
	synchronize_sched();
}

1707 1708 1709 1710 1711 1712
static int intel_pstate_get_max_freq(struct cpudata *cpu)
{
	return global.turbo_disabled || global.no_turbo ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
}

1713
static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1714
					    struct cpudata *cpu)
1715
{
1716
	int max_freq = intel_pstate_get_max_freq(cpu);
1717
	int32_t max_policy_perf, min_policy_perf;
1718
	int max_state, turbo_max;
1719

1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
	/*
	 * HWP needs some special consideration, because on BDX the
	 * HWP_REQUEST uses abstract value to represent performance
	 * rather than pure ratios.
	 */
	if (hwp_active) {
		intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
	} else {
		max_state = intel_pstate_get_base_pstate(cpu);
		turbo_max = cpu->pstate.turbo_pstate;
	}

	max_policy_perf = max_state * policy->max / max_freq;
1733
	if (policy->max == policy->min) {
1734
		min_policy_perf = max_policy_perf;
1735
	} else {
1736
		min_policy_perf = max_state * policy->min / max_freq;
1737 1738
		min_policy_perf = clamp_t(int32_t, min_policy_perf,
					  0, max_policy_perf);
1739
	}
1740

1741 1742 1743 1744
	pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
		 policy->cpu, max_state,
		 min_policy_perf, max_policy_perf);

1745
	/* Normalize user input to [min_perf, max_perf] */
1746
	if (per_cpu_limits) {
1747 1748
		cpu->min_perf_ratio = min_policy_perf;
		cpu->max_perf_ratio = max_policy_perf;
1749 1750 1751 1752
	} else {
		int32_t global_min, global_max;

		/* Global limits are in percent of the maximum turbo P-state. */
1753 1754
		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
1755
		global_min = clamp_t(int32_t, global_min, 0, global_max);
1756

1757 1758
		pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
			 global_min, global_max);
1759

1760 1761 1762 1763
		cpu->min_perf_ratio = max(min_policy_perf, global_min);
		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
		cpu->max_perf_ratio = min(max_policy_perf, global_max);
		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
1764

1765 1766 1767
		/* Make sure min_perf <= max_perf */
		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
					  cpu->max_perf_ratio);
1768

1769 1770 1771 1772
	}
	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
		 cpu->max_perf_ratio,
		 cpu->min_perf_ratio);
1773 1774
}

1775 1776
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
1777 1778
	struct cpudata *cpu;

1779 1780 1781
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

1782 1783 1784
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

1785
	cpu = all_cpu_data[policy->cpu];
1786 1787
	cpu->policy = policy->policy;

1788 1789
	mutex_lock(&intel_pstate_limits_lock);

1790
	intel_pstate_update_perf_limits(policy, cpu);
1791

1792
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
1793 1794 1795 1796 1797 1798
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
1799 1800
	} else {
		intel_pstate_set_update_util_hook(policy->cpu);
1801 1802
	}

1803
	if (hwp_active)
1804
		intel_pstate_hwp_set(policy->cpu);
D
Dirk Brandewie 已提交
1805

1806 1807
	mutex_unlock(&intel_pstate_limits_lock);

1808 1809 1810
	return 0;
}

1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
					 struct cpudata *cpu)
{
	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_freq) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
	}
}

1822 1823
static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
1824 1825 1826
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
1827 1828
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
1829

1830
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1831
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1832 1833
		return -EINVAL;

1834 1835
	intel_pstate_adjust_policy_max(policy, cpu);

1836 1837 1838
	return 0;
}

1839 1840 1841 1842 1843
static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
{
	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
}

1844
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1845
{
1846
	pr_debug("CPU %d exiting\n", policy->cpu);
1847

1848
	intel_pstate_clear_update_util_hook(policy->cpu);
1849 1850 1851
	if (hwp_active)
		intel_pstate_hwp_save_state(policy);
	else
1852 1853
		intel_cpufreq_stop_cpu(policy);
}
1854

1855 1856 1857
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);
1858

1859
	policy->fast_switch_possible = false;
D
Dirk Brandewie 已提交
1860

1861
	return 0;
1862 1863
}

1864
static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
1865 1866
{
	struct cpudata *cpu;
1867
	int rc;
1868 1869 1870 1871 1872 1873 1874

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

1875 1876
	cpu->max_perf_ratio = 0xFF;
	cpu->min_perf_ratio = 0;
1877

1878 1879
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1880 1881

	/* cpuinfo and default policy values */
1882
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1883
	update_turbo_state();
1884
	policy->cpuinfo.max_freq = global.turbo_disabled ?
1885 1886 1887
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

1888
	intel_pstate_init_acpi_perf_limits(policy);
1889

1890 1891
	policy->fast_switch_possible = true;

1892 1893 1894
	return 0;
}

1895
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1896
{
1897 1898 1899 1900 1901
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

1902
	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
1903 1904 1905
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;
1906 1907 1908 1909

	return 0;
}

1910
static struct cpufreq_driver intel_pstate = {
1911 1912 1913
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
1914
	.suspend	= intel_pstate_hwp_save_state,
1915
	.resume		= intel_pstate_resume,
1916
	.init		= intel_pstate_cpu_init,
1917
	.exit		= intel_pstate_cpu_exit,
1918
	.stop_cpu	= intel_pstate_stop_cpu,
1919 1920 1921
	.name		= "intel_pstate",
};

1922 1923 1924 1925 1926
static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
1927 1928
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
1929

1930
	intel_pstate_adjust_policy_max(policy, cpu);
1931

1932 1933
	intel_pstate_update_perf_limits(policy, cpu);

1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
	return 0;
}

static int intel_cpufreq_target(struct cpufreq_policy *policy,
				unsigned int target_freq,
				unsigned int relation)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct cpufreq_freqs freqs;
	int target_pstate;

1945 1946
	update_turbo_state();

1947
	freqs.old = policy->cur;
1948
	freqs.new = target_freq;
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967

	cpufreq_freq_transition_begin(policy, &freqs);
	switch (relation) {
	case CPUFREQ_RELATION_L:
		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
		break;
	case CPUFREQ_RELATION_H:
		target_pstate = freqs.new / cpu->pstate.scaling;
		break;
	default:
		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
		break;
	}
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	if (target_pstate != cpu->pstate.current_pstate) {
		cpu->pstate.current_pstate = target_pstate;
		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
			      pstate_funcs.get_val(cpu, target_pstate));
	}
1968
	freqs.new = target_pstate * cpu->pstate.scaling;
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
	cpufreq_freq_transition_end(policy, &freqs, false);

	return 0;
}

static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
					      unsigned int target_freq)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	int target_pstate;

1980 1981
	update_turbo_state();

1982
	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
1983
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1984
	intel_pstate_update_pstate(cpu, target_pstate);
1985
	return target_pstate * cpu->pstate.scaling;
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
}

static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
1996
	policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
	policy->cur = policy->cpuinfo.min_freq;

	return 0;
}

static struct cpufreq_driver intel_cpufreq = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_cpufreq_verify_policy,
	.target		= intel_cpufreq_target,
	.fast_switch	= intel_cpufreq_fast_switch,
	.init		= intel_cpufreq_cpu_init,
	.exit		= intel_pstate_cpu_exit,
	.stop_cpu	= intel_cpufreq_stop_cpu,
	.name		= "intel_cpufreq",
};

2014
static struct cpufreq_driver *default_driver = &intel_pstate;
2015

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
static void intel_pstate_driver_cleanup(void)
{
	unsigned int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			if (intel_pstate_driver == &intel_pstate)
				intel_pstate_clear_update_util_hook(cpu);

			kfree(all_cpu_data[cpu]);
			all_cpu_data[cpu] = NULL;
		}
	}
	put_online_cpus();
2031
	intel_pstate_driver = NULL;
2032 2033
}

2034
static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2035 2036 2037
{
	int ret;

2038 2039
	memset(&global, 0, sizeof(global));
	global.max_perf_pct = 100;
2040

2041
	intel_pstate_driver = driver;
2042 2043 2044 2045 2046 2047
	ret = cpufreq_register_driver(intel_pstate_driver);
	if (ret) {
		intel_pstate_driver_cleanup();
		return ret;
	}

2048 2049
	global.min_perf_pct = min_perf_pct_min();

2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
	return 0;
}

static int intel_pstate_unregister_driver(void)
{
	if (hwp_active)
		return -EBUSY;

	cpufreq_unregister_driver(intel_pstate_driver);
	intel_pstate_driver_cleanup();

	return 0;
}

static ssize_t intel_pstate_show_status(char *buf)
{
2066
	if (!intel_pstate_driver)
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
		return sprintf(buf, "off\n");

	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
					"active" : "passive");
}

static int intel_pstate_update_status(const char *buf, size_t size)
{
	int ret;

	if (size == 3 && !strncmp(buf, "off", size))
2078
		return intel_pstate_driver ?
2079 2080 2081
			intel_pstate_unregister_driver() : -EINVAL;

	if (size == 6 && !strncmp(buf, "active", size)) {
2082
		if (intel_pstate_driver) {
2083 2084 2085 2086 2087 2088 2089 2090
			if (intel_pstate_driver == &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2091
		return intel_pstate_register_driver(&intel_pstate);
2092 2093 2094
	}

	if (size == 7 && !strncmp(buf, "passive", size)) {
2095
		if (intel_pstate_driver) {
2096
			if (intel_pstate_driver == &intel_cpufreq)
2097 2098 2099 2100 2101 2102 2103
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2104
		return intel_pstate_register_driver(&intel_cpufreq);
2105 2106 2107 2108 2109
	}

	return -EINVAL;
}

2110 2111 2112
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
2113
static unsigned int force_load __initdata;
2114

2115
static int __init intel_pstate_msrs_not_valid(void)
2116
{
2117
	if (!pstate_funcs.get_max() ||
2118 2119
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
2120 2121 2122 2123
		return -ENODEV;

	return 0;
}
2124

2125
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2126 2127
{
	pstate_funcs.get_max   = funcs->get_max;
2128
	pstate_funcs.get_max_physical = funcs->get_max_physical;
2129 2130
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
2131
	pstate_funcs.get_scaling = funcs->get_scaling;
2132
	pstate_funcs.get_val   = funcs->get_val;
2133
	pstate_funcs.get_vid   = funcs->get_vid;
2134
	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2135 2136
}

2137
#ifdef CONFIG_ACPI
2138

2139
static bool __init intel_pstate_no_acpi_pss(void)
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

2168
static bool __init intel_pstate_has_acpi_ppc(void)
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

2188
/* Hardware vendor-specific info that has its own power management modes */
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
static struct acpi_platform_list plat_info[] __initdata = {
	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{ } /* End */
2206 2207
};

2208
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2209
{
D
Dirk Brandewie 已提交
2210 2211
	const struct x86_cpu_id *id;
	u64 misc_pwr;
2212
	int idx;
D
Dirk Brandewie 已提交
2213 2214 2215 2216 2217 2218 2219

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
2220

2221 2222
	idx = acpi_match_platform_list(plat_info);
	if (idx < 0)
2223 2224
		return false;

2225 2226 2227 2228 2229
	switch (plat_info[idx].data) {
	case PSS:
		return intel_pstate_no_acpi_pss();
	case PPC:
		return intel_pstate_has_acpi_ppc() && !force_load;
2230 2231 2232 2233
	}

	return false;
}
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243

static void intel_pstate_request_control_from_smm(void)
{
	/*
	 * It may be unsafe to request P-states control from SMM if _PPC support
	 * has not been enabled.
	 */
	if (acpi_ppc)
		acpi_processor_pstate_control();
}
2244 2245
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2246
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2247
static inline void intel_pstate_request_control_from_smm(void) {}
2248 2249
#endif /* CONFIG_ACPI */

2250 2251 2252 2253 2254
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
	{}
};

2255 2256
static int __init intel_pstate_init(void)
{
2257
	int rc;
2258

2259 2260 2261
	if (no_load)
		return -ENODEV;

2262
	if (x86_match_cpu(hwp_support_ids)) {
2263
		copy_cpu_funcs(&core_funcs);
2264
		if (!no_hwp) {
2265 2266 2267 2268 2269 2270
			hwp_active++;
			intel_pstate.attr = hwp_cpufreq_attrs;
			goto hwp_cpu_matched;
		}
	} else {
		const struct x86_cpu_id *id;
2271

2272 2273 2274
		id = x86_match_cpu(intel_pstate_cpu_ids);
		if (!id)
			return -ENODEV;
2275

2276
		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2277
	}
2278

2279 2280 2281
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

2282 2283 2284 2285 2286 2287 2288 2289
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

2290 2291 2292
	if (!hwp_active && hwp_only)
		return -ENOTSUPP;

J
Joe Perches 已提交
2293
	pr_info("Intel P-state driver initializing\n");
2294

2295
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2296 2297 2298
	if (!all_cpu_data)
		return -ENOMEM;

2299 2300
	intel_pstate_request_control_from_smm();

2301
	intel_pstate_sysfs_expose_params();
2302

2303
	mutex_lock(&intel_pstate_driver_lock);
2304
	rc = intel_pstate_register_driver(default_driver);
2305
	mutex_unlock(&intel_pstate_driver_lock);
2306 2307
	if (rc)
		return rc;
2308

2309
	if (hwp_active)
J
Joe Perches 已提交
2310
		pr_info("HWP enabled\n");
2311

2312
	return 0;
2313 2314 2315
}
device_initcall(intel_pstate_init);

2316 2317 2318 2319 2320
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

2321
	if (!strcmp(str, "disable")) {
2322
		no_load = 1;
2323 2324
	} else if (!strcmp(str, "passive")) {
		pr_info("Passive mode enabled\n");
2325
		default_driver = &intel_cpufreq;
2326 2327
		no_hwp = 1;
	}
2328
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
2329
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
2330
		no_hwp = 1;
2331
	}
2332 2333
	if (!strcmp(str, "force"))
		force_load = 1;
2334 2335
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
2336 2337
	if (!strcmp(str, "per_cpu_perf_limits"))
		per_cpu_limits = true;
2338 2339 2340 2341 2342 2343

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

2344 2345 2346 2347
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

2348 2349 2350
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");