intel_pstate.c 22.9 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
28
#include <linux/acpi.h>
29 30 31 32 33 34
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>

35 36 37
#define BYT_RATIOS		0x66a
#define BYT_VIDS		0x66b
#define BYT_TURBO_RATIOS	0x66c
38
#define BYT_TURBO_VIDS		0x66d
39

40

41
#define FRAC_BITS 8
42 43
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
44

45 46 47 48 49 50 51 52 53 54 55 56

static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

static inline int32_t div_fp(int32_t x, int32_t y)
{
	return div_s64((int64_t)x << FRAC_BITS, (int64_t)y);
}

struct sample {
57
	int32_t core_pct_busy;
58 59 60
	u64 aperf;
	u64 mperf;
	int freq;
61
	ktime_t time;
62 63 64 65 66 67 68 69 70
};

struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
	int	turbo_pstate;
};

71
struct vid_data {
72 73 74
	int min;
	int max;
	int turbo;
75 76 77
	int32_t ratio;
};

78 79 80 81 82 83 84
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
85
	int32_t last_err;
86 87 88 89 90 91 92 93
};

struct cpudata {
	int cpu;

	struct timer_list timer;

	struct pstate_data pstate;
94
	struct vid_data vid;
95 96
	struct _pid pid;

97
	ktime_t last_sample_time;
98 99
	u64	prev_aperf;
	u64	prev_mperf;
100
	struct sample sample;
101 102 103 104 105 106 107 108 109 110 111 112
};

static struct cpudata **all_cpu_data;
struct pstate_adjust_policy {
	int sample_rate_ms;
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

113 114 115 116
struct pstate_funcs {
	int (*get_max)(void);
	int (*get_min)(void);
	int (*get_turbo)(void);
117 118
	void (*set)(struct cpudata*, int pstate);
	void (*get_vid)(struct cpudata *);
119 120
};

121 122 123
struct cpu_defaults {
	struct pstate_adjust_policy pid_policy;
	struct pstate_funcs funcs;
124 125
};

126 127 128
static struct pstate_adjust_policy pid_params;
static struct pstate_funcs pstate_funcs;

129 130
struct perf_limits {
	int no_turbo;
131
	int turbo_disabled;
132 133 134 135
	int max_perf_pct;
	int min_perf_pct;
	int32_t max_perf;
	int32_t min_perf;
136 137
	int max_policy_pct;
	int max_sysfs_pct;
138 139 140 141 142 143 144 145
};

static struct perf_limits limits = {
	.no_turbo = 0,
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 0,
	.min_perf = 0,
146 147
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
148 149 150 151 152 153 154
};

static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
			int deadband, int integral) {
	pid->setpoint = setpoint;
	pid->deadband  = deadband;
	pid->integral  = int_tofp(integral);
155
	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
}

static inline void pid_p_gain_set(struct _pid *pid, int percent)
{
	pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
}

static inline void pid_i_gain_set(struct _pid *pid, int percent)
{
	pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
}

static inline void pid_d_gain_set(struct _pid *pid, int percent)
{

	pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
}

174
static signed int pid_calc(struct _pid *pid, int32_t busy)
175
{
176
	signed int result;
177 178 179
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

180
	fp_error = int_tofp(pid->setpoint) - busy;
181

182
	if (abs(fp_error) <= int_tofp(pid->deadband))
183 184 185 186 187 188 189 190 191 192 193 194 195
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

	/* limit the integral term */
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

196 197
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
198 199

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
200
	result = result + (1 << (FRAC_BITS-1));
201 202 203 204 205
	return (signed int)fp_toint(result);
}

static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
{
206 207 208
	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
209 210

	pid_reset(&cpu->pid,
211
		pid_params.setpoint,
212
		100,
213
		pid_params.deadband,
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
		0);
}

static inline void intel_pstate_reset_all_pid(void)
{
	unsigned int cpu;
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu])
			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
	}
}

/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
	*(u32 *)data = val;
	intel_pstate_reset_all_pid();
	return 0;
}
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get,
			pid_param_set, "%llu\n");

struct pid_param {
	char *name;
	void *value;
};

static struct pid_param pid_files[] = {
247 248 249 250 251 252
	{"sample_rate_ms", &pid_params.sample_rate_ms},
	{"d_gain_pct", &pid_params.d_gain_pct},
	{"i_gain_pct", &pid_params.i_gain_pct},
	{"deadband", &pid_params.deadband},
	{"setpoint", &pid_params.setpoint},
	{"p_gain_pct", &pid_params.p_gain_pct},
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
	{NULL, NULL}
};

static struct dentry *debugfs_parent;
static void intel_pstate_debug_expose_params(void)
{
	int i = 0;

	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
	while (pid_files[i].name) {
		debugfs_create_file(pid_files[i].name, 0660,
				debugfs_parent, pid_files[i].value,
				&fops_pid_param);
		i++;
	}
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
		return sprintf(buf, "%u\n", limits.object);		\
	}

static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
				const char *buf, size_t count)
{
	unsigned int input;
	int ret;
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
	limits.no_turbo = clamp_t(int, input, 0 , 1);
291 292 293 294
	if (limits.turbo_disabled) {
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
		limits.no_turbo = limits.turbo_disabled;
	}
295 296 297 298 299 300 301 302 303 304 305 306
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
				const char *buf, size_t count)
{
	unsigned int input;
	int ret;
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

307 308
	limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
				const char *buf, size_t count)
{
	unsigned int input;
	int ret;
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
	limits.min_perf_pct = clamp_t(int, input, 0 , 100);
	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));

	return count;
}

show_one(no_turbo, no_turbo);
show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);

static struct attribute *intel_pstate_attributes[] = {
	&no_turbo.attr,
	&max_perf_pct.attr,
	&min_perf_pct.attr,
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};
static struct kobject *intel_pstate_kobject;

static void intel_pstate_sysfs_expose_params(void)
{
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
	BUG_ON(!intel_pstate_kobject);
	rc = sysfs_create_group(intel_pstate_kobject,
				&intel_pstate_attr_group);
	BUG_ON(rc);
}

/************************** sysfs end ************************/
360 361 362 363
static int byt_get_min_pstate(void)
{
	u64 value;
	rdmsrl(BYT_RATIOS, value);
D
Dirk Brandewie 已提交
364
	return (value >> 8) & 0x7F;
365 366 367 368 369 370
}

static int byt_get_max_pstate(void)
{
	u64 value;
	rdmsrl(BYT_RATIOS, value);
D
Dirk Brandewie 已提交
371
	return (value >> 16) & 0x7F;
372
}
373

374 375 376 377
static int byt_get_turbo_pstate(void)
{
	u64 value;
	rdmsrl(BYT_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
378
	return value & 0x7F;
379 380
}

381 382 383 384 385 386 387
static void byt_set_pstate(struct cpudata *cpudata, int pstate)
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

	val = pstate << 8;
388
	if (limits.no_turbo && !limits.turbo_disabled)
389 390 391 392 393 394 395 396 397
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
	vid = fp_toint(vid_fp);

398 399 400
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

401 402 403 404 405 406 407 408 409
	val |= vid;

	wrmsrl(MSR_IA32_PERF_CTL, val);
}

static void byt_get_vid(struct cpudata *cpudata)
{
	u64 value;

410

411
	rdmsrl(BYT_VIDS, value);
D
Dirk Brandewie 已提交
412 413
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
414 415 416 417
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
418 419 420

	rdmsrl(BYT_TURBO_VIDS, value);
	cpudata->vid.turbo = value & 0x7f;
421 422 423
}


424
static int core_get_min_pstate(void)
425 426
{
	u64 value;
427
	rdmsrl(MSR_PLATFORM_INFO, value);
428 429 430
	return (value >> 40) & 0xFF;
}

431
static int core_get_max_pstate(void)
432 433
{
	u64 value;
434
	rdmsrl(MSR_PLATFORM_INFO, value);
435 436 437
	return (value >> 8) & 0xFF;
}

438
static int core_get_turbo_pstate(void)
439 440 441
{
	u64 value;
	int nont, ret;
442
	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
443
	nont = core_get_max_pstate();
444 445 446 447 448 449
	ret = ((value) & 255);
	if (ret <= nont)
		ret = nont;
	return ret;
}

450
static void core_set_pstate(struct cpudata *cpudata, int pstate)
451 452 453 454
{
	u64 val;

	val = pstate << 8;
455
	if (limits.no_turbo && !limits.turbo_disabled)
456 457
		val |= (u64)1 << 32;

458
	wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
}

static struct cpu_defaults core_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
		.set = core_set_pstate,
	},
};

478 479 480 481 482 483 484 485 486 487 488 489
static struct cpu_defaults byt_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = byt_get_max_pstate,
		.get_min = byt_get_min_pstate,
490
		.get_turbo = byt_get_turbo_pstate,
491 492
		.set = byt_set_pstate,
		.get_vid = byt_get_vid,
493 494 495 496
	},
};


497 498 499
static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
500
	int max_perf_adj;
501 502 503 504
	int min_perf;
	if (limits.no_turbo)
		max_perf = cpu->pstate.max_pstate;

505 506
	max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
	*max = clamp_t(int, max_perf_adj,
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);

	min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
	*min = clamp_t(int, min_perf,
			cpu->pstate.min_pstate, max_perf);
}

static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
{
	int max_perf, min_perf;

	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);

	pstate = clamp_t(int, pstate, min_perf, max_perf);

	if (pstate == cpu->pstate.current_pstate)
		return;

	trace_cpu_frequency(pstate * 100000, cpu->cpu);
526

527 528
	cpu->pstate.current_pstate = pstate;

529
	pstate_funcs.set(cpu, pstate);
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
}

static inline void intel_pstate_pstate_increase(struct cpudata *cpu, int steps)
{
	int target;
	target = cpu->pstate.current_pstate + steps;

	intel_pstate_set_pstate(cpu, target);
}

static inline void intel_pstate_pstate_decrease(struct cpudata *cpu, int steps)
{
	int target;
	target = cpu->pstate.current_pstate - steps;
	intel_pstate_set_pstate(cpu, target);
}

static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
549 550 551
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
552

553 554
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
555
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
556 557
}

558
static inline void intel_pstate_calc_busy(struct cpudata *cpu)
559
{
560
	struct sample *sample = &cpu->sample;
561 562
	int64_t core_pct;
	int32_t rem;
563

564 565 566 567 568
	core_pct = int_tofp(sample->aperf) * int_tofp(100);
	core_pct = div_u64_rem(core_pct, int_tofp(sample->mperf), &rem);

	if ((rem << 1) >= int_tofp(sample->mperf))
		core_pct += 1;
569

570
	sample->freq = fp_toint(
571
		mul_fp(int_tofp(cpu->pstate.max_pstate * 1000), core_pct));
572

573
	sample->core_pct_busy = (int32_t)core_pct;
574 575 576 577 578 579 580 581
}

static inline void intel_pstate_sample(struct cpudata *cpu)
{
	u64 aperf, mperf;

	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
582

583 584 585
	aperf = aperf >> FRAC_BITS;
	mperf = mperf >> FRAC_BITS;

586 587
	cpu->last_sample_time = cpu->sample.time;
	cpu->sample.time = ktime_get();
588 589 590 591
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
592

593
	intel_pstate_calc_busy(cpu);
594 595 596 597 598 599 600 601 602

	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
}

static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
{
	int sample_time, delay;

603
	sample_time = pid_params.sample_rate_ms;
604 605 606 607
	delay = msecs_to_jiffies(sample_time);
	mod_timer_pinned(&cpu->timer, jiffies + delay);
}

608
static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
609
{
610 611 612
	int32_t core_busy, max_pstate, current_pstate, sample_ratio;
	u32 duration_us;
	u32 sample_time;
613

614
	core_busy = cpu->sample.core_pct_busy;
615
	max_pstate = int_tofp(cpu->pstate.max_pstate);
616
	current_pstate = int_tofp(cpu->pstate.current_pstate);
617
	core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
618 619 620 621 622 623 624 625 626 627

	sample_time = (pid_params.sample_rate_ms  * USEC_PER_MSEC);
	duration_us = (u32) ktime_us_delta(cpu->sample.time,
					cpu->last_sample_time);
	if (duration_us > sample_time * 3) {
		sample_ratio = div_fp(int_tofp(sample_time),
				int_tofp(duration_us));
		core_busy = mul_fp(core_busy, sample_ratio);
	}

628
	return core_busy;
629 630 631 632
}

static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
{
633
	int32_t busy_scaled;
634 635 636 637 638 639 640 641 642 643
	struct _pid *pid;
	signed int ctl = 0;
	int steps;

	pid = &cpu->pid;
	busy_scaled = intel_pstate_get_scaled_busy(cpu);

	ctl = pid_calc(pid, busy_scaled);

	steps = abs(ctl);
644

645 646 647 648 649 650 651 652 653
	if (ctl < 0)
		intel_pstate_pstate_increase(cpu, steps);
	else
		intel_pstate_pstate_decrease(cpu, steps);
}

static void intel_pstate_timer_func(unsigned long __data)
{
	struct cpudata *cpu = (struct cpudata *) __data;
654
	struct sample *sample;
655 656

	intel_pstate_sample(cpu);
657

658
	sample = &cpu->sample;
659

660
	intel_pstate_adjust_busy_pstate(cpu);
661 662 663 664 665 666 667 668

	trace_pstate_sample(fp_toint(sample->core_pct_busy),
			fp_toint(intel_pstate_get_scaled_busy(cpu)),
			cpu->pstate.current_pstate,
			sample->mperf,
			sample->aperf,
			sample->freq);

669 670 671 672
	intel_pstate_set_sample_time(cpu);
}

#define ICPU(model, policy) \
673 674
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
675 676

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
677 678
	ICPU(0x2a, core_params),
	ICPU(0x2d, core_params),
679
	ICPU(0x37, byt_params),
680 681
	ICPU(0x3a, core_params),
	ICPU(0x3c, core_params),
682
	ICPU(0x3d, core_params),
683 684 685 686
	ICPU(0x3e, core_params),
	ICPU(0x3f, core_params),
	ICPU(0x45, core_params),
	ICPU(0x46, core_params),
687 688
	ICPU(0x4f, core_params),
	ICPU(0x56, core_params),
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

	all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata), GFP_KERNEL);
	if (!all_cpu_data[cpunum])
		return -ENOMEM;

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
704
	intel_pstate_get_cpu_pstates(cpu);
705

706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
	init_timer_deferrable(&cpu->timer);
	cpu->timer.function = intel_pstate_timer_func;
	cpu->timer.data =
		(unsigned long)cpu;
	cpu->timer.expires = jiffies + HZ/100;
	intel_pstate_busy_pid_reset(cpu);
	intel_pstate_sample(cpu);

	add_timer_on(&cpu->timer, cpunum);

	pr_info("Intel pstate controlling: cpu %d\n", cpunum);

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
	struct sample *sample;
	struct cpudata *cpu;

	cpu = all_cpu_data[cpu_num];
	if (!cpu)
		return 0;
729
	sample = &cpu->sample;
730 731 732 733 734 735 736 737 738
	return sample->freq;
}

static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];

739 740 741
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

742 743 744 745 746
	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
		limits.min_perf_pct = 100;
		limits.min_perf = int_tofp(1);
		limits.max_perf_pct = 100;
		limits.max_perf = int_tofp(1);
747
		limits.no_turbo = limits.turbo_disabled;
748
		return 0;
749
	}
750 751 752 753
	limits.min_perf_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
	limits.min_perf_pct = clamp_t(int, limits.min_perf_pct, 0 , 100);
	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));

754 755 756
	limits.max_policy_pct = policy->max * 100 / policy->cpuinfo.max_freq;
	limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
757
	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
758 759 760 761 762 763

	return 0;
}

static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
764
	cpufreq_verify_within_cpu_limits(policy);
765 766 767 768 769 770 771 772

	if ((policy->policy != CPUFREQ_POLICY_POWERSAVE) &&
		(policy->policy != CPUFREQ_POLICY_PERFORMANCE))
		return -EINVAL;

	return 0;
}

773
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
774
{
775 776
	int cpu_num = policy->cpu;
	struct cpudata *cpu = all_cpu_data[cpu_num];
777

778 779
	pr_info("intel_pstate CPU %d exiting\n", cpu_num);

780
	del_timer_sync(&all_cpu_data[cpu_num]->timer);
781 782 783
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
	kfree(all_cpu_data[cpu_num]);
	all_cpu_data[cpu_num] = NULL;
784 785
}

786
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
787 788
{
	struct cpudata *cpu;
789
	int rc;
790
	u64 misc_en;
791 792 793 794 795 796 797

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

798 799 800 801 802 803 804
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
	if (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		cpu->pstate.max_pstate == cpu->pstate.turbo_pstate) {
		limits.turbo_disabled = 1;
		limits.no_turbo = 1;
	}
	if (limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
805 806 807 808
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;

809 810
	policy->min = cpu->pstate.min_pstate * 100000;
	policy->max = cpu->pstate.turbo_pstate * 100000;
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826

	/* cpuinfo and default policy values */
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * 100000;
	policy->cpuinfo.max_freq = cpu->pstate.turbo_pstate * 100000;
	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
	cpumask_set_cpu(policy->cpu, policy->cpus);

	return 0;
}

static struct cpufreq_driver intel_pstate_driver = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
827
	.stop_cpu	= intel_pstate_stop_cpu,
828 829 830
	.name		= "intel_pstate",
};

831 832
static int __initdata no_load;

833 834 835 836 837 838 839 840
static int intel_pstate_msrs_not_valid(void)
{
	/* Check that all the msr's we are using are valid. */
	u64 aperf, mperf, tmp;

	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);

841 842 843
	if (!pstate_funcs.get_max() ||
		!pstate_funcs.get_min() ||
		!pstate_funcs.get_turbo())
844 845 846 847 848 849 850 851 852 853 854 855
		return -ENODEV;

	rdmsrl(MSR_IA32_APERF, tmp);
	if (!(tmp - aperf))
		return -ENODEV;

	rdmsrl(MSR_IA32_MPERF, tmp);
	if (!(tmp - mperf))
		return -ENODEV;

	return 0;
}
856

857
static void copy_pid_params(struct pstate_adjust_policy *policy)
858 859 860 861 862 863 864 865 866
{
	pid_params.sample_rate_ms = policy->sample_rate_ms;
	pid_params.p_gain_pct = policy->p_gain_pct;
	pid_params.i_gain_pct = policy->i_gain_pct;
	pid_params.d_gain_pct = policy->d_gain_pct;
	pid_params.deadband = policy->deadband;
	pid_params.setpoint = policy->setpoint;
}

867
static void copy_cpu_funcs(struct pstate_funcs *funcs)
868 869 870 871 872
{
	pstate_funcs.get_max   = funcs->get_max;
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
	pstate_funcs.set       = funcs->set;
873
	pstate_funcs.get_vid   = funcs->get_vid;
874 875
}

876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
#if IS_ENABLED(CONFIG_ACPI)
#include <acpi/processor.h>

static bool intel_pstate_no_acpi_pss(void)
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
};

/* Hardware vendor-specific info that has its own power management modes */
static struct hw_vendor_info vendor_info[] = {
	{1, "HP    ", "ProLiant"},
	{0, "", ""},
};

static bool intel_pstate_platform_pwr_mgmt_exists(void)
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;

	if (acpi_disabled
	    || ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE)
		    && !strncmp(hdr.oem_table_id, v_info->oem_table_id, ACPI_OEM_TABLE_ID_SIZE)
		    && intel_pstate_no_acpi_pss())
			return true;
	}

	return false;
}
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
#endif /* CONFIG_ACPI */

942 943
static int __init intel_pstate_init(void)
{
944
	int cpu, rc = 0;
945
	const struct x86_cpu_id *id;
946
	struct cpu_defaults *cpu_info;
947

948 949 950
	if (no_load)
		return -ENODEV;

951 952 953 954
	id = x86_match_cpu(intel_pstate_cpu_ids);
	if (!id)
		return -ENODEV;

955 956 957 958 959 960 961
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

962 963 964 965 966
	cpu_info = (struct cpu_defaults *)id->driver_data;

	copy_pid_params(&cpu_info->pid_policy);
	copy_cpu_funcs(&cpu_info->funcs);

967 968 969
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

970 971
	pr_info("Intel P-state driver initializing.\n");

972
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
973 974 975 976 977 978 979 980 981
	if (!all_cpu_data)
		return -ENOMEM;

	rc = cpufreq_register_driver(&intel_pstate_driver);
	if (rc)
		goto out;

	intel_pstate_debug_expose_params();
	intel_pstate_sysfs_expose_params();
982

983 984
	return rc;
out:
985 986 987 988 989 990 991 992 993 994
	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			del_timer_sync(&all_cpu_data[cpu]->timer);
			kfree(all_cpu_data[cpu]);
		}
	}

	put_online_cpus();
	vfree(all_cpu_data);
995 996 997 998
	return -ENODEV;
}
device_initcall(intel_pstate_init);

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

	if (!strcmp(str, "disable"))
		no_load = 1;
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

1010 1011 1012
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");