intel_pstate.c 41.8 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
28
#include <linux/acpi.h>
29
#include <linux/vmalloc.h>
30 31 32 33 34
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
35
#include <asm/cpufeature.h>
36

37 38 39 40
#define ATOM_RATIOS		0x66a
#define ATOM_VIDS		0x66b
#define ATOM_TURBO_RATIOS	0x66c
#define ATOM_TURBO_VIDS		0x66d
41

42
#define FRAC_BITS 8
43 44
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
45

46 47 48 49 50
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

51
static inline int32_t div_fp(s64 x, s64 y)
52
{
53
	return div64_s64((int64_t)x << FRAC_BITS, y);
54 55
}

56 57 58 59 60 61 62 63 64 65 66
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
/**
 * struct sample -	Store performance sample
 * @core_pct_busy:	Ratio of APERF/MPERF in percent, which is actual
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
 *			P state. This can be different than core_pct_busy
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @freq:		Effective frequency calculated from APERF/MPERF
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
86
struct sample {
87
	int32_t core_pct_busy;
88
	int32_t busy_scaled;
89 90
	u64 aperf;
	u64 mperf;
91
	u64 tsc;
92
	int freq;
93
	u64 time;
94 95
};

96 97 98 99 100 101 102 103 104 105 106 107 108 109
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
 *
 * Stores the per cpu model P state limits and current P state.
 */
110 111 112 113
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
114
	int	max_pstate_physical;
115
	int	scaling;
116 117 118
	int	turbo_pstate;
};

119 120 121 122 123 124 125 126 127 128 129 130 131
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
132
struct vid_data {
133 134 135
	int min;
	int max;
	int turbo;
136 137 138
	int32_t ratio;
};

139 140 141 142 143 144 145 146 147 148 149 150
/**
 * struct _pid -	Stores PID data
 * @setpoint:		Target set point for busyness or performance
 * @integral:		Storage for accumulated error values
 * @p_gain:		PID proportional gain
 * @i_gain:		PID integral gain
 * @d_gain:		PID derivative gain
 * @deadband:		PID deadband
 * @last_err:		Last error storage for integral part of PID calculation
 *
 * Stores PID coefficients and last error for PID controller.
 */
151 152 153 154 155 156 157
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
158
	int32_t last_err;
159 160
};

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
 * @update_util:	CPUFreq utility callback information
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @pid:		Stores PID parameters for this CPU
 * @last_sample_time:	Last Sample time
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
 *
 * This structure stores per CPU instance data for all CPUs.
 */
178 179 180
struct cpudata {
	int cpu;

181
	struct update_util_data update_util;
182 183

	struct pstate_data pstate;
184
	struct vid_data vid;
185 186
	struct _pid pid;

187
	u64	last_sample_time;
188 189
	u64	prev_aperf;
	u64	prev_mperf;
190
	u64	prev_tsc;
191
	u64	prev_cummulative_iowait;
192
	struct sample sample;
193 194 195
};

static struct cpudata **all_cpu_data;
196 197 198 199 200 201 202 203 204 205 206 207 208

/**
 * struct pid_adjust_policy - Stores static PID configuration data
 * @sample_rate_ms:	PID calculation sample rate in ms
 * @sample_rate_ns:	Sample rate calculation in ns
 * @deadband:		PID deadband
 * @setpoint:		PID Setpoint
 * @p_gain_pct:		PID proportional gain
 * @i_gain_pct:		PID integral gain
 * @d_gain_pct:		PID derivative gain
 *
 * Stores per CPU model static PID configuration data.
 */
209 210
struct pstate_adjust_policy {
	int sample_rate_ms;
211
	s64 sample_rate_ns;
212 213 214 215 216 217 218
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

219 220 221 222 223 224 225 226 227 228 229 230 231 232
/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 * @get_target_pstate:	Callback to a function to calculate next P state to use
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
233 234
struct pstate_funcs {
	int (*get_max)(void);
235
	int (*get_max_physical)(void);
236 237
	int (*get_min)(void);
	int (*get_turbo)(void);
238
	int (*get_scaling)(void);
239
	u64 (*get_val)(struct cpudata*, int pstate);
240
	void (*get_vid)(struct cpudata *);
241
	int32_t (*get_target_pstate)(struct cpudata *);
242 243
};

244 245 246 247 248
/**
 * struct cpu_defaults- Per CPU model default config data
 * @pid_policy:	PID config data
 * @funcs:		Callback function data
 */
249 250 251
struct cpu_defaults {
	struct pstate_adjust_policy pid_policy;
	struct pstate_funcs funcs;
252 253
};

254
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
255
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
256

257 258
static struct pstate_adjust_policy pid_params;
static struct pstate_funcs pstate_funcs;
D
Dirk Brandewie 已提交
259
static int hwp_active;
260

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288

/**
 * struct perf_limits - Store user and policy limits
 * @no_turbo:		User requested turbo state from intel_pstate sysfs
 * @turbo_disabled:	Platform turbo status either from msr
 *			MSR_IA32_MISC_ENABLE or when maximum available pstate
 *			matches the maximum turbo pstate
 * @max_perf_pct:	Effective maximum performance limit in percentage, this
 *			is minimum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @min_perf_pct:	Effective minimum performance limit in percentage, this
 *			is maximum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @max_perf:		This is a scaled value between 0 to 255 for max_perf_pct
 *			This value is used to limit max pstate
 * @min_perf:		This is a scaled value between 0 to 255 for min_perf_pct
 *			This value is used to limit min pstate
 * @max_policy_pct:	The maximum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @max_sysfs_pct:	The maximum performance in percentage enforced by
 *			intel pstate sysfs interface
 * @min_policy_pct:	The minimum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @min_sysfs_pct:	The minimum performance in percentage enforced by
 *			intel pstate sysfs interface
 *
 * Storage for user and policy defined limits.
 */
289 290
struct perf_limits {
	int no_turbo;
291
	int turbo_disabled;
292 293 294 295
	int max_perf_pct;
	int min_perf_pct;
	int32_t max_perf;
	int32_t min_perf;
296 297
	int max_policy_pct;
	int max_sysfs_pct;
298 299
	int min_policy_pct;
	int min_sysfs_pct;
300 301
};

302 303 304 305 306 307 308 309 310 311 312 313 314 315
static struct perf_limits performance_limits = {
	.no_turbo = 0,
	.turbo_disabled = 0,
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 100,
	.min_perf = int_tofp(1),
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
};

static struct perf_limits powersave_limits = {
316
	.no_turbo = 0,
317
	.turbo_disabled = 0,
318 319 320 321
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 0,
	.min_perf = 0,
322 323
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
324 325
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
326 327
};

328 329 330 331 332 333
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
static struct perf_limits *limits = &performance_limits;
#else
static struct perf_limits *limits = &powersave_limits;
#endif

334
static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
335
			     int deadband, int integral) {
336 337
	pid->setpoint = int_tofp(setpoint);
	pid->deadband  = int_tofp(deadband);
338
	pid->integral  = int_tofp(integral);
339
	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
}

static inline void pid_p_gain_set(struct _pid *pid, int percent)
{
	pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
}

static inline void pid_i_gain_set(struct _pid *pid, int percent)
{
	pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
}

static inline void pid_d_gain_set(struct _pid *pid, int percent)
{
	pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
}

357
static signed int pid_calc(struct _pid *pid, int32_t busy)
358
{
359
	signed int result;
360 361 362
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

363
	fp_error = pid->setpoint - busy;
364

365
	if (abs(fp_error) <= pid->deadband)
366 367 368 369 370 371
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

372 373 374 375 376 377 378 379
	/*
	 * We limit the integral here so that it will never
	 * get higher than 30.  This prevents it from becoming
	 * too large an input over long periods of time and allows
	 * it to get factored out sooner.
	 *
	 * The value of 30 was chosen through experimentation.
	 */
380 381 382 383 384 385
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

386 387
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
388 389

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
390
	result = result + (1 << (FRAC_BITS-1));
391 392 393 394 395
	return (signed int)fp_toint(result);
}

static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
{
396 397 398
	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
399

400
	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
401 402 403 404 405
}

static inline void intel_pstate_reset_all_pid(void)
{
	unsigned int cpu;
406

407 408 409 410 411 412
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu])
			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
	}
}

413 414 415 416 417 418 419
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
420
	limits->turbo_disabled =
421 422 423 424
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

425
static void intel_pstate_hwp_set(const struct cpumask *cpumask)
D
Dirk Brandewie 已提交
426
{
427 428 429 430 431 432 433
	int min, hw_min, max, hw_max, cpu, range, adj_range;
	u64 value, cap;

	rdmsrl(MSR_HWP_CAPABILITIES, cap);
	hw_min = HWP_LOWEST_PERF(cap);
	hw_max = HWP_HIGHEST_PERF(cap);
	range = hw_max - hw_min;
D
Dirk Brandewie 已提交
434

435
	for_each_cpu(cpu, cpumask) {
D
Dirk Brandewie 已提交
436
		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
437
		adj_range = limits->min_perf_pct * range / 100;
438
		min = hw_min + adj_range;
D
Dirk Brandewie 已提交
439 440 441
		value &= ~HWP_MIN_PERF(~0L);
		value |= HWP_MIN_PERF(min);

442
		adj_range = limits->max_perf_pct * range / 100;
443
		max = hw_min + adj_range;
444
		if (limits->no_turbo) {
445 446 447
			hw_max = HWP_GUARANTEED_PERF(cap);
			if (hw_max < max)
				max = hw_max;
D
Dirk Brandewie 已提交
448 449 450 451 452 453
		}

		value &= ~HWP_MAX_PERF(~0L);
		value |= HWP_MAX_PERF(max);
		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
	}
454
}
D
Dirk Brandewie 已提交
455

456 457 458 459
static void intel_pstate_hwp_set_online_cpus(void)
{
	get_online_cpus();
	intel_pstate_hwp_set(cpu_online_mask);
D
Dirk Brandewie 已提交
460 461 462
	put_online_cpus();
}

463 464 465 466 467 468 469
/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
	*(u32 *)data = val;
	intel_pstate_reset_all_pid();
	return 0;
}
470

471 472 473 474 475
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
476
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
477 478 479 480 481 482 483

struct pid_param {
	char *name;
	void *value;
};

static struct pid_param pid_files[] = {
484 485 486 487 488 489
	{"sample_rate_ms", &pid_params.sample_rate_ms},
	{"d_gain_pct", &pid_params.d_gain_pct},
	{"i_gain_pct", &pid_params.i_gain_pct},
	{"deadband", &pid_params.deadband},
	{"setpoint", &pid_params.setpoint},
	{"p_gain_pct", &pid_params.p_gain_pct},
490 491 492
	{NULL, NULL}
};

493
static void __init intel_pstate_debug_expose_params(void)
494
{
495
	struct dentry *debugfs_parent;
496 497
	int i = 0;

D
Dirk Brandewie 已提交
498 499
	if (hwp_active)
		return;
500 501 502 503 504
	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
	while (pid_files[i].name) {
		debugfs_create_file(pid_files[i].name, 0660,
505 506
				    debugfs_parent, pid_files[i].value,
				    &fops_pid_param);
507 508 509 510 511 512 513 514 515 516 517
		i++;
	}
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
518
		return sprintf(buf, "%u\n", limits->object);		\
519 520
	}

521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
	turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
	return sprintf(buf, "%u\n", turbo_pct);
}

537 538 539 540 541 542 543 544 545 546 547
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	return sprintf(buf, "%u\n", total);
}

548 549 550 551 552 553
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

	update_turbo_state();
554 555
	if (limits->turbo_disabled)
		ret = sprintf(buf, "%u\n", limits->turbo_disabled);
556
	else
557
		ret = sprintf(buf, "%u\n", limits->no_turbo);
558 559 560 561

	return ret;
}

562
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
563
			      const char *buf, size_t count)
564 565 566
{
	unsigned int input;
	int ret;
567

568 569 570
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
571 572

	update_turbo_state();
573
	if (limits->turbo_disabled) {
574
		pr_warn("intel_pstate: Turbo disabled by BIOS or unavailable on processor\n");
575
		return -EPERM;
576
	}
D
Dirk Brandewie 已提交
577

578
	limits->no_turbo = clamp_t(int, input, 0, 1);
579

D
Dirk Brandewie 已提交
580
	if (hwp_active)
581
		intel_pstate_hwp_set_online_cpus();
D
Dirk Brandewie 已提交
582

583 584 585 586
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
587
				  const char *buf, size_t count)
588 589 590
{
	unsigned int input;
	int ret;
591

592 593 594 595
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

596 597 598 599 600 601 602 603 604
	limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);
	limits->max_perf_pct = max(limits->min_perf_pct,
				   limits->max_perf_pct);
	limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
				  int_tofp(100));
605

D
Dirk Brandewie 已提交
606
	if (hwp_active)
607
		intel_pstate_hwp_set_online_cpus();
608 609 610 611
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
612
				  const char *buf, size_t count)
613 614 615
{
	unsigned int input;
	int ret;
616

617 618 619
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
620

621 622 623 624 625 626 627 628 629
	limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->min_perf_pct = min(limits->max_perf_pct,
				   limits->min_perf_pct);
	limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
				  int_tofp(100));
630

D
Dirk Brandewie 已提交
631
	if (hwp_active)
632
		intel_pstate_hwp_set_online_cpus();
633 634 635 636 637 638 639 640 641
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
642
define_one_global_ro(turbo_pct);
643
define_one_global_ro(num_pstates);
644 645 646 647 648

static struct attribute *intel_pstate_attributes[] = {
	&no_turbo.attr,
	&max_perf_pct.attr,
	&min_perf_pct.attr,
649
	&turbo_pct.attr,
650
	&num_pstates.attr,
651 652 653 654 655 656 657
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};

658
static void __init intel_pstate_sysfs_expose_params(void)
659
{
660
	struct kobject *intel_pstate_kobject;
661 662 663 664 665
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
	BUG_ON(!intel_pstate_kobject);
666
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
667 668 669
	BUG_ON(rc);
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
670

671
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
672
{
673 674 675
	/* First disable HWP notification interrupt as we don't process them */
	wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);

676
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
D
Dirk Brandewie 已提交
677 678
}

679
static int atom_get_min_pstate(void)
680 681
{
	u64 value;
682

683
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
684
	return (value >> 8) & 0x7F;
685 686
}

687
static int atom_get_max_pstate(void)
688 689
{
	u64 value;
690

691
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
692
	return (value >> 16) & 0x7F;
693
}
694

695
static int atom_get_turbo_pstate(void)
696 697
{
	u64 value;
698

699
	rdmsrl(ATOM_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
700
	return value & 0x7F;
701 702
}

703
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
704 705 706 707 708
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

709
	val = (u64)pstate << 8;
710
	if (limits->no_turbo && !limits->turbo_disabled)
711 712 713 714 715 716 717
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
718
	vid = ceiling_fp(vid_fp);
719

720 721 722
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

723
	return val | vid;
724 725
}

726
static int silvermont_get_scaling(void)
727 728 729
{
	u64 value;
	int i;
730 731 732
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
733 734

	rdmsrl(MSR_FSB_FREQ, value);
735 736
	i = value & 0x7;
	WARN_ON(i > 4);
737

738 739
	return silvermont_freq_table[i];
}
740

741 742 743 744 745 746 747 748 749 750 751 752 753 754
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
755 756
}

757
static void atom_get_vid(struct cpudata *cpudata)
758 759 760
{
	u64 value;

761
	rdmsrl(ATOM_VIDS, value);
D
Dirk Brandewie 已提交
762 763
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
764 765 766 767
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
768

769
	rdmsrl(ATOM_TURBO_VIDS, value);
770
	cpudata->vid.turbo = value & 0x7f;
771 772
}

773
static int core_get_min_pstate(void)
774 775
{
	u64 value;
776

777
	rdmsrl(MSR_PLATFORM_INFO, value);
778 779 780
	return (value >> 40) & 0xFF;
}

781
static int core_get_max_pstate_physical(void)
782 783
{
	u64 value;
784

785
	rdmsrl(MSR_PLATFORM_INFO, value);
786 787 788
	return (value >> 8) & 0xFF;
}

789
static int core_get_max_pstate(void)
790
{
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
	u64 tar;
	u64 plat_info;
	int max_pstate;
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
		/* Do some sanity checking for safety */
		if (plat_info & 0x600000000) {
			u64 tdp_ctrl;
			u64 tdp_ratio;
			int tdp_msr;

			err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
			if (err)
				goto skip_tar;

			tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
			err = rdmsrl_safe(tdp_msr, &tdp_ratio);
			if (err)
				goto skip_tar;

			if (tdp_ratio - 1 == tar) {
				max_pstate = tar;
				pr_debug("max_pstate=TAC %x\n", max_pstate);
			} else {
				goto skip_tar;
			}
		}
	}
824

825 826
skip_tar:
	return max_pstate;
827 828
}

829
static int core_get_turbo_pstate(void)
830 831 832
{
	u64 value;
	int nont, ret;
833

834
	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
835
	nont = core_get_max_pstate();
836
	ret = (value) & 255;
837 838 839 840 841
	if (ret <= nont)
		ret = nont;
	return ret;
}

842 843 844 845 846
static inline int core_get_scaling(void)
{
	return 100000;
}

847
static u64 core_get_val(struct cpudata *cpudata, int pstate)
848 849 850
{
	u64 val;

851
	val = (u64)pstate << 8;
852
	if (limits->no_turbo && !limits->turbo_disabled)
853 854
		val |= (u64)1 << 32;

855
	return val;
856 857
}

858 859 860 861 862 863 864 865 866 867 868 869 870
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

871 872 873 874 875 876 877 878 879 880 881
static struct cpu_defaults core_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
882
		.get_max_physical = core_get_max_pstate_physical,
883 884
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
885
		.get_scaling = core_get_scaling,
886
		.get_val = core_get_val,
887
		.get_target_pstate = get_target_pstate_use_performance,
888 889 890
	},
};

891 892 893 894 895 896 897 898 899 900 901 902 903 904
static struct cpu_defaults silvermont_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
905
		.get_val = atom_get_val,
906 907
		.get_scaling = silvermont_get_scaling,
		.get_vid = atom_get_vid,
908
		.get_target_pstate = get_target_pstate_use_cpu_load,
909 910 911 912
	},
};

static struct cpu_defaults airmont_params = {
913 914 915
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
916
		.setpoint = 60,
917 918 919 920 921
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
922 923 924 925
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
926
		.get_val = atom_get_val,
927
		.get_scaling = airmont_get_scaling,
928
		.get_vid = atom_get_vid,
929
		.get_target_pstate = get_target_pstate_use_cpu_load,
930 931 932
	},
};

933 934 935 936 937 938 939 940 941 942 943
static struct cpu_defaults knl_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
944
		.get_max_physical = core_get_max_pstate_physical,
945 946
		.get_min = core_get_min_pstate,
		.get_turbo = knl_get_turbo_pstate,
947
		.get_scaling = core_get_scaling,
948
		.get_val = core_get_val,
949
		.get_target_pstate = get_target_pstate_use_performance,
950 951 952
	},
};

953 954 955
static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
956
	int max_perf_adj;
957
	int min_perf;
958

959
	if (limits->no_turbo || limits->turbo_disabled)
960 961
		max_perf = cpu->pstate.max_pstate;

962 963 964 965 966
	/*
	 * performance can be limited by user through sysfs, by cpufreq
	 * policy, or by cpu specific default values determined through
	 * experimentation.
	 */
967
	max_perf_adj = fp_toint(max_perf * limits->max_perf);
968 969
	*max = clamp_t(int, max_perf_adj,
			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
970

971
	min_perf = fp_toint(max_perf * limits->min_perf);
972
	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
973 974
}

975
static inline void intel_pstate_record_pstate(struct cpudata *cpu, int pstate)
976
{
977
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
978
	cpu->pstate.current_pstate = pstate;
979
}
980

981 982 983 984 985 986 987 988 989 990 991 992
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	int pstate = cpu->pstate.min_pstate;

	intel_pstate_record_pstate(cpu, pstate);
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
993 994 995 996
}

static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
997 998
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
999
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1000
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1001
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1002

1003 1004
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1005 1006

	intel_pstate_set_min_pstate(cpu);
1007 1008
}

1009
static inline void intel_pstate_calc_busy(struct cpudata *cpu)
1010
{
1011
	struct sample *sample = &cpu->sample;
1012
	int64_t core_pct;
1013

1014
	core_pct = int_tofp(sample->aperf) * int_tofp(100);
1015
	core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
1016

1017
	sample->core_pct_busy = (int32_t)core_pct;
1018 1019
}

1020
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1021 1022
{
	u64 aperf, mperf;
1023
	unsigned long flags;
1024
	u64 tsc;
1025

1026
	local_irq_save(flags);
1027 1028
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1029
	tsc = rdtsc();
1030
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1031
		local_irq_restore(flags);
1032
		return false;
1033
	}
1034
	local_irq_restore(flags);
1035

1036
	cpu->last_sample_time = cpu->sample.time;
1037
	cpu->sample.time = time;
1038 1039
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1040
	cpu->sample.tsc =  tsc;
1041 1042
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1043
	cpu->sample.tsc -= cpu->prev_tsc;
1044

1045 1046
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1047
	cpu->prev_tsc = tsc;
1048 1049 1050 1051 1052 1053 1054 1055
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
	return !!cpu->last_sample_time;
1056 1057
}

1058 1059 1060 1061 1062 1063
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
	return div64_u64(cpu->pstate.max_pstate_physical * cpu->sample.aperf *
		cpu->pstate.scaling, cpu->sample.mperf);
}

1064 1065 1066
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
{
	struct sample *sample = &cpu->sample;
1067 1068 1069
	u64 cummulative_iowait, delta_iowait_us;
	u64 delta_iowait_mperf;
	u64 mperf, now;
1070 1071
	int32_t cpu_load;

1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
	cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);

	/*
	 * Convert iowait time into number of IO cycles spent at max_freq.
	 * IO is considered as busy only for the cpu_load algorithm. For
	 * performance this is not needed since we always try to reach the
	 * maximum P-State, so we are already boosting the IOs.
	 */
	delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
	delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
		cpu->pstate.max_pstate, MSEC_PER_SEC);

	mperf = cpu->sample.mperf + delta_iowait_mperf;
	cpu->prev_cummulative_iowait = cummulative_iowait;

1087 1088 1089 1090 1091 1092
	/*
	 * The load can be estimated as the ratio of the mperf counter
	 * running at a constant frequency during active periods
	 * (C0) and the time stamp counter running at the same frequency
	 * also during C-states.
	 */
1093
	cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
1094 1095 1096 1097 1098
	cpu->sample.busy_scaled = cpu_load;

	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, cpu_load);
}

1099
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1100
{
1101
	int32_t core_busy, max_pstate, current_pstate, sample_ratio;
1102
	u64 duration_ns;
1103

1104 1105
	intel_pstate_calc_busy(cpu);

1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
	/*
	 * core_busy is the ratio of actual performance to max
	 * max_pstate is the max non turbo pstate available
	 * current_pstate was the pstate that was requested during
	 * 	the last sample period.
	 *
	 * We normalize core_busy, which was our actual percent
	 * performance to what we requested during the last sample
	 * period. The result will be a percentage of busy at a
	 * specified pstate.
	 */
1117
	core_busy = cpu->sample.core_pct_busy;
1118
	max_pstate = int_tofp(cpu->pstate.max_pstate_physical);
1119
	current_pstate = int_tofp(cpu->pstate.current_pstate);
1120
	core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
1121

1122
	/*
1123 1124 1125 1126
	 * Since our utilization update callback will not run unless we are
	 * in C0, check if the actual elapsed time is significantly greater (3x)
	 * than our sample interval.  If it is, then we were idle for a long
	 * enough period of time to adjust our busyness.
1127
	 */
1128
	duration_ns = cpu->sample.time - cpu->last_sample_time;
1129
	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1130 1131
		sample_ratio = div_fp(int_tofp(pid_params.sample_rate_ns),
				      int_tofp(duration_ns));
1132 1133 1134
		core_busy = mul_fp(core_busy, sample_ratio);
	}

1135 1136
	cpu->sample.busy_scaled = core_busy;
	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, core_busy);
1137 1138
}

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
	int max_perf, min_perf;

	update_turbo_state();

	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
	pstate = clamp_t(int, pstate, min_perf, max_perf);
	if (pstate == cpu->pstate.current_pstate)
		return;

	intel_pstate_record_pstate(cpu, pstate);
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1154 1155
static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
{
1156
	int from, target_pstate;
1157 1158 1159
	struct sample *sample;

	from = cpu->pstate.current_pstate;
1160

1161
	target_pstate = pstate_funcs.get_target_pstate(cpu);
1162

1163
	intel_pstate_update_pstate(cpu, target_pstate);
1164 1165 1166

	sample = &cpu->sample;
	trace_pstate_sample(fp_toint(sample->core_pct_busy),
1167
		fp_toint(sample->busy_scaled),
1168 1169 1170 1171 1172
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1173
		get_avg_frequency(cpu));
1174 1175
}

1176 1177
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
				     unsigned long util, unsigned long max)
1178
{
1179 1180
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
	u64 delta_ns = time - cpu->sample.time;
1181

1182
	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1183 1184 1185
		bool sample_taken = intel_pstate_sample(cpu, time);

		if (sample_taken && !hwp_active)
1186 1187
			intel_pstate_adjust_busy_pstate(cpu);
	}
1188 1189 1190
}

#define ICPU(model, policy) \
1191 1192
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1193 1194

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1195 1196
	ICPU(0x2a, core_params),
	ICPU(0x2d, core_params),
1197
	ICPU(0x37, silvermont_params),
1198 1199
	ICPU(0x3a, core_params),
	ICPU(0x3c, core_params),
1200
	ICPU(0x3d, core_params),
1201 1202 1203 1204
	ICPU(0x3e, core_params),
	ICPU(0x3f, core_params),
	ICPU(0x45, core_params),
	ICPU(0x46, core_params),
1205
	ICPU(0x47, core_params),
1206
	ICPU(0x4c, airmont_params),
1207
	ICPU(0x4e, core_params),
1208
	ICPU(0x4f, core_params),
1209
	ICPU(0x5e, core_params),
1210
	ICPU(0x56, core_params),
1211
	ICPU(0x57, knl_params),
1212 1213 1214 1215
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

D
Dirk Brandewie 已提交
1216 1217 1218 1219 1220
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
	ICPU(0x56, core_params),
	{}
};

1221 1222 1223 1224
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1225 1226 1227
	if (!all_cpu_data[cpunum])
		all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
					       GFP_KERNEL);
1228 1229 1230 1231 1232 1233
	if (!all_cpu_data[cpunum])
		return -ENOMEM;

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1234

1235
	if (hwp_active) {
1236
		intel_pstate_hwp_enable(cpu);
1237 1238 1239
		pid_params.sample_rate_ms = 50;
		pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
	}
1240

1241
	intel_pstate_get_cpu_pstates(cpu);
1242

1243 1244
	intel_pstate_busy_pid_reset(cpu);

1245
	pr_debug("intel_pstate: controlling: cpu %d\n", cpunum);
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
	struct sample *sample;
	struct cpudata *cpu;

	cpu = all_cpu_data[cpu_num];
	if (!cpu)
		return 0;
1258
	sample = &cpu->sample;
1259
	return get_avg_frequency(cpu);
1260 1261
}

1262
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1263
{
1264 1265 1266 1267
	struct cpudata *cpu = all_cpu_data[cpu_num];

	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
1268 1269
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
				     intel_pstate_update_util);
1270 1271 1272 1273
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
1274
	cpufreq_remove_update_util_hook(cpu);
1275 1276 1277
	synchronize_sched();
}

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
static void intel_pstate_set_performance_limits(struct perf_limits *limits)
{
	limits->no_turbo = 0;
	limits->turbo_disabled = 0;
	limits->max_perf_pct = 100;
	limits->max_perf = int_tofp(1);
	limits->min_perf_pct = 100;
	limits->min_perf = int_tofp(1);
	limits->max_policy_pct = 100;
	limits->max_sysfs_pct = 100;
	limits->min_policy_pct = 0;
	limits->min_sysfs_pct = 0;
}

1292 1293
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
1294 1295 1296
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

1297 1298
	intel_pstate_clear_update_util_hook(policy->cpu);

1299
	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
1300
		limits = &performance_limits;
1301 1302 1303 1304 1305 1306 1307 1308
		if (policy->max >= policy->cpuinfo.max_freq) {
			pr_debug("intel_pstate: set performance\n");
			intel_pstate_set_performance_limits(limits);
			goto out;
		}
	} else {
		pr_debug("intel_pstate: set powersave\n");
		limits = &powersave_limits;
1309
	}
D
Dirk Brandewie 已提交
1310

1311 1312
	limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
	limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1313 1314
	limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
					      policy->cpuinfo.max_freq);
1315
	limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1316 1317

	/* Normalize user input to [min_policy_pct, max_policy_pct] */
1318 1319 1320 1321 1322 1323 1324 1325
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);
1326
	limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1327 1328

	/* Make sure min_perf_pct <= max_perf_pct */
1329
	limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1330

1331 1332 1333 1334
	limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
				  int_tofp(100));
	limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
				  int_tofp(100));
1335

1336 1337 1338
 out:
	intel_pstate_set_update_util_hook(policy->cpu);

D
Dirk Brandewie 已提交
1339
	if (hwp_active)
1340
		intel_pstate_hwp_set(policy->cpus);
D
Dirk Brandewie 已提交
1341

1342 1343 1344 1345 1346
	return 0;
}

static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
1347
	cpufreq_verify_within_cpu_limits(policy);
1348

1349
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1350
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1351 1352 1353 1354 1355
		return -EINVAL;

	return 0;
}

1356
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1357
{
1358 1359
	int cpu_num = policy->cpu;
	struct cpudata *cpu = all_cpu_data[cpu_num];
1360

1361
	pr_debug("intel_pstate: CPU %d exiting\n", cpu_num);
1362

1363
	intel_pstate_clear_update_util_hook(cpu_num);
1364

D
Dirk Brandewie 已提交
1365 1366 1367
	if (hwp_active)
		return;

1368
	intel_pstate_set_min_pstate(cpu);
1369 1370
}

1371
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1372 1373
{
	struct cpudata *cpu;
1374
	int rc;
1375 1376 1377 1378 1379 1380 1381

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

1382
	if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1383 1384 1385 1386
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;

1387 1388
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1389 1390

	/* cpuinfo and default policy values */
1391 1392 1393
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->cpuinfo.max_freq =
		cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
	cpumask_set_cpu(policy->cpu, policy->cpus);

	return 0;
}

static struct cpufreq_driver intel_pstate_driver = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
1406
	.stop_cpu	= intel_pstate_stop_cpu,
1407 1408 1409
	.name		= "intel_pstate",
};

1410
static int __initdata no_load;
D
Dirk Brandewie 已提交
1411
static int __initdata no_hwp;
1412
static int __initdata hwp_only;
1413
static unsigned int force_load;
1414

1415 1416
static int intel_pstate_msrs_not_valid(void)
{
1417
	if (!pstate_funcs.get_max() ||
1418 1419
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
1420 1421 1422 1423
		return -ENODEV;

	return 0;
}
1424

1425
static void copy_pid_params(struct pstate_adjust_policy *policy)
1426 1427
{
	pid_params.sample_rate_ms = policy->sample_rate_ms;
1428
	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1429 1430 1431 1432 1433 1434 1435
	pid_params.p_gain_pct = policy->p_gain_pct;
	pid_params.i_gain_pct = policy->i_gain_pct;
	pid_params.d_gain_pct = policy->d_gain_pct;
	pid_params.deadband = policy->deadband;
	pid_params.setpoint = policy->setpoint;
}

1436
static void copy_cpu_funcs(struct pstate_funcs *funcs)
1437 1438
{
	pstate_funcs.get_max   = funcs->get_max;
1439
	pstate_funcs.get_max_physical = funcs->get_max_physical;
1440 1441
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
1442
	pstate_funcs.get_scaling = funcs->get_scaling;
1443
	pstate_funcs.get_val   = funcs->get_val;
1444
	pstate_funcs.get_vid   = funcs->get_vid;
1445 1446
	pstate_funcs.get_target_pstate = funcs->get_target_pstate;

1447 1448
}

1449
#if IS_ENABLED(CONFIG_ACPI)
1450
#include <acpi/processor.h>
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480

static bool intel_pstate_no_acpi_pss(void)
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
static bool intel_pstate_has_acpi_ppc(void)
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

1501 1502 1503 1504
struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1505
	int  oem_pwr_table;
1506 1507 1508 1509
};

/* Hardware vendor-specific info that has its own power management modes */
static struct hw_vendor_info vendor_info[] = {
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
	{1, "HP    ", "ProLiant", PSS},
	{1, "ORACLE", "X4-2    ", PPC},
	{1, "ORACLE", "X4-2L   ", PPC},
	{1, "ORACLE", "X4-2B   ", PPC},
	{1, "ORACLE", "X3-2    ", PPC},
	{1, "ORACLE", "X3-2L   ", PPC},
	{1, "ORACLE", "X3-2B   ", PPC},
	{1, "ORACLE", "X4470M2 ", PPC},
	{1, "ORACLE", "X4270M3 ", PPC},
	{1, "ORACLE", "X4270M2 ", PPC},
	{1, "ORACLE", "X4170M2 ", PPC},
1521 1522 1523 1524
	{1, "ORACLE", "X4170 M3", PPC},
	{1, "ORACLE", "X4275 M3", PPC},
	{1, "ORACLE", "X6-2    ", PPC},
	{1, "ORACLE", "Sudbury ", PPC},
1525 1526 1527 1528 1529 1530 1531
	{0, "", ""},
};

static bool intel_pstate_platform_pwr_mgmt_exists(void)
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;
D
Dirk Brandewie 已提交
1532 1533 1534 1535 1536 1537 1538 1539 1540
	const struct x86_cpu_id *id;
	u64 misc_pwr;

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
1541

1542 1543
	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1544 1545 1546
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
1547
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1548 1549 1550 1551 1552 1553
			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
						ACPI_OEM_TABLE_ID_SIZE))
			switch (v_info->oem_pwr_table) {
			case PSS:
				return intel_pstate_no_acpi_pss();
			case PPC:
1554 1555
				return intel_pstate_has_acpi_ppc() &&
					(!force_load);
1556
			}
1557 1558 1559 1560 1561 1562
	}

	return false;
}
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1563
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1564 1565
#endif /* CONFIG_ACPI */

1566 1567 1568 1569 1570
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
	{}
};

1571 1572
static int __init intel_pstate_init(void)
{
1573
	int cpu, rc = 0;
1574
	const struct x86_cpu_id *id;
1575
	struct cpu_defaults *cpu_def;
1576

1577 1578 1579
	if (no_load)
		return -ENODEV;

1580 1581 1582 1583 1584 1585
	if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
		copy_cpu_funcs(&core_params.funcs);
		hwp_active++;
		goto hwp_cpu_matched;
	}

1586 1587 1588 1589
	id = x86_match_cpu(intel_pstate_cpu_ids);
	if (!id)
		return -ENODEV;

1590
	cpu_def = (struct cpu_defaults *)id->driver_data;
1591

1592 1593
	copy_pid_params(&cpu_def->pid_policy);
	copy_cpu_funcs(&cpu_def->funcs);
1594

1595 1596 1597
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

1598 1599 1600 1601 1602 1603 1604 1605
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

1606 1607
	pr_info("Intel P-state driver initializing.\n");

1608
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1609 1610 1611
	if (!all_cpu_data)
		return -ENOMEM;

1612 1613 1614
	if (!hwp_active && hwp_only)
		goto out;

1615 1616 1617 1618 1619 1620
	rc = cpufreq_register_driver(&intel_pstate_driver);
	if (rc)
		goto out;

	intel_pstate_debug_expose_params();
	intel_pstate_sysfs_expose_params();
1621

1622 1623 1624
	if (hwp_active)
		pr_info("intel_pstate: HWP enabled\n");

1625 1626
	return rc;
out:
1627 1628 1629
	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
1630
			intel_pstate_clear_update_util_hook(cpu);
1631 1632 1633 1634 1635 1636
			kfree(all_cpu_data[cpu]);
		}
	}

	put_online_cpus();
	vfree(all_cpu_data);
1637 1638 1639 1640
	return -ENODEV;
}
device_initcall(intel_pstate_init);

1641 1642 1643 1644 1645 1646 1647
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

	if (!strcmp(str, "disable"))
		no_load = 1;
1648 1649
	if (!strcmp(str, "no_hwp")) {
		pr_info("intel_pstate: HWP disabled\n");
D
Dirk Brandewie 已提交
1650
		no_hwp = 1;
1651
	}
1652 1653
	if (!strcmp(str, "force"))
		force_load = 1;
1654 1655
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
1656 1657 1658 1659
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

1660 1661 1662
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");