intel_pstate.c 22.8 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
28
#include <linux/acpi.h>
29 30 31 32 33 34
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>

35 36 37
#define BYT_RATIOS		0x66a
#define BYT_VIDS		0x66b
#define BYT_TURBO_RATIOS	0x66c
38
#define BYT_TURBO_VIDS		0x66d
39

40
#define FRAC_BITS 8
41 42
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
43

44 45 46 47 48 49 50 51

static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

static inline int32_t div_fp(int32_t x, int32_t y)
{
52
	return div_s64((int64_t)x << FRAC_BITS, y);
53 54 55
}

struct sample {
56
	int32_t core_pct_busy;
57 58 59
	u64 aperf;
	u64 mperf;
	int freq;
60
	ktime_t time;
61 62 63 64 65 66 67 68 69
};

struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
	int	turbo_pstate;
};

70
struct vid_data {
71 72 73
	int min;
	int max;
	int turbo;
74 75 76
	int32_t ratio;
};

77 78 79 80 81 82 83
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
84
	int32_t last_err;
85 86 87 88 89 90 91 92
};

struct cpudata {
	int cpu;

	struct timer_list timer;

	struct pstate_data pstate;
93
	struct vid_data vid;
94 95
	struct _pid pid;

96
	ktime_t last_sample_time;
97 98
	u64	prev_aperf;
	u64	prev_mperf;
99
	struct sample sample;
100 101 102 103 104 105 106 107 108 109 110 111
};

static struct cpudata **all_cpu_data;
struct pstate_adjust_policy {
	int sample_rate_ms;
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

112 113 114 115
struct pstate_funcs {
	int (*get_max)(void);
	int (*get_min)(void);
	int (*get_turbo)(void);
116 117
	void (*set)(struct cpudata*, int pstate);
	void (*get_vid)(struct cpudata *);
118 119
};

120 121 122
struct cpu_defaults {
	struct pstate_adjust_policy pid_policy;
	struct pstate_funcs funcs;
123 124
};

125 126 127
static struct pstate_adjust_policy pid_params;
static struct pstate_funcs pstate_funcs;

128 129
struct perf_limits {
	int no_turbo;
130
	int turbo_disabled;
131 132 133 134
	int max_perf_pct;
	int min_perf_pct;
	int32_t max_perf;
	int32_t min_perf;
135 136
	int max_policy_pct;
	int max_sysfs_pct;
137 138 139 140 141 142 143 144
};

static struct perf_limits limits = {
	.no_turbo = 0,
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 0,
	.min_perf = 0,
145 146
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
147 148 149
};

static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
150
			     int deadband, int integral) {
151 152 153
	pid->setpoint = setpoint;
	pid->deadband  = deadband;
	pid->integral  = int_tofp(integral);
154
	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
}

static inline void pid_p_gain_set(struct _pid *pid, int percent)
{
	pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
}

static inline void pid_i_gain_set(struct _pid *pid, int percent)
{
	pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
}

static inline void pid_d_gain_set(struct _pid *pid, int percent)
{
	pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
}

172
static signed int pid_calc(struct _pid *pid, int32_t busy)
173
{
174
	signed int result;
175 176 177
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

178
	fp_error = int_tofp(pid->setpoint) - busy;
179

180
	if (abs(fp_error) <= int_tofp(pid->deadband))
181 182 183 184 185 186 187 188 189 190 191 192 193
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

	/* limit the integral term */
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

194 195
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
196 197

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
198
	result = result + (1 << (FRAC_BITS-1));
199 200 201 202 203
	return (signed int)fp_toint(result);
}

static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
{
204 205 206
	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
207

208
	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
209 210 211 212 213
}

static inline void intel_pstate_reset_all_pid(void)
{
	unsigned int cpu;
214

215 216 217 218 219 220 221 222 223 224 225 226 227
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu])
			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
	}
}

/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
	*(u32 *)data = val;
	intel_pstate_reset_all_pid();
	return 0;
}
228

229 230 231 232 233
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
234
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
235 236 237 238 239 240 241

struct pid_param {
	char *name;
	void *value;
};

static struct pid_param pid_files[] = {
242 243 244 245 246 247
	{"sample_rate_ms", &pid_params.sample_rate_ms},
	{"d_gain_pct", &pid_params.d_gain_pct},
	{"i_gain_pct", &pid_params.i_gain_pct},
	{"deadband", &pid_params.deadband},
	{"setpoint", &pid_params.setpoint},
	{"p_gain_pct", &pid_params.p_gain_pct},
248 249 250
	{NULL, NULL}
};

251
static void __init intel_pstate_debug_expose_params(void)
252
{
253
	struct dentry *debugfs_parent;
254 255 256 257 258 259 260
	int i = 0;

	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
	while (pid_files[i].name) {
		debugfs_create_file(pid_files[i].name, 0660,
261 262
				    debugfs_parent, pid_files[i].value,
				    &fops_pid_param);
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
		i++;
	}
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
		return sprintf(buf, "%u\n", limits.object);		\
	}

static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
278
			      const char *buf, size_t count)
279 280 281
{
	unsigned int input;
	int ret;
282

283 284 285 286
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
	limits.no_turbo = clamp_t(int, input, 0 , 1);
287 288 289 290
	if (limits.turbo_disabled) {
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
		limits.no_turbo = limits.turbo_disabled;
	}
291 292 293 294
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
295
				  const char *buf, size_t count)
296 297 298
{
	unsigned int input;
	int ret;
299

300 301 302 303
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

304 305
	limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
306
	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
307

308 309 310 311
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
312
				  const char *buf, size_t count)
313 314 315
{
	unsigned int input;
	int ret;
316

317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
	limits.min_perf_pct = clamp_t(int, input, 0 , 100);
	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));

	return count;
}

show_one(no_turbo, no_turbo);
show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);

static struct attribute *intel_pstate_attributes[] = {
	&no_turbo.attr,
	&max_perf_pct.attr,
	&min_perf_pct.attr,
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};

345
static void __init intel_pstate_sysfs_expose_params(void)
346
{
347
	struct kobject *intel_pstate_kobject;
348 349 350 351 352
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
	BUG_ON(!intel_pstate_kobject);
353
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
354 355 356 357
	BUG_ON(rc);
}

/************************** sysfs end ************************/
358 359 360
static int byt_get_min_pstate(void)
{
	u64 value;
361

362
	rdmsrl(BYT_RATIOS, value);
D
Dirk Brandewie 已提交
363
	return (value >> 8) & 0x7F;
364 365 366 367 368
}

static int byt_get_max_pstate(void)
{
	u64 value;
369

370
	rdmsrl(BYT_RATIOS, value);
D
Dirk Brandewie 已提交
371
	return (value >> 16) & 0x7F;
372
}
373

374 375 376
static int byt_get_turbo_pstate(void)
{
	u64 value;
377

378
	rdmsrl(BYT_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
379
	return value & 0x7F;
380 381
}

382 383 384 385 386 387 388
static void byt_set_pstate(struct cpudata *cpudata, int pstate)
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

	val = pstate << 8;
389
	if (limits.no_turbo && !limits.turbo_disabled)
390 391 392 393 394 395 396 397 398
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
	vid = fp_toint(vid_fp);

399 400 401
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

402 403 404 405 406 407 408 409 410 411
	val |= vid;

	wrmsrl(MSR_IA32_PERF_CTL, val);
}

static void byt_get_vid(struct cpudata *cpudata)
{
	u64 value;

	rdmsrl(BYT_VIDS, value);
D
Dirk Brandewie 已提交
412 413
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
414 415 416 417
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
418 419 420

	rdmsrl(BYT_TURBO_VIDS, value);
	cpudata->vid.turbo = value & 0x7f;
421 422
}

423
static int core_get_min_pstate(void)
424 425
{
	u64 value;
426

427
	rdmsrl(MSR_PLATFORM_INFO, value);
428 429 430
	return (value >> 40) & 0xFF;
}

431
static int core_get_max_pstate(void)
432 433
{
	u64 value;
434

435
	rdmsrl(MSR_PLATFORM_INFO, value);
436 437 438
	return (value >> 8) & 0xFF;
}

439
static int core_get_turbo_pstate(void)
440 441 442
{
	u64 value;
	int nont, ret;
443

444
	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
445
	nont = core_get_max_pstate();
446
	ret = (value) & 255;
447 448 449 450 451
	if (ret <= nont)
		ret = nont;
	return ret;
}

452
static void core_set_pstate(struct cpudata *cpudata, int pstate)
453 454 455 456
{
	u64 val;

	val = pstate << 8;
457
	if (limits.no_turbo && !limits.turbo_disabled)
458 459
		val |= (u64)1 << 32;

460
	wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
}

static struct cpu_defaults core_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
		.set = core_set_pstate,
	},
};

480 481 482 483 484 485 486 487 488 489 490 491
static struct cpu_defaults byt_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = byt_get_max_pstate,
		.get_min = byt_get_min_pstate,
492
		.get_turbo = byt_get_turbo_pstate,
493 494
		.set = byt_set_pstate,
		.get_vid = byt_get_vid,
495 496 497
	},
};

498 499 500
static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
501
	int max_perf_adj;
502
	int min_perf;
503

504 505 506
	if (limits.no_turbo)
		max_perf = cpu->pstate.max_pstate;

507 508
	max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
	*max = clamp_t(int, max_perf_adj,
509 510 511
			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);

	min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
512
	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
513 514 515 516 517 518 519 520 521 522 523 524 525 526
}

static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
{
	int max_perf, min_perf;

	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);

	pstate = clamp_t(int, pstate, min_perf, max_perf);

	if (pstate == cpu->pstate.current_pstate)
		return;

	trace_cpu_frequency(pstate * 100000, cpu->cpu);
527

528 529
	cpu->pstate.current_pstate = pstate;

530
	pstate_funcs.set(cpu, pstate);
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
}

static inline void intel_pstate_pstate_increase(struct cpudata *cpu, int steps)
{
	int target;
	target = cpu->pstate.current_pstate + steps;

	intel_pstate_set_pstate(cpu, target);
}

static inline void intel_pstate_pstate_decrease(struct cpudata *cpu, int steps)
{
	int target;
	target = cpu->pstate.current_pstate - steps;
	intel_pstate_set_pstate(cpu, target);
}

static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
550 551 552
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
553

554 555
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
556
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
557 558
}

559
static inline void intel_pstate_calc_busy(struct cpudata *cpu)
560
{
561
	struct sample *sample = &cpu->sample;
562 563
	int64_t core_pct;
	int32_t rem;
564

565 566 567 568 569
	core_pct = int_tofp(sample->aperf) * int_tofp(100);
	core_pct = div_u64_rem(core_pct, int_tofp(sample->mperf), &rem);

	if ((rem << 1) >= int_tofp(sample->mperf))
		core_pct += 1;
570

571
	sample->freq = fp_toint(
572
		mul_fp(int_tofp(cpu->pstate.max_pstate * 1000), core_pct));
573

574
	sample->core_pct_busy = (int32_t)core_pct;
575 576 577 578 579 580 581 582
}

static inline void intel_pstate_sample(struct cpudata *cpu)
{
	u64 aperf, mperf;

	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
583

584 585 586
	aperf = aperf >> FRAC_BITS;
	mperf = mperf >> FRAC_BITS;

587 588
	cpu->last_sample_time = cpu->sample.time;
	cpu->sample.time = ktime_get();
589 590 591 592
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
593

594
	intel_pstate_calc_busy(cpu);
595 596 597 598 599 600 601

	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
}

static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
{
602
	int delay;
603

604
	delay = msecs_to_jiffies(pid_params.sample_rate_ms);
605 606 607
	mod_timer_pinned(&cpu->timer, jiffies + delay);
}

608
static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
609
{
610 611 612
	int32_t core_busy, max_pstate, current_pstate, sample_ratio;
	u32 duration_us;
	u32 sample_time;
613

614
	core_busy = cpu->sample.core_pct_busy;
615
	max_pstate = int_tofp(cpu->pstate.max_pstate);
616
	current_pstate = int_tofp(cpu->pstate.current_pstate);
617
	core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
618

619
	sample_time = pid_params.sample_rate_ms  * USEC_PER_MSEC;
620
	duration_us = (u32) ktime_us_delta(cpu->sample.time,
621
					   cpu->last_sample_time);
622 623
	if (duration_us > sample_time * 3) {
		sample_ratio = div_fp(int_tofp(sample_time),
624
				      int_tofp(duration_us));
625 626 627
		core_busy = mul_fp(core_busy, sample_ratio);
	}

628
	return core_busy;
629 630 631 632
}

static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
{
633
	int32_t busy_scaled;
634 635 636 637 638 639 640 641 642 643
	struct _pid *pid;
	signed int ctl = 0;
	int steps;

	pid = &cpu->pid;
	busy_scaled = intel_pstate_get_scaled_busy(cpu);

	ctl = pid_calc(pid, busy_scaled);

	steps = abs(ctl);
644

645 646 647 648 649 650 651 652 653
	if (ctl < 0)
		intel_pstate_pstate_increase(cpu, steps);
	else
		intel_pstate_pstate_decrease(cpu, steps);
}

static void intel_pstate_timer_func(unsigned long __data)
{
	struct cpudata *cpu = (struct cpudata *) __data;
654
	struct sample *sample;
655 656

	intel_pstate_sample(cpu);
657

658
	sample = &cpu->sample;
659

660
	intel_pstate_adjust_busy_pstate(cpu);
661 662 663 664 665 666 667 668

	trace_pstate_sample(fp_toint(sample->core_pct_busy),
			fp_toint(intel_pstate_get_scaled_busy(cpu)),
			cpu->pstate.current_pstate,
			sample->mperf,
			sample->aperf,
			sample->freq);

669 670 671 672
	intel_pstate_set_sample_time(cpu);
}

#define ICPU(model, policy) \
673 674
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
675 676

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
677 678
	ICPU(0x2a, core_params),
	ICPU(0x2d, core_params),
679
	ICPU(0x37, byt_params),
680 681
	ICPU(0x3a, core_params),
	ICPU(0x3c, core_params),
682
	ICPU(0x3d, core_params),
683 684 685 686
	ICPU(0x3e, core_params),
	ICPU(0x3f, core_params),
	ICPU(0x45, core_params),
	ICPU(0x46, core_params),
687 688
	ICPU(0x4f, core_params),
	ICPU(0x56, core_params),
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

	all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata), GFP_KERNEL);
	if (!all_cpu_data[cpunum])
		return -ENOMEM;

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
704
	intel_pstate_get_cpu_pstates(cpu);
705

706 707
	init_timer_deferrable(&cpu->timer);
	cpu->timer.function = intel_pstate_timer_func;
708
	cpu->timer.data = (unsigned long)cpu;
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
	cpu->timer.expires = jiffies + HZ/100;
	intel_pstate_busy_pid_reset(cpu);
	intel_pstate_sample(cpu);

	add_timer_on(&cpu->timer, cpunum);

	pr_info("Intel pstate controlling: cpu %d\n", cpunum);

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
	struct sample *sample;
	struct cpudata *cpu;

	cpu = all_cpu_data[cpu_num];
	if (!cpu)
		return 0;
728
	sample = &cpu->sample;
729 730 731 732 733 734 735 736 737
	return sample->freq;
}

static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];

738 739 740
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

741 742 743 744 745
	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
		limits.min_perf_pct = 100;
		limits.min_perf = int_tofp(1);
		limits.max_perf_pct = 100;
		limits.max_perf = int_tofp(1);
746
		limits.no_turbo = limits.turbo_disabled;
747
		return 0;
748
	}
749 750 751 752
	limits.min_perf_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
	limits.min_perf_pct = clamp_t(int, limits.min_perf_pct, 0 , 100);
	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));

753
	limits.max_policy_pct = (policy->max * 100) / policy->cpuinfo.max_freq;
754 755
	limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
756
	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
757 758 759 760 761 762

	return 0;
}

static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
763
	cpufreq_verify_within_cpu_limits(policy);
764

765
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
766
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
767 768 769 770 771
		return -EINVAL;

	return 0;
}

772
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
773
{
774 775
	int cpu_num = policy->cpu;
	struct cpudata *cpu = all_cpu_data[cpu_num];
776

777 778
	pr_info("intel_pstate CPU %d exiting\n", cpu_num);

779
	del_timer_sync(&all_cpu_data[cpu_num]->timer);
780 781 782
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
	kfree(all_cpu_data[cpu_num]);
	all_cpu_data[cpu_num] = NULL;
783 784
}

785
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
786 787
{
	struct cpudata *cpu;
788
	int rc;
789
	u64 misc_en;
790 791 792 793 794 795 796

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

797 798
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
	if (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
799
	    cpu->pstate.max_pstate == cpu->pstate.turbo_pstate) {
800 801 802 803
		limits.turbo_disabled = 1;
		limits.no_turbo = 1;
	}
	if (limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
804 805 806 807
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;

808 809
	policy->min = cpu->pstate.min_pstate * 100000;
	policy->max = cpu->pstate.turbo_pstate * 100000;
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825

	/* cpuinfo and default policy values */
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * 100000;
	policy->cpuinfo.max_freq = cpu->pstate.turbo_pstate * 100000;
	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
	cpumask_set_cpu(policy->cpu, policy->cpus);

	return 0;
}

static struct cpufreq_driver intel_pstate_driver = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
826
	.stop_cpu	= intel_pstate_stop_cpu,
827 828 829
	.name		= "intel_pstate",
};

830 831
static int __initdata no_load;

832 833 834 835 836 837 838 839
static int intel_pstate_msrs_not_valid(void)
{
	/* Check that all the msr's we are using are valid. */
	u64 aperf, mperf, tmp;

	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);

840
	if (!pstate_funcs.get_max() ||
841 842
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
843 844 845 846 847 848 849 850 851 852 853 854
		return -ENODEV;

	rdmsrl(MSR_IA32_APERF, tmp);
	if (!(tmp - aperf))
		return -ENODEV;

	rdmsrl(MSR_IA32_MPERF, tmp);
	if (!(tmp - mperf))
		return -ENODEV;

	return 0;
}
855

856
static void copy_pid_params(struct pstate_adjust_policy *policy)
857 858 859 860 861 862 863 864 865
{
	pid_params.sample_rate_ms = policy->sample_rate_ms;
	pid_params.p_gain_pct = policy->p_gain_pct;
	pid_params.i_gain_pct = policy->i_gain_pct;
	pid_params.d_gain_pct = policy->d_gain_pct;
	pid_params.deadband = policy->deadband;
	pid_params.setpoint = policy->setpoint;
}

866
static void copy_cpu_funcs(struct pstate_funcs *funcs)
867 868 869 870 871
{
	pstate_funcs.get_max   = funcs->get_max;
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
	pstate_funcs.set       = funcs->set;
872
	pstate_funcs.get_vid   = funcs->get_vid;
873 874
}

875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
#if IS_ENABLED(CONFIG_ACPI)
#include <acpi/processor.h>

static bool intel_pstate_no_acpi_pss(void)
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
};

/* Hardware vendor-specific info that has its own power management modes */
static struct hw_vendor_info vendor_info[] = {
	{1, "HP    ", "ProLiant"},
	{0, "", ""},
};

static bool intel_pstate_platform_pwr_mgmt_exists(void)
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;

924 925
	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
926 927 928
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
929 930 931
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
		    !strncmp(hdr.oem_table_id, v_info->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
		    intel_pstate_no_acpi_pss())
932 933 934 935 936 937 938 939 940
			return true;
	}

	return false;
}
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
#endif /* CONFIG_ACPI */

941 942
static int __init intel_pstate_init(void)
{
943
	int cpu, rc = 0;
944
	const struct x86_cpu_id *id;
945
	struct cpu_defaults *cpu_info;
946

947 948 949
	if (no_load)
		return -ENODEV;

950 951 952 953
	id = x86_match_cpu(intel_pstate_cpu_ids);
	if (!id)
		return -ENODEV;

954 955 956 957 958 959 960
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

961 962 963 964 965
	cpu_info = (struct cpu_defaults *)id->driver_data;

	copy_pid_params(&cpu_info->pid_policy);
	copy_cpu_funcs(&cpu_info->funcs);

966 967 968
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

969 970
	pr_info("Intel P-state driver initializing.\n");

971
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
972 973 974 975 976 977 978 979 980
	if (!all_cpu_data)
		return -ENOMEM;

	rc = cpufreq_register_driver(&intel_pstate_driver);
	if (rc)
		goto out;

	intel_pstate_debug_expose_params();
	intel_pstate_sysfs_expose_params();
981

982 983
	return rc;
out:
984 985 986 987 988 989 990 991 992 993
	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			del_timer_sync(&all_cpu_data[cpu]->timer);
			kfree(all_cpu_data[cpu]);
		}
	}

	put_online_cpus();
	vfree(all_cpu_data);
994 995 996 997
	return -ENODEV;
}
device_initcall(intel_pstate_init);

998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

	if (!strcmp(str, "disable"))
		no_load = 1;
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

1009 1010 1011
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");