intel_pstate.c 65.5 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

J
Joe Perches 已提交
13 14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

15 16 17 18 19 20 21
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
22
#include <linux/sched/cpufreq.h>
23 24 25 26 27 28 29
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
30
#include <linux/acpi.h>
31
#include <linux/vmalloc.h>
32 33 34 35 36
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
37
#include <asm/cpufeature.h>
38
#include <asm/intel-family.h>
39

40 41 42
#define INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
#define INTEL_PSTATE_HWP_SAMPLING_INTERVAL	(50 * NSEC_PER_MSEC)

43 44
#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000

45 46
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
47
#include <acpi/cppc_acpi.h>
48 49
#endif

50
#define FRAC_BITS 8
51 52
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
53

54 55
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
56 57
#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
58

59 60 61 62 63
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

64
static inline int32_t div_fp(s64 x, s64 y)
65
{
66
	return div64_s64((int64_t)x << FRAC_BITS, y);
67 68
}

69 70 71 72 73 74 75 76 77 78 79
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

80 81 82 83 84
static inline int32_t percent_fp(int percent)
{
	return div_fp(percent, 100);
}

85 86 87 88 89 90 91 92 93 94
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

95 96 97 98 99
static inline int32_t percent_ext_fp(int percent)
{
	return div_ext_fp(percent, 100);
}

100 101
/**
 * struct sample -	Store performance sample
102
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
103 104
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
105
 *			P state. This can be different than core_avg_perf
106 107 108 109 110 111 112 113 114 115 116 117
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
118
struct sample {
119
	int32_t core_avg_perf;
120
	int32_t busy_scaled;
121 122
	u64 aperf;
	u64 mperf;
123
	u64 tsc;
124
	u64 time;
125 126
};

127 128 129 130 131 132 133 134 135 136 137
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
138 139
 * @max_freq:		@max_pstate frequency in cpufreq units
 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
140 141 142
 *
 * Stores the per cpu model P state limits and current P state.
 */
143 144 145 146
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
147
	int	max_pstate_physical;
148
	int	scaling;
149
	int	turbo_pstate;
150 151
	unsigned int max_freq;
	unsigned int turbo_freq;
152 153
};

154 155 156 157 158 159 160 161 162 163 164 165 166
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
167
struct vid_data {
168 169 170
	int min;
	int max;
	int turbo;
171 172 173
	int32_t ratio;
};

174 175 176 177 178 179 180 181 182 183 184 185
/**
 * struct _pid -	Stores PID data
 * @setpoint:		Target set point for busyness or performance
 * @integral:		Storage for accumulated error values
 * @p_gain:		PID proportional gain
 * @i_gain:		PID integral gain
 * @d_gain:		PID derivative gain
 * @deadband:		PID deadband
 * @last_err:		Last error storage for integral part of PID calculation
 *
 * Stores PID coefficients and last error for PID controller.
 */
186 187 188 189 190 191 192
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
193
	int32_t last_err;
194 195
};

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
/**
 * struct global_params - Global parameters, mostly tunable via sysfs.
 * @no_turbo:		Whether or not to use turbo P-states.
 * @turbo_disabled:	Whethet or not turbo P-states are available at all,
 *			based on the MSR_IA32_MISC_ENABLE value and whether or
 *			not the maximum reported turbo P-state is different from
 *			the maximum reported non-turbo one.
 * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 */
struct global_params {
	bool no_turbo;
	bool turbo_disabled;
	int max_perf_pct;
	int min_perf_pct;
213 214
};

215 216 217
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
218
 * @policy:		CPUFreq policy value
219
 * @update_util:	CPUFreq utility callback information
220
 * @update_util_set:	CPUFreq utility callback is set
221 222
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
223 224 225 226 227 228 229 230 231 232
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @pid:		Stores PID parameters for this CPU
 * @last_sample_time:	Last Sample time
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
233 234 235 236
 * @min_perf:		Minimum capacity limit as a fraction of the maximum
 *			turbo P-state capacity.
 * @max_perf:		Maximum capacity limit as a fraction of the maximum
 *			turbo P-state capacity.
237 238
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
239 240 241
 * @epp_powersave:	Last saved HWP energy performance preference
 *			(EPP) or energy performance bias (EPB),
 *			when policy switched to performance
242
 * @epp_policy:		Last saved policy used to set EPP/EPB
243 244 245 246
 * @epp_default:	Power on default HWP energy performance
 *			preference/bias
 * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
 *			operation
247 248 249
 *
 * This structure stores per CPU instance data for all CPUs.
 */
250 251 252
struct cpudata {
	int cpu;

253
	unsigned int policy;
254
	struct update_util_data update_util;
255
	bool   update_util_set;
256 257

	struct pstate_data pstate;
258
	struct vid_data vid;
259 260
	struct _pid pid;

261
	u64	last_update;
262
	u64	last_sample_time;
263 264
	u64	prev_aperf;
	u64	prev_mperf;
265
	u64	prev_tsc;
266
	u64	prev_cummulative_iowait;
267
	struct sample sample;
268 269
	int32_t	min_perf;
	int32_t	max_perf;
270 271 272 273
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
274
	unsigned int iowait_boost;
275
	s16 epp_powersave;
276
	s16 epp_policy;
277 278
	s16 epp_default;
	s16 epp_saved;
279 280 281
};

static struct cpudata **all_cpu_data;
282 283

/**
284
 * struct pstate_adjust_policy - Stores static PID configuration data
285 286 287 288 289 290 291 292 293 294
 * @sample_rate_ms:	PID calculation sample rate in ms
 * @sample_rate_ns:	Sample rate calculation in ns
 * @deadband:		PID deadband
 * @setpoint:		PID Setpoint
 * @p_gain_pct:		PID proportional gain
 * @i_gain_pct:		PID integral gain
 * @d_gain_pct:		PID derivative gain
 *
 * Stores per CPU model static PID configuration data.
 */
295 296
struct pstate_adjust_policy {
	int sample_rate_ms;
297
	s64 sample_rate_ns;
298 299 300 301 302 303 304
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

305 306 307 308 309 310 311 312 313
/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
314
 * @update_util:	Active mode utilization update callback.
315 316 317 318
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
319 320
struct pstate_funcs {
	int (*get_max)(void);
321
	int (*get_max_physical)(void);
322 323
	int (*get_min)(void);
	int (*get_turbo)(void);
324
	int (*get_scaling)(void);
325
	u64 (*get_val)(struct cpudata*, int pstate);
326
	void (*get_vid)(struct cpudata *);
327 328
	void (*update_util)(struct update_util_data *data, u64 time,
			    unsigned int flags);
329 330
};

331 332 333 334
/**
 * struct cpu_defaults- Per CPU model default config data
 * @funcs:		Callback function data
 */
335 336
struct cpu_defaults {
	struct pstate_funcs funcs;
337 338
};

339
static struct pstate_funcs pstate_funcs __read_mostly;
340 341 342 343 344 345 346 347 348 349
static struct pstate_adjust_policy pid_params __read_mostly = {
	.sample_rate_ms = 10,
	.sample_rate_ns = 10 * NSEC_PER_MSEC,
	.deadband = 0,
	.setpoint = 97,
	.p_gain_pct = 20,
	.d_gain_pct = 0,
	.i_gain_pct = 0,
};

350
static int hwp_active __read_mostly;
351
static bool per_cpu_limits __read_mostly;
352

353
static struct cpufreq_driver *intel_pstate_driver __read_mostly;
354

355 356 357
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
358

359
static struct global_params global;
360

361
static DEFINE_MUTEX(intel_pstate_driver_lock);
362 363
static DEFINE_MUTEX(intel_pstate_limits_lock);

364
#ifdef CONFIG_ACPI
365 366 367 368 369 370 371 372 373 374

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

	return acpi_ppc;
}

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
#ifdef CONFIG_ACPI_CPPC_LIB

/* The work item is needed to avoid CPU hotplug locking issues */
static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
{
	sched_set_itmt_support();
}

static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);

static void intel_pstate_set_itmt_prio(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return;

	/*
	 * The priorities can be set regardless of whether or not
	 * sched_set_itmt_support(true) has been called and it is valid to
	 * update them at any time after it has been called.
	 */
	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);

	if (max_highest_perf <= min_highest_perf) {
		if (cppc_perf.highest_perf > max_highest_perf)
			max_highest_perf = cppc_perf.highest_perf;

		if (cppc_perf.highest_perf < min_highest_perf)
			min_highest_perf = cppc_perf.highest_perf;

		if (max_highest_perf > min_highest_perf) {
			/*
			 * This code can be run during CPU online under the
			 * CPU hotplug locks, so sched_set_itmt_support()
			 * cannot be called from here.  Queue up a work item
			 * to invoke it.
			 */
			schedule_work(&sched_itmt_work);
		}
	}
}
#else
static void intel_pstate_set_itmt_prio(int cpu)
{
}
#endif

426 427 428 429 430 431
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

432 433
	if (hwp_active) {
		intel_pstate_set_itmt_prio(policy->cpu);
434
		return;
435
	}
436

437
	if (!intel_pstate_get_ppc_enable_status())
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
480
	 * correct max turbo frequency based on the turbo state.
481 482
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
483
	if (!global.turbo_disabled)
484 485 486
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
487
	pr_debug("_PPC limits will be enforced\n");
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}
#else
507
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
508 509 510
{
}

511
static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
512 513 514 515
{
}
#endif

516
static signed int pid_calc(struct _pid *pid, int32_t busy)
517
{
518
	signed int result;
519 520 521
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

522
	fp_error = pid->setpoint - busy;
523

524
	if (abs(fp_error) <= pid->deadband)
525 526 527 528 529 530
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

531 532 533 534 535 536 537 538
	/*
	 * We limit the integral here so that it will never
	 * get higher than 30.  This prevents it from becoming
	 * too large an input over long periods of time and allows
	 * it to get factored out sooner.
	 *
	 * The value of 30 was chosen through experimentation.
	 */
539 540 541 542 543 544
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

545 546
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
547 548

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
549
	result = result + (1 << (FRAC_BITS-1));
550 551 552
	return (signed int)fp_toint(result);
}

553
static inline void intel_pstate_pid_reset(struct cpudata *cpu)
554
{
555
	struct _pid *pid = &cpu->pid;
556

557 558 559 560 561 562 563
	pid->p_gain = percent_fp(pid_params.p_gain_pct);
	pid->d_gain = percent_fp(pid_params.d_gain_pct);
	pid->i_gain = percent_fp(pid_params.i_gain_pct);
	pid->setpoint = int_tofp(pid_params.setpoint);
	pid->last_err  = pid->setpoint - int_tofp(100);
	pid->deadband  = int_tofp(pid_params.deadband);
	pid->integral  = 0;
564 565
}

566 567 568 569 570 571 572
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
573
	global.turbo_disabled =
574 575 576 577
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

578 579 580 581 582 583 584 585
static int min_perf_pct_min(void)
{
	struct cpudata *cpu = all_cpu_data[0];

	return DIV_ROUND_UP(cpu->pstate.min_pstate * 100,
			    cpu->pstate.turbo_pstate);
}

586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
{
	u64 epb;
	int ret;

	if (!static_cpu_has(X86_FEATURE_EPB))
		return -ENXIO;

	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return (s16)ret;

	return (s16)(epb & 0x0f);
}

static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
{
	s16 epp;

605 606 607 608 609 610 611 612 613 614 615
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * When hwp_req_data is 0, means that caller didn't read
		 * MSR_HWP_REQUEST, so need to read and get EPP.
		 */
		if (!hwp_req_data) {
			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
					    &hwp_req_data);
			if (epp)
				return epp;
		}
616
		epp = (hwp_req_data >> 24) & 0xff;
617
	} else {
618 619
		/* When there is no EPP present, HWP uses EPB settings */
		epp = intel_pstate_get_epb(cpu_data);
620
	}
621 622 623 624

	return epp;
}

625
static int intel_pstate_set_epb(int cpu, s16 pref)
626 627
{
	u64 epb;
628
	int ret;
629 630

	if (!static_cpu_has(X86_FEATURE_EPB))
631
		return -ENXIO;
632

633 634 635
	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return ret;
636 637 638

	epb = (epb & ~0x0f) | pref;
	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
639 640

	return 0;
641 642
}

643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
/*
 * EPP/EPB display strings corresponding to EPP index in the
 * energy_perf_strings[]
 *	index		String
 *-------------------------------------
 *	0		default
 *	1		performance
 *	2		balance_performance
 *	3		balance_power
 *	4		power
 */
static const char * const energy_perf_strings[] = {
	"default",
	"performance",
	"balance_performance",
	"balance_power",
	"power",
	NULL
};

static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
{
	s16 epp;
	int index = -EINVAL;

	epp = intel_pstate_get_epp(cpu_data, 0);
	if (epp < 0)
		return epp;

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * Range:
		 *	0x00-0x3F	:	Performance
		 *	0x40-0x7F	:	Balance performance
		 *	0x80-0xBF	:	Balance power
		 *	0xC0-0xFF	:	Power
		 * The EPP is a 8 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 6) + 1;
	} else if (static_cpu_has(X86_FEATURE_EPB)) {
		/*
		 * Range:
		 *	0x00-0x03	:	Performance
		 *	0x04-0x07	:	Balance performance
		 *	0x08-0x0B	:	Balance power
		 *	0x0C-0x0F	:	Power
		 * The EPB is a 4 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 2) + 1;
	}

	return index;
}

static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
					      int pref_index)
{
	int epp = -EINVAL;
	int ret;

	if (!pref_index)
		epp = cpu_data->epp_default;

	mutex_lock(&intel_pstate_limits_lock);

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		u64 value;

		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
		if (ret)
			goto return_pref;

		value &= ~GENMASK_ULL(31, 24);

		/*
		 * If epp is not default, convert from index into
		 * energy_perf_strings to epp value, by shifting 6
		 * bits left to use only top two bits in epp.
		 * The resultant epp need to shifted by 24 bits to
		 * epp position in MSR_HWP_REQUEST.
		 */
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 6;

		value |= (u64)epp << 24;
		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
	} else {
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 2;
		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
	}
return_pref:
	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
}

static ssize_t show_energy_performance_available_preferences(
				struct cpufreq_policy *policy, char *buf)
{
	int i = 0;
	int ret = 0;

	while (energy_perf_strings[i] != NULL)
		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);

	ret += sprintf(&buf[ret], "\n");

	return ret;
}

cpufreq_freq_attr_ro(energy_performance_available_preferences);

static ssize_t store_energy_performance_preference(
		struct cpufreq_policy *policy, const char *buf, size_t count)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	char str_preference[21];
	int ret, i = 0;

	ret = sscanf(buf, "%20s", str_preference);
	if (ret != 1)
		return -EINVAL;

	while (energy_perf_strings[i] != NULL) {
		if (!strcmp(str_preference, energy_perf_strings[i])) {
			intel_pstate_set_energy_pref_index(cpu_data, i);
			return count;
		}
		++i;
	}

	return -EINVAL;
}

static ssize_t show_energy_performance_preference(
				struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	int preference;

	preference = intel_pstate_get_energy_pref_index(cpu_data);
	if (preference < 0)
		return preference;

	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
}

cpufreq_freq_attr_rw(energy_performance_preference);

static struct freq_attr *hwp_cpufreq_attrs[] = {
	&energy_performance_preference,
	&energy_performance_available_preferences,
	NULL,
};

803
static void intel_pstate_hwp_set(struct cpufreq_policy *policy)
D
Dirk Brandewie 已提交
804
{
805
	int min, hw_min, max, hw_max, cpu;
806 807
	u64 value, cap;

808
	for_each_cpu(cpu, policy->cpus) {
809 810
		struct cpudata *cpu_data = all_cpu_data[cpu];
		s16 epp;
811

812 813
		rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
		hw_min = HWP_LOWEST_PERF(cap);
814
		if (global.no_turbo)
815 816 817
			hw_max = HWP_GUARANTEED_PERF(cap);
		else
			hw_max = HWP_HIGHEST_PERF(cap);
818

819
		max = fp_ext_toint(hw_max * cpu_data->max_perf);
820 821 822
		if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
			min = max;
		else
823
			min = fp_ext_toint(hw_max * cpu_data->min_perf);
824

D
Dirk Brandewie 已提交
825
		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
826

D
Dirk Brandewie 已提交
827 828 829 830 831
		value &= ~HWP_MIN_PERF(~0L);
		value |= HWP_MIN_PERF(min);

		value &= ~HWP_MAX_PERF(~0L);
		value |= HWP_MAX_PERF(max);
832 833 834 835 836 837

		if (cpu_data->epp_policy == cpu_data->policy)
			goto skip_epp;

		cpu_data->epp_policy = cpu_data->policy;

838 839 840 841 842 843
		if (cpu_data->epp_saved >= 0) {
			epp = cpu_data->epp_saved;
			cpu_data->epp_saved = -EINVAL;
			goto update_epp;
		}

844 845
		if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
			epp = intel_pstate_get_epp(cpu_data, value);
846
			cpu_data->epp_powersave = epp;
847
			/* If EPP read was failed, then don't try to write */
848
			if (epp < 0)
849 850 851 852 853 854
				goto skip_epp;


			epp = 0;
		} else {
			/* skip setting EPP, when saved value is invalid */
855
			if (cpu_data->epp_powersave < 0)
856 857 858 859 860 861 862 863 864 865 866 867 868
				goto skip_epp;

			/*
			 * No need to restore EPP when it is not zero. This
			 * means:
			 *  - Policy is not changed
			 *  - user has manually changed
			 *  - Error reading EPB
			 */
			epp = intel_pstate_get_epp(cpu_data, value);
			if (epp)
				goto skip_epp;

869
			epp = cpu_data->epp_powersave;
870
		}
871
update_epp:
872 873 874 875 876 877 878
		if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
			value &= ~GENMASK_ULL(31, 24);
			value |= (u64)epp << 24;
		} else {
			intel_pstate_set_epb(cpu, epp);
		}
skip_epp:
D
Dirk Brandewie 已提交
879 880
		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
	}
881
}
D
Dirk Brandewie 已提交
882

883 884 885 886 887 888 889 890 891 892 893 894
static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];

	if (!hwp_active)
		return 0;

	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);

	return 0;
}

895 896 897 898 899
static int intel_pstate_resume(struct cpufreq_policy *policy)
{
	if (!hwp_active)
		return 0;

900 901
	mutex_lock(&intel_pstate_limits_lock);

902
	all_cpu_data[policy->cpu]->epp_policy = 0;
903
	intel_pstate_hwp_set(policy);
904 905 906

	mutex_unlock(&intel_pstate_limits_lock);

907
	return 0;
908 909
}

910
static void intel_pstate_update_policies(void)
911
{
912 913 914 915
	int cpu;

	for_each_possible_cpu(cpu)
		cpufreq_update_policy(cpu);
D
Dirk Brandewie 已提交
916 917
}

918 919 920
/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
921 922
	unsigned int cpu;

923
	*(u32 *)data = val;
924
	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
925 926
	for_each_possible_cpu(cpu)
		if (all_cpu_data[cpu])
927
			intel_pstate_pid_reset(all_cpu_data[cpu]);
928

929 930
	return 0;
}
931

932 933 934 935 936
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
937
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
938

939 940
static struct dentry *debugfs_parent;

941 942 943
struct pid_param {
	char *name;
	void *value;
944
	struct dentry *dentry;
945 946 947
};

static struct pid_param pid_files[] = {
948 949 950 951 952 953 954
	{"sample_rate_ms", &pid_params.sample_rate_ms, },
	{"d_gain_pct", &pid_params.d_gain_pct, },
	{"i_gain_pct", &pid_params.i_gain_pct, },
	{"deadband", &pid_params.deadband, },
	{"setpoint", &pid_params.setpoint, },
	{"p_gain_pct", &pid_params.p_gain_pct, },
	{NULL, NULL, }
955 956
};

957
static void intel_pstate_debug_expose_params(void)
958
{
959
	int i;
960 961 962 963

	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
964 965 966 967 968 969 970 971 972

	for (i = 0; pid_files[i].name; i++) {
		struct dentry *dentry;

		dentry = debugfs_create_file(pid_files[i].name, 0660,
					     debugfs_parent, pid_files[i].value,
					     &fops_pid_param);
		if (!IS_ERR(dentry))
			pid_files[i].dentry = dentry;
973 974 975
	}
}

976 977 978 979 980 981 982 983 984 985
static void intel_pstate_debug_hide_params(void)
{
	int i;

	if (IS_ERR_OR_NULL(debugfs_parent))
		return;

	for (i = 0; pid_files[i].name; i++) {
		debugfs_remove(pid_files[i].dentry);
		pid_files[i].dentry = NULL;
986
	}
987 988 989

	debugfs_remove(debugfs_parent);
	debugfs_parent = NULL;
990 991 992 993 994 995 996 997 998
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
999
		return sprintf(buf, "%u\n", global.object);		\
1000 1001
	}

1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
static ssize_t intel_pstate_show_status(char *buf);
static int intel_pstate_update_status(const char *buf, size_t size);

static ssize_t show_status(struct kobject *kobj,
			   struct attribute *attr, char *buf)
{
	ssize_t ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_show_status(buf);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret;
}

static ssize_t store_status(struct kobject *a, struct attribute *b,
			    const char *buf, size_t count)
{
	char *p = memchr(buf, '\n', count);
	int ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_update_status(buf, p ? p - buf : count);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret < 0 ? ret : count;
}

1030 1031 1032 1033 1034 1035 1036
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

1037 1038
	mutex_lock(&intel_pstate_driver_lock);

1039
	if (!intel_pstate_driver) {
1040 1041 1042 1043
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1044 1045 1046 1047
	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1048
	turbo_fp = div_fp(no_turbo, total);
1049
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1050 1051 1052

	mutex_unlock(&intel_pstate_driver_lock);

1053 1054 1055
	return sprintf(buf, "%u\n", turbo_pct);
}

1056 1057 1058 1059 1060 1061
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

1062 1063
	mutex_lock(&intel_pstate_driver_lock);

1064
	if (!intel_pstate_driver) {
1065 1066 1067 1068
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1069 1070
	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1071 1072 1073

	mutex_unlock(&intel_pstate_driver_lock);

1074 1075 1076
	return sprintf(buf, "%u\n", total);
}

1077 1078 1079 1080 1081
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

1082 1083
	mutex_lock(&intel_pstate_driver_lock);

1084
	if (!intel_pstate_driver) {
1085 1086 1087 1088
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1089
	update_turbo_state();
1090 1091
	if (global.turbo_disabled)
		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1092
	else
1093
		ret = sprintf(buf, "%u\n", global.no_turbo);
1094

1095 1096
	mutex_unlock(&intel_pstate_driver_lock);

1097 1098 1099
	return ret;
}

1100
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1101
			      const char *buf, size_t count)
1102 1103 1104
{
	unsigned int input;
	int ret;
1105

1106 1107 1108
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1109

1110 1111
	mutex_lock(&intel_pstate_driver_lock);

1112
	if (!intel_pstate_driver) {
1113 1114 1115 1116
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1117 1118
	mutex_lock(&intel_pstate_limits_lock);

1119
	update_turbo_state();
1120
	if (global.turbo_disabled) {
J
Joe Perches 已提交
1121
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1122
		mutex_unlock(&intel_pstate_limits_lock);
1123
		mutex_unlock(&intel_pstate_driver_lock);
1124
		return -EPERM;
1125
	}
D
Dirk Brandewie 已提交
1126

1127
	global.no_turbo = clamp_t(int, input, 0, 1);
1128

1129 1130 1131 1132 1133 1134 1135 1136 1137
	if (global.no_turbo) {
		struct cpudata *cpu = all_cpu_data[0];
		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;

		/* Squash the global minimum into the permitted range. */
		if (global.min_perf_pct > pct)
			global.min_perf_pct = pct;
	}

1138 1139
	mutex_unlock(&intel_pstate_limits_lock);

1140 1141
	intel_pstate_update_policies();

1142 1143
	mutex_unlock(&intel_pstate_driver_lock);

1144 1145 1146 1147
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1148
				  const char *buf, size_t count)
1149 1150 1151
{
	unsigned int input;
	int ret;
1152

1153 1154 1155 1156
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

1157 1158
	mutex_lock(&intel_pstate_driver_lock);

1159
	if (!intel_pstate_driver) {
1160 1161 1162 1163
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1164 1165
	mutex_lock(&intel_pstate_limits_lock);

1166
	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1167

1168 1169
	mutex_unlock(&intel_pstate_limits_lock);

1170 1171
	intel_pstate_update_policies();

1172 1173
	mutex_unlock(&intel_pstate_driver_lock);

1174 1175 1176 1177
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1178
				  const char *buf, size_t count)
1179 1180 1181
{
	unsigned int input;
	int ret;
1182

1183 1184 1185
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1186

1187 1188
	mutex_lock(&intel_pstate_driver_lock);

1189
	if (!intel_pstate_driver) {
1190 1191 1192 1193
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1194 1195
	mutex_lock(&intel_pstate_limits_lock);

1196 1197
	global.min_perf_pct = clamp_t(int, input,
				      min_perf_pct_min(), global.max_perf_pct);
1198

1199 1200
	mutex_unlock(&intel_pstate_limits_lock);

1201 1202
	intel_pstate_update_policies();

1203 1204
	mutex_unlock(&intel_pstate_driver_lock);

1205 1206 1207 1208 1209 1210
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

1211
define_one_global_rw(status);
1212 1213 1214
define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
1215
define_one_global_ro(turbo_pct);
1216
define_one_global_ro(num_pstates);
1217 1218

static struct attribute *intel_pstate_attributes[] = {
1219
	&status.attr,
1220
	&no_turbo.attr,
1221
	&turbo_pct.attr,
1222
	&num_pstates.attr,
1223 1224 1225 1226 1227 1228 1229
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};

1230
static void __init intel_pstate_sysfs_expose_params(void)
1231
{
1232
	struct kobject *intel_pstate_kobject;
1233 1234 1235 1236
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
1237 1238 1239
	if (WARN_ON(!intel_pstate_kobject))
		return;

1240
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
	if (WARN_ON(rc))
		return;

	/*
	 * If per cpu limits are enforced there are no global limits, so
	 * return without creating max/min_perf_pct attributes
	 */
	if (per_cpu_limits)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
	WARN_ON(rc);

	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
	WARN_ON(rc);

1257 1258
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
1259

1260
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
1261
{
1262
	/* First disable HWP notification interrupt as we don't process them */
1263 1264
	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1265

1266
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1267
	cpudata->epp_policy = 0;
1268 1269
	if (cpudata->epp_default == -EINVAL)
		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
D
Dirk Brandewie 已提交
1270 1271
}

1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
#define MSR_IA32_POWER_CTL_BIT_EE	19

/* Disable energy efficiency optimization */
static void intel_pstate_disable_ee(int cpu)
{
	u64 power_ctl;
	int ret;

	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
	if (ret)
		return;

	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
		pr_info("Disabling energy efficiency optimization\n");
		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
	}
}

1291
static int atom_get_min_pstate(void)
1292 1293
{
	u64 value;
1294

1295
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1296
	return (value >> 8) & 0x7F;
1297 1298
}

1299
static int atom_get_max_pstate(void)
1300 1301
{
	u64 value;
1302

1303
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1304
	return (value >> 16) & 0x7F;
1305
}
1306

1307
static int atom_get_turbo_pstate(void)
1308 1309
{
	u64 value;
1310

1311
	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
1312
	return value & 0x7F;
1313 1314
}

1315
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1316 1317 1318 1319 1320
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

1321
	val = (u64)pstate << 8;
1322
	if (global.no_turbo && !global.turbo_disabled)
1323 1324 1325 1326 1327 1328 1329
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1330
	vid = ceiling_fp(vid_fp);
1331

1332 1333 1334
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

1335
	return val | vid;
1336 1337
}

1338
static int silvermont_get_scaling(void)
1339 1340 1341
{
	u64 value;
	int i;
1342 1343 1344
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
1345 1346

	rdmsrl(MSR_FSB_FREQ, value);
1347 1348
	i = value & 0x7;
	WARN_ON(i > 4);
1349

1350 1351
	return silvermont_freq_table[i];
}
1352

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
1367 1368
}

1369
static void atom_get_vid(struct cpudata *cpudata)
1370 1371 1372
{
	u64 value;

1373
	rdmsrl(MSR_ATOM_CORE_VIDS, value);
D
Dirk Brandewie 已提交
1374 1375
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1376 1377 1378 1379
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
1380

1381
	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1382
	cpudata->vid.turbo = value & 0x7f;
1383 1384
}

1385
static int core_get_min_pstate(void)
1386 1387
{
	u64 value;
1388

1389
	rdmsrl(MSR_PLATFORM_INFO, value);
1390 1391 1392
	return (value >> 40) & 0xFF;
}

1393
static int core_get_max_pstate_physical(void)
1394 1395
{
	u64 value;
1396

1397
	rdmsrl(MSR_PLATFORM_INFO, value);
1398 1399 1400
	return (value >> 8) & 0xFF;
}

1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
static int core_get_tdp_ratio(u64 plat_info)
{
	/* Check how many TDP levels present */
	if (plat_info & 0x600000000) {
		u64 tdp_ctrl;
		u64 tdp_ratio;
		int tdp_msr;
		int err;

		/* Get the TDP level (0, 1, 2) to get ratios */
		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
		if (err)
			return err;

		/* TDP MSR are continuous starting at 0x648 */
		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
		if (err)
			return err;

		/* For level 1 and 2, bits[23:16] contain the ratio */
		if (tdp_ctrl & 0x03)
			tdp_ratio >>= 16;

		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);

		return (int)tdp_ratio;
	}

	return -ENXIO;
}

1434
static int core_get_max_pstate(void)
1435
{
1436 1437 1438
	u64 tar;
	u64 plat_info;
	int max_pstate;
1439
	int tdp_ratio;
1440 1441 1442 1443 1444
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

1445 1446 1447 1448 1449 1450 1451 1452 1453
	tdp_ratio = core_get_tdp_ratio(plat_info);
	if (tdp_ratio <= 0)
		return max_pstate;

	if (hwp_active) {
		/* Turbo activation ratio is not used on HWP platforms */
		return tdp_ratio;
	}

1454 1455
	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
1456 1457
		int tar_levels;

1458
		/* Do some sanity checking for safety */
1459 1460 1461 1462
		tar_levels = tar & 0xff;
		if (tdp_ratio - 1 == tar_levels) {
			max_pstate = tar_levels;
			pr_debug("max_pstate=TAC %x\n", max_pstate);
1463 1464
		}
	}
1465

1466
	return max_pstate;
1467 1468
}

1469
static int core_get_turbo_pstate(void)
1470 1471 1472
{
	u64 value;
	int nont, ret;
1473

1474
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1475
	nont = core_get_max_pstate();
1476
	ret = (value) & 255;
1477 1478 1479 1480 1481
	if (ret <= nont)
		ret = nont;
	return ret;
}

1482 1483 1484 1485 1486
static inline int core_get_scaling(void)
{
	return 100000;
}

1487
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1488 1489 1490
{
	u64 val;

1491
	val = (u64)pstate << 8;
1492
	if (global.no_turbo && !global.turbo_disabled)
1493 1494
		val |= (u64)1 << 32;

1495
	return val;
1496 1497
}

1498 1499 1500 1501 1502
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1503
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1504 1505 1506 1507 1508 1509 1510
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1511 1512 1513 1514 1515
static void intel_pstate_update_util_pid(struct update_util_data *data,
					 u64 time, unsigned int flags);
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
				     unsigned int flags);

1516 1517 1518
static struct cpu_defaults core_params = {
	.funcs = {
		.get_max = core_get_max_pstate,
1519
		.get_max_physical = core_get_max_pstate_physical,
1520 1521
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
1522
		.get_scaling = core_get_scaling,
1523
		.get_val = core_get_val,
1524
		.update_util = intel_pstate_update_util_pid,
1525 1526 1527
	},
};

1528
static const struct cpu_defaults silvermont_params = {
1529 1530 1531 1532 1533
	.funcs = {
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1534
		.get_val = atom_get_val,
1535 1536
		.get_scaling = silvermont_get_scaling,
		.get_vid = atom_get_vid,
1537
		.update_util = intel_pstate_update_util,
1538 1539 1540
	},
};

1541
static const struct cpu_defaults airmont_params = {
1542
	.funcs = {
1543 1544 1545 1546
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1547
		.get_val = atom_get_val,
1548
		.get_scaling = airmont_get_scaling,
1549
		.get_vid = atom_get_vid,
1550
		.update_util = intel_pstate_update_util,
1551 1552 1553
	},
};

1554
static const struct cpu_defaults knl_params = {
1555 1556
	.funcs = {
		.get_max = core_get_max_pstate,
1557
		.get_max_physical = core_get_max_pstate_physical,
1558 1559
		.get_min = core_get_min_pstate,
		.get_turbo = knl_get_turbo_pstate,
1560
		.get_scaling = core_get_scaling,
1561
		.get_val = core_get_val,
1562
		.update_util = intel_pstate_update_util_pid,
1563 1564 1565
	},
};

1566
static const struct cpu_defaults bxt_params = {
1567 1568 1569 1570 1571 1572 1573
	.funcs = {
		.get_max = core_get_max_pstate,
		.get_max_physical = core_get_max_pstate_physical,
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
		.get_scaling = core_get_scaling,
		.get_val = core_get_val,
1574
		.update_util = intel_pstate_update_util,
1575 1576 1577
	},
};

1578 1579 1580
static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
1581
	int max_perf_adj;
1582
	int min_perf;
1583

1584
	if (global.no_turbo || global.turbo_disabled)
1585 1586
		max_perf = cpu->pstate.max_pstate;

1587 1588 1589 1590 1591
	/*
	 * performance can be limited by user through sysfs, by cpufreq
	 * policy, or by cpu specific default values determined through
	 * experimentation.
	 */
1592
	max_perf_adj = fp_ext_toint(max_perf * cpu->max_perf);
1593 1594
	*max = clamp_t(int, max_perf_adj,
			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1595

1596
	min_perf = fp_ext_toint(max_perf * cpu->min_perf);
1597
	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1598 1599
}

1600
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1601
{
1602 1603
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1604 1605 1606 1607 1608 1609 1610
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1611 1612
}

1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
	int min_pstate, max_pstate;

	update_turbo_state();
	intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
	intel_pstate_set_pstate(cpu, max_pstate);
}

1627 1628
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1629 1630
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1631
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1632
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1633
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1634 1635
	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1636

1637 1638
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1639 1640

	intel_pstate_set_min_pstate(cpu);
1641 1642
}

1643
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1644
{
1645
	struct sample *sample = &cpu->sample;
1646

1647
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1648 1649
}

1650
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1651 1652
{
	u64 aperf, mperf;
1653
	unsigned long flags;
1654
	u64 tsc;
1655

1656
	local_irq_save(flags);
1657 1658
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1659
	tsc = rdtsc();
1660
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1661
		local_irq_restore(flags);
1662
		return false;
1663
	}
1664
	local_irq_restore(flags);
1665

1666
	cpu->last_sample_time = cpu->sample.time;
1667
	cpu->sample.time = time;
1668 1669
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1670
	cpu->sample.tsc =  tsc;
1671 1672
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1673
	cpu->sample.tsc -= cpu->prev_tsc;
1674

1675 1676
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1677
	cpu->prev_tsc = tsc;
1678 1679 1680 1681 1682 1683 1684
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
1685 1686 1687 1688 1689
	if (cpu->last_sample_time) {
		intel_pstate_calc_avg_perf(cpu);
		return true;
	}
	return false;
1690 1691
}

1692 1693
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1694 1695
	return mul_ext_fp(cpu->sample.core_avg_perf,
			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1696 1697
}

1698 1699
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1700 1701
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1702 1703
}

1704 1705 1706
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
{
	struct sample *sample = &cpu->sample;
1707
	int32_t busy_frac, boost;
1708
	int target, avg_pstate;
1709

1710 1711 1712
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE)
		return cpu->pstate.turbo_pstate;

1713
	busy_frac = div_fp(sample->mperf, sample->tsc);
1714

1715 1716
	boost = cpu->iowait_boost;
	cpu->iowait_boost >>= 1;
1717

1718 1719
	if (busy_frac < boost)
		busy_frac = boost;
1720

1721
	sample->busy_scaled = busy_frac * 100;
1722

1723
	target = global.no_turbo || global.turbo_disabled ?
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1742 1743
}

1744
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1745
{
1746
	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1747
	u64 duration_ns;
1748

1749 1750 1751
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE)
		return cpu->pstate.turbo_pstate;

1752
	/*
1753 1754 1755 1756 1757
	 * perf_scaled is the ratio of the average P-state during the last
	 * sampling period to the P-state requested last time (in percent).
	 *
	 * That measures the system's response to the previous P-state
	 * selection.
1758
	 */
1759 1760
	max_pstate = cpu->pstate.max_pstate_physical;
	current_pstate = cpu->pstate.current_pstate;
1761
	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1762
			       div_fp(100 * max_pstate, current_pstate));
1763

1764
	/*
1765 1766 1767
	 * Since our utilization update callback will not run unless we are
	 * in C0, check if the actual elapsed time is significantly greater (3x)
	 * than our sample interval.  If it is, then we were idle for a long
1768
	 * enough period of time to adjust our performance metric.
1769
	 */
1770
	duration_ns = cpu->sample.time - cpu->last_sample_time;
1771
	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1772
		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1773
		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1774 1775 1776
	} else {
		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
		if (sample_ratio < int_tofp(1))
1777
			perf_scaled = 0;
1778 1779
	}

1780 1781
	cpu->sample.busy_scaled = perf_scaled;
	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1782 1783
}

1784
static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1785 1786 1787 1788 1789
{
	int max_perf, min_perf;

	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
	pstate = clamp_t(int, pstate, min_perf, max_perf);
1790 1791 1792 1793 1794
	return pstate;
}

static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
1795 1796 1797
	if (pstate == cpu->pstate.current_pstate)
		return;

1798
	cpu->pstate.current_pstate = pstate;
1799 1800 1801
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1802
static void intel_pstate_adjust_pstate(struct cpudata *cpu, int target_pstate)
1803
{
1804
	int from = cpu->pstate.current_pstate;
1805 1806
	struct sample *sample;

1807 1808
	update_turbo_state();

1809 1810
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1811
	intel_pstate_update_pstate(cpu, target_pstate);
1812 1813

	sample = &cpu->sample;
1814
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1815
		fp_toint(sample->busy_scaled),
1816 1817 1818 1819 1820
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1821 1822
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1823 1824
}

1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
static void intel_pstate_update_util_hwp(struct update_util_data *data,
					 u64 time, unsigned int flags)
{
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
	u64 delta_ns = time - cpu->sample.time;

	if ((s64)delta_ns >= INTEL_PSTATE_HWP_SAMPLING_INTERVAL)
		intel_pstate_sample(cpu, time);
}

static void intel_pstate_update_util_pid(struct update_util_data *data,
					 u64 time, unsigned int flags)
{
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
	u64 delta_ns = time - cpu->sample.time;

	if ((s64)delta_ns < pid_params.sample_rate_ns)
		return;

1844 1845 1846 1847 1848 1849
	if (intel_pstate_sample(cpu, time)) {
		int target_pstate;

		target_pstate = get_target_pstate_use_performance(cpu);
		intel_pstate_adjust_pstate(cpu, target_pstate);
	}
1850 1851
}

1852
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1853
				     unsigned int flags)
1854
{
1855
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1856 1857
	u64 delta_ns;

1858 1859 1860 1861 1862 1863 1864
	if (flags & SCHED_CPUFREQ_IOWAIT) {
		cpu->iowait_boost = int_tofp(1);
	} else if (cpu->iowait_boost) {
		/* Clear iowait_boost if the CPU may have been idle. */
		delta_ns = time - cpu->last_update;
		if (delta_ns > TICK_NSEC)
			cpu->iowait_boost = 0;
1865
	}
1866
	cpu->last_update = time;
1867
	delta_ns = time - cpu->sample.time;
1868 1869
	if ((s64)delta_ns < INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL)
		return;
1870

1871 1872
	if (intel_pstate_sample(cpu, time)) {
		int target_pstate;
1873

1874 1875 1876 1877
		target_pstate = get_target_pstate_use_cpu_load(cpu);
		intel_pstate_adjust_pstate(cpu, target_pstate);
	}
}
1878

1879
#define ICPU(model, policy) \
1880 1881
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1882 1883

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_params),
	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_params),
	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_params),
	ICPU(INTEL_FAM6_IVYBRIDGE,		core_params),
	ICPU(INTEL_FAM6_HASWELL_CORE,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_params),
	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_params),
	ICPU(INTEL_FAM6_HASWELL_X,		core_params),
	ICPU(INTEL_FAM6_HASWELL_ULT,		core_params),
	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_params),
	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_params),
	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_X,		core_params),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_params),
	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_params),
	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_params),
1901
	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_params),
1902
	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_params),
1903 1904 1905 1906
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

1907
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1908
	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1909 1910
	ICPU(INTEL_FAM6_BROADWELL_X, core_params),
	ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
D
Dirk Brandewie 已提交
1911 1912 1913
	{}
};

1914 1915 1916 1917 1918
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_params),
	{}
};

1919 1920 1921 1922
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1923 1924 1925
	cpu = all_cpu_data[cpunum];

	if (!cpu) {
1926
		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1927 1928 1929 1930 1931
		if (!cpu)
			return -ENOMEM;

		all_cpu_data[cpunum] = cpu;

1932 1933 1934
		cpu->epp_default = -EINVAL;
		cpu->epp_powersave = -EINVAL;
		cpu->epp_saved = -EINVAL;
1935
	}
1936 1937 1938 1939

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1940

1941
	if (hwp_active) {
1942 1943 1944 1945 1946 1947
		const struct x86_cpu_id *id;

		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
		if (id)
			intel_pstate_disable_ee(cpunum);

1948
		intel_pstate_hwp_enable(cpu);
1949
	} else if (pstate_funcs.update_util == intel_pstate_update_util_pid) {
1950
		intel_pstate_pid_reset(cpu);
1951
	}
1952

1953
	intel_pstate_get_cpu_pstates(cpu);
1954

J
Joe Perches 已提交
1955
	pr_debug("controlling: cpu %d\n", cpunum);
1956 1957 1958 1959 1960 1961

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
1962
	struct cpudata *cpu = all_cpu_data[cpu_num];
1963

1964
	return cpu ? get_avg_frequency(cpu) : 0;
1965 1966
}

1967
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1968
{
1969 1970
	struct cpudata *cpu = all_cpu_data[cpu_num];

1971 1972 1973
	if (cpu->update_util_set)
		return;

1974 1975
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
1976 1977
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
				     pstate_funcs.update_util);
1978
	cpu->update_util_set = true;
1979 1980 1981 1982
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
1983 1984 1985 1986 1987
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

1988
	cpufreq_remove_update_util_hook(cpu);
1989
	cpu_data->update_util_set = false;
1990 1991 1992
	synchronize_sched();
}

1993 1994 1995 1996 1997 1998
static int intel_pstate_get_max_freq(struct cpudata *cpu)
{
	return global.turbo_disabled || global.no_turbo ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
}

1999
static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
2000
					    struct cpudata *cpu)
2001
{
2002
	int max_freq = intel_pstate_get_max_freq(cpu);
2003
	int32_t max_policy_perf, min_policy_perf;
2004

2005
	max_policy_perf = div_ext_fp(policy->max, max_freq);
2006
	max_policy_perf = clamp_t(int32_t, max_policy_perf, 0, int_ext_tofp(1));
2007
	if (policy->max == policy->min) {
2008
		min_policy_perf = max_policy_perf;
2009
	} else {
2010
		min_policy_perf = div_ext_fp(policy->min, max_freq);
2011 2012
		min_policy_perf = clamp_t(int32_t, min_policy_perf,
					  0, max_policy_perf);
2013
	}
2014

2015
	/* Normalize user input to [min_perf, max_perf] */
2016
	if (per_cpu_limits) {
2017 2018
		cpu->min_perf = min_policy_perf;
		cpu->max_perf = max_policy_perf;
2019 2020 2021 2022 2023 2024
	} else {
		int32_t global_min, global_max;

		/* Global limits are in percent of the maximum turbo P-state. */
		global_max = percent_ext_fp(global.max_perf_pct);
		global_min = percent_ext_fp(global.min_perf_pct);
2025
		if (max_freq != cpu->pstate.turbo_freq) {
2026 2027 2028 2029 2030 2031 2032 2033
			int32_t turbo_factor;

			turbo_factor = div_ext_fp(cpu->pstate.turbo_pstate,
						  cpu->pstate.max_pstate);
			global_min = mul_ext_fp(global_min, turbo_factor);
			global_max = mul_ext_fp(global_max, turbo_factor);
		}
		global_min = clamp_t(int32_t, global_min, 0, global_max);
2034

2035 2036 2037 2038
		cpu->min_perf = max(min_policy_perf, global_min);
		cpu->min_perf = min(cpu->min_perf, max_policy_perf);
		cpu->max_perf = min(max_policy_perf, global_max);
		cpu->max_perf = max(min_policy_perf, cpu->max_perf);
2039 2040

		/* Make sure min_perf <= max_perf */
2041
		cpu->min_perf = min(cpu->min_perf, cpu->max_perf);
2042
	}
2043

2044 2045
	cpu->max_perf = round_up(cpu->max_perf, EXT_FRAC_BITS);
	cpu->min_perf = round_up(cpu->min_perf, EXT_FRAC_BITS);
2046 2047

	pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
2048 2049
		 fp_ext_toint(cpu->max_perf * 100),
		 fp_ext_toint(cpu->min_perf * 100));
2050 2051
}

2052 2053
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
2054 2055
	struct cpudata *cpu;

2056 2057 2058
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

2059 2060 2061
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

2062
	cpu = all_cpu_data[policy->cpu];
2063 2064
	cpu->policy = policy->policy;

2065 2066
	mutex_lock(&intel_pstate_limits_lock);

2067
	intel_pstate_update_perf_limits(policy, cpu);
2068

2069
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2070 2071 2072 2073 2074 2075 2076 2077
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
	}

2078 2079
	intel_pstate_set_update_util_hook(policy->cpu);

2080 2081
	if (hwp_active)
		intel_pstate_hwp_set(policy);
D
Dirk Brandewie 已提交
2082

2083 2084
	mutex_unlock(&intel_pstate_limits_lock);

2085 2086 2087
	return 0;
}

2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
					 struct cpudata *cpu)
{
	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_freq) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
	}
}

2099 2100
static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
2101 2102 2103
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2104 2105
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2106

2107
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2108
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2109 2110
		return -EINVAL;

2111 2112
	intel_pstate_adjust_policy_max(policy, cpu);

2113 2114 2115
	return 0;
}

2116 2117 2118 2119 2120
static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
{
	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
}

2121
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2122
{
2123
	pr_debug("CPU %d exiting\n", policy->cpu);
2124

2125
	intel_pstate_clear_update_util_hook(policy->cpu);
2126 2127 2128
	if (hwp_active)
		intel_pstate_hwp_save_state(policy);
	else
2129 2130
		intel_cpufreq_stop_cpu(policy);
}
2131

2132 2133 2134
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);
2135

2136
	policy->fast_switch_possible = false;
D
Dirk Brandewie 已提交
2137

2138
	return 0;
2139 2140
}

2141
static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2142 2143
{
	struct cpudata *cpu;
2144
	int rc;
2145 2146 2147 2148 2149 2150 2151

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

2152 2153
	cpu->max_perf = int_ext_tofp(1);
	cpu->min_perf = 0;
2154

2155 2156
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2157 2158

	/* cpuinfo and default policy values */
2159
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2160
	update_turbo_state();
2161
	policy->cpuinfo.max_freq = global.turbo_disabled ?
2162 2163 2164
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

2165
	intel_pstate_init_acpi_perf_limits(policy);
2166 2167
	cpumask_set_cpu(policy->cpu, policy->cpus);

2168 2169
	policy->fast_switch_possible = true;

2170 2171 2172
	return 0;
}

2173
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2174
{
2175 2176 2177 2178 2179 2180
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2181
	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2182 2183 2184
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2185 2186 2187 2188

	return 0;
}

2189
static struct cpufreq_driver intel_pstate = {
2190 2191 2192
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
2193
	.suspend	= intel_pstate_hwp_save_state,
2194
	.resume		= intel_pstate_resume,
2195 2196
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
2197
	.exit		= intel_pstate_cpu_exit,
2198
	.stop_cpu	= intel_pstate_stop_cpu,
2199 2200 2201
	.name		= "intel_pstate",
};

2202 2203 2204 2205 2206
static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2207 2208
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2209

2210
	intel_pstate_adjust_policy_max(policy, cpu);
2211

2212 2213
	intel_pstate_update_perf_limits(policy, cpu);

2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
	return 0;
}

static int intel_cpufreq_target(struct cpufreq_policy *policy,
				unsigned int target_freq,
				unsigned int relation)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct cpufreq_freqs freqs;
	int target_pstate;

2225 2226
	update_turbo_state();

2227
	freqs.old = policy->cur;
2228
	freqs.new = target_freq;
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247

	cpufreq_freq_transition_begin(policy, &freqs);
	switch (relation) {
	case CPUFREQ_RELATION_L:
		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
		break;
	case CPUFREQ_RELATION_H:
		target_pstate = freqs.new / cpu->pstate.scaling;
		break;
	default:
		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
		break;
	}
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	if (target_pstate != cpu->pstate.current_pstate) {
		cpu->pstate.current_pstate = target_pstate;
		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
			      pstate_funcs.get_val(cpu, target_pstate));
	}
2248
	freqs.new = target_pstate * cpu->pstate.scaling;
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
	cpufreq_freq_transition_end(policy, &freqs, false);

	return 0;
}

static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
					      unsigned int target_freq)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	int target_pstate;

2260 2261
	update_turbo_state();

2262
	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2263
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2264
	intel_pstate_update_pstate(cpu, target_pstate);
2265
	return target_pstate * cpu->pstate.scaling;
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
}

static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
	policy->cur = policy->cpuinfo.min_freq;

	return 0;
}

static struct cpufreq_driver intel_cpufreq = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_cpufreq_verify_policy,
	.target		= intel_cpufreq_target,
	.fast_switch	= intel_cpufreq_fast_switch,
	.init		= intel_cpufreq_cpu_init,
	.exit		= intel_pstate_cpu_exit,
	.stop_cpu	= intel_cpufreq_stop_cpu,
	.name		= "intel_cpufreq",
};

2293
static struct cpufreq_driver *default_driver = &intel_pstate;
2294

2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
static void intel_pstate_driver_cleanup(void)
{
	unsigned int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			if (intel_pstate_driver == &intel_pstate)
				intel_pstate_clear_update_util_hook(cpu);

			kfree(all_cpu_data[cpu]);
			all_cpu_data[cpu] = NULL;
		}
	}
	put_online_cpus();
2310
	intel_pstate_driver = NULL;
2311 2312
}

2313
static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2314 2315 2316
{
	int ret;

2317 2318
	memset(&global, 0, sizeof(global));
	global.max_perf_pct = 100;
2319

2320
	intel_pstate_driver = driver;
2321 2322 2323 2324 2325 2326
	ret = cpufreq_register_driver(intel_pstate_driver);
	if (ret) {
		intel_pstate_driver_cleanup();
		return ret;
	}

2327 2328
	global.min_perf_pct = min_perf_pct_min();

2329
	if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2330
	    pstate_funcs.update_util == intel_pstate_update_util_pid)
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
		intel_pstate_debug_expose_params();

	return 0;
}

static int intel_pstate_unregister_driver(void)
{
	if (hwp_active)
		return -EBUSY;

2341 2342
	if (intel_pstate_driver == &intel_pstate &&
	    pstate_funcs.update_util == intel_pstate_update_util_pid)
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
		intel_pstate_debug_hide_params();

	cpufreq_unregister_driver(intel_pstate_driver);
	intel_pstate_driver_cleanup();

	return 0;
}

static ssize_t intel_pstate_show_status(char *buf)
{
2353
	if (!intel_pstate_driver)
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
		return sprintf(buf, "off\n");

	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
					"active" : "passive");
}

static int intel_pstate_update_status(const char *buf, size_t size)
{
	int ret;

	if (size == 3 && !strncmp(buf, "off", size))
2365
		return intel_pstate_driver ?
2366 2367 2368
			intel_pstate_unregister_driver() : -EINVAL;

	if (size == 6 && !strncmp(buf, "active", size)) {
2369
		if (intel_pstate_driver) {
2370 2371 2372 2373 2374 2375 2376 2377
			if (intel_pstate_driver == &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2378
		return intel_pstate_register_driver(&intel_pstate);
2379 2380 2381
	}

	if (size == 7 && !strncmp(buf, "passive", size)) {
2382
		if (intel_pstate_driver) {
2383
			if (intel_pstate_driver == &intel_cpufreq)
2384 2385 2386 2387 2388 2389 2390
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2391
		return intel_pstate_register_driver(&intel_cpufreq);
2392 2393 2394 2395 2396
	}

	return -EINVAL;
}

2397 2398 2399
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
2400
static unsigned int force_load __initdata;
2401

2402
static int __init intel_pstate_msrs_not_valid(void)
2403
{
2404
	if (!pstate_funcs.get_max() ||
2405 2406
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
2407 2408 2409 2410
		return -ENODEV;

	return 0;
}
2411

2412 2413 2414
#ifdef CONFIG_ACPI
static void intel_pstate_use_acpi_profile(void)
{
2415 2416 2417 2418 2419 2420
	switch (acpi_gbl_FADT.preferred_profile) {
	case PM_MOBILE:
	case PM_TABLET:
	case PM_APPLIANCE_PC:
	case PM_DESKTOP:
	case PM_WORKSTATION:
2421
		pstate_funcs.update_util = intel_pstate_update_util;
2422
	}
2423 2424 2425 2426 2427 2428 2429
}
#else
static void intel_pstate_use_acpi_profile(void)
{
}
#endif

2430
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2431 2432
{
	pstate_funcs.get_max   = funcs->get_max;
2433
	pstate_funcs.get_max_physical = funcs->get_max_physical;
2434 2435
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
2436
	pstate_funcs.get_scaling = funcs->get_scaling;
2437
	pstate_funcs.get_val   = funcs->get_val;
2438
	pstate_funcs.get_vid   = funcs->get_vid;
2439
	pstate_funcs.update_util = funcs->update_util;
2440

2441
	intel_pstate_use_acpi_profile();
2442 2443
}

2444
#ifdef CONFIG_ACPI
2445

2446
static bool __init intel_pstate_no_acpi_pss(void)
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

2475
static bool __init intel_pstate_has_acpi_ppc(void)
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

2495 2496 2497 2498
struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2499
	int  oem_pwr_table;
2500 2501 2502
};

/* Hardware vendor-specific info that has its own power management modes */
2503
static struct hw_vendor_info vendor_info[] __initdata = {
2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
	{1, "HP    ", "ProLiant", PSS},
	{1, "ORACLE", "X4-2    ", PPC},
	{1, "ORACLE", "X4-2L   ", PPC},
	{1, "ORACLE", "X4-2B   ", PPC},
	{1, "ORACLE", "X3-2    ", PPC},
	{1, "ORACLE", "X3-2L   ", PPC},
	{1, "ORACLE", "X3-2B   ", PPC},
	{1, "ORACLE", "X4470M2 ", PPC},
	{1, "ORACLE", "X4270M3 ", PPC},
	{1, "ORACLE", "X4270M2 ", PPC},
	{1, "ORACLE", "X4170M2 ", PPC},
2515 2516 2517 2518
	{1, "ORACLE", "X4170 M3", PPC},
	{1, "ORACLE", "X4275 M3", PPC},
	{1, "ORACLE", "X6-2    ", PPC},
	{1, "ORACLE", "Sudbury ", PPC},
2519 2520 2521
	{0, "", ""},
};

2522
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2523 2524 2525
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;
D
Dirk Brandewie 已提交
2526 2527 2528 2529 2530 2531 2532 2533 2534
	const struct x86_cpu_id *id;
	u64 misc_pwr;

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
2535

2536 2537
	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2538 2539 2540
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
2541
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2542 2543 2544 2545 2546 2547
			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
						ACPI_OEM_TABLE_ID_SIZE))
			switch (v_info->oem_pwr_table) {
			case PSS:
				return intel_pstate_no_acpi_pss();
			case PPC:
2548 2549
				return intel_pstate_has_acpi_ppc() &&
					(!force_load);
2550
			}
2551 2552 2553 2554
	}

	return false;
}
2555 2556 2557 2558 2559 2560 2561 2562 2563 2564

static void intel_pstate_request_control_from_smm(void)
{
	/*
	 * It may be unsafe to request P-states control from SMM if _PPC support
	 * has not been enabled.
	 */
	if (acpi_ppc)
		acpi_processor_pstate_control();
}
2565 2566
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2567
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2568
static inline void intel_pstate_request_control_from_smm(void) {}
2569 2570
#endif /* CONFIG_ACPI */

2571 2572 2573 2574 2575
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
	{}
};

2576 2577
static int __init intel_pstate_init(void)
{
2578
	int rc;
2579

2580 2581 2582
	if (no_load)
		return -ENODEV;

2583
	if (x86_match_cpu(hwp_support_ids)) {
2584
		copy_cpu_funcs(&core_params.funcs);
2585
		if (no_hwp) {
2586
			pstate_funcs.update_util = intel_pstate_update_util;
2587 2588 2589
		} else {
			hwp_active++;
			intel_pstate.attr = hwp_cpufreq_attrs;
2590
			pstate_funcs.update_util = intel_pstate_update_util_hwp;
2591 2592 2593 2594 2595
			goto hwp_cpu_matched;
		}
	} else {
		const struct x86_cpu_id *id;
		struct cpu_defaults *cpu_def;
2596

2597 2598 2599
		id = x86_match_cpu(intel_pstate_cpu_ids);
		if (!id)
			return -ENODEV;
2600

2601 2602 2603
		cpu_def = (struct cpu_defaults *)id->driver_data;
		copy_cpu_funcs(&cpu_def->funcs);
	}
2604

2605 2606 2607
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

2608 2609 2610 2611 2612 2613 2614 2615
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

2616 2617 2618
	if (!hwp_active && hwp_only)
		return -ENOTSUPP;

J
Joe Perches 已提交
2619
	pr_info("Intel P-state driver initializing\n");
2620

2621
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2622 2623 2624
	if (!all_cpu_data)
		return -ENOMEM;

2625 2626
	intel_pstate_request_control_from_smm();

2627
	intel_pstate_sysfs_expose_params();
2628

2629
	mutex_lock(&intel_pstate_driver_lock);
2630
	rc = intel_pstate_register_driver(default_driver);
2631
	mutex_unlock(&intel_pstate_driver_lock);
2632 2633
	if (rc)
		return rc;
2634

2635
	if (hwp_active)
J
Joe Perches 已提交
2636
		pr_info("HWP enabled\n");
2637

2638
	return 0;
2639 2640 2641
}
device_initcall(intel_pstate_init);

2642 2643 2644 2645 2646
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

2647
	if (!strcmp(str, "disable")) {
2648
		no_load = 1;
2649 2650
	} else if (!strcmp(str, "passive")) {
		pr_info("Passive mode enabled\n");
2651
		default_driver = &intel_cpufreq;
2652 2653
		no_hwp = 1;
	}
2654
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
2655
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
2656
		no_hwp = 1;
2657
	}
2658 2659
	if (!strcmp(str, "force"))
		force_load = 1;
2660 2661
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
2662 2663
	if (!strcmp(str, "per_cpu_perf_limits"))
		per_cpu_limits = true;
2664 2665 2666 2667 2668 2669

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

2670 2671 2672 2673
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

2674 2675 2676
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");