intel_pstate.c 64.7 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

J
Joe Perches 已提交
13 14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

15 16 17 18 19 20 21
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
22
#include <linux/sched/cpufreq.h>
23 24 25 26 27 28 29
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
30
#include <linux/acpi.h>
31
#include <linux/vmalloc.h>
32 33 34 35 36
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
37
#include <asm/cpufeature.h>
38
#include <asm/intel-family.h>
39

40 41 42
#define INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
#define INTEL_PSTATE_HWP_SAMPLING_INTERVAL	(50 * NSEC_PER_MSEC)

43
#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
44
#define INTEL_CPUFREQ_TRANSITION_DELAY		500
45

46 47
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
48
#include <acpi/cppc_acpi.h>
49 50
#endif

51
#define FRAC_BITS 8
52 53
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
54

55 56
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
57 58
#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
59

60 61 62 63 64
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

65
static inline int32_t div_fp(s64 x, s64 y)
66
{
67
	return div64_s64((int64_t)x << FRAC_BITS, y);
68 69
}

70 71 72 73 74 75 76 77 78 79 80
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

81 82 83 84 85
static inline int32_t percent_fp(int percent)
{
	return div_fp(percent, 100);
}

86 87 88 89 90 91 92 93 94 95
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

96 97 98 99 100
static inline int32_t percent_ext_fp(int percent)
{
	return div_ext_fp(percent, 100);
}

101 102
/**
 * struct sample -	Store performance sample
103
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
104 105
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
106
 *			P state. This can be different than core_avg_perf
107 108 109 110 111 112 113 114 115 116 117 118
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
119
struct sample {
120
	int32_t core_avg_perf;
121
	int32_t busy_scaled;
122 123
	u64 aperf;
	u64 mperf;
124
	u64 tsc;
125
	u64 time;
126 127
};

128 129 130 131 132 133 134 135 136 137 138
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
139 140
 * @max_freq:		@max_pstate frequency in cpufreq units
 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
141 142 143
 *
 * Stores the per cpu model P state limits and current P state.
 */
144 145 146 147
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
148
	int	max_pstate_physical;
149
	int	scaling;
150
	int	turbo_pstate;
151 152
	unsigned int max_freq;
	unsigned int turbo_freq;
153 154
};

155 156 157 158 159 160 161 162 163 164 165 166 167
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
168
struct vid_data {
169 170 171
	int min;
	int max;
	int turbo;
172 173 174
	int32_t ratio;
};

175 176 177 178 179 180 181 182 183 184 185 186
/**
 * struct _pid -	Stores PID data
 * @setpoint:		Target set point for busyness or performance
 * @integral:		Storage for accumulated error values
 * @p_gain:		PID proportional gain
 * @i_gain:		PID integral gain
 * @d_gain:		PID derivative gain
 * @deadband:		PID deadband
 * @last_err:		Last error storage for integral part of PID calculation
 *
 * Stores PID coefficients and last error for PID controller.
 */
187 188 189 190 191 192 193
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
194
	int32_t last_err;
195 196
};

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
/**
 * struct global_params - Global parameters, mostly tunable via sysfs.
 * @no_turbo:		Whether or not to use turbo P-states.
 * @turbo_disabled:	Whethet or not turbo P-states are available at all,
 *			based on the MSR_IA32_MISC_ENABLE value and whether or
 *			not the maximum reported turbo P-state is different from
 *			the maximum reported non-turbo one.
 * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 */
struct global_params {
	bool no_turbo;
	bool turbo_disabled;
	int max_perf_pct;
	int min_perf_pct;
214 215
};

216 217 218
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
219
 * @policy:		CPUFreq policy value
220
 * @update_util:	CPUFreq utility callback information
221
 * @update_util_set:	CPUFreq utility callback is set
222 223
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
224 225 226 227
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @pid:		Stores PID parameters for this CPU
 * @last_sample_time:	Last Sample time
228 229 230
 * @aperf_mperf_shift:	Number of clock cycles after aperf, merf is incremented
 *			This shift is a multiplier to mperf delta to
 *			calculate CPU busy.
231 232 233 234 235 236
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
237 238
 * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
 * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
239 240
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
241 242 243
 * @epp_powersave:	Last saved HWP energy performance preference
 *			(EPP) or energy performance bias (EPB),
 *			when policy switched to performance
244
 * @epp_policy:		Last saved policy used to set EPP/EPB
245 246 247 248
 * @epp_default:	Power on default HWP energy performance
 *			preference/bias
 * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
 *			operation
249 250 251
 *
 * This structure stores per CPU instance data for all CPUs.
 */
252 253 254
struct cpudata {
	int cpu;

255
	unsigned int policy;
256
	struct update_util_data update_util;
257
	bool   update_util_set;
258 259

	struct pstate_data pstate;
260
	struct vid_data vid;
261 262
	struct _pid pid;

263
	u64	last_update;
264
	u64	last_sample_time;
265
	u64	aperf_mperf_shift;
266 267
	u64	prev_aperf;
	u64	prev_mperf;
268
	u64	prev_tsc;
269
	u64	prev_cummulative_iowait;
270
	struct sample sample;
271 272
	int32_t	min_perf_ratio;
	int32_t	max_perf_ratio;
273 274 275 276
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
277
	unsigned int iowait_boost;
278
	s16 epp_powersave;
279
	s16 epp_policy;
280 281
	s16 epp_default;
	s16 epp_saved;
282 283 284
};

static struct cpudata **all_cpu_data;
285 286

/**
287
 * struct pstate_adjust_policy - Stores static PID configuration data
288 289 290 291 292 293 294 295 296 297
 * @sample_rate_ms:	PID calculation sample rate in ms
 * @sample_rate_ns:	Sample rate calculation in ns
 * @deadband:		PID deadband
 * @setpoint:		PID Setpoint
 * @p_gain_pct:		PID proportional gain
 * @i_gain_pct:		PID integral gain
 * @d_gain_pct:		PID derivative gain
 *
 * Stores per CPU model static PID configuration data.
 */
298 299
struct pstate_adjust_policy {
	int sample_rate_ms;
300
	s64 sample_rate_ns;
301 302 303 304 305 306 307
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

308 309 310 311 312 313 314 315 316
/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
317
 * @update_util:	Active mode utilization update callback.
318 319 320 321
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
322 323
struct pstate_funcs {
	int (*get_max)(void);
324
	int (*get_max_physical)(void);
325 326
	int (*get_min)(void);
	int (*get_turbo)(void);
327
	int (*get_scaling)(void);
328
	int (*get_aperf_mperf_shift)(void);
329
	u64 (*get_val)(struct cpudata*, int pstate);
330
	void (*get_vid)(struct cpudata *);
331 332
	void (*update_util)(struct update_util_data *data, u64 time,
			    unsigned int flags);
333 334
};

335
static struct pstate_funcs pstate_funcs __read_mostly;
336 337 338 339 340 341 342 343 344 345
static struct pstate_adjust_policy pid_params __read_mostly = {
	.sample_rate_ms = 10,
	.sample_rate_ns = 10 * NSEC_PER_MSEC,
	.deadband = 0,
	.setpoint = 97,
	.p_gain_pct = 20,
	.d_gain_pct = 0,
	.i_gain_pct = 0,
};

346
static int hwp_active __read_mostly;
347
static bool per_cpu_limits __read_mostly;
348

349
static struct cpufreq_driver *intel_pstate_driver __read_mostly;
350

351 352 353
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
354

355
static struct global_params global;
356

357
static DEFINE_MUTEX(intel_pstate_driver_lock);
358 359
static DEFINE_MUTEX(intel_pstate_limits_lock);

360
#ifdef CONFIG_ACPI
361 362 363 364 365 366 367 368 369 370

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

	return acpi_ppc;
}

371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
#ifdef CONFIG_ACPI_CPPC_LIB

/* The work item is needed to avoid CPU hotplug locking issues */
static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
{
	sched_set_itmt_support();
}

static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);

static void intel_pstate_set_itmt_prio(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return;

	/*
	 * The priorities can be set regardless of whether or not
	 * sched_set_itmt_support(true) has been called and it is valid to
	 * update them at any time after it has been called.
	 */
	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);

	if (max_highest_perf <= min_highest_perf) {
		if (cppc_perf.highest_perf > max_highest_perf)
			max_highest_perf = cppc_perf.highest_perf;

		if (cppc_perf.highest_perf < min_highest_perf)
			min_highest_perf = cppc_perf.highest_perf;

		if (max_highest_perf > min_highest_perf) {
			/*
			 * This code can be run during CPU online under the
			 * CPU hotplug locks, so sched_set_itmt_support()
			 * cannot be called from here.  Queue up a work item
			 * to invoke it.
			 */
			schedule_work(&sched_itmt_work);
		}
	}
}
#else
static void intel_pstate_set_itmt_prio(int cpu)
{
}
#endif

422 423 424 425 426 427
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

428 429
	if (hwp_active) {
		intel_pstate_set_itmt_prio(policy->cpu);
430
		return;
431
	}
432

433
	if (!intel_pstate_get_ppc_enable_status())
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
476
	 * correct max turbo frequency based on the turbo state.
477 478
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
479
	if (!global.turbo_disabled)
480 481 482
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
483
	pr_debug("_PPC limits will be enforced\n");
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}
#else
503
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
504 505 506
{
}

507
static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
508 509 510 511
{
}
#endif

512
static signed int pid_calc(struct _pid *pid, int32_t busy)
513
{
514
	signed int result;
515 516 517
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

518
	fp_error = pid->setpoint - busy;
519

520
	if (abs(fp_error) <= pid->deadband)
521 522 523 524 525 526
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

527 528 529 530 531 532 533 534
	/*
	 * We limit the integral here so that it will never
	 * get higher than 30.  This prevents it from becoming
	 * too large an input over long periods of time and allows
	 * it to get factored out sooner.
	 *
	 * The value of 30 was chosen through experimentation.
	 */
535 536 537 538 539 540
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

541 542
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
543 544

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
545
	result = result + (1 << (FRAC_BITS-1));
546 547 548
	return (signed int)fp_toint(result);
}

549
static inline void intel_pstate_pid_reset(struct cpudata *cpu)
550
{
551
	struct _pid *pid = &cpu->pid;
552

553 554 555 556 557 558 559
	pid->p_gain = percent_fp(pid_params.p_gain_pct);
	pid->d_gain = percent_fp(pid_params.d_gain_pct);
	pid->i_gain = percent_fp(pid_params.i_gain_pct);
	pid->setpoint = int_tofp(pid_params.setpoint);
	pid->last_err  = pid->setpoint - int_tofp(100);
	pid->deadband  = int_tofp(pid_params.deadband);
	pid->integral  = 0;
560 561
}

562 563 564 565 566 567 568
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
569
	global.turbo_disabled =
570 571 572 573
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

574 575 576
static int min_perf_pct_min(void)
{
	struct cpudata *cpu = all_cpu_data[0];
577
	int turbo_pstate = cpu->pstate.turbo_pstate;
578

579
	return turbo_pstate ?
580
		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
581 582
}

583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
{
	u64 epb;
	int ret;

	if (!static_cpu_has(X86_FEATURE_EPB))
		return -ENXIO;

	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return (s16)ret;

	return (s16)(epb & 0x0f);
}

static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
{
	s16 epp;

602 603 604 605 606 607 608 609 610 611 612
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * When hwp_req_data is 0, means that caller didn't read
		 * MSR_HWP_REQUEST, so need to read and get EPP.
		 */
		if (!hwp_req_data) {
			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
					    &hwp_req_data);
			if (epp)
				return epp;
		}
613
		epp = (hwp_req_data >> 24) & 0xff;
614
	} else {
615 616
		/* When there is no EPP present, HWP uses EPB settings */
		epp = intel_pstate_get_epb(cpu_data);
617
	}
618 619 620 621

	return epp;
}

622
static int intel_pstate_set_epb(int cpu, s16 pref)
623 624
{
	u64 epb;
625
	int ret;
626 627

	if (!static_cpu_has(X86_FEATURE_EPB))
628
		return -ENXIO;
629

630 631 632
	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return ret;
633 634 635

	epb = (epb & ~0x0f) | pref;
	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
636 637

	return 0;
638 639
}

640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
/*
 * EPP/EPB display strings corresponding to EPP index in the
 * energy_perf_strings[]
 *	index		String
 *-------------------------------------
 *	0		default
 *	1		performance
 *	2		balance_performance
 *	3		balance_power
 *	4		power
 */
static const char * const energy_perf_strings[] = {
	"default",
	"performance",
	"balance_performance",
	"balance_power",
	"power",
	NULL
};
659 660 661 662 663 664
static const unsigned int epp_values[] = {
	HWP_EPP_PERFORMANCE,
	HWP_EPP_BALANCE_PERFORMANCE,
	HWP_EPP_BALANCE_POWERSAVE,
	HWP_EPP_POWERSAVE
};
665 666 667 668 669 670 671 672 673 674 675

static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
{
	s16 epp;
	int index = -EINVAL;

	epp = intel_pstate_get_epp(cpu_data, 0);
	if (epp < 0)
		return epp;

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
676 677 678 679 680 681 682 683
		if (epp == HWP_EPP_PERFORMANCE)
			return 1;
		if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
			return 2;
		if (epp <= HWP_EPP_BALANCE_POWERSAVE)
			return 3;
		else
			return 4;
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
	} else if (static_cpu_has(X86_FEATURE_EPB)) {
		/*
		 * Range:
		 *	0x00-0x03	:	Performance
		 *	0x04-0x07	:	Balance performance
		 *	0x08-0x0B	:	Balance power
		 *	0x0C-0x0F	:	Power
		 * The EPB is a 4 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 2) + 1;
	}

	return index;
}

static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
					      int pref_index)
{
	int epp = -EINVAL;
	int ret;

	if (!pref_index)
		epp = cpu_data->epp_default;

	mutex_lock(&intel_pstate_limits_lock);

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		u64 value;

		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
		if (ret)
			goto return_pref;

		value &= ~GENMASK_ULL(31, 24);

		if (epp == -EINVAL)
722
			epp = epp_values[pref_index - 1];
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795

		value |= (u64)epp << 24;
		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
	} else {
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 2;
		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
	}
return_pref:
	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
}

static ssize_t show_energy_performance_available_preferences(
				struct cpufreq_policy *policy, char *buf)
{
	int i = 0;
	int ret = 0;

	while (energy_perf_strings[i] != NULL)
		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);

	ret += sprintf(&buf[ret], "\n");

	return ret;
}

cpufreq_freq_attr_ro(energy_performance_available_preferences);

static ssize_t store_energy_performance_preference(
		struct cpufreq_policy *policy, const char *buf, size_t count)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	char str_preference[21];
	int ret, i = 0;

	ret = sscanf(buf, "%20s", str_preference);
	if (ret != 1)
		return -EINVAL;

	while (energy_perf_strings[i] != NULL) {
		if (!strcmp(str_preference, energy_perf_strings[i])) {
			intel_pstate_set_energy_pref_index(cpu_data, i);
			return count;
		}
		++i;
	}

	return -EINVAL;
}

static ssize_t show_energy_performance_preference(
				struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	int preference;

	preference = intel_pstate_get_energy_pref_index(cpu_data);
	if (preference < 0)
		return preference;

	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
}

cpufreq_freq_attr_rw(energy_performance_preference);

static struct freq_attr *hwp_cpufreq_attrs[] = {
	&energy_performance_preference,
	&energy_performance_available_preferences,
	NULL,
};

796 797
static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
				     int *current_max)
D
Dirk Brandewie 已提交
798
{
799
	u64 cap;
800

801 802
	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
	if (global.no_turbo)
803
		*current_max = HWP_GUARANTEED_PERF(cap);
804
	else
805 806 807 808 809 810 811 812 813 814 815 816 817 818
		*current_max = HWP_HIGHEST_PERF(cap);

	*phy_max = HWP_HIGHEST_PERF(cap);
}

static void intel_pstate_hwp_set(unsigned int cpu)
{
	struct cpudata *cpu_data = all_cpu_data[cpu];
	int max, min;
	u64 value;
	s16 epp;

	max = cpu_data->max_perf_ratio;
	min = cpu_data->min_perf_ratio;
819

820 821
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
		min = max;
822

823
	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
D
Dirk Brandewie 已提交
824

825 826
	value &= ~HWP_MIN_PERF(~0L);
	value |= HWP_MIN_PERF(min);
827

828 829
	value &= ~HWP_MAX_PERF(~0L);
	value |= HWP_MAX_PERF(max);
830

831 832
	if (cpu_data->epp_policy == cpu_data->policy)
		goto skip_epp;
833

834
	cpu_data->epp_policy = cpu_data->policy;
835

836 837 838 839 840
	if (cpu_data->epp_saved >= 0) {
		epp = cpu_data->epp_saved;
		cpu_data->epp_saved = -EINVAL;
		goto update_epp;
	}
841

842 843 844 845 846 847
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
		epp = intel_pstate_get_epp(cpu_data, value);
		cpu_data->epp_powersave = epp;
		/* If EPP read was failed, then don't try to write */
		if (epp < 0)
			goto skip_epp;
848

849 850 851 852 853
		epp = 0;
	} else {
		/* skip setting EPP, when saved value is invalid */
		if (cpu_data->epp_powersave < 0)
			goto skip_epp;
854

855 856 857 858 859 860 861 862 863 864
		/*
		 * No need to restore EPP when it is not zero. This
		 * means:
		 *  - Policy is not changed
		 *  - user has manually changed
		 *  - Error reading EPB
		 */
		epp = intel_pstate_get_epp(cpu_data, value);
		if (epp)
			goto skip_epp;
865

866 867
		epp = cpu_data->epp_powersave;
	}
868
update_epp:
869 870 871 872 873
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		value &= ~GENMASK_ULL(31, 24);
		value |= (u64)epp << 24;
	} else {
		intel_pstate_set_epb(cpu, epp);
D
Dirk Brandewie 已提交
874
	}
875 876
skip_epp:
	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
877
}
D
Dirk Brandewie 已提交
878

879 880 881 882 883 884 885 886 887 888 889 890
static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];

	if (!hwp_active)
		return 0;

	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);

	return 0;
}

891 892 893 894 895
static int intel_pstate_resume(struct cpufreq_policy *policy)
{
	if (!hwp_active)
		return 0;

896 897
	mutex_lock(&intel_pstate_limits_lock);

898
	all_cpu_data[policy->cpu]->epp_policy = 0;
899
	intel_pstate_hwp_set(policy->cpu);
900 901 902

	mutex_unlock(&intel_pstate_limits_lock);

903
	return 0;
904 905
}

906
static void intel_pstate_update_policies(void)
907
{
908 909 910 911
	int cpu;

	for_each_possible_cpu(cpu)
		cpufreq_update_policy(cpu);
D
Dirk Brandewie 已提交
912 913
}

914 915 916
/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
917 918
	unsigned int cpu;

919
	*(u32 *)data = val;
920
	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
921 922
	for_each_possible_cpu(cpu)
		if (all_cpu_data[cpu])
923
			intel_pstate_pid_reset(all_cpu_data[cpu]);
924

925 926
	return 0;
}
927

928 929 930 931 932
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
933
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
934

935 936
static struct dentry *debugfs_parent;

937 938 939
struct pid_param {
	char *name;
	void *value;
940
	struct dentry *dentry;
941 942 943
};

static struct pid_param pid_files[] = {
944 945 946 947 948 949 950
	{"sample_rate_ms", &pid_params.sample_rate_ms, },
	{"d_gain_pct", &pid_params.d_gain_pct, },
	{"i_gain_pct", &pid_params.i_gain_pct, },
	{"deadband", &pid_params.deadband, },
	{"setpoint", &pid_params.setpoint, },
	{"p_gain_pct", &pid_params.p_gain_pct, },
	{NULL, NULL, }
951 952
};

953
static void intel_pstate_debug_expose_params(void)
954
{
955
	int i;
956 957 958 959

	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
960 961 962 963 964 965 966 967 968

	for (i = 0; pid_files[i].name; i++) {
		struct dentry *dentry;

		dentry = debugfs_create_file(pid_files[i].name, 0660,
					     debugfs_parent, pid_files[i].value,
					     &fops_pid_param);
		if (!IS_ERR(dentry))
			pid_files[i].dentry = dentry;
969 970 971
	}
}

972 973 974 975 976 977 978 979 980 981
static void intel_pstate_debug_hide_params(void)
{
	int i;

	if (IS_ERR_OR_NULL(debugfs_parent))
		return;

	for (i = 0; pid_files[i].name; i++) {
		debugfs_remove(pid_files[i].dentry);
		pid_files[i].dentry = NULL;
982
	}
983 984 985

	debugfs_remove(debugfs_parent);
	debugfs_parent = NULL;
986 987 988 989 990 991 992 993 994
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
995
		return sprintf(buf, "%u\n", global.object);		\
996 997
	}

998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
static ssize_t intel_pstate_show_status(char *buf);
static int intel_pstate_update_status(const char *buf, size_t size);

static ssize_t show_status(struct kobject *kobj,
			   struct attribute *attr, char *buf)
{
	ssize_t ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_show_status(buf);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret;
}

static ssize_t store_status(struct kobject *a, struct attribute *b,
			    const char *buf, size_t count)
{
	char *p = memchr(buf, '\n', count);
	int ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_update_status(buf, p ? p - buf : count);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret < 0 ? ret : count;
}

1026 1027 1028 1029 1030 1031 1032
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

1033 1034
	mutex_lock(&intel_pstate_driver_lock);

1035
	if (!intel_pstate_driver) {
1036 1037 1038 1039
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1040 1041 1042 1043
	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1044
	turbo_fp = div_fp(no_turbo, total);
1045
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1046 1047 1048

	mutex_unlock(&intel_pstate_driver_lock);

1049 1050 1051
	return sprintf(buf, "%u\n", turbo_pct);
}

1052 1053 1054 1055 1056 1057
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

1058 1059
	mutex_lock(&intel_pstate_driver_lock);

1060
	if (!intel_pstate_driver) {
1061 1062 1063 1064
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1065 1066
	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1067 1068 1069

	mutex_unlock(&intel_pstate_driver_lock);

1070 1071 1072
	return sprintf(buf, "%u\n", total);
}

1073 1074 1075 1076 1077
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

1078 1079
	mutex_lock(&intel_pstate_driver_lock);

1080
	if (!intel_pstate_driver) {
1081 1082 1083 1084
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1085
	update_turbo_state();
1086 1087
	if (global.turbo_disabled)
		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1088
	else
1089
		ret = sprintf(buf, "%u\n", global.no_turbo);
1090

1091 1092
	mutex_unlock(&intel_pstate_driver_lock);

1093 1094 1095
	return ret;
}

1096
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1097
			      const char *buf, size_t count)
1098 1099 1100
{
	unsigned int input;
	int ret;
1101

1102 1103 1104
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1105

1106 1107
	mutex_lock(&intel_pstate_driver_lock);

1108
	if (!intel_pstate_driver) {
1109 1110 1111 1112
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1113 1114
	mutex_lock(&intel_pstate_limits_lock);

1115
	update_turbo_state();
1116
	if (global.turbo_disabled) {
J
Joe Perches 已提交
1117
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1118
		mutex_unlock(&intel_pstate_limits_lock);
1119
		mutex_unlock(&intel_pstate_driver_lock);
1120
		return -EPERM;
1121
	}
D
Dirk Brandewie 已提交
1122

1123
	global.no_turbo = clamp_t(int, input, 0, 1);
1124

1125 1126 1127 1128 1129 1130 1131 1132 1133
	if (global.no_turbo) {
		struct cpudata *cpu = all_cpu_data[0];
		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;

		/* Squash the global minimum into the permitted range. */
		if (global.min_perf_pct > pct)
			global.min_perf_pct = pct;
	}

1134 1135
	mutex_unlock(&intel_pstate_limits_lock);

1136 1137
	intel_pstate_update_policies();

1138 1139
	mutex_unlock(&intel_pstate_driver_lock);

1140 1141 1142 1143
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1144
				  const char *buf, size_t count)
1145 1146 1147
{
	unsigned int input;
	int ret;
1148

1149 1150 1151 1152
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

1153 1154
	mutex_lock(&intel_pstate_driver_lock);

1155
	if (!intel_pstate_driver) {
1156 1157 1158 1159
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1160 1161
	mutex_lock(&intel_pstate_limits_lock);

1162
	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1163

1164 1165
	mutex_unlock(&intel_pstate_limits_lock);

1166 1167
	intel_pstate_update_policies();

1168 1169
	mutex_unlock(&intel_pstate_driver_lock);

1170 1171 1172 1173
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1174
				  const char *buf, size_t count)
1175 1176 1177
{
	unsigned int input;
	int ret;
1178

1179 1180 1181
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1182

1183 1184
	mutex_lock(&intel_pstate_driver_lock);

1185
	if (!intel_pstate_driver) {
1186 1187 1188 1189
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1190 1191
	mutex_lock(&intel_pstate_limits_lock);

1192 1193
	global.min_perf_pct = clamp_t(int, input,
				      min_perf_pct_min(), global.max_perf_pct);
1194

1195 1196
	mutex_unlock(&intel_pstate_limits_lock);

1197 1198
	intel_pstate_update_policies();

1199 1200
	mutex_unlock(&intel_pstate_driver_lock);

1201 1202 1203 1204 1205 1206
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

1207
define_one_global_rw(status);
1208 1209 1210
define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
1211
define_one_global_ro(turbo_pct);
1212
define_one_global_ro(num_pstates);
1213 1214

static struct attribute *intel_pstate_attributes[] = {
1215
	&status.attr,
1216
	&no_turbo.attr,
1217
	&turbo_pct.attr,
1218
	&num_pstates.attr,
1219 1220 1221
	NULL
};

1222
static const struct attribute_group intel_pstate_attr_group = {
1223 1224 1225
	.attrs = intel_pstate_attributes,
};

1226
static void __init intel_pstate_sysfs_expose_params(void)
1227
{
1228
	struct kobject *intel_pstate_kobject;
1229 1230 1231 1232
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
1233 1234 1235
	if (WARN_ON(!intel_pstate_kobject))
		return;

1236
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
	if (WARN_ON(rc))
		return;

	/*
	 * If per cpu limits are enforced there are no global limits, so
	 * return without creating max/min_perf_pct attributes
	 */
	if (per_cpu_limits)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
	WARN_ON(rc);

	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
	WARN_ON(rc);

1253 1254
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
1255

1256
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
1257
{
1258
	/* First disable HWP notification interrupt as we don't process them */
1259 1260
	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1261

1262
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1263
	cpudata->epp_policy = 0;
1264 1265
	if (cpudata->epp_default == -EINVAL)
		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
D
Dirk Brandewie 已提交
1266 1267
}

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
#define MSR_IA32_POWER_CTL_BIT_EE	19

/* Disable energy efficiency optimization */
static void intel_pstate_disable_ee(int cpu)
{
	u64 power_ctl;
	int ret;

	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
	if (ret)
		return;

	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
		pr_info("Disabling energy efficiency optimization\n");
		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
	}
}

1287
static int atom_get_min_pstate(void)
1288 1289
{
	u64 value;
1290

1291
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1292
	return (value >> 8) & 0x7F;
1293 1294
}

1295
static int atom_get_max_pstate(void)
1296 1297
{
	u64 value;
1298

1299
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1300
	return (value >> 16) & 0x7F;
1301
}
1302

1303
static int atom_get_turbo_pstate(void)
1304 1305
{
	u64 value;
1306

1307
	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
1308
	return value & 0x7F;
1309 1310
}

1311
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1312 1313 1314 1315 1316
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

1317
	val = (u64)pstate << 8;
1318
	if (global.no_turbo && !global.turbo_disabled)
1319 1320 1321 1322 1323 1324 1325
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1326
	vid = ceiling_fp(vid_fp);
1327

1328 1329 1330
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

1331
	return val | vid;
1332 1333
}

1334
static int silvermont_get_scaling(void)
1335 1336 1337
{
	u64 value;
	int i;
1338 1339 1340
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
1341 1342

	rdmsrl(MSR_FSB_FREQ, value);
1343 1344
	i = value & 0x7;
	WARN_ON(i > 4);
1345

1346 1347
	return silvermont_freq_table[i];
}
1348

1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
1363 1364
}

1365
static void atom_get_vid(struct cpudata *cpudata)
1366 1367 1368
{
	u64 value;

1369
	rdmsrl(MSR_ATOM_CORE_VIDS, value);
D
Dirk Brandewie 已提交
1370 1371
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1372 1373 1374 1375
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
1376

1377
	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1378
	cpudata->vid.turbo = value & 0x7f;
1379 1380
}

1381
static int core_get_min_pstate(void)
1382 1383
{
	u64 value;
1384

1385
	rdmsrl(MSR_PLATFORM_INFO, value);
1386 1387 1388
	return (value >> 40) & 0xFF;
}

1389
static int core_get_max_pstate_physical(void)
1390 1391
{
	u64 value;
1392

1393
	rdmsrl(MSR_PLATFORM_INFO, value);
1394 1395 1396
	return (value >> 8) & 0xFF;
}

1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
static int core_get_tdp_ratio(u64 plat_info)
{
	/* Check how many TDP levels present */
	if (plat_info & 0x600000000) {
		u64 tdp_ctrl;
		u64 tdp_ratio;
		int tdp_msr;
		int err;

		/* Get the TDP level (0, 1, 2) to get ratios */
		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
		if (err)
			return err;

		/* TDP MSR are continuous starting at 0x648 */
		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
		if (err)
			return err;

		/* For level 1 and 2, bits[23:16] contain the ratio */
		if (tdp_ctrl & 0x03)
			tdp_ratio >>= 16;

		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);

		return (int)tdp_ratio;
	}

	return -ENXIO;
}

1430
static int core_get_max_pstate(void)
1431
{
1432 1433 1434
	u64 tar;
	u64 plat_info;
	int max_pstate;
1435
	int tdp_ratio;
1436 1437 1438 1439 1440
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

1441 1442 1443 1444 1445 1446 1447 1448 1449
	tdp_ratio = core_get_tdp_ratio(plat_info);
	if (tdp_ratio <= 0)
		return max_pstate;

	if (hwp_active) {
		/* Turbo activation ratio is not used on HWP platforms */
		return tdp_ratio;
	}

1450 1451
	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
1452 1453
		int tar_levels;

1454
		/* Do some sanity checking for safety */
1455 1456 1457 1458
		tar_levels = tar & 0xff;
		if (tdp_ratio - 1 == tar_levels) {
			max_pstate = tar_levels;
			pr_debug("max_pstate=TAC %x\n", max_pstate);
1459 1460
		}
	}
1461

1462
	return max_pstate;
1463 1464
}

1465
static int core_get_turbo_pstate(void)
1466 1467 1468
{
	u64 value;
	int nont, ret;
1469

1470
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1471
	nont = core_get_max_pstate();
1472
	ret = (value) & 255;
1473 1474 1475 1476 1477
	if (ret <= nont)
		ret = nont;
	return ret;
}

1478 1479 1480 1481 1482
static inline int core_get_scaling(void)
{
	return 100000;
}

1483
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1484 1485 1486
{
	u64 val;

1487
	val = (u64)pstate << 8;
1488
	if (global.no_turbo && !global.turbo_disabled)
1489 1490
		val |= (u64)1 << 32;

1491
	return val;
1492 1493
}

1494 1495 1496 1497 1498
static int knl_get_aperf_mperf_shift(void)
{
	return 10;
}

1499 1500 1501 1502 1503
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1504
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1505 1506 1507 1508 1509 1510 1511
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1512
static int intel_pstate_get_base_pstate(struct cpudata *cpu)
1513
{
1514 1515
	return global.no_turbo || global.turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1516 1517
}

1518
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1519
{
1520 1521
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1522 1523 1524 1525 1526 1527 1528
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1529 1530
}

1531 1532 1533 1534 1535 1536 1537
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
1538
	int pstate;
1539 1540

	update_turbo_state();
1541
	pstate = intel_pstate_get_base_pstate(cpu);
1542
	pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1543
	intel_pstate_set_pstate(cpu, pstate);
1544 1545
}

1546 1547
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1548 1549
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1550
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1551
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1552
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1553 1554
	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1555

1556 1557 1558
	if (pstate_funcs.get_aperf_mperf_shift)
		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();

1559 1560
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1561 1562

	intel_pstate_set_min_pstate(cpu);
1563 1564
}

1565
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1566
{
1567
	struct sample *sample = &cpu->sample;
1568

1569
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1570 1571
}

1572
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1573 1574
{
	u64 aperf, mperf;
1575
	unsigned long flags;
1576
	u64 tsc;
1577

1578
	local_irq_save(flags);
1579 1580
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1581
	tsc = rdtsc();
1582
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1583
		local_irq_restore(flags);
1584
		return false;
1585
	}
1586
	local_irq_restore(flags);
1587

1588
	cpu->last_sample_time = cpu->sample.time;
1589
	cpu->sample.time = time;
1590 1591
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1592
	cpu->sample.tsc =  tsc;
1593 1594
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1595
	cpu->sample.tsc -= cpu->prev_tsc;
1596

1597 1598
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1599
	cpu->prev_tsc = tsc;
1600 1601 1602 1603 1604 1605 1606
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
1607 1608 1609 1610 1611
	if (cpu->last_sample_time) {
		intel_pstate_calc_avg_perf(cpu);
		return true;
	}
	return false;
1612 1613
}

1614 1615
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1616 1617
	return mul_ext_fp(cpu->sample.core_avg_perf,
			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1618 1619
}

1620 1621
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1622 1623
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1624 1625
}

1626 1627 1628
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
{
	struct sample *sample = &cpu->sample;
1629
	int32_t busy_frac, boost;
1630
	int target, avg_pstate;
1631

1632 1633
	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
			   sample->tsc);
1634

1635 1636
	boost = cpu->iowait_boost;
	cpu->iowait_boost >>= 1;
1637

1638 1639
	if (busy_frac < boost)
		busy_frac = boost;
1640

1641
	sample->busy_scaled = busy_frac * 100;
1642

1643
	target = global.no_turbo || global.turbo_disabled ?
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1662 1663
}

1664
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1665
{
1666
	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1667
	u64 duration_ns;
1668

1669
	/*
1670 1671 1672 1673 1674
	 * perf_scaled is the ratio of the average P-state during the last
	 * sampling period to the P-state requested last time (in percent).
	 *
	 * That measures the system's response to the previous P-state
	 * selection.
1675
	 */
1676 1677
	max_pstate = cpu->pstate.max_pstate_physical;
	current_pstate = cpu->pstate.current_pstate;
1678
	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1679
			       div_fp(100 * max_pstate, current_pstate));
1680

1681
	/*
1682 1683 1684
	 * Since our utilization update callback will not run unless we are
	 * in C0, check if the actual elapsed time is significantly greater (3x)
	 * than our sample interval.  If it is, then we were idle for a long
1685
	 * enough period of time to adjust our performance metric.
1686
	 */
1687
	duration_ns = cpu->sample.time - cpu->last_sample_time;
1688
	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1689
		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1690
		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1691
	} else {
1692 1693
		sample_ratio = div_fp(100 * (cpu->sample.mperf << cpu->aperf_mperf_shift),
				      cpu->sample.tsc);
1694
		if (sample_ratio < int_tofp(1))
1695
			perf_scaled = 0;
1696 1697
	}

1698 1699
	cpu->sample.busy_scaled = perf_scaled;
	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1700 1701
}

1702
static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1703
{
1704 1705
	int max_pstate = intel_pstate_get_base_pstate(cpu);
	int min_pstate;
1706

1707 1708
	min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
	max_pstate = max(min_pstate, cpu->max_perf_ratio);
1709
	return clamp_t(int, pstate, min_pstate, max_pstate);
1710 1711 1712 1713
}

static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
1714 1715 1716
	if (pstate == cpu->pstate.current_pstate)
		return;

1717
	cpu->pstate.current_pstate = pstate;
1718 1719 1720
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1721
static void intel_pstate_adjust_pstate(struct cpudata *cpu, int target_pstate)
1722
{
1723
	int from = cpu->pstate.current_pstate;
1724 1725
	struct sample *sample;

1726 1727
	update_turbo_state();

1728 1729
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1730
	intel_pstate_update_pstate(cpu, target_pstate);
1731 1732

	sample = &cpu->sample;
1733
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1734
		fp_toint(sample->busy_scaled),
1735 1736 1737 1738 1739
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1740 1741
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1742 1743
}

1744 1745 1746 1747 1748 1749 1750 1751 1752
static void intel_pstate_update_util_pid(struct update_util_data *data,
					 u64 time, unsigned int flags)
{
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
	u64 delta_ns = time - cpu->sample.time;

	if ((s64)delta_ns < pid_params.sample_rate_ns)
		return;

1753 1754 1755 1756 1757 1758
	if (intel_pstate_sample(cpu, time)) {
		int target_pstate;

		target_pstate = get_target_pstate_use_performance(cpu);
		intel_pstate_adjust_pstate(cpu, target_pstate);
	}
1759 1760
}

1761
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1762
				     unsigned int flags)
1763
{
1764
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1765 1766
	u64 delta_ns;

1767 1768 1769 1770 1771 1772 1773
	if (flags & SCHED_CPUFREQ_IOWAIT) {
		cpu->iowait_boost = int_tofp(1);
	} else if (cpu->iowait_boost) {
		/* Clear iowait_boost if the CPU may have been idle. */
		delta_ns = time - cpu->last_update;
		if (delta_ns > TICK_NSEC)
			cpu->iowait_boost = 0;
1774
	}
1775
	cpu->last_update = time;
1776
	delta_ns = time - cpu->sample.time;
1777 1778
	if ((s64)delta_ns < INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL)
		return;
1779

1780 1781
	if (intel_pstate_sample(cpu, time)) {
		int target_pstate;
1782

1783 1784 1785 1786
		target_pstate = get_target_pstate_use_cpu_load(cpu);
		intel_pstate_adjust_pstate(cpu, target_pstate);
	}
}
1787

1788 1789 1790 1791 1792 1793 1794 1795
static struct pstate_funcs core_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = core_get_turbo_pstate,
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
	.update_util = intel_pstate_update_util_pid,
1796 1797
};

1798 1799 1800 1801 1802 1803 1804 1805 1806
static const struct pstate_funcs silvermont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = silvermont_get_scaling,
	.get_vid = atom_get_vid,
	.update_util = intel_pstate_update_util,
1807 1808
};

1809 1810 1811 1812 1813 1814 1815 1816 1817
static const struct pstate_funcs airmont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = airmont_get_scaling,
	.get_vid = atom_get_vid,
	.update_util = intel_pstate_update_util,
1818 1819
};

1820 1821 1822 1823 1824
static const struct pstate_funcs knl_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = knl_get_turbo_pstate,
1825
	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1826 1827 1828
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
	.update_util = intel_pstate_update_util_pid,
1829 1830
};

1831 1832 1833 1834 1835 1836 1837 1838
static const struct pstate_funcs bxt_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = core_get_turbo_pstate,
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
	.update_util = intel_pstate_update_util,
1839 1840
};

1841
#define ICPU(model, policy) \
1842 1843
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1844 1845

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_funcs),
	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_funcs),
	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_funcs),
	ICPU(INTEL_FAM6_IVYBRIDGE,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_CORE,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_funcs),
	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_X,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_ULT,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_funcs),
	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_X,		core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_funcs),
	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_funcs),
	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_funcs),
	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_funcs),
1865
	ICPU(INTEL_FAM6_ATOM_GEMINI_LAKE,       bxt_funcs),
1866 1867 1868 1869
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

1870
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1871 1872 1873
	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
D
Dirk Brandewie 已提交
1874 1875 1876
	{}
};

1877
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1878
	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1879 1880 1881
	{}
};

1882 1883
static bool pid_in_use(void);

1884 1885 1886 1887
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1888 1889 1890
	cpu = all_cpu_data[cpunum];

	if (!cpu) {
1891
		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1892 1893 1894 1895 1896
		if (!cpu)
			return -ENOMEM;

		all_cpu_data[cpunum] = cpu;

1897 1898 1899
		cpu->epp_default = -EINVAL;
		cpu->epp_powersave = -EINVAL;
		cpu->epp_saved = -EINVAL;
1900
	}
1901 1902 1903 1904

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1905

1906
	if (hwp_active) {
1907 1908 1909 1910 1911 1912
		const struct x86_cpu_id *id;

		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
		if (id)
			intel_pstate_disable_ee(cpunum);

1913
		intel_pstate_hwp_enable(cpu);
1914
	} else if (pid_in_use()) {
1915
		intel_pstate_pid_reset(cpu);
1916
	}
1917

1918
	intel_pstate_get_cpu_pstates(cpu);
1919

J
Joe Perches 已提交
1920
	pr_debug("controlling: cpu %d\n", cpunum);
1921 1922 1923 1924 1925 1926

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
1927
	struct cpudata *cpu = all_cpu_data[cpu_num];
1928

1929
	return cpu ? get_avg_frequency(cpu) : 0;
1930 1931
}

1932
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1933
{
1934 1935
	struct cpudata *cpu = all_cpu_data[cpu_num];

1936 1937 1938
	if (hwp_active)
		return;

1939 1940 1941
	if (cpu->update_util_set)
		return;

1942 1943
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
1944 1945
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
				     pstate_funcs.update_util);
1946
	cpu->update_util_set = true;
1947 1948 1949 1950
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
1951 1952 1953 1954 1955
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

1956
	cpufreq_remove_update_util_hook(cpu);
1957
	cpu_data->update_util_set = false;
1958 1959 1960
	synchronize_sched();
}

1961 1962 1963 1964 1965 1966
static int intel_pstate_get_max_freq(struct cpudata *cpu)
{
	return global.turbo_disabled || global.no_turbo ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
}

1967
static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1968
					    struct cpudata *cpu)
1969
{
1970
	int max_freq = intel_pstate_get_max_freq(cpu);
1971
	int32_t max_policy_perf, min_policy_perf;
1972
	int max_state, turbo_max;
1973

1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
	/*
	 * HWP needs some special consideration, because on BDX the
	 * HWP_REQUEST uses abstract value to represent performance
	 * rather than pure ratios.
	 */
	if (hwp_active) {
		intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
	} else {
		max_state = intel_pstate_get_base_pstate(cpu);
		turbo_max = cpu->pstate.turbo_pstate;
	}

	max_policy_perf = max_state * policy->max / max_freq;
1987
	if (policy->max == policy->min) {
1988
		min_policy_perf = max_policy_perf;
1989
	} else {
1990
		min_policy_perf = max_state * policy->min / max_freq;
1991 1992
		min_policy_perf = clamp_t(int32_t, min_policy_perf,
					  0, max_policy_perf);
1993
	}
1994

1995 1996 1997 1998
	pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
		 policy->cpu, max_state,
		 min_policy_perf, max_policy_perf);

1999
	/* Normalize user input to [min_perf, max_perf] */
2000
	if (per_cpu_limits) {
2001 2002
		cpu->min_perf_ratio = min_policy_perf;
		cpu->max_perf_ratio = max_policy_perf;
2003 2004 2005 2006
	} else {
		int32_t global_min, global_max;

		/* Global limits are in percent of the maximum turbo P-state. */
2007 2008
		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2009
		global_min = clamp_t(int32_t, global_min, 0, global_max);
2010

2011 2012
		pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
			 global_min, global_max);
2013

2014 2015 2016 2017
		cpu->min_perf_ratio = max(min_policy_perf, global_min);
		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
		cpu->max_perf_ratio = min(max_policy_perf, global_max);
		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2018

2019 2020 2021
		/* Make sure min_perf <= max_perf */
		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
					  cpu->max_perf_ratio);
2022

2023 2024 2025 2026
	}
	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
		 cpu->max_perf_ratio,
		 cpu->min_perf_ratio);
2027 2028
}

2029 2030
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
2031 2032
	struct cpudata *cpu;

2033 2034 2035
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

2036 2037 2038
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

2039
	cpu = all_cpu_data[policy->cpu];
2040 2041
	cpu->policy = policy->policy;

2042 2043
	mutex_lock(&intel_pstate_limits_lock);

2044
	intel_pstate_update_perf_limits(policy, cpu);
2045

2046
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2047 2048 2049 2050 2051 2052
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
2053 2054
	} else {
		intel_pstate_set_update_util_hook(policy->cpu);
2055 2056
	}

2057
	if (hwp_active)
2058
		intel_pstate_hwp_set(policy->cpu);
D
Dirk Brandewie 已提交
2059

2060 2061
	mutex_unlock(&intel_pstate_limits_lock);

2062 2063 2064
	return 0;
}

2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
					 struct cpudata *cpu)
{
	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_freq) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
	}
}

2076 2077
static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
2078 2079 2080
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2081 2082
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2083

2084
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2085
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2086 2087
		return -EINVAL;

2088 2089
	intel_pstate_adjust_policy_max(policy, cpu);

2090 2091 2092
	return 0;
}

2093 2094 2095 2096 2097
static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
{
	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
}

2098
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2099
{
2100
	pr_debug("CPU %d exiting\n", policy->cpu);
2101

2102
	intel_pstate_clear_update_util_hook(policy->cpu);
2103 2104 2105
	if (hwp_active)
		intel_pstate_hwp_save_state(policy);
	else
2106 2107
		intel_cpufreq_stop_cpu(policy);
}
2108

2109 2110 2111
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);
2112

2113
	policy->fast_switch_possible = false;
D
Dirk Brandewie 已提交
2114

2115
	return 0;
2116 2117
}

2118
static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2119 2120
{
	struct cpudata *cpu;
2121
	int rc;
2122 2123 2124 2125 2126 2127 2128

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

2129 2130
	cpu->max_perf_ratio = 0xFF;
	cpu->min_perf_ratio = 0;
2131

2132 2133
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2134 2135

	/* cpuinfo and default policy values */
2136
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2137
	update_turbo_state();
2138
	policy->cpuinfo.max_freq = global.turbo_disabled ?
2139 2140 2141
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

2142
	intel_pstate_init_acpi_perf_limits(policy);
2143 2144
	cpumask_set_cpu(policy->cpu, policy->cpus);

2145 2146
	policy->fast_switch_possible = true;

2147 2148 2149
	return 0;
}

2150
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2151
{
2152 2153 2154 2155 2156 2157
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2158
	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2159 2160 2161
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2162 2163 2164 2165

	return 0;
}

2166
static struct cpufreq_driver intel_pstate = {
2167 2168 2169
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
2170
	.suspend	= intel_pstate_hwp_save_state,
2171
	.resume		= intel_pstate_resume,
2172 2173
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
2174
	.exit		= intel_pstate_cpu_exit,
2175
	.stop_cpu	= intel_pstate_stop_cpu,
2176 2177 2178
	.name		= "intel_pstate",
};

2179 2180 2181 2182 2183
static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2184 2185
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2186

2187
	intel_pstate_adjust_policy_max(policy, cpu);
2188

2189 2190
	intel_pstate_update_perf_limits(policy, cpu);

2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
	return 0;
}

static int intel_cpufreq_target(struct cpufreq_policy *policy,
				unsigned int target_freq,
				unsigned int relation)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct cpufreq_freqs freqs;
	int target_pstate;

2202 2203
	update_turbo_state();

2204
	freqs.old = policy->cur;
2205
	freqs.new = target_freq;
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224

	cpufreq_freq_transition_begin(policy, &freqs);
	switch (relation) {
	case CPUFREQ_RELATION_L:
		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
		break;
	case CPUFREQ_RELATION_H:
		target_pstate = freqs.new / cpu->pstate.scaling;
		break;
	default:
		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
		break;
	}
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	if (target_pstate != cpu->pstate.current_pstate) {
		cpu->pstate.current_pstate = target_pstate;
		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
			      pstate_funcs.get_val(cpu, target_pstate));
	}
2225
	freqs.new = target_pstate * cpu->pstate.scaling;
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
	cpufreq_freq_transition_end(policy, &freqs, false);

	return 0;
}

static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
					      unsigned int target_freq)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	int target_pstate;

2237 2238
	update_turbo_state();

2239
	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2240
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2241
	intel_pstate_update_pstate(cpu, target_pstate);
2242
	return target_pstate * cpu->pstate.scaling;
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
}

static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2253
	policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
	policy->cur = policy->cpuinfo.min_freq;

	return 0;
}

static struct cpufreq_driver intel_cpufreq = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_cpufreq_verify_policy,
	.target		= intel_cpufreq_target,
	.fast_switch	= intel_cpufreq_fast_switch,
	.init		= intel_cpufreq_cpu_init,
	.exit		= intel_pstate_cpu_exit,
	.stop_cpu	= intel_cpufreq_stop_cpu,
	.name		= "intel_cpufreq",
};

2271
static struct cpufreq_driver *default_driver = &intel_pstate;
2272

2273 2274 2275 2276 2277 2278
static bool pid_in_use(void)
{
	return intel_pstate_driver == &intel_pstate &&
		pstate_funcs.update_util == intel_pstate_update_util_pid;
}

2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
static void intel_pstate_driver_cleanup(void)
{
	unsigned int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			if (intel_pstate_driver == &intel_pstate)
				intel_pstate_clear_update_util_hook(cpu);

			kfree(all_cpu_data[cpu]);
			all_cpu_data[cpu] = NULL;
		}
	}
	put_online_cpus();
2294
	intel_pstate_driver = NULL;
2295 2296
}

2297
static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2298 2299 2300
{
	int ret;

2301 2302
	memset(&global, 0, sizeof(global));
	global.max_perf_pct = 100;
2303

2304
	intel_pstate_driver = driver;
2305 2306 2307 2308 2309 2310
	ret = cpufreq_register_driver(intel_pstate_driver);
	if (ret) {
		intel_pstate_driver_cleanup();
		return ret;
	}

2311 2312
	global.min_perf_pct = min_perf_pct_min();

2313
	if (pid_in_use())
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
		intel_pstate_debug_expose_params();

	return 0;
}

static int intel_pstate_unregister_driver(void)
{
	if (hwp_active)
		return -EBUSY;

2324
	if (pid_in_use())
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
		intel_pstate_debug_hide_params();

	cpufreq_unregister_driver(intel_pstate_driver);
	intel_pstate_driver_cleanup();

	return 0;
}

static ssize_t intel_pstate_show_status(char *buf)
{
2335
	if (!intel_pstate_driver)
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
		return sprintf(buf, "off\n");

	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
					"active" : "passive");
}

static int intel_pstate_update_status(const char *buf, size_t size)
{
	int ret;

	if (size == 3 && !strncmp(buf, "off", size))
2347
		return intel_pstate_driver ?
2348 2349 2350
			intel_pstate_unregister_driver() : -EINVAL;

	if (size == 6 && !strncmp(buf, "active", size)) {
2351
		if (intel_pstate_driver) {
2352 2353 2354 2355 2356 2357 2358 2359
			if (intel_pstate_driver == &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2360
		return intel_pstate_register_driver(&intel_pstate);
2361 2362 2363
	}

	if (size == 7 && !strncmp(buf, "passive", size)) {
2364
		if (intel_pstate_driver) {
2365
			if (intel_pstate_driver == &intel_cpufreq)
2366 2367 2368 2369 2370 2371 2372
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2373
		return intel_pstate_register_driver(&intel_cpufreq);
2374 2375 2376 2377 2378
	}

	return -EINVAL;
}

2379 2380 2381
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
2382
static unsigned int force_load __initdata;
2383

2384
static int __init intel_pstate_msrs_not_valid(void)
2385
{
2386
	if (!pstate_funcs.get_max() ||
2387 2388
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
2389 2390 2391 2392
		return -ENODEV;

	return 0;
}
2393

2394 2395 2396
#ifdef CONFIG_ACPI
static void intel_pstate_use_acpi_profile(void)
{
2397 2398 2399 2400 2401 2402
	switch (acpi_gbl_FADT.preferred_profile) {
	case PM_MOBILE:
	case PM_TABLET:
	case PM_APPLIANCE_PC:
	case PM_DESKTOP:
	case PM_WORKSTATION:
2403
		pstate_funcs.update_util = intel_pstate_update_util;
2404
	}
2405 2406 2407 2408 2409 2410 2411
}
#else
static void intel_pstate_use_acpi_profile(void)
{
}
#endif

2412
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2413 2414
{
	pstate_funcs.get_max   = funcs->get_max;
2415
	pstate_funcs.get_max_physical = funcs->get_max_physical;
2416 2417
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
2418
	pstate_funcs.get_scaling = funcs->get_scaling;
2419
	pstate_funcs.get_val   = funcs->get_val;
2420
	pstate_funcs.get_vid   = funcs->get_vid;
2421
	pstate_funcs.update_util = funcs->update_util;
2422
	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2423

2424
	intel_pstate_use_acpi_profile();
2425 2426
}

2427
#ifdef CONFIG_ACPI
2428

2429
static bool __init intel_pstate_no_acpi_pss(void)
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

2458
static bool __init intel_pstate_has_acpi_ppc(void)
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

2478 2479 2480 2481
struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2482
	int  oem_pwr_table;
2483 2484 2485
};

/* Hardware vendor-specific info that has its own power management modes */
2486
static struct hw_vendor_info vendor_info[] __initdata = {
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
	{1, "HP    ", "ProLiant", PSS},
	{1, "ORACLE", "X4-2    ", PPC},
	{1, "ORACLE", "X4-2L   ", PPC},
	{1, "ORACLE", "X4-2B   ", PPC},
	{1, "ORACLE", "X3-2    ", PPC},
	{1, "ORACLE", "X3-2L   ", PPC},
	{1, "ORACLE", "X3-2B   ", PPC},
	{1, "ORACLE", "X4470M2 ", PPC},
	{1, "ORACLE", "X4270M3 ", PPC},
	{1, "ORACLE", "X4270M2 ", PPC},
	{1, "ORACLE", "X4170M2 ", PPC},
2498 2499 2500 2501
	{1, "ORACLE", "X4170 M3", PPC},
	{1, "ORACLE", "X4275 M3", PPC},
	{1, "ORACLE", "X6-2    ", PPC},
	{1, "ORACLE", "Sudbury ", PPC},
2502 2503 2504
	{0, "", ""},
};

2505
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2506 2507 2508
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;
D
Dirk Brandewie 已提交
2509 2510 2511 2512 2513 2514 2515 2516 2517
	const struct x86_cpu_id *id;
	u64 misc_pwr;

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
2518

2519 2520
	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2521 2522 2523
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
2524
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2525 2526 2527 2528 2529 2530
			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
						ACPI_OEM_TABLE_ID_SIZE))
			switch (v_info->oem_pwr_table) {
			case PSS:
				return intel_pstate_no_acpi_pss();
			case PPC:
2531 2532
				return intel_pstate_has_acpi_ppc() &&
					(!force_load);
2533
			}
2534 2535 2536 2537
	}

	return false;
}
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547

static void intel_pstate_request_control_from_smm(void)
{
	/*
	 * It may be unsafe to request P-states control from SMM if _PPC support
	 * has not been enabled.
	 */
	if (acpi_ppc)
		acpi_processor_pstate_control();
}
2548 2549
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2550
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2551
static inline void intel_pstate_request_control_from_smm(void) {}
2552 2553
#endif /* CONFIG_ACPI */

2554 2555 2556 2557 2558
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
	{}
};

2559 2560
static int __init intel_pstate_init(void)
{
2561
	int rc;
2562

2563 2564 2565
	if (no_load)
		return -ENODEV;

2566
	if (x86_match_cpu(hwp_support_ids)) {
2567
		copy_cpu_funcs(&core_funcs);
2568
		if (no_hwp) {
2569
			pstate_funcs.update_util = intel_pstate_update_util;
2570 2571 2572 2573 2574 2575 2576
		} else {
			hwp_active++;
			intel_pstate.attr = hwp_cpufreq_attrs;
			goto hwp_cpu_matched;
		}
	} else {
		const struct x86_cpu_id *id;
2577

2578 2579 2580
		id = x86_match_cpu(intel_pstate_cpu_ids);
		if (!id)
			return -ENODEV;
2581

2582
		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2583
	}
2584

2585 2586 2587
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

2588 2589 2590 2591 2592 2593 2594 2595
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

2596 2597 2598
	if (!hwp_active && hwp_only)
		return -ENOTSUPP;

J
Joe Perches 已提交
2599
	pr_info("Intel P-state driver initializing\n");
2600

2601
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2602 2603 2604
	if (!all_cpu_data)
		return -ENOMEM;

2605 2606
	intel_pstate_request_control_from_smm();

2607
	intel_pstate_sysfs_expose_params();
2608

2609
	mutex_lock(&intel_pstate_driver_lock);
2610
	rc = intel_pstate_register_driver(default_driver);
2611
	mutex_unlock(&intel_pstate_driver_lock);
2612 2613
	if (rc)
		return rc;
2614

2615
	if (hwp_active)
J
Joe Perches 已提交
2616
		pr_info("HWP enabled\n");
2617

2618
	return 0;
2619 2620 2621
}
device_initcall(intel_pstate_init);

2622 2623 2624 2625 2626
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

2627
	if (!strcmp(str, "disable")) {
2628
		no_load = 1;
2629 2630
	} else if (!strcmp(str, "passive")) {
		pr_info("Passive mode enabled\n");
2631
		default_driver = &intel_cpufreq;
2632 2633
		no_hwp = 1;
	}
2634
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
2635
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
2636
		no_hwp = 1;
2637
	}
2638 2639
	if (!strcmp(str, "force"))
		force_load = 1;
2640 2641
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
2642 2643
	if (!strcmp(str, "per_cpu_perf_limits"))
		per_cpu_limits = true;
2644 2645 2646 2647 2648 2649

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

2650 2651 2652 2653
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

2654 2655 2656
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");