intel_pstate.c 46.9 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

J
Joe Perches 已提交
13 14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
30
#include <linux/acpi.h>
31
#include <linux/vmalloc.h>
32 33 34 35 36
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
37
#include <asm/cpufeature.h>
38

39 40 41 42
#define ATOM_RATIOS		0x66a
#define ATOM_VIDS		0x66b
#define ATOM_TURBO_RATIOS	0x66c
#define ATOM_TURBO_VIDS		0x66d
43

44 45 46 47
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
#endif

48
#define FRAC_BITS 8
49 50
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
51

52 53 54
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)

55 56 57 58 59
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

60
static inline int32_t div_fp(s64 x, s64 y)
61
{
62
	return div64_s64((int64_t)x << FRAC_BITS, y);
63 64
}

65 66 67 68 69 70 71 72 73 74 75
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

76 77 78 79 80 81 82 83 84 85
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

86 87
/**
 * struct sample -	Store performance sample
88
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
89 90
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
91
 *			P state. This can be different than core_avg_perf
92 93 94 95 96 97 98 99 100 101 102 103 104
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @freq:		Effective frequency calculated from APERF/MPERF
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
105
struct sample {
106
	int32_t core_avg_perf;
107
	int32_t busy_scaled;
108 109
	u64 aperf;
	u64 mperf;
110
	u64 tsc;
111
	int freq;
112
	u64 time;
113 114
};

115 116 117 118 119 120 121 122 123 124 125 126 127 128
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
 *
 * Stores the per cpu model P state limits and current P state.
 */
129 130 131 132
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
133
	int	max_pstate_physical;
134
	int	scaling;
135 136 137
	int	turbo_pstate;
};

138 139 140 141 142 143 144 145 146 147 148 149 150
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
151
struct vid_data {
152 153 154
	int min;
	int max;
	int turbo;
155 156 157
	int32_t ratio;
};

158 159 160 161 162 163 164 165 166 167 168 169
/**
 * struct _pid -	Stores PID data
 * @setpoint:		Target set point for busyness or performance
 * @integral:		Storage for accumulated error values
 * @p_gain:		PID proportional gain
 * @i_gain:		PID integral gain
 * @d_gain:		PID derivative gain
 * @deadband:		PID deadband
 * @last_err:		Last error storage for integral part of PID calculation
 *
 * Stores PID coefficients and last error for PID controller.
 */
170 171 172 173 174 175 176
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
177
	int32_t last_err;
178 179
};

180 181 182 183
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
 * @update_util:	CPUFreq utility callback information
184
 * @update_util_set:	CPUFreq utility callback is set
185 186 187 188 189 190 191 192 193 194
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @pid:		Stores PID parameters for this CPU
 * @last_sample_time:	Last Sample time
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
195 196
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
197 198 199
 *
 * This structure stores per CPU instance data for all CPUs.
 */
200 201 202
struct cpudata {
	int cpu;

203
	struct update_util_data update_util;
204
	bool   update_util_set;
205 206

	struct pstate_data pstate;
207
	struct vid_data vid;
208 209
	struct _pid pid;

210
	u64	last_sample_time;
211 212
	u64	prev_aperf;
	u64	prev_mperf;
213
	u64	prev_tsc;
214
	u64	prev_cummulative_iowait;
215
	struct sample sample;
216 217 218 219
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
220 221 222
};

static struct cpudata **all_cpu_data;
223 224 225 226 227 228 229 230 231 232 233 234 235

/**
 * struct pid_adjust_policy - Stores static PID configuration data
 * @sample_rate_ms:	PID calculation sample rate in ms
 * @sample_rate_ns:	Sample rate calculation in ns
 * @deadband:		PID deadband
 * @setpoint:		PID Setpoint
 * @p_gain_pct:		PID proportional gain
 * @i_gain_pct:		PID integral gain
 * @d_gain_pct:		PID derivative gain
 *
 * Stores per CPU model static PID configuration data.
 */
236 237
struct pstate_adjust_policy {
	int sample_rate_ms;
238
	s64 sample_rate_ns;
239 240 241 242 243 244 245
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

246 247 248 249 250 251 252 253 254 255 256 257 258 259
/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 * @get_target_pstate:	Callback to a function to calculate next P state to use
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
260 261
struct pstate_funcs {
	int (*get_max)(void);
262
	int (*get_max_physical)(void);
263 264
	int (*get_min)(void);
	int (*get_turbo)(void);
265
	int (*get_scaling)(void);
266
	u64 (*get_val)(struct cpudata*, int pstate);
267
	void (*get_vid)(struct cpudata *);
268
	int32_t (*get_target_pstate)(struct cpudata *);
269 270
};

271 272 273 274 275
/**
 * struct cpu_defaults- Per CPU model default config data
 * @pid_policy:	PID config data
 * @funcs:		Callback function data
 */
276 277 278
struct cpu_defaults {
	struct pstate_adjust_policy pid_policy;
	struct pstate_funcs funcs;
279 280
};

281
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
282
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
283

284 285
static struct pstate_adjust_policy pid_params;
static struct pstate_funcs pstate_funcs;
D
Dirk Brandewie 已提交
286
static int hwp_active;
287

288 289 290
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318

/**
 * struct perf_limits - Store user and policy limits
 * @no_turbo:		User requested turbo state from intel_pstate sysfs
 * @turbo_disabled:	Platform turbo status either from msr
 *			MSR_IA32_MISC_ENABLE or when maximum available pstate
 *			matches the maximum turbo pstate
 * @max_perf_pct:	Effective maximum performance limit in percentage, this
 *			is minimum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @min_perf_pct:	Effective minimum performance limit in percentage, this
 *			is maximum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @max_perf:		This is a scaled value between 0 to 255 for max_perf_pct
 *			This value is used to limit max pstate
 * @min_perf:		This is a scaled value between 0 to 255 for min_perf_pct
 *			This value is used to limit min pstate
 * @max_policy_pct:	The maximum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @max_sysfs_pct:	The maximum performance in percentage enforced by
 *			intel pstate sysfs interface
 * @min_policy_pct:	The minimum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @min_sysfs_pct:	The minimum performance in percentage enforced by
 *			intel pstate sysfs interface
 *
 * Storage for user and policy defined limits.
 */
319 320
struct perf_limits {
	int no_turbo;
321
	int turbo_disabled;
322 323 324 325
	int max_perf_pct;
	int min_perf_pct;
	int32_t max_perf;
	int32_t min_perf;
326 327
	int max_policy_pct;
	int max_sysfs_pct;
328 329
	int min_policy_pct;
	int min_sysfs_pct;
330 331
};

332 333 334 335 336 337 338 339 340 341 342 343 344 345
static struct perf_limits performance_limits = {
	.no_turbo = 0,
	.turbo_disabled = 0,
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 100,
	.min_perf = int_tofp(1),
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
};

static struct perf_limits powersave_limits = {
346
	.no_turbo = 0,
347
	.turbo_disabled = 0,
348 349 350 351
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 0,
	.min_perf = 0,
352 353
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
354 355
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
356 357
};

358 359 360 361 362 363
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
static struct perf_limits *limits = &performance_limits;
#else
static struct perf_limits *limits = &powersave_limits;
#endif

364
#ifdef CONFIG_ACPI
365 366 367 368 369 370 371 372 373 374

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

	return acpi_ppc;
}

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
/*
 * The max target pstate ratio is a 8 bit value in both PLATFORM_INFO MSR and
 * in TURBO_RATIO_LIMIT MSR, which pstate driver stores in max_pstate and
 * max_turbo_pstate fields. The PERF_CTL MSR contains 16 bit value for P state
 * ratio, out of it only high 8 bits are used. For example 0x1700 is setting
 * target ratio 0x17. The _PSS control value stores in a format which can be
 * directly written to PERF_CTL MSR. But in intel_pstate driver this shift
 * occurs during write to PERF_CTL (E.g. for cores core_set_pstate()).
 * This function converts the _PSS control value to intel pstate driver format
 * for comparison and assignment.
 */
static int convert_to_native_pstate_format(struct cpudata *cpu, int index)
{
	return cpu->acpi_perf_data.states[index].control >> 8;
}

static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int turbo_pss_ctl;
	int ret;
	int i;

398 399 400
	if (hwp_active)
		return;

401
	if (!intel_pstate_get_ppc_enable_status())
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
	 * correct max turbo frequency based on the turbo ratio.
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
	turbo_pss_ctl = convert_to_native_pstate_format(cpu, 0);
	if (turbo_pss_ctl > cpu->pstate.max_pstate)
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
452
	pr_debug("_PPC limits will be enforced\n");
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}

#else
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
}
#endif

482
static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
483
			     int deadband, int integral) {
484 485
	pid->setpoint = int_tofp(setpoint);
	pid->deadband  = int_tofp(deadband);
486
	pid->integral  = int_tofp(integral);
487
	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
488 489 490 491
}

static inline void pid_p_gain_set(struct _pid *pid, int percent)
{
492
	pid->p_gain = div_fp(percent, 100);
493 494 495 496
}

static inline void pid_i_gain_set(struct _pid *pid, int percent)
{
497
	pid->i_gain = div_fp(percent, 100);
498 499 500 501
}

static inline void pid_d_gain_set(struct _pid *pid, int percent)
{
502
	pid->d_gain = div_fp(percent, 100);
503 504
}

505
static signed int pid_calc(struct _pid *pid, int32_t busy)
506
{
507
	signed int result;
508 509 510
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

511
	fp_error = pid->setpoint - busy;
512

513
	if (abs(fp_error) <= pid->deadband)
514 515 516 517 518 519
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

520 521 522 523 524 525 526 527
	/*
	 * We limit the integral here so that it will never
	 * get higher than 30.  This prevents it from becoming
	 * too large an input over long periods of time and allows
	 * it to get factored out sooner.
	 *
	 * The value of 30 was chosen through experimentation.
	 */
528 529 530 531 532 533
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

534 535
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
536 537

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
538
	result = result + (1 << (FRAC_BITS-1));
539 540 541 542 543
	return (signed int)fp_toint(result);
}

static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
{
544 545 546
	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
547

548
	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
549 550 551 552 553
}

static inline void intel_pstate_reset_all_pid(void)
{
	unsigned int cpu;
554

555 556 557 558 559 560
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu])
			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
	}
}

561 562 563 564 565 566 567
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
568
	limits->turbo_disabled =
569 570 571 572
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

573
static void intel_pstate_hwp_set(const struct cpumask *cpumask)
D
Dirk Brandewie 已提交
574
{
575 576 577 578 579 580 581
	int min, hw_min, max, hw_max, cpu, range, adj_range;
	u64 value, cap;

	rdmsrl(MSR_HWP_CAPABILITIES, cap);
	hw_min = HWP_LOWEST_PERF(cap);
	hw_max = HWP_HIGHEST_PERF(cap);
	range = hw_max - hw_min;
D
Dirk Brandewie 已提交
582

583
	for_each_cpu(cpu, cpumask) {
D
Dirk Brandewie 已提交
584
		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
585
		adj_range = limits->min_perf_pct * range / 100;
586
		min = hw_min + adj_range;
D
Dirk Brandewie 已提交
587 588 589
		value &= ~HWP_MIN_PERF(~0L);
		value |= HWP_MIN_PERF(min);

590
		adj_range = limits->max_perf_pct * range / 100;
591
		max = hw_min + adj_range;
592
		if (limits->no_turbo) {
593 594 595
			hw_max = HWP_GUARANTEED_PERF(cap);
			if (hw_max < max)
				max = hw_max;
D
Dirk Brandewie 已提交
596 597 598 599 600 601
		}

		value &= ~HWP_MAX_PERF(~0L);
		value |= HWP_MAX_PERF(max);
		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
	}
602
}
D
Dirk Brandewie 已提交
603

604 605 606 607 608 609 610 611
static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
{
	if (hwp_active)
		intel_pstate_hwp_set(policy->cpus);

	return 0;
}

612 613 614 615
static void intel_pstate_hwp_set_online_cpus(void)
{
	get_online_cpus();
	intel_pstate_hwp_set(cpu_online_mask);
D
Dirk Brandewie 已提交
616 617 618
	put_online_cpus();
}

619 620 621 622 623 624 625
/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
	*(u32 *)data = val;
	intel_pstate_reset_all_pid();
	return 0;
}
626

627 628 629 630 631
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
632
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
633 634 635 636 637 638 639

struct pid_param {
	char *name;
	void *value;
};

static struct pid_param pid_files[] = {
640 641 642 643 644 645
	{"sample_rate_ms", &pid_params.sample_rate_ms},
	{"d_gain_pct", &pid_params.d_gain_pct},
	{"i_gain_pct", &pid_params.i_gain_pct},
	{"deadband", &pid_params.deadband},
	{"setpoint", &pid_params.setpoint},
	{"p_gain_pct", &pid_params.p_gain_pct},
646 647 648
	{NULL, NULL}
};

649
static void __init intel_pstate_debug_expose_params(void)
650
{
651
	struct dentry *debugfs_parent;
652 653
	int i = 0;

D
Dirk Brandewie 已提交
654 655
	if (hwp_active)
		return;
656 657 658 659 660
	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
	while (pid_files[i].name) {
		debugfs_create_file(pid_files[i].name, 0660,
661 662
				    debugfs_parent, pid_files[i].value,
				    &fops_pid_param);
663 664 665 666 667 668 669 670 671 672 673
		i++;
	}
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
674
		return sprintf(buf, "%u\n", limits->object);		\
675 676
	}

677 678 679 680 681 682 683 684 685 686 687
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
688
	turbo_fp = div_fp(no_turbo, total);
689 690 691 692
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
	return sprintf(buf, "%u\n", turbo_pct);
}

693 694 695 696 697 698 699 700 701 702 703
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	return sprintf(buf, "%u\n", total);
}

704 705 706 707 708 709
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

	update_turbo_state();
710 711
	if (limits->turbo_disabled)
		ret = sprintf(buf, "%u\n", limits->turbo_disabled);
712
	else
713
		ret = sprintf(buf, "%u\n", limits->no_turbo);
714 715 716 717

	return ret;
}

718
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
719
			      const char *buf, size_t count)
720 721 722
{
	unsigned int input;
	int ret;
723

724 725 726
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
727 728

	update_turbo_state();
729
	if (limits->turbo_disabled) {
J
Joe Perches 已提交
730
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
731
		return -EPERM;
732
	}
D
Dirk Brandewie 已提交
733

734
	limits->no_turbo = clamp_t(int, input, 0, 1);
735

D
Dirk Brandewie 已提交
736
	if (hwp_active)
737
		intel_pstate_hwp_set_online_cpus();
D
Dirk Brandewie 已提交
738

739 740 741 742
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
743
				  const char *buf, size_t count)
744 745 746
{
	unsigned int input;
	int ret;
747

748 749 750 751
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

752 753 754 755 756 757 758
	limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);
	limits->max_perf_pct = max(limits->min_perf_pct,
				   limits->max_perf_pct);
759
	limits->max_perf = div_fp(limits->max_perf_pct, 100);
760

D
Dirk Brandewie 已提交
761
	if (hwp_active)
762
		intel_pstate_hwp_set_online_cpus();
763 764 765 766
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
767
				  const char *buf, size_t count)
768 769 770
{
	unsigned int input;
	int ret;
771

772 773 774
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
775

776 777 778 779 780 781 782
	limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->min_perf_pct = min(limits->max_perf_pct,
				   limits->min_perf_pct);
783
	limits->min_perf = div_fp(limits->min_perf_pct, 100);
784

D
Dirk Brandewie 已提交
785
	if (hwp_active)
786
		intel_pstate_hwp_set_online_cpus();
787 788 789 790 791 792 793 794 795
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
796
define_one_global_ro(turbo_pct);
797
define_one_global_ro(num_pstates);
798 799 800 801 802

static struct attribute *intel_pstate_attributes[] = {
	&no_turbo.attr,
	&max_perf_pct.attr,
	&min_perf_pct.attr,
803
	&turbo_pct.attr,
804
	&num_pstates.attr,
805 806 807 808 809 810 811
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};

812
static void __init intel_pstate_sysfs_expose_params(void)
813
{
814
	struct kobject *intel_pstate_kobject;
815 816 817 818 819
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
	BUG_ON(!intel_pstate_kobject);
820
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
821 822 823
	BUG_ON(rc);
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
824

825
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
826
{
827 828 829
	/* First disable HWP notification interrupt as we don't process them */
	wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);

830
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
D
Dirk Brandewie 已提交
831 832
}

833
static int atom_get_min_pstate(void)
834 835
{
	u64 value;
836

837
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
838
	return (value >> 8) & 0x7F;
839 840
}

841
static int atom_get_max_pstate(void)
842 843
{
	u64 value;
844

845
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
846
	return (value >> 16) & 0x7F;
847
}
848

849
static int atom_get_turbo_pstate(void)
850 851
{
	u64 value;
852

853
	rdmsrl(ATOM_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
854
	return value & 0x7F;
855 856
}

857
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
858 859 860 861 862
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

863
	val = (u64)pstate << 8;
864
	if (limits->no_turbo && !limits->turbo_disabled)
865 866 867 868 869 870 871
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
872
	vid = ceiling_fp(vid_fp);
873

874 875 876
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

877
	return val | vid;
878 879
}

880
static int silvermont_get_scaling(void)
881 882 883
{
	u64 value;
	int i;
884 885 886
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
887 888

	rdmsrl(MSR_FSB_FREQ, value);
889 890
	i = value & 0x7;
	WARN_ON(i > 4);
891

892 893
	return silvermont_freq_table[i];
}
894

895 896 897 898 899 900 901 902 903 904 905 906 907 908
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
909 910
}

911
static void atom_get_vid(struct cpudata *cpudata)
912 913 914
{
	u64 value;

915
	rdmsrl(ATOM_VIDS, value);
D
Dirk Brandewie 已提交
916 917
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
918 919 920 921
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
922

923
	rdmsrl(ATOM_TURBO_VIDS, value);
924
	cpudata->vid.turbo = value & 0x7f;
925 926
}

927
static int core_get_min_pstate(void)
928 929
{
	u64 value;
930

931
	rdmsrl(MSR_PLATFORM_INFO, value);
932 933 934
	return (value >> 40) & 0xFF;
}

935
static int core_get_max_pstate_physical(void)
936 937
{
	u64 value;
938

939
	rdmsrl(MSR_PLATFORM_INFO, value);
940 941 942
	return (value >> 8) & 0xFF;
}

943
static int core_get_max_pstate(void)
944
{
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
	u64 tar;
	u64 plat_info;
	int max_pstate;
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
		/* Do some sanity checking for safety */
		if (plat_info & 0x600000000) {
			u64 tdp_ctrl;
			u64 tdp_ratio;
			int tdp_msr;

			err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
			if (err)
				goto skip_tar;

			tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
			err = rdmsrl_safe(tdp_msr, &tdp_ratio);
			if (err)
				goto skip_tar;

970 971 972 973 974
			/* For level 1 and 2, bits[23:16] contain the ratio */
			if (tdp_ctrl)
				tdp_ratio >>= 16;

			tdp_ratio &= 0xff; /* ratios are only 8 bits long */
975 976 977 978 979 980 981 982
			if (tdp_ratio - 1 == tar) {
				max_pstate = tar;
				pr_debug("max_pstate=TAC %x\n", max_pstate);
			} else {
				goto skip_tar;
			}
		}
	}
983

984 985
skip_tar:
	return max_pstate;
986 987
}

988
static int core_get_turbo_pstate(void)
989 990 991
{
	u64 value;
	int nont, ret;
992

993
	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
994
	nont = core_get_max_pstate();
995
	ret = (value) & 255;
996 997 998 999 1000
	if (ret <= nont)
		ret = nont;
	return ret;
}

1001 1002 1003 1004 1005
static inline int core_get_scaling(void)
{
	return 100000;
}

1006
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1007 1008 1009
{
	u64 val;

1010
	val = (u64)pstate << 8;
1011
	if (limits->no_turbo && !limits->turbo_disabled)
1012 1013
		val |= (u64)1 << 32;

1014
	return val;
1015 1016
}

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
static struct cpu_defaults core_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
1041
		.get_max_physical = core_get_max_pstate_physical,
1042 1043
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
1044
		.get_scaling = core_get_scaling,
1045
		.get_val = core_get_val,
1046
		.get_target_pstate = get_target_pstate_use_performance,
1047 1048 1049
	},
};

1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
static struct cpu_defaults silvermont_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1064
		.get_val = atom_get_val,
1065 1066
		.get_scaling = silvermont_get_scaling,
		.get_vid = atom_get_vid,
1067
		.get_target_pstate = get_target_pstate_use_cpu_load,
1068 1069 1070 1071
	},
};

static struct cpu_defaults airmont_params = {
1072 1073 1074
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
1075
		.setpoint = 60,
1076 1077 1078 1079 1080
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
1081 1082 1083 1084
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1085
		.get_val = atom_get_val,
1086
		.get_scaling = airmont_get_scaling,
1087
		.get_vid = atom_get_vid,
1088
		.get_target_pstate = get_target_pstate_use_cpu_load,
1089 1090 1091
	},
};

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
static struct cpu_defaults knl_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
1103
		.get_max_physical = core_get_max_pstate_physical,
1104 1105
		.get_min = core_get_min_pstate,
		.get_turbo = knl_get_turbo_pstate,
1106
		.get_scaling = core_get_scaling,
1107
		.get_val = core_get_val,
1108
		.get_target_pstate = get_target_pstate_use_performance,
1109 1110 1111
	},
};

1112 1113 1114
static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
1115
	int max_perf_adj;
1116
	int min_perf;
1117

1118
	if (limits->no_turbo || limits->turbo_disabled)
1119 1120
		max_perf = cpu->pstate.max_pstate;

1121 1122 1123 1124 1125
	/*
	 * performance can be limited by user through sysfs, by cpufreq
	 * policy, or by cpu specific default values determined through
	 * experimentation.
	 */
1126
	max_perf_adj = fp_toint(max_perf * limits->max_perf);
1127 1128
	*max = clamp_t(int, max_perf_adj,
			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1129

1130
	min_perf = fp_toint(max_perf * limits->min_perf);
1131
	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1132 1133
}

1134
static inline void intel_pstate_record_pstate(struct cpudata *cpu, int pstate)
1135
{
1136
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1137
	cpu->pstate.current_pstate = pstate;
1138
}
1139

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	int pstate = cpu->pstate.min_pstate;

	intel_pstate_record_pstate(cpu, pstate);
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1152 1153 1154 1155
}

static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1156 1157
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1158
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1159
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1160
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1161

1162 1163
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1164 1165

	intel_pstate_set_min_pstate(cpu);
1166 1167
}

1168
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1169
{
1170
	struct sample *sample = &cpu->sample;
1171

1172
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1173 1174
}

1175
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1176 1177
{
	u64 aperf, mperf;
1178
	unsigned long flags;
1179
	u64 tsc;
1180

1181
	local_irq_save(flags);
1182 1183
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1184
	tsc = rdtsc();
1185
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1186
		local_irq_restore(flags);
1187
		return false;
1188
	}
1189
	local_irq_restore(flags);
1190

1191
	cpu->last_sample_time = cpu->sample.time;
1192
	cpu->sample.time = time;
1193 1194
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1195
	cpu->sample.tsc =  tsc;
1196 1197
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1198
	cpu->sample.tsc -= cpu->prev_tsc;
1199

1200 1201
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1202
	cpu->prev_tsc = tsc;
1203 1204 1205 1206 1207 1208 1209 1210
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
	return !!cpu->last_sample_time;
1211 1212
}

1213 1214
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1215 1216
	return mul_ext_fp(cpu->sample.core_avg_perf,
			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1217 1218
}

1219 1220
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1221 1222
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1223 1224
}

1225 1226 1227
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
{
	struct sample *sample = &cpu->sample;
1228 1229 1230
	u64 cummulative_iowait, delta_iowait_us;
	u64 delta_iowait_mperf;
	u64 mperf, now;
1231 1232
	int32_t cpu_load;

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
	cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);

	/*
	 * Convert iowait time into number of IO cycles spent at max_freq.
	 * IO is considered as busy only for the cpu_load algorithm. For
	 * performance this is not needed since we always try to reach the
	 * maximum P-State, so we are already boosting the IOs.
	 */
	delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
	delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
		cpu->pstate.max_pstate, MSEC_PER_SEC);

	mperf = cpu->sample.mperf + delta_iowait_mperf;
	cpu->prev_cummulative_iowait = cummulative_iowait;

1248 1249 1250 1251 1252 1253
	/*
	 * The load can be estimated as the ratio of the mperf counter
	 * running at a constant frequency during active periods
	 * (C0) and the time stamp counter running at the same frequency
	 * also during C-states.
	 */
1254
	cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
1255 1256
	cpu->sample.busy_scaled = cpu_load;

1257
	return get_avg_pstate(cpu) - pid_calc(&cpu->pid, cpu_load);
1258 1259
}

1260
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1261
{
1262
	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1263
	u64 duration_ns;
1264

1265
	/*
1266 1267 1268 1269
	 * perf_scaled is the average performance during the last sampling
	 * period scaled by the ratio of the maximum P-state to the P-state
	 * requested last time (in percent).  That measures the system's
	 * response to the previous P-state selection.
1270
	 */
1271 1272
	max_pstate = cpu->pstate.max_pstate_physical;
	current_pstate = cpu->pstate.current_pstate;
1273
	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1274
			       div_fp(100 * max_pstate, current_pstate));
1275

1276
	/*
1277 1278 1279
	 * Since our utilization update callback will not run unless we are
	 * in C0, check if the actual elapsed time is significantly greater (3x)
	 * than our sample interval.  If it is, then we were idle for a long
1280
	 * enough period of time to adjust our performance metric.
1281
	 */
1282
	duration_ns = cpu->sample.time - cpu->last_sample_time;
1283
	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1284
		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1285
		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1286 1287 1288
	} else {
		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
		if (sample_ratio < int_tofp(1))
1289
			perf_scaled = 0;
1290 1291
	}

1292 1293
	cpu->sample.busy_scaled = perf_scaled;
	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1294 1295
}

1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
	int max_perf, min_perf;

	update_turbo_state();

	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
	pstate = clamp_t(int, pstate, min_perf, max_perf);
	if (pstate == cpu->pstate.current_pstate)
		return;

	intel_pstate_record_pstate(cpu, pstate);
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1311 1312
static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
{
1313
	int from, target_pstate;
1314 1315 1316
	struct sample *sample;

	from = cpu->pstate.current_pstate;
1317

1318
	target_pstate = pstate_funcs.get_target_pstate(cpu);
1319

1320
	intel_pstate_update_pstate(cpu, target_pstate);
1321 1322

	sample = &cpu->sample;
1323
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1324
		fp_toint(sample->busy_scaled),
1325 1326 1327 1328 1329
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1330
		get_avg_frequency(cpu));
1331 1332
}

1333 1334
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
				     unsigned long util, unsigned long max)
1335
{
1336 1337
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
	u64 delta_ns = time - cpu->sample.time;
1338

1339
	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1340 1341
		bool sample_taken = intel_pstate_sample(cpu, time);

1342
		if (sample_taken) {
1343
			intel_pstate_calc_avg_perf(cpu);
1344 1345 1346
			if (!hwp_active)
				intel_pstate_adjust_busy_pstate(cpu);
		}
1347
	}
1348 1349 1350
}

#define ICPU(model, policy) \
1351 1352
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1353 1354

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1355 1356
	ICPU(0x2a, core_params),
	ICPU(0x2d, core_params),
1357
	ICPU(0x37, silvermont_params),
1358 1359
	ICPU(0x3a, core_params),
	ICPU(0x3c, core_params),
1360
	ICPU(0x3d, core_params),
1361 1362 1363 1364
	ICPU(0x3e, core_params),
	ICPU(0x3f, core_params),
	ICPU(0x45, core_params),
	ICPU(0x46, core_params),
1365
	ICPU(0x47, core_params),
1366
	ICPU(0x4c, airmont_params),
1367
	ICPU(0x4e, core_params),
1368
	ICPU(0x4f, core_params),
1369
	ICPU(0x5e, core_params),
1370
	ICPU(0x56, core_params),
1371
	ICPU(0x57, knl_params),
1372 1373 1374 1375
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

D
Dirk Brandewie 已提交
1376 1377 1378 1379 1380
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
	ICPU(0x56, core_params),
	{}
};

1381 1382 1383 1384
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1385 1386 1387
	if (!all_cpu_data[cpunum])
		all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
					       GFP_KERNEL);
1388 1389 1390 1391 1392 1393
	if (!all_cpu_data[cpunum])
		return -ENOMEM;

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1394

1395
	if (hwp_active) {
1396
		intel_pstate_hwp_enable(cpu);
1397 1398 1399
		pid_params.sample_rate_ms = 50;
		pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
	}
1400

1401
	intel_pstate_get_cpu_pstates(cpu);
1402

1403 1404
	intel_pstate_busy_pid_reset(cpu);

J
Joe Perches 已提交
1405
	pr_debug("controlling: cpu %d\n", cpunum);
1406 1407 1408 1409 1410 1411

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
1412
	struct cpudata *cpu = all_cpu_data[cpu_num];
1413

1414
	return cpu ? get_avg_frequency(cpu) : 0;
1415 1416
}

1417
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1418
{
1419 1420 1421 1422
	struct cpudata *cpu = all_cpu_data[cpu_num];

	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
1423 1424
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
				     intel_pstate_update_util);
1425
	cpu->update_util_set = true;
1426 1427 1428 1429
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
1430 1431 1432 1433 1434
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

1435
	cpufreq_remove_update_util_hook(cpu);
1436
	cpu_data->update_util_set = false;
1437 1438 1439
	synchronize_sched();
}

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
static void intel_pstate_set_performance_limits(struct perf_limits *limits)
{
	limits->no_turbo = 0;
	limits->turbo_disabled = 0;
	limits->max_perf_pct = 100;
	limits->max_perf = int_tofp(1);
	limits->min_perf_pct = 100;
	limits->min_perf = int_tofp(1);
	limits->max_policy_pct = 100;
	limits->max_sysfs_pct = 100;
	limits->min_policy_pct = 0;
	limits->min_sysfs_pct = 0;
}

1454 1455
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
1456 1457
	struct cpudata *cpu;

1458 1459 1460
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

1461 1462
	intel_pstate_clear_update_util_hook(policy->cpu);

1463 1464 1465
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

1466
	cpu = all_cpu_data[0];
1467 1468 1469 1470 1471
	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
1472 1473
	}

1474
	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
1475
		limits = &performance_limits;
1476
		if (policy->max >= policy->cpuinfo.max_freq) {
J
Joe Perches 已提交
1477
			pr_debug("set performance\n");
1478 1479 1480 1481
			intel_pstate_set_performance_limits(limits);
			goto out;
		}
	} else {
J
Joe Perches 已提交
1482
		pr_debug("set powersave\n");
1483
		limits = &powersave_limits;
1484
	}
D
Dirk Brandewie 已提交
1485

1486 1487
	limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
	limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1488 1489
	limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
					      policy->cpuinfo.max_freq);
1490
	limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1491 1492

	/* Normalize user input to [min_policy_pct, max_policy_pct] */
1493 1494 1495 1496 1497 1498 1499 1500
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);
1501 1502

	/* Make sure min_perf_pct <= max_perf_pct */
1503
	limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1504

1505 1506
	limits->min_perf = div_fp(limits->min_perf_pct, 100);
	limits->max_perf = div_fp(limits->max_perf_pct, 100);
1507
	limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1508

1509 1510 1511
 out:
	intel_pstate_set_update_util_hook(policy->cpu);

1512
	intel_pstate_hwp_set_policy(policy);
D
Dirk Brandewie 已提交
1513

1514 1515 1516 1517 1518
	return 0;
}

static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
1519
	cpufreq_verify_within_cpu_limits(policy);
1520

1521
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1522
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1523 1524 1525 1526 1527
		return -EINVAL;

	return 0;
}

1528
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1529
{
1530 1531
	int cpu_num = policy->cpu;
	struct cpudata *cpu = all_cpu_data[cpu_num];
1532

J
Joe Perches 已提交
1533
	pr_debug("CPU %d exiting\n", cpu_num);
1534

1535
	intel_pstate_clear_update_util_hook(cpu_num);
1536

D
Dirk Brandewie 已提交
1537 1538 1539
	if (hwp_active)
		return;

1540
	intel_pstate_set_min_pstate(cpu);
1541 1542
}

1543
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1544 1545
{
	struct cpudata *cpu;
1546
	int rc;
1547 1548 1549 1550 1551 1552 1553

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

1554
	if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1555 1556 1557 1558
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;

1559 1560
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1561 1562

	/* cpuinfo and default policy values */
1563
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1564 1565 1566 1567 1568
	update_turbo_state();
	policy->cpuinfo.max_freq = limits->turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

1569
	intel_pstate_init_acpi_perf_limits(policy);
1570 1571 1572 1573 1574 1575
	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
	cpumask_set_cpu(policy->cpu, policy->cpus);

	return 0;
}

1576 1577 1578 1579 1580 1581 1582
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);

	return 0;
}

1583 1584 1585 1586
static struct cpufreq_driver intel_pstate_driver = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
1587
	.resume		= intel_pstate_hwp_set_policy,
1588 1589
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
1590
	.exit		= intel_pstate_cpu_exit,
1591
	.stop_cpu	= intel_pstate_stop_cpu,
1592 1593 1594
	.name		= "intel_pstate",
};

1595
static int __initdata no_load;
D
Dirk Brandewie 已提交
1596
static int __initdata no_hwp;
1597
static int __initdata hwp_only;
1598
static unsigned int force_load;
1599

1600 1601
static int intel_pstate_msrs_not_valid(void)
{
1602
	if (!pstate_funcs.get_max() ||
1603 1604
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
1605 1606 1607 1608
		return -ENODEV;

	return 0;
}
1609

1610
static void copy_pid_params(struct pstate_adjust_policy *policy)
1611 1612
{
	pid_params.sample_rate_ms = policy->sample_rate_ms;
1613
	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1614 1615 1616 1617 1618 1619 1620
	pid_params.p_gain_pct = policy->p_gain_pct;
	pid_params.i_gain_pct = policy->i_gain_pct;
	pid_params.d_gain_pct = policy->d_gain_pct;
	pid_params.deadband = policy->deadband;
	pid_params.setpoint = policy->setpoint;
}

1621
static void copy_cpu_funcs(struct pstate_funcs *funcs)
1622 1623
{
	pstate_funcs.get_max   = funcs->get_max;
1624
	pstate_funcs.get_max_physical = funcs->get_max_physical;
1625 1626
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
1627
	pstate_funcs.get_scaling = funcs->get_scaling;
1628
	pstate_funcs.get_val   = funcs->get_val;
1629
	pstate_funcs.get_vid   = funcs->get_vid;
1630 1631
	pstate_funcs.get_target_pstate = funcs->get_target_pstate;

1632 1633
}

1634
#ifdef CONFIG_ACPI
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664

static bool intel_pstate_no_acpi_pss(void)
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
static bool intel_pstate_has_acpi_ppc(void)
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

1685 1686 1687 1688
struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1689
	int  oem_pwr_table;
1690 1691 1692 1693
};

/* Hardware vendor-specific info that has its own power management modes */
static struct hw_vendor_info vendor_info[] = {
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
	{1, "HP    ", "ProLiant", PSS},
	{1, "ORACLE", "X4-2    ", PPC},
	{1, "ORACLE", "X4-2L   ", PPC},
	{1, "ORACLE", "X4-2B   ", PPC},
	{1, "ORACLE", "X3-2    ", PPC},
	{1, "ORACLE", "X3-2L   ", PPC},
	{1, "ORACLE", "X3-2B   ", PPC},
	{1, "ORACLE", "X4470M2 ", PPC},
	{1, "ORACLE", "X4270M3 ", PPC},
	{1, "ORACLE", "X4270M2 ", PPC},
	{1, "ORACLE", "X4170M2 ", PPC},
1705 1706 1707 1708
	{1, "ORACLE", "X4170 M3", PPC},
	{1, "ORACLE", "X4275 M3", PPC},
	{1, "ORACLE", "X6-2    ", PPC},
	{1, "ORACLE", "Sudbury ", PPC},
1709 1710 1711 1712 1713 1714 1715
	{0, "", ""},
};

static bool intel_pstate_platform_pwr_mgmt_exists(void)
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;
D
Dirk Brandewie 已提交
1716 1717 1718 1719 1720 1721 1722 1723 1724
	const struct x86_cpu_id *id;
	u64 misc_pwr;

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
1725

1726 1727
	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1728 1729 1730
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
1731
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1732 1733 1734 1735 1736 1737
			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
						ACPI_OEM_TABLE_ID_SIZE))
			switch (v_info->oem_pwr_table) {
			case PSS:
				return intel_pstate_no_acpi_pss();
			case PPC:
1738 1739
				return intel_pstate_has_acpi_ppc() &&
					(!force_load);
1740
			}
1741 1742 1743 1744 1745 1746
	}

	return false;
}
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1747
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1748 1749
#endif /* CONFIG_ACPI */

1750 1751 1752 1753 1754
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
	{}
};

1755 1756
static int __init intel_pstate_init(void)
{
1757
	int cpu, rc = 0;
1758
	const struct x86_cpu_id *id;
1759
	struct cpu_defaults *cpu_def;
1760

1761 1762 1763
	if (no_load)
		return -ENODEV;

1764 1765 1766 1767 1768 1769
	if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
		copy_cpu_funcs(&core_params.funcs);
		hwp_active++;
		goto hwp_cpu_matched;
	}

1770 1771 1772 1773
	id = x86_match_cpu(intel_pstate_cpu_ids);
	if (!id)
		return -ENODEV;

1774
	cpu_def = (struct cpu_defaults *)id->driver_data;
1775

1776 1777
	copy_pid_params(&cpu_def->pid_policy);
	copy_cpu_funcs(&cpu_def->funcs);
1778

1779 1780 1781
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

1782 1783 1784 1785 1786 1787 1788 1789
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

J
Joe Perches 已提交
1790
	pr_info("Intel P-state driver initializing\n");
1791

1792
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1793 1794 1795
	if (!all_cpu_data)
		return -ENOMEM;

1796 1797 1798
	if (!hwp_active && hwp_only)
		goto out;

1799 1800 1801 1802 1803 1804
	rc = cpufreq_register_driver(&intel_pstate_driver);
	if (rc)
		goto out;

	intel_pstate_debug_expose_params();
	intel_pstate_sysfs_expose_params();
1805

1806
	if (hwp_active)
J
Joe Perches 已提交
1807
		pr_info("HWP enabled\n");
1808

1809 1810
	return rc;
out:
1811 1812 1813
	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
1814
			intel_pstate_clear_update_util_hook(cpu);
1815 1816 1817 1818 1819 1820
			kfree(all_cpu_data[cpu]);
		}
	}

	put_online_cpus();
	vfree(all_cpu_data);
1821 1822 1823 1824
	return -ENODEV;
}
device_initcall(intel_pstate_init);

1825 1826 1827 1828 1829 1830 1831
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

	if (!strcmp(str, "disable"))
		no_load = 1;
1832
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
1833
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
1834
		no_hwp = 1;
1835
	}
1836 1837
	if (!strcmp(str, "force"))
		force_load = 1;
1838 1839
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
1840 1841 1842 1843 1844 1845

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

1846 1847 1848 1849
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

1850 1851 1852
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");