intel_pstate.c 47.5 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

J
Joe Perches 已提交
13 14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
30
#include <linux/acpi.h>
31
#include <linux/vmalloc.h>
32 33 34 35 36
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
37
#include <asm/cpufeature.h>
38
#include <asm/intel-family.h>
39

40 41 42 43
#define ATOM_RATIOS		0x66a
#define ATOM_VIDS		0x66b
#define ATOM_TURBO_RATIOS	0x66c
#define ATOM_TURBO_VIDS		0x66d
44

45 46 47 48
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
#endif

49
#define FRAC_BITS 8
50 51
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
52

53 54 55
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)

56 57 58 59 60
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

61
static inline int32_t div_fp(s64 x, s64 y)
62
{
63
	return div64_s64((int64_t)x << FRAC_BITS, y);
64 65
}

66 67 68 69 70 71 72 73 74 75 76
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

77 78 79 80 81 82 83 84 85 86
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

87 88
/**
 * struct sample -	Store performance sample
89
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
90 91
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
92
 *			P state. This can be different than core_avg_perf
93 94 95 96 97 98 99 100 101 102 103 104
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
105
struct sample {
106
	int32_t core_avg_perf;
107
	int32_t busy_scaled;
108 109
	u64 aperf;
	u64 mperf;
110
	u64 tsc;
111
	u64 time;
112 113
};

114 115 116 117 118 119 120 121 122 123 124 125 126 127
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
 *
 * Stores the per cpu model P state limits and current P state.
 */
128 129 130 131
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
132
	int	max_pstate_physical;
133
	int	scaling;
134 135 136
	int	turbo_pstate;
};

137 138 139 140 141 142 143 144 145 146 147 148 149
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
150
struct vid_data {
151 152 153
	int min;
	int max;
	int turbo;
154 155 156
	int32_t ratio;
};

157 158 159 160 161 162 163 164 165 166 167 168
/**
 * struct _pid -	Stores PID data
 * @setpoint:		Target set point for busyness or performance
 * @integral:		Storage for accumulated error values
 * @p_gain:		PID proportional gain
 * @i_gain:		PID integral gain
 * @d_gain:		PID derivative gain
 * @deadband:		PID deadband
 * @last_err:		Last error storage for integral part of PID calculation
 *
 * Stores PID coefficients and last error for PID controller.
 */
169 170 171 172 173 174 175
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
176
	int32_t last_err;
177 178
};

179 180 181 182
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
 * @update_util:	CPUFreq utility callback information
183
 * @update_util_set:	CPUFreq utility callback is set
184 185
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
186 187 188 189 190 191 192 193 194 195
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @pid:		Stores PID parameters for this CPU
 * @last_sample_time:	Last Sample time
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
196 197
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
198 199 200
 *
 * This structure stores per CPU instance data for all CPUs.
 */
201 202 203
struct cpudata {
	int cpu;

204
	struct update_util_data update_util;
205
	bool   update_util_set;
206 207

	struct pstate_data pstate;
208
	struct vid_data vid;
209 210
	struct _pid pid;

211
	u64	last_update;
212
	u64	last_sample_time;
213 214
	u64	prev_aperf;
	u64	prev_mperf;
215
	u64	prev_tsc;
216
	u64	prev_cummulative_iowait;
217
	struct sample sample;
218 219 220 221
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
222
	unsigned int iowait_boost;
223 224 225
};

static struct cpudata **all_cpu_data;
226 227

/**
228
 * struct pstate_adjust_policy - Stores static PID configuration data
229 230 231 232 233 234 235
 * @sample_rate_ms:	PID calculation sample rate in ms
 * @sample_rate_ns:	Sample rate calculation in ns
 * @deadband:		PID deadband
 * @setpoint:		PID Setpoint
 * @p_gain_pct:		PID proportional gain
 * @i_gain_pct:		PID integral gain
 * @d_gain_pct:		PID derivative gain
236
 * @boost_iowait:	Whether or not to use iowait boosting.
237 238 239
 *
 * Stores per CPU model static PID configuration data.
 */
240 241
struct pstate_adjust_policy {
	int sample_rate_ms;
242
	s64 sample_rate_ns;
243 244 245 246 247
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
248
	bool boost_iowait;
249 250
};

251 252 253 254 255 256 257 258 259 260 261 262 263 264
/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 * @get_target_pstate:	Callback to a function to calculate next P state to use
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
265 266
struct pstate_funcs {
	int (*get_max)(void);
267
	int (*get_max_physical)(void);
268 269
	int (*get_min)(void);
	int (*get_turbo)(void);
270
	int (*get_scaling)(void);
271
	u64 (*get_val)(struct cpudata*, int pstate);
272
	void (*get_vid)(struct cpudata *);
273
	int32_t (*get_target_pstate)(struct cpudata *);
274 275
};

276 277 278 279 280
/**
 * struct cpu_defaults- Per CPU model default config data
 * @pid_policy:	PID config data
 * @funcs:		Callback function data
 */
281 282 283
struct cpu_defaults {
	struct pstate_adjust_policy pid_policy;
	struct pstate_funcs funcs;
284 285
};

286
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
287
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
288

289 290 291
static struct pstate_adjust_policy pid_params __read_mostly;
static struct pstate_funcs pstate_funcs __read_mostly;
static int hwp_active __read_mostly;
292

293 294 295
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323

/**
 * struct perf_limits - Store user and policy limits
 * @no_turbo:		User requested turbo state from intel_pstate sysfs
 * @turbo_disabled:	Platform turbo status either from msr
 *			MSR_IA32_MISC_ENABLE or when maximum available pstate
 *			matches the maximum turbo pstate
 * @max_perf_pct:	Effective maximum performance limit in percentage, this
 *			is minimum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @min_perf_pct:	Effective minimum performance limit in percentage, this
 *			is maximum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @max_perf:		This is a scaled value between 0 to 255 for max_perf_pct
 *			This value is used to limit max pstate
 * @min_perf:		This is a scaled value between 0 to 255 for min_perf_pct
 *			This value is used to limit min pstate
 * @max_policy_pct:	The maximum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @max_sysfs_pct:	The maximum performance in percentage enforced by
 *			intel pstate sysfs interface
 * @min_policy_pct:	The minimum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @min_sysfs_pct:	The minimum performance in percentage enforced by
 *			intel pstate sysfs interface
 *
 * Storage for user and policy defined limits.
 */
324 325
struct perf_limits {
	int no_turbo;
326
	int turbo_disabled;
327 328 329 330
	int max_perf_pct;
	int min_perf_pct;
	int32_t max_perf;
	int32_t min_perf;
331 332
	int max_policy_pct;
	int max_sysfs_pct;
333 334
	int min_policy_pct;
	int min_sysfs_pct;
335 336
};

337 338 339 340 341 342 343 344 345 346 347 348 349 350
static struct perf_limits performance_limits = {
	.no_turbo = 0,
	.turbo_disabled = 0,
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 100,
	.min_perf = int_tofp(1),
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
};

static struct perf_limits powersave_limits = {
351
	.no_turbo = 0,
352
	.turbo_disabled = 0,
353 354 355 356
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 0,
	.min_perf = 0,
357 358
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
359 360
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
361 362
};

363 364 365 366 367 368
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
static struct perf_limits *limits = &performance_limits;
#else
static struct perf_limits *limits = &powersave_limits;
#endif

369
#ifdef CONFIG_ACPI
370 371 372 373 374 375 376 377 378 379

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

	return acpi_ppc;
}

380 381 382 383 384 385
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

386 387 388
	if (hwp_active)
		return;

389
	if (!intel_pstate_get_ppc_enable_status())
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
432
	 * correct max turbo frequency based on the turbo state.
433 434
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
435
	if (!limits->turbo_disabled)
436 437 438
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
439
	pr_debug("_PPC limits will be enforced\n");
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}

#else
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
}
#endif

469
static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
470
			     int deadband, int integral) {
471 472
	pid->setpoint = int_tofp(setpoint);
	pid->deadband  = int_tofp(deadband);
473
	pid->integral  = int_tofp(integral);
474
	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
475 476 477 478
}

static inline void pid_p_gain_set(struct _pid *pid, int percent)
{
479
	pid->p_gain = div_fp(percent, 100);
480 481 482 483
}

static inline void pid_i_gain_set(struct _pid *pid, int percent)
{
484
	pid->i_gain = div_fp(percent, 100);
485 486 487 488
}

static inline void pid_d_gain_set(struct _pid *pid, int percent)
{
489
	pid->d_gain = div_fp(percent, 100);
490 491
}

492
static signed int pid_calc(struct _pid *pid, int32_t busy)
493
{
494
	signed int result;
495 496 497
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

498
	fp_error = pid->setpoint - busy;
499

500
	if (abs(fp_error) <= pid->deadband)
501 502 503 504 505 506
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

507 508 509 510 511 512 513 514
	/*
	 * We limit the integral here so that it will never
	 * get higher than 30.  This prevents it from becoming
	 * too large an input over long periods of time and allows
	 * it to get factored out sooner.
	 *
	 * The value of 30 was chosen through experimentation.
	 */
515 516 517 518 519 520
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

521 522
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
523 524

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
525
	result = result + (1 << (FRAC_BITS-1));
526 527 528 529 530
	return (signed int)fp_toint(result);
}

static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
{
531 532 533
	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
534

535
	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
536 537 538 539 540
}

static inline void intel_pstate_reset_all_pid(void)
{
	unsigned int cpu;
541

542 543 544 545 546 547
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu])
			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
	}
}

548 549 550 551 552 553 554
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
555
	limits->turbo_disabled =
556 557 558 559
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

560
static void intel_pstate_hwp_set(const struct cpumask *cpumask)
D
Dirk Brandewie 已提交
561
{
562 563 564
	int min, hw_min, max, hw_max, cpu, range, adj_range;
	u64 value, cap;

565
	for_each_cpu(cpu, cpumask) {
566 567 568 569 570
		rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
		hw_min = HWP_LOWEST_PERF(cap);
		hw_max = HWP_HIGHEST_PERF(cap);
		range = hw_max - hw_min;

D
Dirk Brandewie 已提交
571
		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
572
		adj_range = limits->min_perf_pct * range / 100;
573
		min = hw_min + adj_range;
D
Dirk Brandewie 已提交
574 575 576
		value &= ~HWP_MIN_PERF(~0L);
		value |= HWP_MIN_PERF(min);

577
		adj_range = limits->max_perf_pct * range / 100;
578
		max = hw_min + adj_range;
579
		if (limits->no_turbo) {
580 581 582
			hw_max = HWP_GUARANTEED_PERF(cap);
			if (hw_max < max)
				max = hw_max;
D
Dirk Brandewie 已提交
583 584 585 586 587 588
		}

		value &= ~HWP_MAX_PERF(~0L);
		value |= HWP_MAX_PERF(max);
		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
	}
589
}
D
Dirk Brandewie 已提交
590

591 592 593 594 595 596 597 598
static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
{
	if (hwp_active)
		intel_pstate_hwp_set(policy->cpus);

	return 0;
}

599 600 601 602
static void intel_pstate_hwp_set_online_cpus(void)
{
	get_online_cpus();
	intel_pstate_hwp_set(cpu_online_mask);
D
Dirk Brandewie 已提交
603 604 605
	put_online_cpus();
}

606 607 608 609 610 611 612
/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
	*(u32 *)data = val;
	intel_pstate_reset_all_pid();
	return 0;
}
613

614 615 616 617 618
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
619
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
620 621 622 623 624 625 626

struct pid_param {
	char *name;
	void *value;
};

static struct pid_param pid_files[] = {
627 628 629 630 631 632
	{"sample_rate_ms", &pid_params.sample_rate_ms},
	{"d_gain_pct", &pid_params.d_gain_pct},
	{"i_gain_pct", &pid_params.i_gain_pct},
	{"deadband", &pid_params.deadband},
	{"setpoint", &pid_params.setpoint},
	{"p_gain_pct", &pid_params.p_gain_pct},
633 634 635
	{NULL, NULL}
};

636
static void __init intel_pstate_debug_expose_params(void)
637
{
638
	struct dentry *debugfs_parent;
639 640
	int i = 0;

D
Dirk Brandewie 已提交
641 642
	if (hwp_active)
		return;
643 644 645 646 647
	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
	while (pid_files[i].name) {
		debugfs_create_file(pid_files[i].name, 0660,
648 649
				    debugfs_parent, pid_files[i].value,
				    &fops_pid_param);
650 651 652 653 654 655 656 657 658 659 660
		i++;
	}
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
661
		return sprintf(buf, "%u\n", limits->object);		\
662 663
	}

664 665 666 667 668 669 670 671 672 673 674
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
675
	turbo_fp = div_fp(no_turbo, total);
676 677 678 679
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
	return sprintf(buf, "%u\n", turbo_pct);
}

680 681 682 683 684 685 686 687 688 689 690
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	return sprintf(buf, "%u\n", total);
}

691 692 693 694 695 696
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

	update_turbo_state();
697 698
	if (limits->turbo_disabled)
		ret = sprintf(buf, "%u\n", limits->turbo_disabled);
699
	else
700
		ret = sprintf(buf, "%u\n", limits->no_turbo);
701 702 703 704

	return ret;
}

705
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
706
			      const char *buf, size_t count)
707 708 709
{
	unsigned int input;
	int ret;
710

711 712 713
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
714 715

	update_turbo_state();
716
	if (limits->turbo_disabled) {
J
Joe Perches 已提交
717
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
718
		return -EPERM;
719
	}
D
Dirk Brandewie 已提交
720

721
	limits->no_turbo = clamp_t(int, input, 0, 1);
722

D
Dirk Brandewie 已提交
723
	if (hwp_active)
724
		intel_pstate_hwp_set_online_cpus();
D
Dirk Brandewie 已提交
725

726 727 728 729
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
730
				  const char *buf, size_t count)
731 732 733
{
	unsigned int input;
	int ret;
734

735 736 737 738
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

739 740 741 742 743 744 745
	limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);
	limits->max_perf_pct = max(limits->min_perf_pct,
				   limits->max_perf_pct);
746
	limits->max_perf = div_fp(limits->max_perf_pct, 100);
747

D
Dirk Brandewie 已提交
748
	if (hwp_active)
749
		intel_pstate_hwp_set_online_cpus();
750 751 752 753
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
754
				  const char *buf, size_t count)
755 756 757
{
	unsigned int input;
	int ret;
758

759 760 761
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
762

763 764 765 766 767 768 769
	limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->min_perf_pct = min(limits->max_perf_pct,
				   limits->min_perf_pct);
770
	limits->min_perf = div_fp(limits->min_perf_pct, 100);
771

D
Dirk Brandewie 已提交
772
	if (hwp_active)
773
		intel_pstate_hwp_set_online_cpus();
774 775 776 777 778 779 780 781 782
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
783
define_one_global_ro(turbo_pct);
784
define_one_global_ro(num_pstates);
785 786 787 788 789

static struct attribute *intel_pstate_attributes[] = {
	&no_turbo.attr,
	&max_perf_pct.attr,
	&min_perf_pct.attr,
790
	&turbo_pct.attr,
791
	&num_pstates.attr,
792 793 794 795 796 797 798
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};

799
static void __init intel_pstate_sysfs_expose_params(void)
800
{
801
	struct kobject *intel_pstate_kobject;
802 803 804 805 806
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
	BUG_ON(!intel_pstate_kobject);
807
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
808 809 810
	BUG_ON(rc);
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
811

812
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
813
{
814
	/* First disable HWP notification interrupt as we don't process them */
815 816
	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
817

818
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
D
Dirk Brandewie 已提交
819 820
}

821
static int atom_get_min_pstate(void)
822 823
{
	u64 value;
824

825
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
826
	return (value >> 8) & 0x7F;
827 828
}

829
static int atom_get_max_pstate(void)
830 831
{
	u64 value;
832

833
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
834
	return (value >> 16) & 0x7F;
835
}
836

837
static int atom_get_turbo_pstate(void)
838 839
{
	u64 value;
840

841
	rdmsrl(ATOM_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
842
	return value & 0x7F;
843 844
}

845
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
846 847 848 849 850
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

851
	val = (u64)pstate << 8;
852
	if (limits->no_turbo && !limits->turbo_disabled)
853 854 855 856 857 858 859
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
860
	vid = ceiling_fp(vid_fp);
861

862 863 864
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

865
	return val | vid;
866 867
}

868
static int silvermont_get_scaling(void)
869 870 871
{
	u64 value;
	int i;
872 873 874
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
875 876

	rdmsrl(MSR_FSB_FREQ, value);
877 878
	i = value & 0x7;
	WARN_ON(i > 4);
879

880 881
	return silvermont_freq_table[i];
}
882

883 884 885 886 887 888 889 890 891 892 893 894 895 896
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
897 898
}

899
static void atom_get_vid(struct cpudata *cpudata)
900 901 902
{
	u64 value;

903
	rdmsrl(ATOM_VIDS, value);
D
Dirk Brandewie 已提交
904 905
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
906 907 908 909
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
910

911
	rdmsrl(ATOM_TURBO_VIDS, value);
912
	cpudata->vid.turbo = value & 0x7f;
913 914
}

915
static int core_get_min_pstate(void)
916 917
{
	u64 value;
918

919
	rdmsrl(MSR_PLATFORM_INFO, value);
920 921 922
	return (value >> 40) & 0xFF;
}

923
static int core_get_max_pstate_physical(void)
924 925
{
	u64 value;
926

927
	rdmsrl(MSR_PLATFORM_INFO, value);
928 929 930
	return (value >> 8) & 0xFF;
}

931
static int core_get_max_pstate(void)
932
{
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
	u64 tar;
	u64 plat_info;
	int max_pstate;
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
		/* Do some sanity checking for safety */
		if (plat_info & 0x600000000) {
			u64 tdp_ctrl;
			u64 tdp_ratio;
			int tdp_msr;

			err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
			if (err)
				goto skip_tar;

953
			tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x3);
954 955 956 957
			err = rdmsrl_safe(tdp_msr, &tdp_ratio);
			if (err)
				goto skip_tar;

958 959 960 961 962
			/* For level 1 and 2, bits[23:16] contain the ratio */
			if (tdp_ctrl)
				tdp_ratio >>= 16;

			tdp_ratio &= 0xff; /* ratios are only 8 bits long */
963 964 965 966 967 968 969 970
			if (tdp_ratio - 1 == tar) {
				max_pstate = tar;
				pr_debug("max_pstate=TAC %x\n", max_pstate);
			} else {
				goto skip_tar;
			}
		}
	}
971

972 973
skip_tar:
	return max_pstate;
974 975
}

976
static int core_get_turbo_pstate(void)
977 978 979
{
	u64 value;
	int nont, ret;
980

981
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
982
	nont = core_get_max_pstate();
983
	ret = (value) & 255;
984 985 986 987 988
	if (ret <= nont)
		ret = nont;
	return ret;
}

989 990 991 992 993
static inline int core_get_scaling(void)
{
	return 100000;
}

994
static u64 core_get_val(struct cpudata *cpudata, int pstate)
995 996 997
{
	u64 val;

998
	val = (u64)pstate << 8;
999
	if (limits->no_turbo && !limits->turbo_disabled)
1000 1001
		val |= (u64)1 << 32;

1002
	return val;
1003 1004
}

1005 1006 1007 1008 1009
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1010
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1011 1012 1013 1014 1015 1016 1017
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
static struct cpu_defaults core_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
1029
		.get_max_physical = core_get_max_pstate_physical,
1030 1031
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
1032
		.get_scaling = core_get_scaling,
1033
		.get_val = core_get_val,
1034
		.get_target_pstate = get_target_pstate_use_performance,
1035 1036 1037
	},
};

1038
static const struct cpu_defaults silvermont_params = {
1039 1040 1041 1042 1043 1044 1045
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
1046
		.boost_iowait = true,
1047 1048 1049 1050 1051 1052
	},
	.funcs = {
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1053
		.get_val = atom_get_val,
1054 1055
		.get_scaling = silvermont_get_scaling,
		.get_vid = atom_get_vid,
1056
		.get_target_pstate = get_target_pstate_use_cpu_load,
1057 1058 1059
	},
};

1060
static const struct cpu_defaults airmont_params = {
1061 1062 1063
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
1064
		.setpoint = 60,
1065 1066 1067
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
1068
		.boost_iowait = true,
1069 1070
	},
	.funcs = {
1071 1072 1073 1074
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1075
		.get_val = atom_get_val,
1076
		.get_scaling = airmont_get_scaling,
1077
		.get_vid = atom_get_vid,
1078
		.get_target_pstate = get_target_pstate_use_cpu_load,
1079 1080 1081
	},
};

1082
static const struct cpu_defaults knl_params = {
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
1093
		.get_max_physical = core_get_max_pstate_physical,
1094 1095
		.get_min = core_get_min_pstate,
		.get_turbo = knl_get_turbo_pstate,
1096
		.get_scaling = core_get_scaling,
1097
		.get_val = core_get_val,
1098
		.get_target_pstate = get_target_pstate_use_performance,
1099 1100 1101
	},
};

1102
static const struct cpu_defaults bxt_params = {
1103 1104 1105 1106 1107 1108 1109
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
1110
		.boost_iowait = true,
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
	},
	.funcs = {
		.get_max = core_get_max_pstate,
		.get_max_physical = core_get_max_pstate_physical,
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
		.get_scaling = core_get_scaling,
		.get_val = core_get_val,
		.get_target_pstate = get_target_pstate_use_cpu_load,
	},
};

1123 1124 1125
static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
1126
	int max_perf_adj;
1127
	int min_perf;
1128

1129
	if (limits->no_turbo || limits->turbo_disabled)
1130 1131
		max_perf = cpu->pstate.max_pstate;

1132 1133 1134 1135 1136
	/*
	 * performance can be limited by user through sysfs, by cpufreq
	 * policy, or by cpu specific default values determined through
	 * experimentation.
	 */
1137
	max_perf_adj = fp_toint(max_perf * limits->max_perf);
1138 1139
	*max = clamp_t(int, max_perf_adj,
			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1140

1141
	min_perf = fp_toint(max_perf * limits->min_perf);
1142
	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1143 1144
}

1145 1146 1147 1148
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	int pstate = cpu->pstate.min_pstate;

1149 1150
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1151 1152 1153 1154 1155 1156 1157
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1158 1159 1160 1161
}

static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1162 1163
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1164
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1165
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1166
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1167

1168 1169
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1170 1171

	intel_pstate_set_min_pstate(cpu);
1172 1173
}

1174
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1175
{
1176
	struct sample *sample = &cpu->sample;
1177

1178
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1179 1180
}

1181
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1182 1183
{
	u64 aperf, mperf;
1184
	unsigned long flags;
1185
	u64 tsc;
1186

1187
	local_irq_save(flags);
1188 1189
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1190
	tsc = rdtsc();
1191
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1192
		local_irq_restore(flags);
1193
		return false;
1194
	}
1195
	local_irq_restore(flags);
1196

1197
	cpu->last_sample_time = cpu->sample.time;
1198
	cpu->sample.time = time;
1199 1200
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1201
	cpu->sample.tsc =  tsc;
1202 1203
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1204
	cpu->sample.tsc -= cpu->prev_tsc;
1205

1206 1207
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1208
	cpu->prev_tsc = tsc;
1209 1210 1211 1212 1213 1214 1215 1216
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
	return !!cpu->last_sample_time;
1217 1218
}

1219 1220
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1221 1222
	return mul_ext_fp(cpu->sample.core_avg_perf,
			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1223 1224
}

1225 1226
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1227 1228
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1229 1230
}

1231 1232 1233
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
{
	struct sample *sample = &cpu->sample;
1234
	int32_t busy_frac, boost;
1235
	int target, avg_pstate;
1236

1237
	busy_frac = div_fp(sample->mperf, sample->tsc);
1238

1239 1240
	boost = cpu->iowait_boost;
	cpu->iowait_boost >>= 1;
1241

1242 1243
	if (busy_frac < boost)
		busy_frac = boost;
1244

1245
	sample->busy_scaled = busy_frac * 100;
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265

	target = limits->no_turbo || limits->turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1266 1267
}

1268
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1269
{
1270
	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1271
	u64 duration_ns;
1272

1273
	/*
1274 1275 1276 1277 1278
	 * perf_scaled is the ratio of the average P-state during the last
	 * sampling period to the P-state requested last time (in percent).
	 *
	 * That measures the system's response to the previous P-state
	 * selection.
1279
	 */
1280 1281
	max_pstate = cpu->pstate.max_pstate_physical;
	current_pstate = cpu->pstate.current_pstate;
1282
	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1283
			       div_fp(100 * max_pstate, current_pstate));
1284

1285
	/*
1286 1287 1288
	 * Since our utilization update callback will not run unless we are
	 * in C0, check if the actual elapsed time is significantly greater (3x)
	 * than our sample interval.  If it is, then we were idle for a long
1289
	 * enough period of time to adjust our performance metric.
1290
	 */
1291
	duration_ns = cpu->sample.time - cpu->last_sample_time;
1292
	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1293
		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1294
		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1295 1296 1297
	} else {
		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
		if (sample_ratio < int_tofp(1))
1298
			perf_scaled = 0;
1299 1300
	}

1301 1302
	cpu->sample.busy_scaled = perf_scaled;
	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1303 1304
}

1305 1306 1307 1308 1309 1310 1311 1312
static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
	int max_perf, min_perf;

	update_turbo_state();

	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
	pstate = clamp_t(int, pstate, min_perf, max_perf);
1313
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1314 1315 1316
	if (pstate == cpu->pstate.current_pstate)
		return;

1317
	cpu->pstate.current_pstate = pstate;
1318 1319 1320
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1321 1322
static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
{
1323
	int from, target_pstate;
1324 1325 1326
	struct sample *sample;

	from = cpu->pstate.current_pstate;
1327

1328
	target_pstate = pstate_funcs.get_target_pstate(cpu);
1329

1330
	intel_pstate_update_pstate(cpu, target_pstate);
1331 1332

	sample = &cpu->sample;
1333
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1334
		fp_toint(sample->busy_scaled),
1335 1336 1337 1338 1339
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1340 1341
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1342 1343
}

1344
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1345
				     unsigned int flags)
1346
{
1347
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
	u64 delta_ns;

	if (pid_params.boost_iowait) {
		if (flags & SCHED_CPUFREQ_IOWAIT) {
			cpu->iowait_boost = int_tofp(1);
		} else if (cpu->iowait_boost) {
			/* Clear iowait_boost if the CPU may have been idle. */
			delta_ns = time - cpu->last_update;
			if (delta_ns > TICK_NSEC)
				cpu->iowait_boost = 0;
		}
		cpu->last_update = time;
	}
1361

1362
	delta_ns = time - cpu->sample.time;
1363
	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1364 1365
		bool sample_taken = intel_pstate_sample(cpu, time);

1366
		if (sample_taken) {
1367
			intel_pstate_calc_avg_perf(cpu);
1368 1369 1370
			if (!hwp_active)
				intel_pstate_adjust_busy_pstate(cpu);
		}
1371
	}
1372 1373 1374
}

#define ICPU(model, policy) \
1375 1376
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1377 1378

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_params),
	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_params),
	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_params),
	ICPU(INTEL_FAM6_IVYBRIDGE,		core_params),
	ICPU(INTEL_FAM6_HASWELL_CORE,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_params),
	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_params),
	ICPU(INTEL_FAM6_HASWELL_X,		core_params),
	ICPU(INTEL_FAM6_HASWELL_ULT,		core_params),
	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_params),
	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_params),
	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_X,		core_params),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_params),
	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_params),
	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_params),
1396
	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_params),
1397 1398 1399 1400
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

1401
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1402
	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1403 1404
	ICPU(INTEL_FAM6_BROADWELL_X, core_params),
	ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
D
Dirk Brandewie 已提交
1405 1406 1407
	{}
};

1408 1409 1410 1411
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1412 1413 1414
	if (!all_cpu_data[cpunum])
		all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
					       GFP_KERNEL);
1415 1416 1417 1418 1419 1420
	if (!all_cpu_data[cpunum])
		return -ENOMEM;

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1421

1422
	if (hwp_active) {
1423
		intel_pstate_hwp_enable(cpu);
1424 1425 1426
		pid_params.sample_rate_ms = 50;
		pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
	}
1427

1428
	intel_pstate_get_cpu_pstates(cpu);
1429

1430 1431
	intel_pstate_busy_pid_reset(cpu);

J
Joe Perches 已提交
1432
	pr_debug("controlling: cpu %d\n", cpunum);
1433 1434 1435 1436 1437 1438

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
1439
	struct cpudata *cpu = all_cpu_data[cpu_num];
1440

1441
	return cpu ? get_avg_frequency(cpu) : 0;
1442 1443
}

1444
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1445
{
1446 1447
	struct cpudata *cpu = all_cpu_data[cpu_num];

1448 1449 1450
	if (cpu->update_util_set)
		return;

1451 1452
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
1453 1454
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
				     intel_pstate_update_util);
1455
	cpu->update_util_set = true;
1456 1457 1458 1459
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
1460 1461 1462 1463 1464
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

1465
	cpufreq_remove_update_util_hook(cpu);
1466
	cpu_data->update_util_set = false;
1467 1468 1469
	synchronize_sched();
}

1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
static void intel_pstate_set_performance_limits(struct perf_limits *limits)
{
	limits->no_turbo = 0;
	limits->turbo_disabled = 0;
	limits->max_perf_pct = 100;
	limits->max_perf = int_tofp(1);
	limits->min_perf_pct = 100;
	limits->min_perf = int_tofp(1);
	limits->max_policy_pct = 100;
	limits->max_sysfs_pct = 100;
	limits->min_policy_pct = 0;
	limits->min_sysfs_pct = 0;
}

1484 1485
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
1486 1487
	struct cpudata *cpu;

1488 1489 1490
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

1491 1492 1493
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

1494
	cpu = all_cpu_data[0];
1495 1496 1497 1498 1499
	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
1500 1501
	}

1502
	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
1503
		limits = &performance_limits;
1504
		if (policy->max >= policy->cpuinfo.max_freq) {
J
Joe Perches 已提交
1505
			pr_debug("set performance\n");
1506 1507 1508 1509
			intel_pstate_set_performance_limits(limits);
			goto out;
		}
	} else {
J
Joe Perches 已提交
1510
		pr_debug("set powersave\n");
1511
		limits = &powersave_limits;
1512
	}
D
Dirk Brandewie 已提交
1513

1514 1515
	limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
	limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1516 1517
	limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
					      policy->cpuinfo.max_freq);
1518
	limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1519 1520

	/* Normalize user input to [min_policy_pct, max_policy_pct] */
1521 1522 1523 1524 1525 1526 1527 1528
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);
1529 1530

	/* Make sure min_perf_pct <= max_perf_pct */
1531
	limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1532

1533 1534
	limits->min_perf = div_fp(limits->min_perf_pct, 100);
	limits->max_perf = div_fp(limits->max_perf_pct, 100);
1535
	limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1536

1537 1538 1539
 out:
	intel_pstate_set_update_util_hook(policy->cpu);

1540
	intel_pstate_hwp_set_policy(policy);
D
Dirk Brandewie 已提交
1541

1542 1543 1544 1545 1546
	return 0;
}

static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
1547
	cpufreq_verify_within_cpu_limits(policy);
1548

1549
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1550
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1551 1552 1553 1554 1555
		return -EINVAL;

	return 0;
}

1556
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1557
{
1558 1559
	int cpu_num = policy->cpu;
	struct cpudata *cpu = all_cpu_data[cpu_num];
1560

J
Joe Perches 已提交
1561
	pr_debug("CPU %d exiting\n", cpu_num);
1562

1563
	intel_pstate_clear_update_util_hook(cpu_num);
1564

D
Dirk Brandewie 已提交
1565 1566 1567
	if (hwp_active)
		return;

1568
	intel_pstate_set_min_pstate(cpu);
1569 1570
}

1571
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1572 1573
{
	struct cpudata *cpu;
1574
	int rc;
1575 1576 1577 1578 1579 1580 1581

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

1582
	if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1583 1584 1585 1586
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;

1587 1588
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1589 1590

	/* cpuinfo and default policy values */
1591
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1592 1593 1594 1595 1596
	update_turbo_state();
	policy->cpuinfo.max_freq = limits->turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

1597
	intel_pstate_init_acpi_perf_limits(policy);
1598 1599 1600 1601 1602 1603
	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
	cpumask_set_cpu(policy->cpu, policy->cpus);

	return 0;
}

1604 1605 1606 1607 1608 1609 1610
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);

	return 0;
}

1611 1612 1613 1614
static struct cpufreq_driver intel_pstate_driver = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
1615
	.resume		= intel_pstate_hwp_set_policy,
1616 1617
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
1618
	.exit		= intel_pstate_cpu_exit,
1619
	.stop_cpu	= intel_pstate_stop_cpu,
1620 1621 1622
	.name		= "intel_pstate",
};

1623 1624 1625
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
1626
static unsigned int force_load __initdata;
1627

1628
static int __init intel_pstate_msrs_not_valid(void)
1629
{
1630
	if (!pstate_funcs.get_max() ||
1631 1632
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
1633 1634 1635 1636
		return -ENODEV;

	return 0;
}
1637

1638
static void __init copy_pid_params(struct pstate_adjust_policy *policy)
1639 1640
{
	pid_params.sample_rate_ms = policy->sample_rate_ms;
1641
	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1642 1643 1644 1645 1646 1647 1648
	pid_params.p_gain_pct = policy->p_gain_pct;
	pid_params.i_gain_pct = policy->i_gain_pct;
	pid_params.d_gain_pct = policy->d_gain_pct;
	pid_params.deadband = policy->deadband;
	pid_params.setpoint = policy->setpoint;
}

1649
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
1650 1651
{
	pstate_funcs.get_max   = funcs->get_max;
1652
	pstate_funcs.get_max_physical = funcs->get_max_physical;
1653 1654
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
1655
	pstate_funcs.get_scaling = funcs->get_scaling;
1656
	pstate_funcs.get_val   = funcs->get_val;
1657
	pstate_funcs.get_vid   = funcs->get_vid;
1658 1659
	pstate_funcs.get_target_pstate = funcs->get_target_pstate;

1660 1661
}

1662
#ifdef CONFIG_ACPI
1663

1664
static bool __init intel_pstate_no_acpi_pss(void)
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

1693
static bool __init intel_pstate_has_acpi_ppc(void)
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

1713 1714 1715 1716
struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1717
	int  oem_pwr_table;
1718 1719 1720
};

/* Hardware vendor-specific info that has its own power management modes */
1721
static struct hw_vendor_info vendor_info[] __initdata = {
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
	{1, "HP    ", "ProLiant", PSS},
	{1, "ORACLE", "X4-2    ", PPC},
	{1, "ORACLE", "X4-2L   ", PPC},
	{1, "ORACLE", "X4-2B   ", PPC},
	{1, "ORACLE", "X3-2    ", PPC},
	{1, "ORACLE", "X3-2L   ", PPC},
	{1, "ORACLE", "X3-2B   ", PPC},
	{1, "ORACLE", "X4470M2 ", PPC},
	{1, "ORACLE", "X4270M3 ", PPC},
	{1, "ORACLE", "X4270M2 ", PPC},
	{1, "ORACLE", "X4170M2 ", PPC},
1733 1734 1735 1736
	{1, "ORACLE", "X4170 M3", PPC},
	{1, "ORACLE", "X4275 M3", PPC},
	{1, "ORACLE", "X6-2    ", PPC},
	{1, "ORACLE", "Sudbury ", PPC},
1737 1738 1739
	{0, "", ""},
};

1740
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
1741 1742 1743
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;
D
Dirk Brandewie 已提交
1744 1745 1746 1747 1748 1749 1750 1751 1752
	const struct x86_cpu_id *id;
	u64 misc_pwr;

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
1753

1754 1755
	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1756 1757 1758
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
1759
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1760 1761 1762 1763 1764 1765
			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
						ACPI_OEM_TABLE_ID_SIZE))
			switch (v_info->oem_pwr_table) {
			case PSS:
				return intel_pstate_no_acpi_pss();
			case PPC:
1766 1767
				return intel_pstate_has_acpi_ppc() &&
					(!force_load);
1768
			}
1769 1770 1771 1772 1773 1774
	}

	return false;
}
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1775
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1776 1777
#endif /* CONFIG_ACPI */

1778 1779 1780 1781 1782
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
	{}
};

1783 1784
static int __init intel_pstate_init(void)
{
1785
	int cpu, rc = 0;
1786
	const struct x86_cpu_id *id;
1787
	struct cpu_defaults *cpu_def;
1788

1789 1790 1791
	if (no_load)
		return -ENODEV;

1792 1793 1794 1795 1796 1797
	if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
		copy_cpu_funcs(&core_params.funcs);
		hwp_active++;
		goto hwp_cpu_matched;
	}

1798 1799 1800 1801
	id = x86_match_cpu(intel_pstate_cpu_ids);
	if (!id)
		return -ENODEV;

1802
	cpu_def = (struct cpu_defaults *)id->driver_data;
1803

1804 1805
	copy_pid_params(&cpu_def->pid_policy);
	copy_cpu_funcs(&cpu_def->funcs);
1806

1807 1808 1809
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

1810 1811 1812 1813 1814 1815 1816 1817
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

J
Joe Perches 已提交
1818
	pr_info("Intel P-state driver initializing\n");
1819

1820
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1821 1822 1823
	if (!all_cpu_data)
		return -ENOMEM;

1824 1825 1826
	if (!hwp_active && hwp_only)
		goto out;

1827 1828 1829 1830 1831 1832
	rc = cpufreq_register_driver(&intel_pstate_driver);
	if (rc)
		goto out;

	intel_pstate_debug_expose_params();
	intel_pstate_sysfs_expose_params();
1833

1834
	if (hwp_active)
J
Joe Perches 已提交
1835
		pr_info("HWP enabled\n");
1836

1837 1838
	return rc;
out:
1839 1840 1841
	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
1842
			intel_pstate_clear_update_util_hook(cpu);
1843 1844 1845 1846 1847 1848
			kfree(all_cpu_data[cpu]);
		}
	}

	put_online_cpus();
	vfree(all_cpu_data);
1849 1850 1851 1852
	return -ENODEV;
}
device_initcall(intel_pstate_init);

1853 1854 1855 1856 1857 1858 1859
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

	if (!strcmp(str, "disable"))
		no_load = 1;
1860
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
1861
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
1862
		no_hwp = 1;
1863
	}
1864 1865
	if (!strcmp(str, "force"))
		force_load = 1;
1866 1867
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
1868 1869 1870 1871 1872 1873

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

1874 1875 1876 1877
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

1878 1879 1880
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");