intel_pstate.c 64.8 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

J
Joe Perches 已提交
13 14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

15 16 17 18 19 20 21
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
22
#include <linux/sched/cpufreq.h>
23 24 25 26 27 28
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
29
#include <linux/acpi.h>
30
#include <linux/vmalloc.h>
31 32 33 34 35
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
36
#include <asm/cpufeature.h>
37
#include <asm/intel-family.h>
38

39
#define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
40

41
#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
42
#define INTEL_CPUFREQ_TRANSITION_DELAY		500
43

44 45
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
46
#include <acpi/cppc_acpi.h>
47 48
#endif

49
#define FRAC_BITS 8
50 51
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
52

53 54
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55 56
#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
57

58 59 60 61 62
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

63
static inline int32_t div_fp(s64 x, s64 y)
64
{
65
	return div64_s64((int64_t)x << FRAC_BITS, y);
66 67
}

68 69 70 71 72 73 74 75 76 77 78
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

79 80 81 82 83
static inline int32_t percent_fp(int percent)
{
	return div_fp(percent, 100);
}

84 85 86 87 88 89 90 91 92 93
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

94 95 96 97 98
static inline int32_t percent_ext_fp(int percent)
{
	return div_ext_fp(percent, 100);
}

99 100
/**
 * struct sample -	Store performance sample
101
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
102 103
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
104
 *			P state. This can be different than core_avg_perf
105 106 107 108 109 110 111 112 113 114 115 116
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
117
struct sample {
118
	int32_t core_avg_perf;
119
	int32_t busy_scaled;
120 121
	u64 aperf;
	u64 mperf;
122
	u64 tsc;
123
	u64 time;
124 125
};

126 127 128 129 130 131 132 133 134 135 136
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
137 138
 * @max_freq:		@max_pstate frequency in cpufreq units
 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
139 140 141
 *
 * Stores the per cpu model P state limits and current P state.
 */
142 143 144 145
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
146
	int	max_pstate_physical;
147
	int	scaling;
148
	int	turbo_pstate;
149 150
	unsigned int max_freq;
	unsigned int turbo_freq;
151 152
};

153 154 155 156 157 158 159 160 161 162 163 164 165
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
166
struct vid_data {
167 168 169
	int min;
	int max;
	int turbo;
170 171 172
	int32_t ratio;
};

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
/**
 * struct global_params - Global parameters, mostly tunable via sysfs.
 * @no_turbo:		Whether or not to use turbo P-states.
 * @turbo_disabled:	Whethet or not turbo P-states are available at all,
 *			based on the MSR_IA32_MISC_ENABLE value and whether or
 *			not the maximum reported turbo P-state is different from
 *			the maximum reported non-turbo one.
 * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 */
struct global_params {
	bool no_turbo;
	bool turbo_disabled;
	int max_perf_pct;
	int min_perf_pct;
190 191
};

192 193 194
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
195
 * @policy:		CPUFreq policy value
196
 * @update_util:	CPUFreq utility callback information
197
 * @update_util_set:	CPUFreq utility callback is set
198 199
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
200 201 202
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @last_sample_time:	Last Sample time
203 204 205
 * @aperf_mperf_shift:	Number of clock cycles after aperf, merf is incremented
 *			This shift is a multiplier to mperf delta to
 *			calculate CPU busy.
206 207 208 209 210 211
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
212 213
 * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
 * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
214 215
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
216 217 218
 * @epp_powersave:	Last saved HWP energy performance preference
 *			(EPP) or energy performance bias (EPB),
 *			when policy switched to performance
219
 * @epp_policy:		Last saved policy used to set EPP/EPB
220 221 222 223
 * @epp_default:	Power on default HWP energy performance
 *			preference/bias
 * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
 *			operation
224 225
 * @hwp_req_cached:	Cached value of the last HWP Request MSR
 * @hwp_cap_cached:	Cached value of the last HWP Capabilities MSR
226 227
 * @last_io_update:	Last time when IO wake flag was set
 * @sched_flags:	Store scheduler flags for possible cross CPU update
228
 * @hwp_boost_min:	Last HWP boosted min performance
229 230 231
 *
 * This structure stores per CPU instance data for all CPUs.
 */
232 233 234
struct cpudata {
	int cpu;

235
	unsigned int policy;
236
	struct update_util_data update_util;
237
	bool   update_util_set;
238 239

	struct pstate_data pstate;
240
	struct vid_data vid;
241

242
	u64	last_update;
243
	u64	last_sample_time;
244
	u64	aperf_mperf_shift;
245 246
	u64	prev_aperf;
	u64	prev_mperf;
247
	u64	prev_tsc;
248
	u64	prev_cummulative_iowait;
249
	struct sample sample;
250 251
	int32_t	min_perf_ratio;
	int32_t	max_perf_ratio;
252 253 254 255
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
256
	unsigned int iowait_boost;
257
	s16 epp_powersave;
258
	s16 epp_policy;
259 260
	s16 epp_default;
	s16 epp_saved;
261 262
	u64 hwp_req_cached;
	u64 hwp_cap_cached;
263 264
	u64 last_io_update;
	unsigned int sched_flags;
265
	u32 hwp_boost_min;
266 267 268
};

static struct cpudata **all_cpu_data;
269 270 271 272 273 274 275 276 277 278 279 280 281 282

/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
283 284
struct pstate_funcs {
	int (*get_max)(void);
285
	int (*get_max_physical)(void);
286 287
	int (*get_min)(void);
	int (*get_turbo)(void);
288
	int (*get_scaling)(void);
289
	int (*get_aperf_mperf_shift)(void);
290
	u64 (*get_val)(struct cpudata*, int pstate);
291
	void (*get_vid)(struct cpudata *);
292 293
};

294
static struct pstate_funcs pstate_funcs __read_mostly;
295

296
static int hwp_active __read_mostly;
297
static int hwp_mode_bdw __read_mostly;
298
static bool per_cpu_limits __read_mostly;
299
static bool hwp_boost __read_mostly;
300

301
static struct cpufreq_driver *intel_pstate_driver __read_mostly;
302

303 304 305
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
306

307
static struct global_params global;
308

309
static DEFINE_MUTEX(intel_pstate_driver_lock);
310 311
static DEFINE_MUTEX(intel_pstate_limits_lock);

312
#ifdef CONFIG_ACPI
313

314
static bool intel_pstate_acpi_pm_profile_server(void)
315 316 317 318 319
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

320 321 322 323 324 325 326 327
	return false;
}

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (intel_pstate_acpi_pm_profile_server())
		return true;

328 329 330
	return acpi_ppc;
}

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
#ifdef CONFIG_ACPI_CPPC_LIB

/* The work item is needed to avoid CPU hotplug locking issues */
static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
{
	sched_set_itmt_support();
}

static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);

static void intel_pstate_set_itmt_prio(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return;

	/*
	 * The priorities can be set regardless of whether or not
	 * sched_set_itmt_support(true) has been called and it is valid to
	 * update them at any time after it has been called.
	 */
	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);

	if (max_highest_perf <= min_highest_perf) {
		if (cppc_perf.highest_perf > max_highest_perf)
			max_highest_perf = cppc_perf.highest_perf;

		if (cppc_perf.highest_perf < min_highest_perf)
			min_highest_perf = cppc_perf.highest_perf;

		if (max_highest_perf > min_highest_perf) {
			/*
			 * This code can be run during CPU online under the
			 * CPU hotplug locks, so sched_set_itmt_support()
			 * cannot be called from here.  Queue up a work item
			 * to invoke it.
			 */
			schedule_work(&sched_itmt_work);
		}
	}
}
#else
static void intel_pstate_set_itmt_prio(int cpu)
{
}
#endif

382 383 384 385 386 387
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

388 389
	if (hwp_active) {
		intel_pstate_set_itmt_prio(policy->cpu);
390
		return;
391
	}
392

393
	if (!intel_pstate_get_ppc_enable_status())
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
436
	 * correct max turbo frequency based on the turbo state.
437 438
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
439
	if (!global.turbo_disabled)
440 441 442
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
443
	pr_debug("_PPC limits will be enforced\n");
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}
#else
463
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
464 465 466
{
}

467
static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
468 469
{
}
470 471 472 473 474

static inline bool intel_pstate_acpi_pm_profile_server(void)
{
	return false;
}
475 476
#endif

477 478 479 480 481 482 483
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
484
	global.turbo_disabled =
485 486 487 488
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

489 490 491
static int min_perf_pct_min(void)
{
	struct cpudata *cpu = all_cpu_data[0];
492
	int turbo_pstate = cpu->pstate.turbo_pstate;
493

494
	return turbo_pstate ?
495
		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
496 497
}

498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
{
	u64 epb;
	int ret;

	if (!static_cpu_has(X86_FEATURE_EPB))
		return -ENXIO;

	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return (s16)ret;

	return (s16)(epb & 0x0f);
}

static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
{
	s16 epp;

517 518 519 520 521 522 523 524 525 526 527
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * When hwp_req_data is 0, means that caller didn't read
		 * MSR_HWP_REQUEST, so need to read and get EPP.
		 */
		if (!hwp_req_data) {
			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
					    &hwp_req_data);
			if (epp)
				return epp;
		}
528
		epp = (hwp_req_data >> 24) & 0xff;
529
	} else {
530 531
		/* When there is no EPP present, HWP uses EPB settings */
		epp = intel_pstate_get_epb(cpu_data);
532
	}
533 534 535 536

	return epp;
}

537
static int intel_pstate_set_epb(int cpu, s16 pref)
538 539
{
	u64 epb;
540
	int ret;
541 542

	if (!static_cpu_has(X86_FEATURE_EPB))
543
		return -ENXIO;
544

545 546 547
	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return ret;
548 549 550

	epb = (epb & ~0x0f) | pref;
	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
551 552

	return 0;
553 554
}

555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
/*
 * EPP/EPB display strings corresponding to EPP index in the
 * energy_perf_strings[]
 *	index		String
 *-------------------------------------
 *	0		default
 *	1		performance
 *	2		balance_performance
 *	3		balance_power
 *	4		power
 */
static const char * const energy_perf_strings[] = {
	"default",
	"performance",
	"balance_performance",
	"balance_power",
	"power",
	NULL
};
574 575 576 577 578 579
static const unsigned int epp_values[] = {
	HWP_EPP_PERFORMANCE,
	HWP_EPP_BALANCE_PERFORMANCE,
	HWP_EPP_BALANCE_POWERSAVE,
	HWP_EPP_POWERSAVE
};
580 581 582 583 584 585 586 587 588 589 590

static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
{
	s16 epp;
	int index = -EINVAL;

	epp = intel_pstate_get_epp(cpu_data, 0);
	if (epp < 0)
		return epp;

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
591 592 593 594 595 596 597 598
		if (epp == HWP_EPP_PERFORMANCE)
			return 1;
		if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
			return 2;
		if (epp <= HWP_EPP_BALANCE_POWERSAVE)
			return 3;
		else
			return 4;
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
	} else if (static_cpu_has(X86_FEATURE_EPB)) {
		/*
		 * Range:
		 *	0x00-0x03	:	Performance
		 *	0x04-0x07	:	Balance performance
		 *	0x08-0x0B	:	Balance power
		 *	0x0C-0x0F	:	Power
		 * The EPB is a 4 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 2) + 1;
	}

	return index;
}

static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
					      int pref_index)
{
	int epp = -EINVAL;
	int ret;

	if (!pref_index)
		epp = cpu_data->epp_default;

	mutex_lock(&intel_pstate_limits_lock);

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		u64 value;

		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
		if (ret)
			goto return_pref;

		value &= ~GENMASK_ULL(31, 24);

		if (epp == -EINVAL)
637
			epp = epp_values[pref_index - 1];
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672

		value |= (u64)epp << 24;
		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
	} else {
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 2;
		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
	}
return_pref:
	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
}

static ssize_t show_energy_performance_available_preferences(
				struct cpufreq_policy *policy, char *buf)
{
	int i = 0;
	int ret = 0;

	while (energy_perf_strings[i] != NULL)
		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);

	ret += sprintf(&buf[ret], "\n");

	return ret;
}

cpufreq_freq_attr_ro(energy_performance_available_preferences);

static ssize_t store_energy_performance_preference(
		struct cpufreq_policy *policy, const char *buf, size_t count)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	char str_preference[21];
673
	int ret;
674 675 676 677 678

	ret = sscanf(buf, "%20s", str_preference);
	if (ret != 1)
		return -EINVAL;

679 680 681
	ret = match_string(energy_perf_strings, -1, str_preference);
	if (ret < 0)
		return ret;
682

683 684
	intel_pstate_set_energy_pref_index(cpu_data, ret);
	return count;
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
}

static ssize_t show_energy_performance_preference(
				struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	int preference;

	preference = intel_pstate_get_energy_pref_index(cpu_data);
	if (preference < 0)
		return preference;

	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
}

cpufreq_freq_attr_rw(energy_performance_preference);

static struct freq_attr *hwp_cpufreq_attrs[] = {
	&energy_performance_preference,
	&energy_performance_available_preferences,
	NULL,
};

708 709
static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
				     int *current_max)
D
Dirk Brandewie 已提交
710
{
711
	u64 cap;
712

713
	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
714
	WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
715
	if (global.no_turbo)
716
		*current_max = HWP_GUARANTEED_PERF(cap);
717
	else
718 719 720 721 722 723 724 725 726 727 728 729 730 731
		*current_max = HWP_HIGHEST_PERF(cap);

	*phy_max = HWP_HIGHEST_PERF(cap);
}

static void intel_pstate_hwp_set(unsigned int cpu)
{
	struct cpudata *cpu_data = all_cpu_data[cpu];
	int max, min;
	u64 value;
	s16 epp;

	max = cpu_data->max_perf_ratio;
	min = cpu_data->min_perf_ratio;
732

733 734
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
		min = max;
735

736
	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
D
Dirk Brandewie 已提交
737

738 739
	value &= ~HWP_MIN_PERF(~0L);
	value |= HWP_MIN_PERF(min);
740

741 742
	value &= ~HWP_MAX_PERF(~0L);
	value |= HWP_MAX_PERF(max);
743

744 745
	if (cpu_data->epp_policy == cpu_data->policy)
		goto skip_epp;
746

747
	cpu_data->epp_policy = cpu_data->policy;
748

749 750 751 752 753
	if (cpu_data->epp_saved >= 0) {
		epp = cpu_data->epp_saved;
		cpu_data->epp_saved = -EINVAL;
		goto update_epp;
	}
754

755 756 757 758 759 760
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
		epp = intel_pstate_get_epp(cpu_data, value);
		cpu_data->epp_powersave = epp;
		/* If EPP read was failed, then don't try to write */
		if (epp < 0)
			goto skip_epp;
761

762 763 764 765 766
		epp = 0;
	} else {
		/* skip setting EPP, when saved value is invalid */
		if (cpu_data->epp_powersave < 0)
			goto skip_epp;
767

768 769 770 771 772 773 774 775 776 777
		/*
		 * No need to restore EPP when it is not zero. This
		 * means:
		 *  - Policy is not changed
		 *  - user has manually changed
		 *  - Error reading EPB
		 */
		epp = intel_pstate_get_epp(cpu_data, value);
		if (epp)
			goto skip_epp;
778

779 780
		epp = cpu_data->epp_powersave;
	}
781
update_epp:
782 783 784 785 786
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		value &= ~GENMASK_ULL(31, 24);
		value |= (u64)epp << 24;
	} else {
		intel_pstate_set_epb(cpu, epp);
D
Dirk Brandewie 已提交
787
	}
788
skip_epp:
789
	WRITE_ONCE(cpu_data->hwp_req_cached, value);
790
	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
791
}
D
Dirk Brandewie 已提交
792

793 794 795 796 797 798 799 800 801 802 803 804
static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];

	if (!hwp_active)
		return 0;

	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);

	return 0;
}

805 806
static void intel_pstate_hwp_enable(struct cpudata *cpudata);

807 808 809 810 811
static int intel_pstate_resume(struct cpufreq_policy *policy)
{
	if (!hwp_active)
		return 0;

812 813
	mutex_lock(&intel_pstate_limits_lock);

814 815 816
	if (policy->cpu == 0)
		intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);

817
	all_cpu_data[policy->cpu]->epp_policy = 0;
818
	intel_pstate_hwp_set(policy->cpu);
819 820 821

	mutex_unlock(&intel_pstate_limits_lock);

822
	return 0;
823 824
}

825
static void intel_pstate_update_policies(void)
826
{
827 828 829 830
	int cpu;

	for_each_possible_cpu(cpu)
		cpufreq_update_policy(cpu);
D
Dirk Brandewie 已提交
831 832
}

833 834 835
/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
836
	(struct kobject *kobj, struct kobj_attribute *attr, char *buf)	\
837
	{								\
838
		return sprintf(buf, "%u\n", global.object);		\
839 840
	}

841 842 843 844
static ssize_t intel_pstate_show_status(char *buf);
static int intel_pstate_update_status(const char *buf, size_t size);

static ssize_t show_status(struct kobject *kobj,
845
			   struct kobj_attribute *attr, char *buf)
846 847 848 849 850 851 852 853 854 855
{
	ssize_t ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_show_status(buf);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret;
}

856
static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
857 858 859 860 861 862 863 864 865 866 867 868
			    const char *buf, size_t count)
{
	char *p = memchr(buf, '\n', count);
	int ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_update_status(buf, p ? p - buf : count);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret < 0 ? ret : count;
}

869
static ssize_t show_turbo_pct(struct kobject *kobj,
870
				struct kobj_attribute *attr, char *buf)
871 872 873 874 875
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

876 877
	mutex_lock(&intel_pstate_driver_lock);

878
	if (!intel_pstate_driver) {
879 880 881 882
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

883 884 885 886
	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
887
	turbo_fp = div_fp(no_turbo, total);
888
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
889 890 891

	mutex_unlock(&intel_pstate_driver_lock);

892 893 894
	return sprintf(buf, "%u\n", turbo_pct);
}

895
static ssize_t show_num_pstates(struct kobject *kobj,
896
				struct kobj_attribute *attr, char *buf)
897 898 899 900
{
	struct cpudata *cpu;
	int total;

901 902
	mutex_lock(&intel_pstate_driver_lock);

903
	if (!intel_pstate_driver) {
904 905 906 907
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

908 909
	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
910 911 912

	mutex_unlock(&intel_pstate_driver_lock);

913 914 915
	return sprintf(buf, "%u\n", total);
}

916
static ssize_t show_no_turbo(struct kobject *kobj,
917
			     struct kobj_attribute *attr, char *buf)
918 919 920
{
	ssize_t ret;

921 922
	mutex_lock(&intel_pstate_driver_lock);

923
	if (!intel_pstate_driver) {
924 925 926 927
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

928
	update_turbo_state();
929 930
	if (global.turbo_disabled)
		ret = sprintf(buf, "%u\n", global.turbo_disabled);
931
	else
932
		ret = sprintf(buf, "%u\n", global.no_turbo);
933

934 935
	mutex_unlock(&intel_pstate_driver_lock);

936 937 938
	return ret;
}

939
static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
940
			      const char *buf, size_t count)
941 942 943
{
	unsigned int input;
	int ret;
944

945 946 947
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
948

949 950
	mutex_lock(&intel_pstate_driver_lock);

951
	if (!intel_pstate_driver) {
952 953 954 955
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

956 957
	mutex_lock(&intel_pstate_limits_lock);

958
	update_turbo_state();
959
	if (global.turbo_disabled) {
J
Joe Perches 已提交
960
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
961
		mutex_unlock(&intel_pstate_limits_lock);
962
		mutex_unlock(&intel_pstate_driver_lock);
963
		return -EPERM;
964
	}
D
Dirk Brandewie 已提交
965

966
	global.no_turbo = clamp_t(int, input, 0, 1);
967

968 969 970 971 972 973 974 975 976
	if (global.no_turbo) {
		struct cpudata *cpu = all_cpu_data[0];
		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;

		/* Squash the global minimum into the permitted range. */
		if (global.min_perf_pct > pct)
			global.min_perf_pct = pct;
	}

977 978
	mutex_unlock(&intel_pstate_limits_lock);

979 980
	intel_pstate_update_policies();

981 982
	mutex_unlock(&intel_pstate_driver_lock);

983 984 985
	return count;
}

986
static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
987
				  const char *buf, size_t count)
988 989 990
{
	unsigned int input;
	int ret;
991

992 993 994 995
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

996 997
	mutex_lock(&intel_pstate_driver_lock);

998
	if (!intel_pstate_driver) {
999 1000 1001 1002
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1003 1004
	mutex_lock(&intel_pstate_limits_lock);

1005
	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1006

1007 1008
	mutex_unlock(&intel_pstate_limits_lock);

1009 1010
	intel_pstate_update_policies();

1011 1012
	mutex_unlock(&intel_pstate_driver_lock);

1013 1014 1015
	return count;
}

1016
static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1017
				  const char *buf, size_t count)
1018 1019 1020
{
	unsigned int input;
	int ret;
1021

1022 1023 1024
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1025

1026 1027
	mutex_lock(&intel_pstate_driver_lock);

1028
	if (!intel_pstate_driver) {
1029 1030 1031 1032
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1033 1034
	mutex_lock(&intel_pstate_limits_lock);

1035 1036
	global.min_perf_pct = clamp_t(int, input,
				      min_perf_pct_min(), global.max_perf_pct);
1037

1038 1039
	mutex_unlock(&intel_pstate_limits_lock);

1040 1041
	intel_pstate_update_policies();

1042 1043
	mutex_unlock(&intel_pstate_driver_lock);

1044 1045 1046
	return count;
}

1047
static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1048
				struct kobj_attribute *attr, char *buf)
1049 1050 1051 1052
{
	return sprintf(buf, "%u\n", hwp_boost);
}

1053 1054
static ssize_t store_hwp_dynamic_boost(struct kobject *a,
				       struct kobj_attribute *b,
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
				       const char *buf, size_t count)
{
	unsigned int input;
	int ret;

	ret = kstrtouint(buf, 10, &input);
	if (ret)
		return ret;

	mutex_lock(&intel_pstate_driver_lock);
	hwp_boost = !!input;
	intel_pstate_update_policies();
	mutex_unlock(&intel_pstate_driver_lock);

	return count;
}

1072 1073 1074
show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

1075
define_one_global_rw(status);
1076 1077 1078
define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
1079
define_one_global_ro(turbo_pct);
1080
define_one_global_ro(num_pstates);
1081
define_one_global_rw(hwp_dynamic_boost);
1082 1083

static struct attribute *intel_pstate_attributes[] = {
1084
	&status.attr,
1085
	&no_turbo.attr,
1086
	&turbo_pct.attr,
1087
	&num_pstates.attr,
1088 1089 1090
	NULL
};

1091
static const struct attribute_group intel_pstate_attr_group = {
1092 1093 1094
	.attrs = intel_pstate_attributes,
};

1095
static void __init intel_pstate_sysfs_expose_params(void)
1096
{
1097
	struct kobject *intel_pstate_kobject;
1098 1099 1100 1101
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
1102 1103 1104
	if (WARN_ON(!intel_pstate_kobject))
		return;

1105
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
	if (WARN_ON(rc))
		return;

	/*
	 * If per cpu limits are enforced there are no global limits, so
	 * return without creating max/min_perf_pct attributes
	 */
	if (per_cpu_limits)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
	WARN_ON(rc);

	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
	WARN_ON(rc);

1122 1123 1124 1125 1126
	if (hwp_active) {
		rc = sysfs_create_file(intel_pstate_kobject,
				       &hwp_dynamic_boost.attr);
		WARN_ON(rc);
	}
1127 1128
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
1129

1130
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
1131
{
1132
	/* First disable HWP notification interrupt as we don't process them */
1133 1134
	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1135

1136
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1137
	cpudata->epp_policy = 0;
1138 1139
	if (cpudata->epp_default == -EINVAL)
		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
D
Dirk Brandewie 已提交
1140 1141
}

1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
#define MSR_IA32_POWER_CTL_BIT_EE	19

/* Disable energy efficiency optimization */
static void intel_pstate_disable_ee(int cpu)
{
	u64 power_ctl;
	int ret;

	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
	if (ret)
		return;

	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
		pr_info("Disabling energy efficiency optimization\n");
		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
	}
}

1161
static int atom_get_min_pstate(void)
1162 1163
{
	u64 value;
1164

1165
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1166
	return (value >> 8) & 0x7F;
1167 1168
}

1169
static int atom_get_max_pstate(void)
1170 1171
{
	u64 value;
1172

1173
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1174
	return (value >> 16) & 0x7F;
1175
}
1176

1177
static int atom_get_turbo_pstate(void)
1178 1179
{
	u64 value;
1180

1181
	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
1182
	return value & 0x7F;
1183 1184
}

1185
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1186 1187 1188 1189 1190
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

1191
	val = (u64)pstate << 8;
1192
	if (global.no_turbo && !global.turbo_disabled)
1193 1194 1195 1196 1197 1198 1199
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1200
	vid = ceiling_fp(vid_fp);
1201

1202 1203 1204
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

1205
	return val | vid;
1206 1207
}

1208
static int silvermont_get_scaling(void)
1209 1210 1211
{
	u64 value;
	int i;
1212 1213 1214
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
1215 1216

	rdmsrl(MSR_FSB_FREQ, value);
1217 1218
	i = value & 0x7;
	WARN_ON(i > 4);
1219

1220 1221
	return silvermont_freq_table[i];
}
1222

1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
1237 1238
}

1239
static void atom_get_vid(struct cpudata *cpudata)
1240 1241 1242
{
	u64 value;

1243
	rdmsrl(MSR_ATOM_CORE_VIDS, value);
D
Dirk Brandewie 已提交
1244 1245
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1246 1247 1248 1249
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
1250

1251
	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1252
	cpudata->vid.turbo = value & 0x7f;
1253 1254
}

1255
static int core_get_min_pstate(void)
1256 1257
{
	u64 value;
1258

1259
	rdmsrl(MSR_PLATFORM_INFO, value);
1260 1261 1262
	return (value >> 40) & 0xFF;
}

1263
static int core_get_max_pstate_physical(void)
1264 1265
{
	u64 value;
1266

1267
	rdmsrl(MSR_PLATFORM_INFO, value);
1268 1269 1270
	return (value >> 8) & 0xFF;
}

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
static int core_get_tdp_ratio(u64 plat_info)
{
	/* Check how many TDP levels present */
	if (plat_info & 0x600000000) {
		u64 tdp_ctrl;
		u64 tdp_ratio;
		int tdp_msr;
		int err;

		/* Get the TDP level (0, 1, 2) to get ratios */
		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
		if (err)
			return err;

		/* TDP MSR are continuous starting at 0x648 */
		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
		if (err)
			return err;

		/* For level 1 and 2, bits[23:16] contain the ratio */
		if (tdp_ctrl & 0x03)
			tdp_ratio >>= 16;

		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);

		return (int)tdp_ratio;
	}

	return -ENXIO;
}

1304
static int core_get_max_pstate(void)
1305
{
1306 1307 1308
	u64 tar;
	u64 plat_info;
	int max_pstate;
1309
	int tdp_ratio;
1310 1311 1312 1313 1314
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

1315 1316 1317 1318 1319 1320 1321 1322 1323
	tdp_ratio = core_get_tdp_ratio(plat_info);
	if (tdp_ratio <= 0)
		return max_pstate;

	if (hwp_active) {
		/* Turbo activation ratio is not used on HWP platforms */
		return tdp_ratio;
	}

1324 1325
	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
1326 1327
		int tar_levels;

1328
		/* Do some sanity checking for safety */
1329 1330 1331 1332
		tar_levels = tar & 0xff;
		if (tdp_ratio - 1 == tar_levels) {
			max_pstate = tar_levels;
			pr_debug("max_pstate=TAC %x\n", max_pstate);
1333 1334
		}
	}
1335

1336
	return max_pstate;
1337 1338
}

1339
static int core_get_turbo_pstate(void)
1340 1341 1342
{
	u64 value;
	int nont, ret;
1343

1344
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1345
	nont = core_get_max_pstate();
1346
	ret = (value) & 255;
1347 1348 1349 1350 1351
	if (ret <= nont)
		ret = nont;
	return ret;
}

1352 1353 1354 1355 1356
static inline int core_get_scaling(void)
{
	return 100000;
}

1357
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1358 1359 1360
{
	u64 val;

1361
	val = (u64)pstate << 8;
1362
	if (global.no_turbo && !global.turbo_disabled)
1363 1364
		val |= (u64)1 << 32;

1365
	return val;
1366 1367
}

1368 1369 1370 1371 1372
static int knl_get_aperf_mperf_shift(void)
{
	return 10;
}

1373 1374 1375 1376 1377
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1378
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1379 1380 1381 1382 1383 1384 1385
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1386
static int intel_pstate_get_base_pstate(struct cpudata *cpu)
1387
{
1388 1389
	return global.no_turbo || global.turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1390 1391
}

1392
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1393
{
1394 1395
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1396 1397 1398 1399 1400 1401 1402
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1403 1404
}

1405 1406 1407 1408 1409 1410 1411
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
1412
	int pstate;
1413 1414

	update_turbo_state();
1415
	pstate = intel_pstate_get_base_pstate(cpu);
1416
	pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1417
	intel_pstate_set_pstate(cpu, pstate);
1418 1419
}

1420 1421
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1422 1423
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1424
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1425
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1426
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1427
	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1428 1429 1430 1431 1432 1433 1434 1435 1436

	if (hwp_active && !hwp_mode_bdw) {
		unsigned int phy_max, current_max;

		intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
		cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
	} else {
		cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
	}
1437

1438 1439 1440
	if (pstate_funcs.get_aperf_mperf_shift)
		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();

1441 1442
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1443 1444

	intel_pstate_set_min_pstate(cpu);
1445 1446
}

1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
/*
 * Long hold time will keep high perf limits for long time,
 * which negatively impacts perf/watt for some workloads,
 * like specpower. 3ms is based on experiements on some
 * workoads.
 */
static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;

static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
{
	u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
	u32 max_limit = (hwp_req & 0xff00) >> 8;
	u32 min_limit = (hwp_req & 0xff);
	u32 boost_level1;

	/*
	 * Cases to consider (User changes via sysfs or boot time):
	 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
	 *	No boost, return.
	 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
	 *     Should result in one level boost only for P0.
	 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
	 *     Should result in two level boost:
	 *         (min + p1)/2 and P1.
	 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
	 *     Should result in three level boost:
	 *        (min + p1)/2, P1 and P0.
	 */

	/* If max and min are equal or already at max, nothing to boost */
	if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
		return;

	if (!cpu->hwp_boost_min)
		cpu->hwp_boost_min = min_limit;

	/* level at half way mark between min and guranteed */
	boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;

	if (cpu->hwp_boost_min < boost_level1)
		cpu->hwp_boost_min = boost_level1;
	else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
		cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
	else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
		 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
		cpu->hwp_boost_min = max_limit;
	else
		return;

	hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
	wrmsrl(MSR_HWP_REQUEST, hwp_req);
	cpu->last_update = cpu->sample.time;
}

static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
{
	if (cpu->hwp_boost_min) {
		bool expired;

		/* Check if we are idle for hold time to boost down */
		expired = time_after64(cpu->sample.time, cpu->last_update +
				       hwp_boost_hold_time_ns);
		if (expired) {
			wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
			cpu->hwp_boost_min = 0;
		}
	}
	cpu->last_update = cpu->sample.time;
}

1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
						      u64 time)
{
	cpu->sample.time = time;

	if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
		bool do_io = false;

		cpu->sched_flags = 0;
		/*
		 * Set iowait_boost flag and update time. Since IO WAIT flag
		 * is set all the time, we can't just conclude that there is
		 * some IO bound activity is scheduled on this CPU with just
		 * one occurrence. If we receive at least two in two
		 * consecutive ticks, then we treat as boost candidate.
		 */
		if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
			do_io = true;

		cpu->last_io_update = time;

		if (do_io)
			intel_pstate_hwp_boost_up(cpu);

	} else {
		intel_pstate_hwp_boost_down(cpu);
	}
}

1546 1547 1548
static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
						u64 time, unsigned int flags)
{
1549 1550 1551 1552 1553 1554
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);

	cpu->sched_flags |= flags;

	if (smp_processor_id() == cpu->cpu)
		intel_pstate_update_util_hwp_local(cpu, time);
1555 1556
}

1557
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1558
{
1559
	struct sample *sample = &cpu->sample;
1560

1561
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1562 1563
}

1564
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1565 1566
{
	u64 aperf, mperf;
1567
	unsigned long flags;
1568
	u64 tsc;
1569

1570
	local_irq_save(flags);
1571 1572
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1573
	tsc = rdtsc();
1574
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1575
		local_irq_restore(flags);
1576
		return false;
1577
	}
1578
	local_irq_restore(flags);
1579

1580
	cpu->last_sample_time = cpu->sample.time;
1581
	cpu->sample.time = time;
1582 1583
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1584
	cpu->sample.tsc =  tsc;
1585 1586
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1587
	cpu->sample.tsc -= cpu->prev_tsc;
1588

1589 1590
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1591
	cpu->prev_tsc = tsc;
1592 1593 1594 1595 1596 1597 1598
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
1599 1600 1601 1602 1603
	if (cpu->last_sample_time) {
		intel_pstate_calc_avg_perf(cpu);
		return true;
	}
	return false;
1604 1605
}

1606 1607
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1608
	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1609 1610
}

1611 1612
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1613 1614
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1615 1616
}

1617
static inline int32_t get_target_pstate(struct cpudata *cpu)
1618 1619
{
	struct sample *sample = &cpu->sample;
1620
	int32_t busy_frac, boost;
1621
	int target, avg_pstate;
1622

1623 1624
	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
			   sample->tsc);
1625

1626 1627
	boost = cpu->iowait_boost;
	cpu->iowait_boost >>= 1;
1628

1629 1630
	if (busy_frac < boost)
		busy_frac = boost;
1631

1632
	sample->busy_scaled = busy_frac * 100;
1633

1634
	target = global.no_turbo || global.turbo_disabled ?
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1653 1654
}

1655
static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1656
{
1657 1658
	int max_pstate = intel_pstate_get_base_pstate(cpu);
	int min_pstate;
1659

1660 1661
	min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
	max_pstate = max(min_pstate, cpu->max_perf_ratio);
1662
	return clamp_t(int, pstate, min_pstate, max_pstate);
1663 1664 1665 1666
}

static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
1667 1668 1669
	if (pstate == cpu->pstate.current_pstate)
		return;

1670
	cpu->pstate.current_pstate = pstate;
1671 1672 1673
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1674
static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1675
{
1676
	int from = cpu->pstate.current_pstate;
1677
	struct sample *sample;
1678
	int target_pstate;
1679

1680 1681
	update_turbo_state();

1682
	target_pstate = get_target_pstate(cpu);
1683 1684
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1685
	intel_pstate_update_pstate(cpu, target_pstate);
1686 1687

	sample = &cpu->sample;
1688
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1689
		fp_toint(sample->busy_scaled),
1690 1691 1692 1693 1694
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1695 1696
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1697 1698
}

1699
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1700
				     unsigned int flags)
1701
{
1702
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1703 1704
	u64 delta_ns;

1705 1706 1707 1708
	/* Don't allow remote callbacks */
	if (smp_processor_id() != cpu->cpu)
		return;

1709 1710
	if (flags & SCHED_CPUFREQ_IOWAIT) {
		cpu->iowait_boost = int_tofp(1);
1711 1712 1713 1714 1715 1716 1717 1718 1719
		cpu->last_update = time;
		/*
		 * The last time the busy was 100% so P-state was max anyway
		 * so avoid overhead of computation.
		 */
		if (fp_toint(cpu->sample.busy_scaled) == 100)
			return;

		goto set_pstate;
1720 1721 1722 1723 1724
	} else if (cpu->iowait_boost) {
		/* Clear iowait_boost if the CPU may have been idle. */
		delta_ns = time - cpu->last_update;
		if (delta_ns > TICK_NSEC)
			cpu->iowait_boost = 0;
1725
	}
1726
	cpu->last_update = time;
1727
	delta_ns = time - cpu->sample.time;
1728
	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1729
		return;
1730

1731
set_pstate:
1732 1733
	if (intel_pstate_sample(cpu, time))
		intel_pstate_adjust_pstate(cpu);
1734
}
1735

1736 1737 1738 1739 1740 1741 1742
static struct pstate_funcs core_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = core_get_turbo_pstate,
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
1743 1744
};

1745 1746 1747 1748 1749 1750 1751 1752
static const struct pstate_funcs silvermont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = silvermont_get_scaling,
	.get_vid = atom_get_vid,
1753 1754
};

1755 1756 1757 1758 1759 1760 1761 1762
static const struct pstate_funcs airmont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = airmont_get_scaling,
	.get_vid = atom_get_vid,
1763 1764
};

1765 1766 1767 1768 1769
static const struct pstate_funcs knl_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = knl_get_turbo_pstate,
1770
	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1771 1772
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
1773 1774
};

1775
#define ICPU(model, policy) \
1776 1777
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1778 1779

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1780 1781
	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_funcs),
	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_funcs),
1782
	ICPU(INTEL_FAM6_ATOM_SILVERMONT,	silvermont_funcs),
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
	ICPU(INTEL_FAM6_IVYBRIDGE,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_CORE,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_funcs),
	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_X,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_ULT,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_funcs),
	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_X,		core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_funcs),
	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_funcs),
	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_funcs),
1798
	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		core_funcs),
1799
	ICPU(INTEL_FAM6_ATOM_GOLDMONT_PLUS,     core_funcs),
1800
	ICPU(INTEL_FAM6_SKYLAKE_X,		core_funcs),
1801 1802 1803 1804
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

1805
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1806 1807 1808
	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
D
Dirk Brandewie 已提交
1809 1810 1811
	{}
};

1812
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1813
	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1814 1815 1816
	{}
};

1817 1818 1819 1820 1821 1822
static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_funcs),
	{}
};

1823 1824 1825 1826
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1827 1828 1829
	cpu = all_cpu_data[cpunum];

	if (!cpu) {
1830
		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1831 1832 1833 1834 1835
		if (!cpu)
			return -ENOMEM;

		all_cpu_data[cpunum] = cpu;

1836 1837 1838
		cpu->epp_default = -EINVAL;
		cpu->epp_powersave = -EINVAL;
		cpu->epp_saved = -EINVAL;
1839
	}
1840 1841 1842 1843

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1844

1845
	if (hwp_active) {
1846 1847 1848 1849 1850 1851
		const struct x86_cpu_id *id;

		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
		if (id)
			intel_pstate_disable_ee(cpunum);

1852
		intel_pstate_hwp_enable(cpu);
1853 1854

		id = x86_match_cpu(intel_pstate_hwp_boost_ids);
1855
		if (id && intel_pstate_acpi_pm_profile_server())
1856
			hwp_boost = true;
1857
	}
1858

1859
	intel_pstate_get_cpu_pstates(cpu);
1860

J
Joe Perches 已提交
1861
	pr_debug("controlling: cpu %d\n", cpunum);
1862 1863 1864 1865

	return 0;
}

1866
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1867
{
1868 1869
	struct cpudata *cpu = all_cpu_data[cpu_num];

1870
	if (hwp_active && !hwp_boost)
1871 1872
		return;

1873 1874 1875
	if (cpu->update_util_set)
		return;

1876 1877
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
1878
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1879 1880 1881
				     (hwp_active ?
				      intel_pstate_update_util_hwp :
				      intel_pstate_update_util));
1882
	cpu->update_util_set = true;
1883 1884 1885 1886
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
1887 1888 1889 1890 1891
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

1892
	cpufreq_remove_update_util_hook(cpu);
1893
	cpu_data->update_util_set = false;
1894 1895 1896
	synchronize_sched();
}

1897 1898 1899 1900 1901 1902
static int intel_pstate_get_max_freq(struct cpudata *cpu)
{
	return global.turbo_disabled || global.no_turbo ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
}

1903
static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1904
					    struct cpudata *cpu)
1905
{
1906
	int max_freq = intel_pstate_get_max_freq(cpu);
1907
	int32_t max_policy_perf, min_policy_perf;
1908
	int max_state, turbo_max;
1909

1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
	/*
	 * HWP needs some special consideration, because on BDX the
	 * HWP_REQUEST uses abstract value to represent performance
	 * rather than pure ratios.
	 */
	if (hwp_active) {
		intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
	} else {
		max_state = intel_pstate_get_base_pstate(cpu);
		turbo_max = cpu->pstate.turbo_pstate;
	}

	max_policy_perf = max_state * policy->max / max_freq;
1923
	if (policy->max == policy->min) {
1924
		min_policy_perf = max_policy_perf;
1925
	} else {
1926
		min_policy_perf = max_state * policy->min / max_freq;
1927 1928
		min_policy_perf = clamp_t(int32_t, min_policy_perf,
					  0, max_policy_perf);
1929
	}
1930

1931 1932 1933 1934
	pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
		 policy->cpu, max_state,
		 min_policy_perf, max_policy_perf);

1935
	/* Normalize user input to [min_perf, max_perf] */
1936
	if (per_cpu_limits) {
1937 1938
		cpu->min_perf_ratio = min_policy_perf;
		cpu->max_perf_ratio = max_policy_perf;
1939 1940 1941 1942
	} else {
		int32_t global_min, global_max;

		/* Global limits are in percent of the maximum turbo P-state. */
1943 1944
		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
1945
		global_min = clamp_t(int32_t, global_min, 0, global_max);
1946

1947 1948
		pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
			 global_min, global_max);
1949

1950 1951 1952 1953
		cpu->min_perf_ratio = max(min_policy_perf, global_min);
		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
		cpu->max_perf_ratio = min(max_policy_perf, global_max);
		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
1954

1955 1956 1957
		/* Make sure min_perf <= max_perf */
		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
					  cpu->max_perf_ratio);
1958

1959 1960 1961 1962
	}
	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
		 cpu->max_perf_ratio,
		 cpu->min_perf_ratio);
1963 1964
}

1965 1966
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
1967 1968
	struct cpudata *cpu;

1969 1970 1971
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

1972 1973 1974
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

1975
	cpu = all_cpu_data[policy->cpu];
1976 1977
	cpu->policy = policy->policy;

1978 1979
	mutex_lock(&intel_pstate_limits_lock);

1980
	intel_pstate_update_perf_limits(policy, cpu);
1981

1982
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
1983 1984 1985 1986 1987 1988
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
1989 1990
	} else {
		intel_pstate_set_update_util_hook(policy->cpu);
1991 1992
	}

1993 1994 1995 1996 1997 1998 1999 2000
	if (hwp_active) {
		/*
		 * When hwp_boost was active before and dynamically it
		 * was turned off, in that case we need to clear the
		 * update util hook.
		 */
		if (!hwp_boost)
			intel_pstate_clear_update_util_hook(policy->cpu);
2001
		intel_pstate_hwp_set(policy->cpu);
2002
	}
D
Dirk Brandewie 已提交
2003

2004 2005
	mutex_unlock(&intel_pstate_limits_lock);

2006 2007 2008
	return 0;
}

2009 2010 2011
static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
					 struct cpudata *cpu)
{
2012 2013
	if (!hwp_active &&
	    cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2014 2015 2016 2017 2018 2019 2020
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_freq) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
	}
}

2021 2022
static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
2023 2024 2025
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2026 2027
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2028

2029
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2030
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2031 2032
		return -EINVAL;

2033 2034
	intel_pstate_adjust_policy_max(policy, cpu);

2035 2036 2037
	return 0;
}

2038 2039 2040 2041 2042
static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
{
	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
}

2043
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2044
{
2045
	pr_debug("CPU %d exiting\n", policy->cpu);
2046

2047
	intel_pstate_clear_update_util_hook(policy->cpu);
2048 2049 2050
	if (hwp_active)
		intel_pstate_hwp_save_state(policy);
	else
2051 2052
		intel_cpufreq_stop_cpu(policy);
}
2053

2054 2055 2056
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);
2057

2058
	policy->fast_switch_possible = false;
D
Dirk Brandewie 已提交
2059

2060
	return 0;
2061 2062
}

2063
static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2064 2065
{
	struct cpudata *cpu;
2066
	int rc;
2067 2068 2069 2070 2071 2072 2073

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

2074 2075
	cpu->max_perf_ratio = 0xFF;
	cpu->min_perf_ratio = 0;
2076

2077 2078
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2079 2080

	/* cpuinfo and default policy values */
2081
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2082
	update_turbo_state();
2083
	policy->cpuinfo.max_freq = global.turbo_disabled ?
2084 2085 2086
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

2087 2088 2089 2090 2091 2092 2093 2094 2095
	if (hwp_active) {
		unsigned int max_freq;

		max_freq = global.turbo_disabled ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
		if (max_freq < policy->cpuinfo.max_freq)
			policy->cpuinfo.max_freq = max_freq;
	}

2096
	intel_pstate_init_acpi_perf_limits(policy);
2097

2098 2099
	policy->fast_switch_possible = true;

2100 2101 2102
	return 0;
}

2103
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2104
{
2105 2106 2107 2108 2109
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

2110
	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2111 2112 2113
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2114 2115 2116 2117

	return 0;
}

2118
static struct cpufreq_driver intel_pstate = {
2119 2120 2121
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
2122
	.suspend	= intel_pstate_hwp_save_state,
2123
	.resume		= intel_pstate_resume,
2124
	.init		= intel_pstate_cpu_init,
2125
	.exit		= intel_pstate_cpu_exit,
2126
	.stop_cpu	= intel_pstate_stop_cpu,
2127 2128 2129
	.name		= "intel_pstate",
};

2130 2131 2132 2133 2134
static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2135 2136
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2137

2138
	intel_pstate_adjust_policy_max(policy, cpu);
2139

2140 2141
	intel_pstate_update_perf_limits(policy, cpu);

2142 2143 2144
	return 0;
}

2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
/* Use of trace in passive mode:
 *
 * In passive mode the trace core_busy field (also known as the
 * performance field, and lablelled as such on the graphs; also known as
 * core_avg_perf) is not needed and so is re-assigned to indicate if the
 * driver call was via the normal or fast switch path. Various graphs
 * output from the intel_pstate_tracer.py utility that include core_busy
 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
 * so we use 10 to indicate the the normal path through the driver, and
 * 90 to indicate the fast switch path through the driver.
 * The scaled_busy field is not used, and is set to 0.
 */

#define	INTEL_PSTATE_TRACE_TARGET 10
#define	INTEL_PSTATE_TRACE_FAST_SWITCH 90

static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
{
	struct sample *sample;

	if (!trace_pstate_sample_enabled())
		return;

	if (!intel_pstate_sample(cpu, ktime_get()))
		return;

	sample = &cpu->sample;
	trace_pstate_sample(trace_type,
		0,
		old_pstate,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
}

2183 2184 2185 2186 2187 2188
static int intel_cpufreq_target(struct cpufreq_policy *policy,
				unsigned int target_freq,
				unsigned int relation)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct cpufreq_freqs freqs;
2189
	int target_pstate, old_pstate;
2190

2191 2192
	update_turbo_state();

2193
	freqs.old = policy->cur;
2194
	freqs.new = target_freq;
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208

	cpufreq_freq_transition_begin(policy, &freqs);
	switch (relation) {
	case CPUFREQ_RELATION_L:
		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
		break;
	case CPUFREQ_RELATION_H:
		target_pstate = freqs.new / cpu->pstate.scaling;
		break;
	default:
		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
		break;
	}
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2209
	old_pstate = cpu->pstate.current_pstate;
2210 2211 2212 2213 2214
	if (target_pstate != cpu->pstate.current_pstate) {
		cpu->pstate.current_pstate = target_pstate;
		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
			      pstate_funcs.get_val(cpu, target_pstate));
	}
2215
	freqs.new = target_pstate * cpu->pstate.scaling;
2216
	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2217 2218 2219 2220 2221 2222 2223 2224 2225
	cpufreq_freq_transition_end(policy, &freqs, false);

	return 0;
}

static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
					      unsigned int target_freq)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
2226
	int target_pstate, old_pstate;
2227

2228 2229
	update_turbo_state();

2230
	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2231
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2232
	old_pstate = cpu->pstate.current_pstate;
2233
	intel_pstate_update_pstate(cpu, target_pstate);
2234
	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2235
	return target_pstate * cpu->pstate.scaling;
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
}

static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2246
	policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
	policy->cur = policy->cpuinfo.min_freq;

	return 0;
}

static struct cpufreq_driver intel_cpufreq = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_cpufreq_verify_policy,
	.target		= intel_cpufreq_target,
	.fast_switch	= intel_cpufreq_fast_switch,
	.init		= intel_cpufreq_cpu_init,
	.exit		= intel_pstate_cpu_exit,
	.stop_cpu	= intel_cpufreq_stop_cpu,
	.name		= "intel_cpufreq",
};

2264
static struct cpufreq_driver *default_driver = &intel_pstate;
2265

2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
static void intel_pstate_driver_cleanup(void)
{
	unsigned int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			if (intel_pstate_driver == &intel_pstate)
				intel_pstate_clear_update_util_hook(cpu);

			kfree(all_cpu_data[cpu]);
			all_cpu_data[cpu] = NULL;
		}
	}
	put_online_cpus();
2281
	intel_pstate_driver = NULL;
2282 2283
}

2284
static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2285 2286 2287
{
	int ret;

2288 2289
	memset(&global, 0, sizeof(global));
	global.max_perf_pct = 100;
2290

2291
	intel_pstate_driver = driver;
2292 2293 2294 2295 2296 2297
	ret = cpufreq_register_driver(intel_pstate_driver);
	if (ret) {
		intel_pstate_driver_cleanup();
		return ret;
	}

2298 2299
	global.min_perf_pct = min_perf_pct_min();

2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
	return 0;
}

static int intel_pstate_unregister_driver(void)
{
	if (hwp_active)
		return -EBUSY;

	cpufreq_unregister_driver(intel_pstate_driver);
	intel_pstate_driver_cleanup();

	return 0;
}

static ssize_t intel_pstate_show_status(char *buf)
{
2316
	if (!intel_pstate_driver)
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
		return sprintf(buf, "off\n");

	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
					"active" : "passive");
}

static int intel_pstate_update_status(const char *buf, size_t size)
{
	int ret;

	if (size == 3 && !strncmp(buf, "off", size))
2328
		return intel_pstate_driver ?
2329 2330 2331
			intel_pstate_unregister_driver() : -EINVAL;

	if (size == 6 && !strncmp(buf, "active", size)) {
2332
		if (intel_pstate_driver) {
2333 2334 2335 2336 2337 2338 2339 2340
			if (intel_pstate_driver == &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2341
		return intel_pstate_register_driver(&intel_pstate);
2342 2343 2344
	}

	if (size == 7 && !strncmp(buf, "passive", size)) {
2345
		if (intel_pstate_driver) {
2346
			if (intel_pstate_driver == &intel_cpufreq)
2347 2348 2349 2350 2351 2352 2353
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2354
		return intel_pstate_register_driver(&intel_cpufreq);
2355 2356 2357 2358 2359
	}

	return -EINVAL;
}

2360 2361 2362
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
2363
static unsigned int force_load __initdata;
2364

2365
static int __init intel_pstate_msrs_not_valid(void)
2366
{
2367
	if (!pstate_funcs.get_max() ||
2368 2369
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
2370 2371 2372 2373
		return -ENODEV;

	return 0;
}
2374

2375
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2376 2377
{
	pstate_funcs.get_max   = funcs->get_max;
2378
	pstate_funcs.get_max_physical = funcs->get_max_physical;
2379 2380
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
2381
	pstate_funcs.get_scaling = funcs->get_scaling;
2382
	pstate_funcs.get_val   = funcs->get_val;
2383
	pstate_funcs.get_vid   = funcs->get_vid;
2384
	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2385 2386
}

2387
#ifdef CONFIG_ACPI
2388

2389
static bool __init intel_pstate_no_acpi_pss(void)
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
static bool __init intel_pstate_no_acpi_pcch(void)
{
	acpi_status status;
	acpi_handle handle;

	status = acpi_get_handle(NULL, "\\_SB", &handle);
	if (ACPI_FAILURE(status))
		return true;

	return !acpi_has_method(handle, "PCCH");
}

2430
static bool __init intel_pstate_has_acpi_ppc(void)
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

2450
/* Hardware vendor-specific info that has its own power management modes */
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
static struct acpi_platform_list plat_info[] __initdata = {
	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{ } /* End */
2468 2469
};

2470
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2471
{
D
Dirk Brandewie 已提交
2472 2473
	const struct x86_cpu_id *id;
	u64 misc_pwr;
2474
	int idx;
D
Dirk Brandewie 已提交
2475 2476 2477 2478 2479 2480 2481

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
2482

2483 2484
	idx = acpi_match_platform_list(plat_info);
	if (idx < 0)
2485 2486
		return false;

2487 2488
	switch (plat_info[idx].data) {
	case PSS:
2489 2490 2491 2492
		if (!intel_pstate_no_acpi_pss())
			return false;

		return intel_pstate_no_acpi_pcch();
2493 2494
	case PPC:
		return intel_pstate_has_acpi_ppc() && !force_load;
2495 2496 2497 2498
	}

	return false;
}
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508

static void intel_pstate_request_control_from_smm(void)
{
	/*
	 * It may be unsafe to request P-states control from SMM if _PPC support
	 * has not been enabled.
	 */
	if (acpi_ppc)
		acpi_processor_pstate_control();
}
2509 2510
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2511
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2512
static inline void intel_pstate_request_control_from_smm(void) {}
2513 2514
#endif /* CONFIG_ACPI */

2515 2516 2517 2518 2519
#define INTEL_PSTATE_HWP_BROADWELL	0x01

#define ICPU_HWP(model, hwp_mode) \
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_HWP, hwp_mode }

2520
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2521 2522 2523
	ICPU_HWP(INTEL_FAM6_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
	ICPU_HWP(INTEL_FAM6_BROADWELL_XEON_D, INTEL_PSTATE_HWP_BROADWELL),
	ICPU_HWP(X86_MODEL_ANY, 0),
2524 2525 2526
	{}
};

2527 2528
static int __init intel_pstate_init(void)
{
2529
	const struct x86_cpu_id *id;
2530
	int rc;
2531

2532 2533 2534
	if (no_load)
		return -ENODEV;

2535 2536
	id = x86_match_cpu(hwp_support_ids);
	if (id) {
2537
		copy_cpu_funcs(&core_funcs);
2538
		if (!no_hwp) {
2539
			hwp_active++;
2540
			hwp_mode_bdw = id->driver_data;
2541 2542 2543 2544 2545 2546 2547
			intel_pstate.attr = hwp_cpufreq_attrs;
			goto hwp_cpu_matched;
		}
	} else {
		id = x86_match_cpu(intel_pstate_cpu_ids);
		if (!id)
			return -ENODEV;
2548

2549
		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2550
	}
2551

2552 2553 2554
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

2555 2556 2557 2558 2559 2560 2561 2562
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

2563 2564 2565
	if (!hwp_active && hwp_only)
		return -ENOTSUPP;

J
Joe Perches 已提交
2566
	pr_info("Intel P-state driver initializing\n");
2567

2568
	all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2569 2570 2571
	if (!all_cpu_data)
		return -ENOMEM;

2572 2573
	intel_pstate_request_control_from_smm();

2574
	intel_pstate_sysfs_expose_params();
2575

2576
	mutex_lock(&intel_pstate_driver_lock);
2577
	rc = intel_pstate_register_driver(default_driver);
2578
	mutex_unlock(&intel_pstate_driver_lock);
2579 2580
	if (rc)
		return rc;
2581

2582
	if (hwp_active)
J
Joe Perches 已提交
2583
		pr_info("HWP enabled\n");
2584

2585
	return 0;
2586 2587 2588
}
device_initcall(intel_pstate_init);

2589 2590 2591 2592 2593
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

2594
	if (!strcmp(str, "disable")) {
2595
		no_load = 1;
2596 2597
	} else if (!strcmp(str, "passive")) {
		pr_info("Passive mode enabled\n");
2598
		default_driver = &intel_cpufreq;
2599 2600
		no_hwp = 1;
	}
2601
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
2602
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
2603
		no_hwp = 1;
2604
	}
2605 2606
	if (!strcmp(str, "force"))
		force_load = 1;
2607 2608
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
2609 2610
	if (!strcmp(str, "per_cpu_perf_limits"))
		per_cpu_limits = true;
2611 2612 2613 2614 2615 2616

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

2617 2618 2619 2620
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

2621 2622 2623
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");