intel_pstate.c 65.5 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

J
Joe Perches 已提交
13 14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
30
#include <linux/acpi.h>
31
#include <linux/vmalloc.h>
32 33 34 35 36
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
37
#include <asm/cpufeature.h>
38
#include <asm/intel-family.h>
39

40 41
#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000

42 43 44 45
#define ATOM_RATIOS		0x66a
#define ATOM_VIDS		0x66b
#define ATOM_TURBO_RATIOS	0x66c
#define ATOM_TURBO_VIDS		0x66d
46

47 48
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
49
#include <acpi/cppc_acpi.h>
50 51
#endif

52
#define FRAC_BITS 8
53 54
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
55

56 57
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
58 59
#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
60

61 62 63 64 65
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

66
static inline int32_t div_fp(s64 x, s64 y)
67
{
68
	return div64_s64((int64_t)x << FRAC_BITS, y);
69 70
}

71 72 73 74 75 76 77 78 79 80 81
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

82 83 84 85 86 87 88 89 90 91
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

92 93
/**
 * struct sample -	Store performance sample
94
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
95 96
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
97
 *			P state. This can be different than core_avg_perf
98 99 100 101 102 103 104 105 106 107 108 109
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
110
struct sample {
111
	int32_t core_avg_perf;
112
	int32_t busy_scaled;
113 114
	u64 aperf;
	u64 mperf;
115
	u64 tsc;
116
	u64 time;
117 118
};

119 120 121 122 123 124 125 126 127 128 129
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
130 131
 * @max_freq:		@max_pstate frequency in cpufreq units
 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
132 133 134
 *
 * Stores the per cpu model P state limits and current P state.
 */
135 136 137 138
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
139
	int	max_pstate_physical;
140
	int	scaling;
141
	int	turbo_pstate;
142 143
	unsigned int max_freq;
	unsigned int turbo_freq;
144 145
};

146 147 148 149 150 151 152 153 154 155 156 157 158
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
159
struct vid_data {
160 161 162
	int min;
	int max;
	int turbo;
163 164 165
	int32_t ratio;
};

166 167 168 169 170 171 172 173 174 175 176 177
/**
 * struct _pid -	Stores PID data
 * @setpoint:		Target set point for busyness or performance
 * @integral:		Storage for accumulated error values
 * @p_gain:		PID proportional gain
 * @i_gain:		PID integral gain
 * @d_gain:		PID derivative gain
 * @deadband:		PID deadband
 * @last_err:		Last error storage for integral part of PID calculation
 *
 * Stores PID coefficients and last error for PID controller.
 */
178 179 180 181 182 183 184
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
185
	int32_t last_err;
186 187
};

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
/**
 * struct perf_limits - Store user and policy limits
 * @no_turbo:		User requested turbo state from intel_pstate sysfs
 * @turbo_disabled:	Platform turbo status either from msr
 *			MSR_IA32_MISC_ENABLE or when maximum available pstate
 *			matches the maximum turbo pstate
 * @max_perf_pct:	Effective maximum performance limit in percentage, this
 *			is minimum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @min_perf_pct:	Effective minimum performance limit in percentage, this
 *			is maximum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @max_perf:		This is a scaled value between 0 to 255 for max_perf_pct
 *			This value is used to limit max pstate
 * @min_perf:		This is a scaled value between 0 to 255 for min_perf_pct
 *			This value is used to limit min pstate
 * @max_policy_pct:	The maximum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @max_sysfs_pct:	The maximum performance in percentage enforced by
 *			intel pstate sysfs interface, unused when per cpu
 *			controls are enforced
 * @min_policy_pct:	The minimum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @min_sysfs_pct:	The minimum performance in percentage enforced by
 *			intel pstate sysfs interface, unused when per cpu
 *			controls are enforced
 *
 * Storage for user and policy defined limits.
 */
struct perf_limits {
	int no_turbo;
	int turbo_disabled;
	int max_perf_pct;
	int min_perf_pct;
	int32_t max_perf;
	int32_t min_perf;
	int max_policy_pct;
	int max_sysfs_pct;
	int min_policy_pct;
	int min_sysfs_pct;
};

230 231 232
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
233
 * @policy:		CPUFreq policy value
234
 * @update_util:	CPUFreq utility callback information
235
 * @update_util_set:	CPUFreq utility callback is set
236 237
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
238 239 240 241 242 243 244 245 246 247
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @pid:		Stores PID parameters for this CPU
 * @last_sample_time:	Last Sample time
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
248 249 250
 * @perf_limits:	Pointer to perf_limit unique to this CPU
 *			Not all field in the structure are applicable
 *			when per cpu controls are enforced
251 252
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
253 254 255
 * @epp_powersave:	Last saved HWP energy performance preference
 *			(EPP) or energy performance bias (EPB),
 *			when policy switched to performance
256
 * @epp_policy:		Last saved policy used to set EPP/EPB
257 258 259 260
 * @epp_default:	Power on default HWP energy performance
 *			preference/bias
 * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
 *			operation
261 262 263
 *
 * This structure stores per CPU instance data for all CPUs.
 */
264 265 266
struct cpudata {
	int cpu;

267
	unsigned int policy;
268
	struct update_util_data update_util;
269
	bool   update_util_set;
270 271

	struct pstate_data pstate;
272
	struct vid_data vid;
273 274
	struct _pid pid;

275
	u64	last_update;
276
	u64	last_sample_time;
277 278
	u64	prev_aperf;
	u64	prev_mperf;
279
	u64	prev_tsc;
280
	u64	prev_cummulative_iowait;
281
	struct sample sample;
282
	struct perf_limits *perf_limits;
283 284 285 286
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
287
	unsigned int iowait_boost;
288
	s16 epp_powersave;
289
	s16 epp_policy;
290 291
	s16 epp_default;
	s16 epp_saved;
292 293 294
};

static struct cpudata **all_cpu_data;
295 296

/**
297
 * struct pstate_adjust_policy - Stores static PID configuration data
298 299 300 301 302 303 304 305 306 307
 * @sample_rate_ms:	PID calculation sample rate in ms
 * @sample_rate_ns:	Sample rate calculation in ns
 * @deadband:		PID deadband
 * @setpoint:		PID Setpoint
 * @p_gain_pct:		PID proportional gain
 * @i_gain_pct:		PID integral gain
 * @d_gain_pct:		PID derivative gain
 *
 * Stores per CPU model static PID configuration data.
 */
308 309
struct pstate_adjust_policy {
	int sample_rate_ms;
310
	s64 sample_rate_ns;
311 312 313 314 315 316 317
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

318 319 320 321 322 323 324 325 326 327 328 329 330 331
/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 * @get_target_pstate:	Callback to a function to calculate next P state to use
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
332 333
struct pstate_funcs {
	int (*get_max)(void);
334
	int (*get_max_physical)(void);
335 336
	int (*get_min)(void);
	int (*get_turbo)(void);
337
	int (*get_scaling)(void);
338
	u64 (*get_val)(struct cpudata*, int pstate);
339
	void (*get_vid)(struct cpudata *);
340
	int32_t (*get_target_pstate)(struct cpudata *);
341 342
};

343 344 345 346 347
/**
 * struct cpu_defaults- Per CPU model default config data
 * @pid_policy:	PID config data
 * @funcs:		Callback function data
 */
348 349 350
struct cpu_defaults {
	struct pstate_adjust_policy pid_policy;
	struct pstate_funcs funcs;
351 352
};

353
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
354
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
355

356 357 358
static struct pstate_adjust_policy pid_params __read_mostly;
static struct pstate_funcs pstate_funcs __read_mostly;
static int hwp_active __read_mostly;
359
static bool per_cpu_limits __read_mostly;
360

361 362
static bool driver_registered __read_mostly;

363 364 365
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
366

367 368 369 370
static struct perf_limits performance_limits = {
	.no_turbo = 0,
	.turbo_disabled = 0,
	.max_perf_pct = 100,
371
	.max_perf = int_ext_tofp(1),
372
	.min_perf_pct = 100,
373
	.min_perf = int_ext_tofp(1),
374 375 376 377 378 379 380
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
};

static struct perf_limits powersave_limits = {
381
	.no_turbo = 0,
382
	.turbo_disabled = 0,
383
	.max_perf_pct = 100,
384
	.max_perf = int_ext_tofp(1),
385 386
	.min_perf_pct = 0,
	.min_perf = 0,
387 388
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
389 390
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
391 392
};

393 394 395 396 397 398
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
static struct perf_limits *limits = &performance_limits;
#else
static struct perf_limits *limits = &powersave_limits;
#endif

399
static DEFINE_MUTEX(intel_pstate_driver_lock);
400 401
static DEFINE_MUTEX(intel_pstate_limits_lock);

402
#ifdef CONFIG_ACPI
403 404 405 406 407 408 409 410 411 412

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

	return acpi_ppc;
}

413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
#ifdef CONFIG_ACPI_CPPC_LIB

/* The work item is needed to avoid CPU hotplug locking issues */
static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
{
	sched_set_itmt_support();
}

static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);

static void intel_pstate_set_itmt_prio(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return;

	/*
	 * The priorities can be set regardless of whether or not
	 * sched_set_itmt_support(true) has been called and it is valid to
	 * update them at any time after it has been called.
	 */
	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);

	if (max_highest_perf <= min_highest_perf) {
		if (cppc_perf.highest_perf > max_highest_perf)
			max_highest_perf = cppc_perf.highest_perf;

		if (cppc_perf.highest_perf < min_highest_perf)
			min_highest_perf = cppc_perf.highest_perf;

		if (max_highest_perf > min_highest_perf) {
			/*
			 * This code can be run during CPU online under the
			 * CPU hotplug locks, so sched_set_itmt_support()
			 * cannot be called from here.  Queue up a work item
			 * to invoke it.
			 */
			schedule_work(&sched_itmt_work);
		}
	}
}
#else
static void intel_pstate_set_itmt_prio(int cpu)
{
}
#endif

464 465 466 467 468 469
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

470 471
	if (hwp_active) {
		intel_pstate_set_itmt_prio(policy->cpu);
472
		return;
473
	}
474

475
	if (!intel_pstate_get_ppc_enable_status())
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
518
	 * correct max turbo frequency based on the turbo state.
519 520
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
521
	if (!limits->turbo_disabled)
522 523 524
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
525
	pr_debug("_PPC limits will be enforced\n");
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}

#else
546
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
547 548 549
{
}

550
static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
551 552 553 554
{
}
#endif

555
static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
556
			     int deadband, int integral) {
557 558
	pid->setpoint = int_tofp(setpoint);
	pid->deadband  = int_tofp(deadband);
559
	pid->integral  = int_tofp(integral);
560
	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
561 562 563 564
}

static inline void pid_p_gain_set(struct _pid *pid, int percent)
{
565
	pid->p_gain = div_fp(percent, 100);
566 567 568 569
}

static inline void pid_i_gain_set(struct _pid *pid, int percent)
{
570
	pid->i_gain = div_fp(percent, 100);
571 572 573 574
}

static inline void pid_d_gain_set(struct _pid *pid, int percent)
{
575
	pid->d_gain = div_fp(percent, 100);
576 577
}

578
static signed int pid_calc(struct _pid *pid, int32_t busy)
579
{
580
	signed int result;
581 582 583
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

584
	fp_error = pid->setpoint - busy;
585

586
	if (abs(fp_error) <= pid->deadband)
587 588 589 590 591 592
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

593 594 595 596 597 598 599 600
	/*
	 * We limit the integral here so that it will never
	 * get higher than 30.  This prevents it from becoming
	 * too large an input over long periods of time and allows
	 * it to get factored out sooner.
	 *
	 * The value of 30 was chosen through experimentation.
	 */
601 602 603 604 605 606
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

607 608
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
609 610

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
611
	result = result + (1 << (FRAC_BITS-1));
612 613 614 615 616
	return (signed int)fp_toint(result);
}

static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
{
617 618 619
	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
620

621
	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
622 623 624 625 626
}

static inline void intel_pstate_reset_all_pid(void)
{
	unsigned int cpu;
627

628 629 630 631 632 633
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu])
			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
	}
}

634 635 636 637 638 639 640
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
641
	limits->turbo_disabled =
642 643 644 645
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
{
	u64 epb;
	int ret;

	if (!static_cpu_has(X86_FEATURE_EPB))
		return -ENXIO;

	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return (s16)ret;

	return (s16)(epb & 0x0f);
}

static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
{
	s16 epp;

665 666 667 668 669 670 671 672 673 674 675
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * When hwp_req_data is 0, means that caller didn't read
		 * MSR_HWP_REQUEST, so need to read and get EPP.
		 */
		if (!hwp_req_data) {
			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
					    &hwp_req_data);
			if (epp)
				return epp;
		}
676
		epp = (hwp_req_data >> 24) & 0xff;
677
	} else {
678 679
		/* When there is no EPP present, HWP uses EPB settings */
		epp = intel_pstate_get_epb(cpu_data);
680
	}
681 682 683 684

	return epp;
}

685
static int intel_pstate_set_epb(int cpu, s16 pref)
686 687
{
	u64 epb;
688
	int ret;
689 690

	if (!static_cpu_has(X86_FEATURE_EPB))
691
		return -ENXIO;
692

693 694 695
	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return ret;
696 697 698

	epb = (epb & ~0x0f) | pref;
	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
699 700

	return 0;
701 702
}

703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
/*
 * EPP/EPB display strings corresponding to EPP index in the
 * energy_perf_strings[]
 *	index		String
 *-------------------------------------
 *	0		default
 *	1		performance
 *	2		balance_performance
 *	3		balance_power
 *	4		power
 */
static const char * const energy_perf_strings[] = {
	"default",
	"performance",
	"balance_performance",
	"balance_power",
	"power",
	NULL
};

static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
{
	s16 epp;
	int index = -EINVAL;

	epp = intel_pstate_get_epp(cpu_data, 0);
	if (epp < 0)
		return epp;

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * Range:
		 *	0x00-0x3F	:	Performance
		 *	0x40-0x7F	:	Balance performance
		 *	0x80-0xBF	:	Balance power
		 *	0xC0-0xFF	:	Power
		 * The EPP is a 8 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 6) + 1;
	} else if (static_cpu_has(X86_FEATURE_EPB)) {
		/*
		 * Range:
		 *	0x00-0x03	:	Performance
		 *	0x04-0x07	:	Balance performance
		 *	0x08-0x0B	:	Balance power
		 *	0x0C-0x0F	:	Power
		 * The EPB is a 4 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 2) + 1;
	}

	return index;
}

static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
					      int pref_index)
{
	int epp = -EINVAL;
	int ret;

	if (!pref_index)
		epp = cpu_data->epp_default;

	mutex_lock(&intel_pstate_limits_lock);

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		u64 value;

		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
		if (ret)
			goto return_pref;

		value &= ~GENMASK_ULL(31, 24);

		/*
		 * If epp is not default, convert from index into
		 * energy_perf_strings to epp value, by shifting 6
		 * bits left to use only top two bits in epp.
		 * The resultant epp need to shifted by 24 bits to
		 * epp position in MSR_HWP_REQUEST.
		 */
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 6;

		value |= (u64)epp << 24;
		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
	} else {
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 2;
		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
	}
return_pref:
	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
}

static ssize_t show_energy_performance_available_preferences(
				struct cpufreq_policy *policy, char *buf)
{
	int i = 0;
	int ret = 0;

	while (energy_perf_strings[i] != NULL)
		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);

	ret += sprintf(&buf[ret], "\n");

	return ret;
}

cpufreq_freq_attr_ro(energy_performance_available_preferences);

static ssize_t store_energy_performance_preference(
		struct cpufreq_policy *policy, const char *buf, size_t count)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	char str_preference[21];
	int ret, i = 0;

	ret = sscanf(buf, "%20s", str_preference);
	if (ret != 1)
		return -EINVAL;

	while (energy_perf_strings[i] != NULL) {
		if (!strcmp(str_preference, energy_perf_strings[i])) {
			intel_pstate_set_energy_pref_index(cpu_data, i);
			return count;
		}
		++i;
	}

	return -EINVAL;
}

static ssize_t show_energy_performance_preference(
				struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	int preference;

	preference = intel_pstate_get_energy_pref_index(cpu_data);
	if (preference < 0)
		return preference;

	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
}

cpufreq_freq_attr_rw(energy_performance_preference);

static struct freq_attr *hwp_cpufreq_attrs[] = {
	&energy_performance_preference,
	&energy_performance_available_preferences,
	NULL,
};

863
static void intel_pstate_hwp_set(struct cpufreq_policy *policy)
D
Dirk Brandewie 已提交
864
{
865
	int min, hw_min, max, hw_max, cpu, range, adj_range;
866
	struct perf_limits *perf_limits = limits;
867 868
	u64 value, cap;

869
	for_each_cpu(cpu, policy->cpus) {
870
		int max_perf_pct, min_perf_pct;
871 872
		struct cpudata *cpu_data = all_cpu_data[cpu];
		s16 epp;
873 874 875 876

		if (per_cpu_limits)
			perf_limits = all_cpu_data[cpu]->perf_limits;

877 878 879 880 881
		rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
		hw_min = HWP_LOWEST_PERF(cap);
		hw_max = HWP_HIGHEST_PERF(cap);
		range = hw_max - hw_min;

882 883 884
		max_perf_pct = perf_limits->max_perf_pct;
		min_perf_pct = perf_limits->min_perf_pct;

D
Dirk Brandewie 已提交
885
		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
886
		adj_range = min_perf_pct * range / 100;
887
		min = hw_min + adj_range;
D
Dirk Brandewie 已提交
888 889 890
		value &= ~HWP_MIN_PERF(~0L);
		value |= HWP_MIN_PERF(min);

891
		adj_range = max_perf_pct * range / 100;
892
		max = hw_min + adj_range;
893
		if (limits->no_turbo) {
894 895 896
			hw_max = HWP_GUARANTEED_PERF(cap);
			if (hw_max < max)
				max = hw_max;
D
Dirk Brandewie 已提交
897 898 899 900
		}

		value &= ~HWP_MAX_PERF(~0L);
		value |= HWP_MAX_PERF(max);
901 902 903 904 905 906

		if (cpu_data->epp_policy == cpu_data->policy)
			goto skip_epp;

		cpu_data->epp_policy = cpu_data->policy;

907 908 909 910 911 912
		if (cpu_data->epp_saved >= 0) {
			epp = cpu_data->epp_saved;
			cpu_data->epp_saved = -EINVAL;
			goto update_epp;
		}

913 914
		if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
			epp = intel_pstate_get_epp(cpu_data, value);
915
			cpu_data->epp_powersave = epp;
916
			/* If EPP read was failed, then don't try to write */
917
			if (epp < 0)
918 919 920 921 922 923
				goto skip_epp;


			epp = 0;
		} else {
			/* skip setting EPP, when saved value is invalid */
924
			if (cpu_data->epp_powersave < 0)
925 926 927 928 929 930 931 932 933 934 935 936 937
				goto skip_epp;

			/*
			 * No need to restore EPP when it is not zero. This
			 * means:
			 *  - Policy is not changed
			 *  - user has manually changed
			 *  - Error reading EPB
			 */
			epp = intel_pstate_get_epp(cpu_data, value);
			if (epp)
				goto skip_epp;

938
			epp = cpu_data->epp_powersave;
939
		}
940
update_epp:
941 942 943 944 945 946 947
		if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
			value &= ~GENMASK_ULL(31, 24);
			value |= (u64)epp << 24;
		} else {
			intel_pstate_set_epb(cpu, epp);
		}
skip_epp:
D
Dirk Brandewie 已提交
948 949
		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
	}
950
}
D
Dirk Brandewie 已提交
951

952 953 954
static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
{
	if (hwp_active)
955
		intel_pstate_hwp_set(policy);
956 957 958 959

	return 0;
}

960 961 962 963 964 965 966 967 968 969 970 971
static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];

	if (!hwp_active)
		return 0;

	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);

	return 0;
}

972 973
static int intel_pstate_resume(struct cpufreq_policy *policy)
{
974 975
	int ret;

976 977 978
	if (!hwp_active)
		return 0;

979 980
	mutex_lock(&intel_pstate_limits_lock);

981 982
	all_cpu_data[policy->cpu]->epp_policy = 0;

983 984 985 986 987
	ret = intel_pstate_hwp_set_policy(policy);

	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
988 989
}

990
static void intel_pstate_update_policies(void)
991
{
992 993 994 995
	int cpu;

	for_each_possible_cpu(cpu)
		cpufreq_update_policy(cpu);
D
Dirk Brandewie 已提交
996 997
}

998 999 1000 1001 1002 1003 1004
/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
	*(u32 *)data = val;
	intel_pstate_reset_all_pid();
	return 0;
}
1005

1006 1007 1008 1009 1010
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
1011
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
1012 1013 1014 1015 1016 1017 1018

struct pid_param {
	char *name;
	void *value;
};

static struct pid_param pid_files[] = {
1019 1020 1021 1022 1023 1024
	{"sample_rate_ms", &pid_params.sample_rate_ms},
	{"d_gain_pct", &pid_params.d_gain_pct},
	{"i_gain_pct", &pid_params.i_gain_pct},
	{"deadband", &pid_params.deadband},
	{"setpoint", &pid_params.setpoint},
	{"p_gain_pct", &pid_params.p_gain_pct},
1025 1026 1027
	{NULL, NULL}
};

1028
static void __init intel_pstate_debug_expose_params(void)
1029
{
1030
	struct dentry *debugfs_parent;
1031 1032 1033 1034 1035 1036 1037
	int i = 0;

	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
	while (pid_files[i].name) {
		debugfs_create_file(pid_files[i].name, 0660,
1038 1039
				    debugfs_parent, pid_files[i].value,
				    &fops_pid_param);
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
		i++;
	}
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
1051
		return sprintf(buf, "%u\n", limits->object);		\
1052 1053
	}

1054 1055 1056 1057 1058 1059 1060
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

1061 1062 1063 1064 1065 1066 1067
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1068 1069 1070 1071
	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1072
	turbo_fp = div_fp(no_turbo, total);
1073
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1074 1075 1076

	mutex_unlock(&intel_pstate_driver_lock);

1077 1078 1079
	return sprintf(buf, "%u\n", turbo_pct);
}

1080 1081 1082 1083 1084 1085
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

1086 1087 1088 1089 1090 1091 1092
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1093 1094
	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1095 1096 1097

	mutex_unlock(&intel_pstate_driver_lock);

1098 1099 1100
	return sprintf(buf, "%u\n", total);
}

1101 1102 1103 1104 1105
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

1106 1107 1108 1109 1110 1111 1112
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1113
	update_turbo_state();
1114 1115
	if (limits->turbo_disabled)
		ret = sprintf(buf, "%u\n", limits->turbo_disabled);
1116
	else
1117
		ret = sprintf(buf, "%u\n", limits->no_turbo);
1118

1119 1120
	mutex_unlock(&intel_pstate_driver_lock);

1121 1122 1123
	return ret;
}

1124
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1125
			      const char *buf, size_t count)
1126 1127 1128
{
	unsigned int input;
	int ret;
1129

1130 1131 1132
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1133

1134 1135 1136 1137 1138 1139 1140
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1141 1142
	mutex_lock(&intel_pstate_limits_lock);

1143
	update_turbo_state();
1144
	if (limits->turbo_disabled) {
J
Joe Perches 已提交
1145
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1146
		mutex_unlock(&intel_pstate_limits_lock);
1147
		mutex_unlock(&intel_pstate_driver_lock);
1148
		return -EPERM;
1149
	}
D
Dirk Brandewie 已提交
1150

1151
	limits->no_turbo = clamp_t(int, input, 0, 1);
1152

1153 1154
	mutex_unlock(&intel_pstate_limits_lock);

1155 1156
	intel_pstate_update_policies();

1157 1158
	mutex_unlock(&intel_pstate_driver_lock);

1159 1160 1161 1162
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1163
				  const char *buf, size_t count)
1164 1165 1166
{
	unsigned int input;
	int ret;
1167

1168 1169 1170 1171
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

1172 1173 1174 1175 1176 1177 1178
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1179 1180
	mutex_lock(&intel_pstate_limits_lock);

1181 1182 1183 1184 1185 1186 1187
	limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);
	limits->max_perf_pct = max(limits->min_perf_pct,
				   limits->max_perf_pct);
1188
	limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
1189

1190 1191
	mutex_unlock(&intel_pstate_limits_lock);

1192 1193
	intel_pstate_update_policies();

1194 1195
	mutex_unlock(&intel_pstate_driver_lock);

1196 1197 1198 1199
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1200
				  const char *buf, size_t count)
1201 1202 1203
{
	unsigned int input;
	int ret;
1204

1205 1206 1207
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1208

1209 1210 1211 1212 1213 1214 1215
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1216 1217
	mutex_lock(&intel_pstate_limits_lock);

1218 1219 1220 1221 1222 1223 1224
	limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->min_perf_pct = min(limits->max_perf_pct,
				   limits->min_perf_pct);
1225
	limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
1226

1227 1228
	mutex_unlock(&intel_pstate_limits_lock);

1229 1230
	intel_pstate_update_policies();

1231 1232
	mutex_unlock(&intel_pstate_driver_lock);

1233 1234 1235 1236 1237 1238 1239 1240 1241
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
1242
define_one_global_ro(turbo_pct);
1243
define_one_global_ro(num_pstates);
1244 1245 1246

static struct attribute *intel_pstate_attributes[] = {
	&no_turbo.attr,
1247
	&turbo_pct.attr,
1248
	&num_pstates.attr,
1249 1250 1251 1252 1253 1254 1255
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};

1256
static void __init intel_pstate_sysfs_expose_params(void)
1257
{
1258
	struct kobject *intel_pstate_kobject;
1259 1260 1261 1262
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
1263 1264 1265
	if (WARN_ON(!intel_pstate_kobject))
		return;

1266
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
	if (WARN_ON(rc))
		return;

	/*
	 * If per cpu limits are enforced there are no global limits, so
	 * return without creating max/min_perf_pct attributes
	 */
	if (per_cpu_limits)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
	WARN_ON(rc);

	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
	WARN_ON(rc);

1283 1284
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
1285

1286
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
1287
{
1288
	/* First disable HWP notification interrupt as we don't process them */
1289 1290
	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1291

1292
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1293
	cpudata->epp_policy = 0;
1294 1295
	if (cpudata->epp_default == -EINVAL)
		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
D
Dirk Brandewie 已提交
1296 1297
}

1298
static int atom_get_min_pstate(void)
1299 1300
{
	u64 value;
1301

1302
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
1303
	return (value >> 8) & 0x7F;
1304 1305
}

1306
static int atom_get_max_pstate(void)
1307 1308
{
	u64 value;
1309

1310
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
1311
	return (value >> 16) & 0x7F;
1312
}
1313

1314
static int atom_get_turbo_pstate(void)
1315 1316
{
	u64 value;
1317

1318
	rdmsrl(ATOM_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
1319
	return value & 0x7F;
1320 1321
}

1322
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1323 1324 1325 1326 1327
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

1328
	val = (u64)pstate << 8;
1329
	if (limits->no_turbo && !limits->turbo_disabled)
1330 1331 1332 1333 1334 1335 1336
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1337
	vid = ceiling_fp(vid_fp);
1338

1339 1340 1341
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

1342
	return val | vid;
1343 1344
}

1345
static int silvermont_get_scaling(void)
1346 1347 1348
{
	u64 value;
	int i;
1349 1350 1351
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
1352 1353

	rdmsrl(MSR_FSB_FREQ, value);
1354 1355
	i = value & 0x7;
	WARN_ON(i > 4);
1356

1357 1358
	return silvermont_freq_table[i];
}
1359

1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
1374 1375
}

1376
static void atom_get_vid(struct cpudata *cpudata)
1377 1378 1379
{
	u64 value;

1380
	rdmsrl(ATOM_VIDS, value);
D
Dirk Brandewie 已提交
1381 1382
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1383 1384 1385 1386
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
1387

1388
	rdmsrl(ATOM_TURBO_VIDS, value);
1389
	cpudata->vid.turbo = value & 0x7f;
1390 1391
}

1392
static int core_get_min_pstate(void)
1393 1394
{
	u64 value;
1395

1396
	rdmsrl(MSR_PLATFORM_INFO, value);
1397 1398 1399
	return (value >> 40) & 0xFF;
}

1400
static int core_get_max_pstate_physical(void)
1401 1402
{
	u64 value;
1403

1404
	rdmsrl(MSR_PLATFORM_INFO, value);
1405 1406 1407
	return (value >> 8) & 0xFF;
}

1408
static int core_get_max_pstate(void)
1409
{
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
	u64 tar;
	u64 plat_info;
	int max_pstate;
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
		/* Do some sanity checking for safety */
		if (plat_info & 0x600000000) {
			u64 tdp_ctrl;
			u64 tdp_ratio;
			int tdp_msr;

			err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
			if (err)
				goto skip_tar;

1430
			tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x3);
1431 1432 1433 1434
			err = rdmsrl_safe(tdp_msr, &tdp_ratio);
			if (err)
				goto skip_tar;

1435 1436 1437 1438 1439
			/* For level 1 and 2, bits[23:16] contain the ratio */
			if (tdp_ctrl)
				tdp_ratio >>= 16;

			tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1440 1441 1442 1443 1444 1445 1446 1447
			if (tdp_ratio - 1 == tar) {
				max_pstate = tar;
				pr_debug("max_pstate=TAC %x\n", max_pstate);
			} else {
				goto skip_tar;
			}
		}
	}
1448

1449 1450
skip_tar:
	return max_pstate;
1451 1452
}

1453
static int core_get_turbo_pstate(void)
1454 1455 1456
{
	u64 value;
	int nont, ret;
1457

1458
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1459
	nont = core_get_max_pstate();
1460
	ret = (value) & 255;
1461 1462 1463 1464 1465
	if (ret <= nont)
		ret = nont;
	return ret;
}

1466 1467 1468 1469 1470
static inline int core_get_scaling(void)
{
	return 100000;
}

1471
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1472 1473 1474
{
	u64 val;

1475
	val = (u64)pstate << 8;
1476
	if (limits->no_turbo && !limits->turbo_disabled)
1477 1478
		val |= (u64)1 << 32;

1479
	return val;
1480 1481
}

1482 1483 1484 1485 1486
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1487
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1488 1489 1490 1491 1492 1493 1494
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
static struct cpu_defaults core_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
1506
		.get_max_physical = core_get_max_pstate_physical,
1507 1508
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
1509
		.get_scaling = core_get_scaling,
1510
		.get_val = core_get_val,
1511
		.get_target_pstate = get_target_pstate_use_performance,
1512 1513 1514
	},
};

1515
static const struct cpu_defaults silvermont_params = {
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1529
		.get_val = atom_get_val,
1530 1531
		.get_scaling = silvermont_get_scaling,
		.get_vid = atom_get_vid,
1532
		.get_target_pstate = get_target_pstate_use_cpu_load,
1533 1534 1535
	},
};

1536
static const struct cpu_defaults airmont_params = {
1537 1538 1539
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
1540
		.setpoint = 60,
1541 1542 1543 1544 1545
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
1546 1547 1548 1549
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1550
		.get_val = atom_get_val,
1551
		.get_scaling = airmont_get_scaling,
1552
		.get_vid = atom_get_vid,
1553
		.get_target_pstate = get_target_pstate_use_cpu_load,
1554 1555 1556
	},
};

1557
static const struct cpu_defaults knl_params = {
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
1568
		.get_max_physical = core_get_max_pstate_physical,
1569 1570
		.get_min = core_get_min_pstate,
		.get_turbo = knl_get_turbo_pstate,
1571
		.get_scaling = core_get_scaling,
1572
		.get_val = core_get_val,
1573
		.get_target_pstate = get_target_pstate_use_performance,
1574 1575 1576
	},
};

1577
static const struct cpu_defaults bxt_params = {
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
		.get_max_physical = core_get_max_pstate_physical,
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
		.get_scaling = core_get_scaling,
		.get_val = core_get_val,
		.get_target_pstate = get_target_pstate_use_cpu_load,
	},
};

1597 1598 1599
static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
1600
	int max_perf_adj;
1601
	int min_perf;
1602
	struct perf_limits *perf_limits = limits;
1603

1604
	if (limits->no_turbo || limits->turbo_disabled)
1605 1606
		max_perf = cpu->pstate.max_pstate;

1607 1608 1609
	if (per_cpu_limits)
		perf_limits = cpu->perf_limits;

1610 1611 1612 1613 1614
	/*
	 * performance can be limited by user through sysfs, by cpufreq
	 * policy, or by cpu specific default values determined through
	 * experimentation.
	 */
1615
	max_perf_adj = fp_ext_toint(max_perf * perf_limits->max_perf);
1616 1617
	*max = clamp_t(int, max_perf_adj,
			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1618

1619
	min_perf = fp_ext_toint(max_perf * perf_limits->min_perf);
1620
	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1621 1622
}

1623
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1624
{
1625 1626
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1627 1628 1629 1630 1631 1632 1633
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1634 1635
}

1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
	int min_pstate, max_pstate;

	update_turbo_state();
	intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
	intel_pstate_set_pstate(cpu, max_pstate);
}

1650 1651
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1652 1653
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1654
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1655
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1656
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1657 1658
	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1659

1660 1661
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1662 1663

	intel_pstate_set_min_pstate(cpu);
1664 1665
}

1666
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1667
{
1668
	struct sample *sample = &cpu->sample;
1669

1670
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1671 1672
}

1673
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1674 1675
{
	u64 aperf, mperf;
1676
	unsigned long flags;
1677
	u64 tsc;
1678

1679
	local_irq_save(flags);
1680 1681
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1682
	tsc = rdtsc();
1683
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1684
		local_irq_restore(flags);
1685
		return false;
1686
	}
1687
	local_irq_restore(flags);
1688

1689
	cpu->last_sample_time = cpu->sample.time;
1690
	cpu->sample.time = time;
1691 1692
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1693
	cpu->sample.tsc =  tsc;
1694 1695
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1696
	cpu->sample.tsc -= cpu->prev_tsc;
1697

1698 1699
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1700
	cpu->prev_tsc = tsc;
1701 1702 1703 1704 1705 1706 1707 1708
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
	return !!cpu->last_sample_time;
1709 1710
}

1711 1712
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1713 1714
	return mul_ext_fp(cpu->sample.core_avg_perf,
			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1715 1716
}

1717 1718
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1719 1720
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1721 1722
}

1723 1724 1725
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
{
	struct sample *sample = &cpu->sample;
1726
	int32_t busy_frac, boost;
1727
	int target, avg_pstate;
1728

1729
	busy_frac = div_fp(sample->mperf, sample->tsc);
1730

1731 1732
	boost = cpu->iowait_boost;
	cpu->iowait_boost >>= 1;
1733

1734 1735
	if (busy_frac < boost)
		busy_frac = boost;
1736

1737
	sample->busy_scaled = busy_frac * 100;
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757

	target = limits->no_turbo || limits->turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1758 1759
}

1760
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1761
{
1762
	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1763
	u64 duration_ns;
1764

1765
	/*
1766 1767 1768 1769 1770
	 * perf_scaled is the ratio of the average P-state during the last
	 * sampling period to the P-state requested last time (in percent).
	 *
	 * That measures the system's response to the previous P-state
	 * selection.
1771
	 */
1772 1773
	max_pstate = cpu->pstate.max_pstate_physical;
	current_pstate = cpu->pstate.current_pstate;
1774
	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1775
			       div_fp(100 * max_pstate, current_pstate));
1776

1777
	/*
1778 1779 1780
	 * Since our utilization update callback will not run unless we are
	 * in C0, check if the actual elapsed time is significantly greater (3x)
	 * than our sample interval.  If it is, then we were idle for a long
1781
	 * enough period of time to adjust our performance metric.
1782
	 */
1783
	duration_ns = cpu->sample.time - cpu->last_sample_time;
1784
	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1785
		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1786
		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1787 1788 1789
	} else {
		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
		if (sample_ratio < int_tofp(1))
1790
			perf_scaled = 0;
1791 1792
	}

1793 1794
	cpu->sample.busy_scaled = perf_scaled;
	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1795 1796
}

1797
static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1798 1799 1800 1801 1802
{
	int max_perf, min_perf;

	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
	pstate = clamp_t(int, pstate, min_perf, max_perf);
1803
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1804 1805 1806 1807 1808 1809
	return pstate;
}

static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
	pstate = intel_pstate_prepare_request(cpu, pstate);
1810 1811 1812
	if (pstate == cpu->pstate.current_pstate)
		return;

1813
	cpu->pstate.current_pstate = pstate;
1814 1815 1816
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1817 1818
static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
{
1819
	int from, target_pstate;
1820 1821 1822
	struct sample *sample;

	from = cpu->pstate.current_pstate;
1823

1824 1825
	target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
		cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
1826

1827 1828
	update_turbo_state();

1829
	intel_pstate_update_pstate(cpu, target_pstate);
1830 1831

	sample = &cpu->sample;
1832
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1833
		fp_toint(sample->busy_scaled),
1834 1835 1836 1837 1838
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1839 1840
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1841 1842
}

1843
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1844
				     unsigned int flags)
1845
{
1846
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1847 1848
	u64 delta_ns;

1849
	if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
		if (flags & SCHED_CPUFREQ_IOWAIT) {
			cpu->iowait_boost = int_tofp(1);
		} else if (cpu->iowait_boost) {
			/* Clear iowait_boost if the CPU may have been idle. */
			delta_ns = time - cpu->last_update;
			if (delta_ns > TICK_NSEC)
				cpu->iowait_boost = 0;
		}
		cpu->last_update = time;
	}
1860

1861
	delta_ns = time - cpu->sample.time;
1862
	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1863 1864
		bool sample_taken = intel_pstate_sample(cpu, time);

1865
		if (sample_taken) {
1866
			intel_pstate_calc_avg_perf(cpu);
1867 1868 1869
			if (!hwp_active)
				intel_pstate_adjust_busy_pstate(cpu);
		}
1870
	}
1871 1872 1873
}

#define ICPU(model, policy) \
1874 1875
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1876 1877

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_params),
	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_params),
	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_params),
	ICPU(INTEL_FAM6_IVYBRIDGE,		core_params),
	ICPU(INTEL_FAM6_HASWELL_CORE,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_params),
	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_params),
	ICPU(INTEL_FAM6_HASWELL_X,		core_params),
	ICPU(INTEL_FAM6_HASWELL_ULT,		core_params),
	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_params),
	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_params),
	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_X,		core_params),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_params),
	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_params),
	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_params),
1895
	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_params),
1896
	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_params),
1897 1898 1899 1900
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

1901
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1902
	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1903 1904
	ICPU(INTEL_FAM6_BROADWELL_X, core_params),
	ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
D
Dirk Brandewie 已提交
1905 1906 1907
	{}
};

1908 1909 1910 1911
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
	cpu = all_cpu_data[cpunum];

	if (!cpu) {
		unsigned int size = sizeof(struct cpudata);

		if (per_cpu_limits)
			size += sizeof(struct perf_limits);

		cpu = kzalloc(size, GFP_KERNEL);
		if (!cpu)
			return -ENOMEM;

		all_cpu_data[cpunum] = cpu;
		if (per_cpu_limits)
			cpu->perf_limits = (struct perf_limits *)(cpu + 1);

1928 1929 1930
		cpu->epp_default = -EINVAL;
		cpu->epp_powersave = -EINVAL;
		cpu->epp_saved = -EINVAL;
1931
	}
1932 1933 1934 1935

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1936

1937
	if (hwp_active) {
1938
		intel_pstate_hwp_enable(cpu);
1939 1940 1941
		pid_params.sample_rate_ms = 50;
		pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
	}
1942

1943
	intel_pstate_get_cpu_pstates(cpu);
1944

1945 1946
	intel_pstate_busy_pid_reset(cpu);

J
Joe Perches 已提交
1947
	pr_debug("controlling: cpu %d\n", cpunum);
1948 1949 1950 1951 1952 1953

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
1954
	struct cpudata *cpu = all_cpu_data[cpu_num];
1955

1956
	return cpu ? get_avg_frequency(cpu) : 0;
1957 1958
}

1959
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1960
{
1961 1962
	struct cpudata *cpu = all_cpu_data[cpu_num];

1963 1964 1965
	if (cpu->update_util_set)
		return;

1966 1967
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
1968 1969
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
				     intel_pstate_update_util);
1970
	cpu->update_util_set = true;
1971 1972 1973 1974
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
1975 1976 1977 1978 1979
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

1980
	cpufreq_remove_update_util_hook(cpu);
1981
	cpu_data->update_util_set = false;
1982 1983 1984
	synchronize_sched();
}

1985 1986 1987 1988 1989
static void intel_pstate_set_performance_limits(struct perf_limits *limits)
{
	limits->no_turbo = 0;
	limits->turbo_disabled = 0;
	limits->max_perf_pct = 100;
1990
	limits->max_perf = int_ext_tofp(1);
1991
	limits->min_perf_pct = 100;
1992
	limits->min_perf = int_ext_tofp(1);
1993 1994 1995 1996 1997 1998
	limits->max_policy_pct = 100;
	limits->max_sysfs_pct = 100;
	limits->min_policy_pct = 0;
	limits->min_sysfs_pct = 0;
}

1999 2000 2001
static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
					    struct perf_limits *limits)
{
2002

2003 2004 2005
	limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
					      policy->cpuinfo.max_freq);
	limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0, 100);
2006 2007 2008
	if (policy->max == policy->min) {
		limits->min_policy_pct = limits->max_policy_pct;
	} else {
2009 2010
		limits->min_policy_pct = DIV_ROUND_UP(policy->min * 100,
						      policy->cpuinfo.max_freq);
2011 2012 2013
		limits->min_policy_pct = clamp_t(int, limits->min_policy_pct,
						 0, 100);
	}
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027

	/* Normalize user input to [min_policy_pct, max_policy_pct] */
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);

	/* Make sure min_perf_pct <= max_perf_pct */
	limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);

2028 2029 2030 2031
	limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
	limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
	limits->max_perf = round_up(limits->max_perf, EXT_FRAC_BITS);
	limits->min_perf = round_up(limits->min_perf, EXT_FRAC_BITS);
2032 2033 2034 2035 2036

	pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
		 limits->max_perf_pct, limits->min_perf_pct);
}

2037 2038
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
2039
	struct cpudata *cpu;
2040
	struct perf_limits *perf_limits = NULL;
2041

2042 2043 2044
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

2045 2046 2047
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

2048
	cpu = all_cpu_data[policy->cpu];
2049 2050
	cpu->policy = policy->policy;

2051 2052 2053 2054 2055
	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
2056 2057
	}

2058 2059 2060
	if (per_cpu_limits)
		perf_limits = cpu->perf_limits;

2061 2062
	mutex_lock(&intel_pstate_limits_lock);

2063 2064 2065 2066 2067
	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
		if (!perf_limits) {
			limits = &performance_limits;
			perf_limits = limits;
		}
2068 2069
		if (policy->max >= policy->cpuinfo.max_freq &&
		    !limits->no_turbo) {
J
Joe Perches 已提交
2070
			pr_debug("set performance\n");
2071
			intel_pstate_set_performance_limits(perf_limits);
2072 2073 2074
			goto out;
		}
	} else {
J
Joe Perches 已提交
2075
		pr_debug("set powersave\n");
2076 2077 2078 2079
		if (!perf_limits) {
			limits = &powersave_limits;
			perf_limits = limits;
		}
2080

2081
	}
2082

2083
	intel_pstate_update_perf_limits(policy, perf_limits);
2084
 out:
2085
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2086 2087 2088 2089 2090 2091 2092 2093
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
	}

2094 2095
	intel_pstate_set_update_util_hook(policy->cpu);

2096
	intel_pstate_hwp_set_policy(policy);
D
Dirk Brandewie 已提交
2097

2098 2099
	mutex_unlock(&intel_pstate_limits_lock);

2100 2101 2102 2103 2104
	return 0;
}

static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
2105
	cpufreq_verify_within_cpu_limits(policy);
2106

2107
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2108
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2109 2110
		return -EINVAL;

2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
	/* When per-CPU limits are used, sysfs limits are not used */
	if (!per_cpu_limits) {
		unsigned int max_freq, min_freq;

		max_freq = policy->cpuinfo.max_freq *
						limits->max_sysfs_pct / 100;
		min_freq = policy->cpuinfo.max_freq *
						limits->min_sysfs_pct / 100;
		cpufreq_verify_within_limits(policy, min_freq, max_freq);
	}

2122 2123 2124
	return 0;
}

2125 2126 2127 2128 2129
static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
{
	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
}

2130
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2131
{
2132
	pr_debug("CPU %d exiting\n", policy->cpu);
2133

2134
	intel_pstate_clear_update_util_hook(policy->cpu);
2135 2136 2137
	if (hwp_active)
		intel_pstate_hwp_save_state(policy);
	else
2138 2139
		intel_cpufreq_stop_cpu(policy);
}
2140

2141 2142 2143
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);
2144

2145
	policy->fast_switch_possible = false;
D
Dirk Brandewie 已提交
2146

2147
	return 0;
2148 2149
}

2150
static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2151 2152
{
	struct cpudata *cpu;
2153
	int rc;
2154 2155 2156 2157 2158 2159 2160

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

2161 2162 2163 2164 2165 2166 2167
	/*
	 * We need sane value in the cpu->perf_limits, so inherit from global
	 * perf_limits limits, which are seeded with values based on the
	 * CONFIG_CPU_FREQ_DEFAULT_GOV_*, during boot up.
	 */
	if (per_cpu_limits)
		memcpy(cpu->perf_limits, limits, sizeof(struct perf_limits));
2168

2169 2170
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2171 2172

	/* cpuinfo and default policy values */
2173
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2174 2175 2176 2177 2178
	update_turbo_state();
	policy->cpuinfo.max_freq = limits->turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

2179
	intel_pstate_init_acpi_perf_limits(policy);
2180 2181
	cpumask_set_cpu(policy->cpu, policy->cpus);

2182 2183
	policy->fast_switch_possible = true;

2184 2185 2186
	return 0;
}

2187
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2188
{
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
	if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2199 2200 2201 2202

	return 0;
}

2203
static struct cpufreq_driver intel_pstate = {
2204 2205 2206
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
2207
	.suspend	= intel_pstate_hwp_save_state,
2208
	.resume		= intel_pstate_resume,
2209 2210
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
2211
	.exit		= intel_pstate_cpu_exit,
2212
	.stop_cpu	= intel_pstate_stop_cpu,
2213 2214 2215
	.name		= "intel_pstate",
};

2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct perf_limits *perf_limits = limits;

	update_turbo_state();
	policy->cpuinfo.max_freq = limits->turbo_disabled ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;

	cpufreq_verify_within_cpu_limits(policy);

	if (per_cpu_limits)
		perf_limits = cpu->perf_limits;

2230 2231
	mutex_lock(&intel_pstate_limits_lock);

2232 2233
	intel_pstate_update_perf_limits(policy, perf_limits);

2234 2235
	mutex_unlock(&intel_pstate_limits_lock);

2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
	return 0;
}

static unsigned int intel_cpufreq_turbo_update(struct cpudata *cpu,
					       struct cpufreq_policy *policy,
					       unsigned int target_freq)
{
	unsigned int max_freq;

	update_turbo_state();

	max_freq = limits->no_turbo || limits->turbo_disabled ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
	policy->cpuinfo.max_freq = max_freq;
	if (policy->max > max_freq)
		policy->max = max_freq;

	if (target_freq > max_freq)
		target_freq = max_freq;

	return target_freq;
}

static int intel_cpufreq_target(struct cpufreq_policy *policy,
				unsigned int target_freq,
				unsigned int relation)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct cpufreq_freqs freqs;
	int target_pstate;

	freqs.old = policy->cur;
	freqs.new = intel_cpufreq_turbo_update(cpu, policy, target_freq);

	cpufreq_freq_transition_begin(policy, &freqs);
	switch (relation) {
	case CPUFREQ_RELATION_L:
		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
		break;
	case CPUFREQ_RELATION_H:
		target_pstate = freqs.new / cpu->pstate.scaling;
		break;
	default:
		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
		break;
	}
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	if (target_pstate != cpu->pstate.current_pstate) {
		cpu->pstate.current_pstate = target_pstate;
		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
			      pstate_funcs.get_val(cpu, target_pstate));
	}
	cpufreq_freq_transition_end(policy, &freqs, false);

	return 0;
}

static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
					      unsigned int target_freq)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	int target_pstate;

	target_freq = intel_cpufreq_turbo_update(cpu, policy, target_freq);
	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
	intel_pstate_update_pstate(cpu, target_pstate);
	return target_freq;
}

static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
	policy->cur = policy->cpuinfo.min_freq;

	return 0;
}

static struct cpufreq_driver intel_cpufreq = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_cpufreq_verify_policy,
	.target		= intel_cpufreq_target,
	.fast_switch	= intel_cpufreq_fast_switch,
	.init		= intel_cpufreq_cpu_init,
	.exit		= intel_pstate_cpu_exit,
	.stop_cpu	= intel_cpufreq_stop_cpu,
	.name		= "intel_cpufreq",
};

static struct cpufreq_driver *intel_pstate_driver = &intel_pstate;

2332 2333 2334
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
2335
static unsigned int force_load __initdata;
2336

2337
static int __init intel_pstate_msrs_not_valid(void)
2338
{
2339
	if (!pstate_funcs.get_max() ||
2340 2341
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
2342 2343 2344 2345
		return -ENODEV;

	return 0;
}
2346

2347
static void __init copy_pid_params(struct pstate_adjust_policy *policy)
2348 2349
{
	pid_params.sample_rate_ms = policy->sample_rate_ms;
2350
	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
2351 2352 2353 2354 2355 2356 2357
	pid_params.p_gain_pct = policy->p_gain_pct;
	pid_params.i_gain_pct = policy->i_gain_pct;
	pid_params.d_gain_pct = policy->d_gain_pct;
	pid_params.deadband = policy->deadband;
	pid_params.setpoint = policy->setpoint;
}

2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
#ifdef CONFIG_ACPI
static void intel_pstate_use_acpi_profile(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_MOBILE)
		pstate_funcs.get_target_pstate =
				get_target_pstate_use_cpu_load;
}
#else
static void intel_pstate_use_acpi_profile(void)
{
}
#endif

2371
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2372 2373
{
	pstate_funcs.get_max   = funcs->get_max;
2374
	pstate_funcs.get_max_physical = funcs->get_max_physical;
2375 2376
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
2377
	pstate_funcs.get_scaling = funcs->get_scaling;
2378
	pstate_funcs.get_val   = funcs->get_val;
2379
	pstate_funcs.get_vid   = funcs->get_vid;
2380 2381
	pstate_funcs.get_target_pstate = funcs->get_target_pstate;

2382
	intel_pstate_use_acpi_profile();
2383 2384
}

2385
#ifdef CONFIG_ACPI
2386

2387
static bool __init intel_pstate_no_acpi_pss(void)
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

2416
static bool __init intel_pstate_has_acpi_ppc(void)
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

2436 2437 2438 2439
struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2440
	int  oem_pwr_table;
2441 2442 2443
};

/* Hardware vendor-specific info that has its own power management modes */
2444
static struct hw_vendor_info vendor_info[] __initdata = {
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
	{1, "HP    ", "ProLiant", PSS},
	{1, "ORACLE", "X4-2    ", PPC},
	{1, "ORACLE", "X4-2L   ", PPC},
	{1, "ORACLE", "X4-2B   ", PPC},
	{1, "ORACLE", "X3-2    ", PPC},
	{1, "ORACLE", "X3-2L   ", PPC},
	{1, "ORACLE", "X3-2B   ", PPC},
	{1, "ORACLE", "X4470M2 ", PPC},
	{1, "ORACLE", "X4270M3 ", PPC},
	{1, "ORACLE", "X4270M2 ", PPC},
	{1, "ORACLE", "X4170M2 ", PPC},
2456 2457 2458 2459
	{1, "ORACLE", "X4170 M3", PPC},
	{1, "ORACLE", "X4275 M3", PPC},
	{1, "ORACLE", "X6-2    ", PPC},
	{1, "ORACLE", "Sudbury ", PPC},
2460 2461 2462
	{0, "", ""},
};

2463
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2464 2465 2466
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;
D
Dirk Brandewie 已提交
2467 2468 2469 2470 2471 2472 2473 2474 2475
	const struct x86_cpu_id *id;
	u64 misc_pwr;

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
2476

2477 2478
	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2479 2480 2481
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
2482
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2483 2484 2485 2486 2487 2488
			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
						ACPI_OEM_TABLE_ID_SIZE))
			switch (v_info->oem_pwr_table) {
			case PSS:
				return intel_pstate_no_acpi_pss();
			case PPC:
2489 2490
				return intel_pstate_has_acpi_ppc() &&
					(!force_load);
2491
			}
2492 2493 2494 2495
	}

	return false;
}
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505

static void intel_pstate_request_control_from_smm(void)
{
	/*
	 * It may be unsafe to request P-states control from SMM if _PPC support
	 * has not been enabled.
	 */
	if (acpi_ppc)
		acpi_processor_pstate_control();
}
2506 2507
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2508
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2509
static inline void intel_pstate_request_control_from_smm(void) {}
2510 2511
#endif /* CONFIG_ACPI */

2512 2513 2514 2515 2516
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
	{}
};

2517 2518
static int __init intel_pstate_init(void)
{
2519
	int cpu, rc = 0;
2520
	const struct x86_cpu_id *id;
2521
	struct cpu_defaults *cpu_def;
2522

2523 2524 2525
	if (no_load)
		return -ENODEV;

2526 2527 2528
	if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
		copy_cpu_funcs(&core_params.funcs);
		hwp_active++;
2529
		intel_pstate.attr = hwp_cpufreq_attrs;
2530 2531 2532
		goto hwp_cpu_matched;
	}

2533 2534 2535 2536
	id = x86_match_cpu(intel_pstate_cpu_ids);
	if (!id)
		return -ENODEV;

2537
	cpu_def = (struct cpu_defaults *)id->driver_data;
2538

2539 2540
	copy_pid_params(&cpu_def->pid_policy);
	copy_cpu_funcs(&cpu_def->funcs);
2541

2542 2543 2544
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

2545 2546 2547 2548 2549 2550 2551 2552
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

J
Joe Perches 已提交
2553
	pr_info("Intel P-state driver initializing\n");
2554

2555
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2556 2557 2558
	if (!all_cpu_data)
		return -ENOMEM;

2559 2560 2561
	if (!hwp_active && hwp_only)
		goto out;

2562 2563
	intel_pstate_request_control_from_smm();

2564 2565
	intel_pstate_sysfs_expose_params();

2566
	rc = cpufreq_register_driver(intel_pstate_driver);
2567 2568 2569
	if (rc)
		goto out;

2570 2571 2572 2573
	mutex_lock(&intel_pstate_driver_lock);
	driver_registered = true;
	mutex_unlock(&intel_pstate_driver_lock);

2574 2575 2576 2577
	if (intel_pstate_driver == &intel_pstate && !hwp_active &&
	    pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
		intel_pstate_debug_expose_params();

2578
	if (hwp_active)
J
Joe Perches 已提交
2579
		pr_info("HWP enabled\n");
2580

2581 2582
	return rc;
out:
2583 2584 2585
	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
2586 2587 2588
			if (intel_pstate_driver == &intel_pstate)
				intel_pstate_clear_update_util_hook(cpu);

2589 2590 2591 2592 2593 2594
			kfree(all_cpu_data[cpu]);
		}
	}

	put_online_cpus();
	vfree(all_cpu_data);
2595 2596 2597 2598
	return -ENODEV;
}
device_initcall(intel_pstate_init);

2599 2600 2601 2602 2603
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

2604
	if (!strcmp(str, "disable")) {
2605
		no_load = 1;
2606 2607 2608 2609 2610
	} else if (!strcmp(str, "passive")) {
		pr_info("Passive mode enabled\n");
		intel_pstate_driver = &intel_cpufreq;
		no_hwp = 1;
	}
2611
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
2612
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
2613
		no_hwp = 1;
2614
	}
2615 2616
	if (!strcmp(str, "force"))
		force_load = 1;
2617 2618
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
2619 2620
	if (!strcmp(str, "per_cpu_perf_limits"))
		per_cpu_limits = true;
2621 2622 2623 2624 2625 2626

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

2627 2628 2629 2630
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

2631 2632 2633
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");