intel_pstate.c 35.0 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
28
#include <linux/acpi.h>
29
#include <linux/vmalloc.h>
30 31 32 33 34
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
35
#include <asm/cpufeature.h>
36

37 38 39 40
#define ATOM_RATIOS		0x66a
#define ATOM_VIDS		0x66b
#define ATOM_TURBO_RATIOS	0x66c
#define ATOM_TURBO_VIDS		0x66d
41

42
#define FRAC_BITS 8
43 44
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
45

46 47 48 49 50
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

51
static inline int32_t div_fp(s64 x, s64 y)
52
{
53
	return div64_s64((int64_t)x << FRAC_BITS, y);
54 55
}

56 57 58 59 60 61 62 63 64 65 66
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

67
struct sample {
68
	int32_t core_pct_busy;
69
	int32_t busy_scaled;
70 71
	u64 aperf;
	u64 mperf;
72
	u64 tsc;
73
	int freq;
74
	ktime_t time;
75 76 77 78 79 80
};

struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
81
	int	max_pstate_physical;
82
	int	scaling;
83 84 85
	int	turbo_pstate;
};

86
struct vid_data {
87 88 89
	int min;
	int max;
	int turbo;
90 91 92
	int32_t ratio;
};

93 94 95 96 97 98 99
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
100
	int32_t last_err;
101 102 103 104 105 106 107 108
};

struct cpudata {
	int cpu;

	struct timer_list timer;

	struct pstate_data pstate;
109
	struct vid_data vid;
110 111
	struct _pid pid;

112
	ktime_t last_sample_time;
113 114
	u64	prev_aperf;
	u64	prev_mperf;
115
	u64	prev_tsc;
116
	u64	prev_cummulative_iowait;
117
	struct sample sample;
118 119 120 121 122 123 124 125 126 127 128 129
};

static struct cpudata **all_cpu_data;
struct pstate_adjust_policy {
	int sample_rate_ms;
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

130 131
struct pstate_funcs {
	int (*get_max)(void);
132
	int (*get_max_physical)(void);
133 134
	int (*get_min)(void);
	int (*get_turbo)(void);
135
	int (*get_scaling)(void);
136 137
	void (*set)(struct cpudata*, int pstate);
	void (*get_vid)(struct cpudata *);
138
	int32_t (*get_target_pstate)(struct cpudata *);
139 140
};

141 142 143
struct cpu_defaults {
	struct pstate_adjust_policy pid_policy;
	struct pstate_funcs funcs;
144 145
};

146
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
147
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
148

149 150
static struct pstate_adjust_policy pid_params;
static struct pstate_funcs pstate_funcs;
D
Dirk Brandewie 已提交
151
static int hwp_active;
152

153 154
struct perf_limits {
	int no_turbo;
155
	int turbo_disabled;
156 157 158 159
	int max_perf_pct;
	int min_perf_pct;
	int32_t max_perf;
	int32_t min_perf;
160 161
	int max_policy_pct;
	int max_sysfs_pct;
162 163
	int min_policy_pct;
	int min_sysfs_pct;
164 165
};

166 167 168 169 170 171 172 173 174 175 176 177 178 179
static struct perf_limits performance_limits = {
	.no_turbo = 0,
	.turbo_disabled = 0,
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 100,
	.min_perf = int_tofp(1),
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
};

static struct perf_limits powersave_limits = {
180
	.no_turbo = 0,
181
	.turbo_disabled = 0,
182 183 184 185
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 0,
	.min_perf = 0,
186 187
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
188 189
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
190 191
};

192 193 194 195 196 197
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
static struct perf_limits *limits = &performance_limits;
#else
static struct perf_limits *limits = &powersave_limits;
#endif

198
static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
199
			     int deadband, int integral) {
200 201 202
	pid->setpoint = setpoint;
	pid->deadband  = deadband;
	pid->integral  = int_tofp(integral);
203
	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
}

static inline void pid_p_gain_set(struct _pid *pid, int percent)
{
	pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
}

static inline void pid_i_gain_set(struct _pid *pid, int percent)
{
	pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
}

static inline void pid_d_gain_set(struct _pid *pid, int percent)
{
	pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
}

221
static signed int pid_calc(struct _pid *pid, int32_t busy)
222
{
223
	signed int result;
224 225 226
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

227
	fp_error = int_tofp(pid->setpoint) - busy;
228

229
	if (abs(fp_error) <= int_tofp(pid->deadband))
230 231 232 233 234 235
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

236 237 238 239 240 241 242 243
	/*
	 * We limit the integral here so that it will never
	 * get higher than 30.  This prevents it from becoming
	 * too large an input over long periods of time and allows
	 * it to get factored out sooner.
	 *
	 * The value of 30 was chosen through experimentation.
	 */
244 245 246 247 248 249
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

250 251
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
252 253

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
254
	result = result + (1 << (FRAC_BITS-1));
255 256 257 258 259
	return (signed int)fp_toint(result);
}

static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
{
260 261 262
	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
263

264
	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
265 266 267 268 269
}

static inline void intel_pstate_reset_all_pid(void)
{
	unsigned int cpu;
270

271 272 273 274 275 276
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu])
			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
	}
}

277 278 279 280 281 282 283
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
284
	limits->turbo_disabled =
285 286 287 288
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

289
static void intel_pstate_hwp_set(const struct cpumask *cpumask)
D
Dirk Brandewie 已提交
290
{
291 292 293 294 295 296 297
	int min, hw_min, max, hw_max, cpu, range, adj_range;
	u64 value, cap;

	rdmsrl(MSR_HWP_CAPABILITIES, cap);
	hw_min = HWP_LOWEST_PERF(cap);
	hw_max = HWP_HIGHEST_PERF(cap);
	range = hw_max - hw_min;
D
Dirk Brandewie 已提交
298

299
	for_each_cpu(cpu, cpumask) {
D
Dirk Brandewie 已提交
300
		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
301
		adj_range = limits->min_perf_pct * range / 100;
302
		min = hw_min + adj_range;
D
Dirk Brandewie 已提交
303 304 305
		value &= ~HWP_MIN_PERF(~0L);
		value |= HWP_MIN_PERF(min);

306
		adj_range = limits->max_perf_pct * range / 100;
307
		max = hw_min + adj_range;
308
		if (limits->no_turbo) {
309 310 311
			hw_max = HWP_GUARANTEED_PERF(cap);
			if (hw_max < max)
				max = hw_max;
D
Dirk Brandewie 已提交
312 313 314 315 316 317
		}

		value &= ~HWP_MAX_PERF(~0L);
		value |= HWP_MAX_PERF(max);
		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
	}
318
}
D
Dirk Brandewie 已提交
319

320 321 322 323
static void intel_pstate_hwp_set_online_cpus(void)
{
	get_online_cpus();
	intel_pstate_hwp_set(cpu_online_mask);
D
Dirk Brandewie 已提交
324 325 326
	put_online_cpus();
}

327 328 329 330 331 332 333
/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
	*(u32 *)data = val;
	intel_pstate_reset_all_pid();
	return 0;
}
334

335 336 337 338 339
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
340
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
341 342 343 344 345 346 347

struct pid_param {
	char *name;
	void *value;
};

static struct pid_param pid_files[] = {
348 349 350 351 352 353
	{"sample_rate_ms", &pid_params.sample_rate_ms},
	{"d_gain_pct", &pid_params.d_gain_pct},
	{"i_gain_pct", &pid_params.i_gain_pct},
	{"deadband", &pid_params.deadband},
	{"setpoint", &pid_params.setpoint},
	{"p_gain_pct", &pid_params.p_gain_pct},
354 355 356
	{NULL, NULL}
};

357
static void __init intel_pstate_debug_expose_params(void)
358
{
359
	struct dentry *debugfs_parent;
360 361
	int i = 0;

D
Dirk Brandewie 已提交
362 363
	if (hwp_active)
		return;
364 365 366 367 368
	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
	while (pid_files[i].name) {
		debugfs_create_file(pid_files[i].name, 0660,
369 370
				    debugfs_parent, pid_files[i].value,
				    &fops_pid_param);
371 372 373 374 375 376 377 378 379 380 381
		i++;
	}
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
382
		return sprintf(buf, "%u\n", limits->object);		\
383 384
	}

385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
	turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
	return sprintf(buf, "%u\n", turbo_pct);
}

401 402 403 404 405 406 407 408 409 410 411
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	return sprintf(buf, "%u\n", total);
}

412 413 414 415 416 417
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

	update_turbo_state();
418 419
	if (limits->turbo_disabled)
		ret = sprintf(buf, "%u\n", limits->turbo_disabled);
420
	else
421
		ret = sprintf(buf, "%u\n", limits->no_turbo);
422 423 424 425

	return ret;
}

426
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
427
			      const char *buf, size_t count)
428 429 430
{
	unsigned int input;
	int ret;
431

432 433 434
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
435 436

	update_turbo_state();
437
	if (limits->turbo_disabled) {
438
		pr_warn("intel_pstate: Turbo disabled by BIOS or unavailable on processor\n");
439
		return -EPERM;
440
	}
D
Dirk Brandewie 已提交
441

442
	limits->no_turbo = clamp_t(int, input, 0, 1);
443

D
Dirk Brandewie 已提交
444
	if (hwp_active)
445
		intel_pstate_hwp_set_online_cpus();
D
Dirk Brandewie 已提交
446

447 448 449 450
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
451
				  const char *buf, size_t count)
452 453 454
{
	unsigned int input;
	int ret;
455

456 457 458 459
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

460 461 462 463 464 465 466 467 468
	limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);
	limits->max_perf_pct = max(limits->min_perf_pct,
				   limits->max_perf_pct);
	limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
				  int_tofp(100));
469

D
Dirk Brandewie 已提交
470
	if (hwp_active)
471
		intel_pstate_hwp_set_online_cpus();
472 473 474 475
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
476
				  const char *buf, size_t count)
477 478 479
{
	unsigned int input;
	int ret;
480

481 482 483
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
484

485 486 487 488 489 490 491 492 493
	limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->min_perf_pct = min(limits->max_perf_pct,
				   limits->min_perf_pct);
	limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
				  int_tofp(100));
494

D
Dirk Brandewie 已提交
495
	if (hwp_active)
496
		intel_pstate_hwp_set_online_cpus();
497 498 499 500 501 502 503 504 505
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
506
define_one_global_ro(turbo_pct);
507
define_one_global_ro(num_pstates);
508 509 510 511 512

static struct attribute *intel_pstate_attributes[] = {
	&no_turbo.attr,
	&max_perf_pct.attr,
	&min_perf_pct.attr,
513
	&turbo_pct.attr,
514
	&num_pstates.attr,
515 516 517 518 519 520 521
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};

522
static void __init intel_pstate_sysfs_expose_params(void)
523
{
524
	struct kobject *intel_pstate_kobject;
525 526 527 528 529
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
	BUG_ON(!intel_pstate_kobject);
530
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
531 532 533
	BUG_ON(rc);
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
534

535
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
536
{
537
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
D
Dirk Brandewie 已提交
538 539
}

540
static int atom_get_min_pstate(void)
541 542
{
	u64 value;
543

544
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
545
	return (value >> 8) & 0x7F;
546 547
}

548
static int atom_get_max_pstate(void)
549 550
{
	u64 value;
551

552
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
553
	return (value >> 16) & 0x7F;
554
}
555

556
static int atom_get_turbo_pstate(void)
557 558
{
	u64 value;
559

560
	rdmsrl(ATOM_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
561
	return value & 0x7F;
562 563
}

564
static void atom_set_pstate(struct cpudata *cpudata, int pstate)
565 566 567 568 569
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

570
	val = (u64)pstate << 8;
571
	if (limits->no_turbo && !limits->turbo_disabled)
572 573 574 575 576 577 578
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
579
	vid = ceiling_fp(vid_fp);
580

581 582 583
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

584 585
	val |= vid;

586
	wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
587 588
}

589
static int silvermont_get_scaling(void)
590 591 592
{
	u64 value;
	int i;
593 594 595
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
596 597

	rdmsrl(MSR_FSB_FREQ, value);
598 599
	i = value & 0x7;
	WARN_ON(i > 4);
600

601 602
	return silvermont_freq_table[i];
}
603

604 605 606 607 608 609 610 611 612 613 614 615 616 617
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
618 619
}

620
static void atom_get_vid(struct cpudata *cpudata)
621 622 623
{
	u64 value;

624
	rdmsrl(ATOM_VIDS, value);
D
Dirk Brandewie 已提交
625 626
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
627 628 629 630
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
631

632
	rdmsrl(ATOM_TURBO_VIDS, value);
633
	cpudata->vid.turbo = value & 0x7f;
634 635
}

636
static int core_get_min_pstate(void)
637 638
{
	u64 value;
639

640
	rdmsrl(MSR_PLATFORM_INFO, value);
641 642 643
	return (value >> 40) & 0xFF;
}

644
static int core_get_max_pstate_physical(void)
645 646
{
	u64 value;
647

648
	rdmsrl(MSR_PLATFORM_INFO, value);
649 650 651
	return (value >> 8) & 0xFF;
}

652
static int core_get_max_pstate(void)
653
{
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
	u64 tar;
	u64 plat_info;
	int max_pstate;
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
		/* Do some sanity checking for safety */
		if (plat_info & 0x600000000) {
			u64 tdp_ctrl;
			u64 tdp_ratio;
			int tdp_msr;

			err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
			if (err)
				goto skip_tar;

			tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
			err = rdmsrl_safe(tdp_msr, &tdp_ratio);
			if (err)
				goto skip_tar;

			if (tdp_ratio - 1 == tar) {
				max_pstate = tar;
				pr_debug("max_pstate=TAC %x\n", max_pstate);
			} else {
				goto skip_tar;
			}
		}
	}
687

688 689
skip_tar:
	return max_pstate;
690 691
}

692
static int core_get_turbo_pstate(void)
693 694 695
{
	u64 value;
	int nont, ret;
696

697
	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
698
	nont = core_get_max_pstate();
699
	ret = (value) & 255;
700 701 702 703 704
	if (ret <= nont)
		ret = nont;
	return ret;
}

705 706 707 708 709
static inline int core_get_scaling(void)
{
	return 100000;
}

710
static void core_set_pstate(struct cpudata *cpudata, int pstate)
711 712 713
{
	u64 val;

714
	val = (u64)pstate << 8;
715
	if (limits->no_turbo && !limits->turbo_disabled)
716 717
		val |= (u64)1 << 32;

718
	wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
719 720
}

721 722 723 724 725 726 727 728 729 730 731 732 733
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

734 735 736 737 738 739 740 741 742 743 744
static struct cpu_defaults core_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
745
		.get_max_physical = core_get_max_pstate_physical,
746 747
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
748
		.get_scaling = core_get_scaling,
749
		.set = core_set_pstate,
750
		.get_target_pstate = get_target_pstate_use_performance,
751 752 753
	},
};

754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
static struct cpu_defaults silvermont_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
		.set = atom_set_pstate,
		.get_scaling = silvermont_get_scaling,
		.get_vid = atom_get_vid,
771
		.get_target_pstate = get_target_pstate_use_cpu_load,
772 773 774 775
	},
};

static struct cpu_defaults airmont_params = {
776 777 778
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
779
		.setpoint = 60,
780 781 782 783 784
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
785 786 787 788 789
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
		.set = atom_set_pstate,
790
		.get_scaling = airmont_get_scaling,
791
		.get_vid = atom_get_vid,
792
		.get_target_pstate = get_target_pstate_use_cpu_load,
793 794 795
	},
};

796 797 798 799 800 801 802 803 804 805 806
static struct cpu_defaults knl_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
807
		.get_max_physical = core_get_max_pstate_physical,
808 809
		.get_min = core_get_min_pstate,
		.get_turbo = knl_get_turbo_pstate,
810
		.get_scaling = core_get_scaling,
811
		.set = core_set_pstate,
812
		.get_target_pstate = get_target_pstate_use_performance,
813 814 815
	},
};

816 817 818
static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
819
	int max_perf_adj;
820
	int min_perf;
821

822
	if (limits->no_turbo || limits->turbo_disabled)
823 824
		max_perf = cpu->pstate.max_pstate;

825 826 827 828 829
	/*
	 * performance can be limited by user through sysfs, by cpufreq
	 * policy, or by cpu specific default values determined through
	 * experimentation.
	 */
830 831 832
	max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits->max_perf));
	*max = clamp_t(int, max_perf_adj,
			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
833

834 835
	min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits->min_perf));
	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
836 837
}

838
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate, bool force)
839 840 841
{
	int max_perf, min_perf;

842 843
	if (force) {
		update_turbo_state();
844

845
		intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
846

847
		pstate = clamp_t(int, pstate, min_perf, max_perf);
848

849 850 851
		if (pstate == cpu->pstate.current_pstate)
			return;
	}
852
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
853

854 855
	cpu->pstate.current_pstate = pstate;

856
	pstate_funcs.set(cpu, pstate);
857 858 859 860
}

static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
861 862
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
863
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
864
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
865
	cpu->pstate.scaling = pstate_funcs.get_scaling();
866

867 868
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
869
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
870 871
}

872
static inline void intel_pstate_calc_busy(struct cpudata *cpu)
873
{
874
	struct sample *sample = &cpu->sample;
875
	int64_t core_pct;
876

877
	core_pct = int_tofp(sample->aperf) * int_tofp(100);
878
	core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
879

880
	sample->freq = fp_toint(
881
		mul_fp(int_tofp(
882 883
			cpu->pstate.max_pstate_physical *
			cpu->pstate.scaling / 100),
884
			core_pct));
885

886
	sample->core_pct_busy = (int32_t)core_pct;
887 888 889 890 891
}

static inline void intel_pstate_sample(struct cpudata *cpu)
{
	u64 aperf, mperf;
892
	unsigned long flags;
893
	u64 tsc;
894

895
	local_irq_save(flags);
896 897
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
898 899
	tsc = rdtsc();
	if ((cpu->prev_mperf == mperf) || (cpu->prev_tsc == tsc)) {
900 901 902
		local_irq_restore(flags);
		return;
	}
903
	local_irq_restore(flags);
904

905 906
	cpu->last_sample_time = cpu->sample.time;
	cpu->sample.time = ktime_get();
907 908
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
909
	cpu->sample.tsc =  tsc;
910 911
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
912
	cpu->sample.tsc -= cpu->prev_tsc;
913

914
	intel_pstate_calc_busy(cpu);
915 916 917

	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
918
	cpu->prev_tsc = tsc;
919 920
}

D
Dirk Brandewie 已提交
921 922 923 924 925 926 927 928
static inline void intel_hwp_set_sample_time(struct cpudata *cpu)
{
	int delay;

	delay = msecs_to_jiffies(50);
	mod_timer_pinned(&cpu->timer, jiffies + delay);
}

929 930
static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
{
931
	int delay;
932

933
	delay = msecs_to_jiffies(pid_params.sample_rate_ms);
934 935 936
	mod_timer_pinned(&cpu->timer, jiffies + delay);
}

937 938 939
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
{
	struct sample *sample = &cpu->sample;
940 941 942
	u64 cummulative_iowait, delta_iowait_us;
	u64 delta_iowait_mperf;
	u64 mperf, now;
943 944
	int32_t cpu_load;

945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
	cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);

	/*
	 * Convert iowait time into number of IO cycles spent at max_freq.
	 * IO is considered as busy only for the cpu_load algorithm. For
	 * performance this is not needed since we always try to reach the
	 * maximum P-State, so we are already boosting the IOs.
	 */
	delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
	delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
		cpu->pstate.max_pstate, MSEC_PER_SEC);

	mperf = cpu->sample.mperf + delta_iowait_mperf;
	cpu->prev_cummulative_iowait = cummulative_iowait;


961 962 963 964 965 966
	/*
	 * The load can be estimated as the ratio of the mperf counter
	 * running at a constant frequency during active periods
	 * (C0) and the time stamp counter running at the same frequency
	 * also during C-states.
	 */
967
	cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
968 969 970 971 972
	cpu->sample.busy_scaled = cpu_load;

	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, cpu_load);
}

973
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
974
{
975
	int32_t core_busy, max_pstate, current_pstate, sample_ratio;
976
	s64 duration_us;
977
	u32 sample_time;
978

979 980 981 982 983 984 985 986 987 988 989
	/*
	 * core_busy is the ratio of actual performance to max
	 * max_pstate is the max non turbo pstate available
	 * current_pstate was the pstate that was requested during
	 * 	the last sample period.
	 *
	 * We normalize core_busy, which was our actual percent
	 * performance to what we requested during the last sample
	 * period. The result will be a percentage of busy at a
	 * specified pstate.
	 */
990
	core_busy = cpu->sample.core_pct_busy;
991
	max_pstate = int_tofp(cpu->pstate.max_pstate_physical);
992
	current_pstate = int_tofp(cpu->pstate.current_pstate);
993
	core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
994

995 996 997 998 999 1000 1001
	/*
	 * Since we have a deferred timer, it will not fire unless
	 * we are in C0.  So, determine if the actual elapsed time
	 * is significantly greater (3x) than our sample interval.  If it
	 * is, then we were idle for a long enough period of time
	 * to adjust our busyness.
	 */
1002
	sample_time = pid_params.sample_rate_ms  * USEC_PER_MSEC;
1003 1004
	duration_us = ktime_us_delta(cpu->sample.time,
				     cpu->last_sample_time);
1005 1006
	if (duration_us > sample_time * 3) {
		sample_ratio = div_fp(int_tofp(sample_time),
1007
				      int_tofp(duration_us));
1008 1009 1010
		core_busy = mul_fp(core_busy, sample_ratio);
	}

1011 1012
	cpu->sample.busy_scaled = core_busy;
	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, core_busy);
1013 1014 1015 1016
}

static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
{
1017
	int from, target_pstate;
1018 1019 1020
	struct sample *sample;

	from = cpu->pstate.current_pstate;
1021

1022
	target_pstate = pstate_funcs.get_target_pstate(cpu);
1023

1024
	intel_pstate_set_pstate(cpu, target_pstate, true);
1025 1026 1027

	sample = &cpu->sample;
	trace_pstate_sample(fp_toint(sample->core_pct_busy),
1028
		fp_toint(sample->busy_scaled),
1029 1030 1031 1032 1033 1034
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
		sample->freq);
1035 1036
}

D
Dirk Brandewie 已提交
1037 1038 1039 1040 1041 1042 1043 1044
static void intel_hwp_timer_func(unsigned long __data)
{
	struct cpudata *cpu = (struct cpudata *) __data;

	intel_pstate_sample(cpu);
	intel_hwp_set_sample_time(cpu);
}

1045 1046 1047 1048 1049
static void intel_pstate_timer_func(unsigned long __data)
{
	struct cpudata *cpu = (struct cpudata *) __data;

	intel_pstate_sample(cpu);
1050

1051
	intel_pstate_adjust_busy_pstate(cpu);
1052

1053 1054 1055 1056
	intel_pstate_set_sample_time(cpu);
}

#define ICPU(model, policy) \
1057 1058
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1059 1060

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1061 1062
	ICPU(0x2a, core_params),
	ICPU(0x2d, core_params),
1063
	ICPU(0x37, silvermont_params),
1064 1065
	ICPU(0x3a, core_params),
	ICPU(0x3c, core_params),
1066
	ICPU(0x3d, core_params),
1067 1068 1069 1070
	ICPU(0x3e, core_params),
	ICPU(0x3f, core_params),
	ICPU(0x45, core_params),
	ICPU(0x46, core_params),
1071
	ICPU(0x47, core_params),
1072
	ICPU(0x4c, airmont_params),
1073
	ICPU(0x4e, core_params),
1074
	ICPU(0x4f, core_params),
1075
	ICPU(0x5e, core_params),
1076
	ICPU(0x56, core_params),
1077
	ICPU(0x57, knl_params),
1078 1079 1080 1081
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

D
Dirk Brandewie 已提交
1082 1083 1084 1085 1086
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
	ICPU(0x56, core_params),
	{}
};

1087 1088 1089 1090
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1091 1092 1093
	if (!all_cpu_data[cpunum])
		all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
					       GFP_KERNEL);
1094 1095 1096 1097 1098 1099
	if (!all_cpu_data[cpunum])
		return -ENOMEM;

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1100 1101 1102 1103

	if (hwp_active)
		intel_pstate_hwp_enable(cpu);

1104
	intel_pstate_get_cpu_pstates(cpu);
1105

1106
	init_timer_deferrable(&cpu->timer);
1107
	cpu->timer.data = (unsigned long)cpu;
1108
	cpu->timer.expires = jiffies + HZ/100;
D
Dirk Brandewie 已提交
1109 1110 1111 1112 1113 1114

	if (!hwp_active)
		cpu->timer.function = intel_pstate_timer_func;
	else
		cpu->timer.function = intel_hwp_timer_func;

1115 1116 1117 1118 1119
	intel_pstate_busy_pid_reset(cpu);
	intel_pstate_sample(cpu);

	add_timer_on(&cpu->timer, cpunum);

1120
	pr_debug("intel_pstate: controlling: cpu %d\n", cpunum);
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
	struct sample *sample;
	struct cpudata *cpu;

	cpu = all_cpu_data[cpu_num];
	if (!cpu)
		return 0;
1133
	sample = &cpu->sample;
1134 1135 1136 1137 1138
	return sample->freq;
}

static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
1139 1140 1141
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

1142 1143
	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE &&
	    policy->max >= policy->cpuinfo.max_freq) {
1144 1145
		pr_debug("intel_pstate: set performance\n");
		limits = &performance_limits;
1146
		if (hwp_active)
1147
			intel_pstate_hwp_set(policy->cpus);
1148
		return 0;
1149
	}
D
Dirk Brandewie 已提交
1150

1151 1152 1153 1154
	pr_debug("intel_pstate: set powersave\n");
	limits = &powersave_limits;
	limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
	limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1155 1156
	limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
					      policy->cpuinfo.max_freq);
1157
	limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1158 1159

	/* Normalize user input to [min_policy_pct, max_policy_pct] */
1160 1161 1162 1163 1164 1165 1166 1167
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);
1168
	limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1169 1170

	/* Make sure min_perf_pct <= max_perf_pct */
1171
	limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1172

1173 1174 1175 1176
	limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
				  int_tofp(100));
	limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
				  int_tofp(100));
1177

D
Dirk Brandewie 已提交
1178
	if (hwp_active)
1179
		intel_pstate_hwp_set(policy->cpus);
D
Dirk Brandewie 已提交
1180

1181 1182 1183 1184 1185
	return 0;
}

static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
1186
	cpufreq_verify_within_cpu_limits(policy);
1187

1188
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1189
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1190 1191 1192 1193 1194
		return -EINVAL;

	return 0;
}

1195
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1196
{
1197 1198
	int cpu_num = policy->cpu;
	struct cpudata *cpu = all_cpu_data[cpu_num];
1199

1200
	pr_debug("intel_pstate: CPU %d exiting\n", cpu_num);
1201

1202
	del_timer_sync(&all_cpu_data[cpu_num]->timer);
D
Dirk Brandewie 已提交
1203 1204 1205
	if (hwp_active)
		return;

1206
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
1207 1208
}

1209
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1210 1211
{
	struct cpudata *cpu;
1212
	int rc;
1213 1214 1215 1216 1217 1218 1219

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

1220
	if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1221 1222 1223 1224
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;

1225 1226
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1227 1228

	/* cpuinfo and default policy values */
1229 1230 1231
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->cpuinfo.max_freq =
		cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
	cpumask_set_cpu(policy->cpu, policy->cpus);

	return 0;
}

static struct cpufreq_driver intel_pstate_driver = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
1244
	.stop_cpu	= intel_pstate_stop_cpu,
1245 1246 1247
	.name		= "intel_pstate",
};

1248
static int __initdata no_load;
D
Dirk Brandewie 已提交
1249
static int __initdata no_hwp;
1250
static int __initdata hwp_only;
1251
static unsigned int force_load;
1252

1253 1254
static int intel_pstate_msrs_not_valid(void)
{
1255
	if (!pstate_funcs.get_max() ||
1256 1257
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
1258 1259 1260 1261
		return -ENODEV;

	return 0;
}
1262

1263
static void copy_pid_params(struct pstate_adjust_policy *policy)
1264 1265 1266 1267 1268 1269 1270 1271 1272
{
	pid_params.sample_rate_ms = policy->sample_rate_ms;
	pid_params.p_gain_pct = policy->p_gain_pct;
	pid_params.i_gain_pct = policy->i_gain_pct;
	pid_params.d_gain_pct = policy->d_gain_pct;
	pid_params.deadband = policy->deadband;
	pid_params.setpoint = policy->setpoint;
}

1273
static void copy_cpu_funcs(struct pstate_funcs *funcs)
1274 1275
{
	pstate_funcs.get_max   = funcs->get_max;
1276
	pstate_funcs.get_max_physical = funcs->get_max_physical;
1277 1278
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
1279
	pstate_funcs.get_scaling = funcs->get_scaling;
1280
	pstate_funcs.set       = funcs->set;
1281
	pstate_funcs.get_vid   = funcs->get_vid;
1282 1283
	pstate_funcs.get_target_pstate = funcs->get_target_pstate;

1284 1285
}

1286
#if IS_ENABLED(CONFIG_ACPI)
1287
#include <acpi/processor.h>
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317

static bool intel_pstate_no_acpi_pss(void)
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
static bool intel_pstate_has_acpi_ppc(void)
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

1338 1339 1340 1341
struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1342
	int  oem_pwr_table;
1343 1344 1345 1346
};

/* Hardware vendor-specific info that has its own power management modes */
static struct hw_vendor_info vendor_info[] = {
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
	{1, "HP    ", "ProLiant", PSS},
	{1, "ORACLE", "X4-2    ", PPC},
	{1, "ORACLE", "X4-2L   ", PPC},
	{1, "ORACLE", "X4-2B   ", PPC},
	{1, "ORACLE", "X3-2    ", PPC},
	{1, "ORACLE", "X3-2L   ", PPC},
	{1, "ORACLE", "X3-2B   ", PPC},
	{1, "ORACLE", "X4470M2 ", PPC},
	{1, "ORACLE", "X4270M3 ", PPC},
	{1, "ORACLE", "X4270M2 ", PPC},
	{1, "ORACLE", "X4170M2 ", PPC},
1358 1359 1360 1361
	{1, "ORACLE", "X4170 M3", PPC},
	{1, "ORACLE", "X4275 M3", PPC},
	{1, "ORACLE", "X6-2    ", PPC},
	{1, "ORACLE", "Sudbury ", PPC},
1362 1363 1364 1365 1366 1367 1368
	{0, "", ""},
};

static bool intel_pstate_platform_pwr_mgmt_exists(void)
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;
D
Dirk Brandewie 已提交
1369 1370 1371 1372 1373 1374 1375 1376 1377
	const struct x86_cpu_id *id;
	u64 misc_pwr;

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
1378

1379 1380
	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1381 1382 1383
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
1384
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1385 1386 1387 1388 1389 1390
			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
						ACPI_OEM_TABLE_ID_SIZE))
			switch (v_info->oem_pwr_table) {
			case PSS:
				return intel_pstate_no_acpi_pss();
			case PPC:
1391 1392
				return intel_pstate_has_acpi_ppc() &&
					(!force_load);
1393
			}
1394 1395 1396 1397 1398 1399
	}

	return false;
}
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1400
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1401 1402
#endif /* CONFIG_ACPI */

1403 1404 1405 1406 1407
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
	{}
};

1408 1409
static int __init intel_pstate_init(void)
{
1410
	int cpu, rc = 0;
1411
	const struct x86_cpu_id *id;
1412
	struct cpu_defaults *cpu_def;
1413

1414 1415 1416
	if (no_load)
		return -ENODEV;

1417 1418 1419 1420 1421 1422
	if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
		copy_cpu_funcs(&core_params.funcs);
		hwp_active++;
		goto hwp_cpu_matched;
	}

1423 1424 1425 1426
	id = x86_match_cpu(intel_pstate_cpu_ids);
	if (!id)
		return -ENODEV;

1427
	cpu_def = (struct cpu_defaults *)id->driver_data;
1428

1429 1430
	copy_pid_params(&cpu_def->pid_policy);
	copy_cpu_funcs(&cpu_def->funcs);
1431

1432 1433 1434
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

1435 1436 1437 1438 1439 1440 1441 1442
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

1443 1444
	pr_info("Intel P-state driver initializing.\n");

1445
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1446 1447 1448
	if (!all_cpu_data)
		return -ENOMEM;

1449 1450 1451
	if (!hwp_active && hwp_only)
		goto out;

1452 1453 1454 1455 1456 1457
	rc = cpufreq_register_driver(&intel_pstate_driver);
	if (rc)
		goto out;

	intel_pstate_debug_expose_params();
	intel_pstate_sysfs_expose_params();
1458

1459 1460 1461
	if (hwp_active)
		pr_info("intel_pstate: HWP enabled\n");

1462 1463
	return rc;
out:
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			del_timer_sync(&all_cpu_data[cpu]->timer);
			kfree(all_cpu_data[cpu]);
		}
	}

	put_online_cpus();
	vfree(all_cpu_data);
1474 1475 1476 1477
	return -ENODEV;
}
device_initcall(intel_pstate_init);

1478 1479 1480 1481 1482 1483 1484
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

	if (!strcmp(str, "disable"))
		no_load = 1;
1485 1486
	if (!strcmp(str, "no_hwp")) {
		pr_info("intel_pstate: HWP disabled\n");
D
Dirk Brandewie 已提交
1487
		no_hwp = 1;
1488
	}
1489 1490
	if (!strcmp(str, "force"))
		force_load = 1;
1491 1492
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
1493 1494 1495 1496
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

1497 1498 1499
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");