intel_pstate.c 64.9 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

J
Joe Perches 已提交
13 14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
30
#include <linux/acpi.h>
31
#include <linux/vmalloc.h>
32 33 34 35 36
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
37
#include <asm/cpufeature.h>
38
#include <asm/intel-family.h>
39

40 41
#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000

42 43 44 45
#define ATOM_RATIOS		0x66a
#define ATOM_VIDS		0x66b
#define ATOM_TURBO_RATIOS	0x66c
#define ATOM_TURBO_VIDS		0x66d
46

47 48
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
49
#include <acpi/cppc_acpi.h>
50 51
#endif

52
#define FRAC_BITS 8
53 54
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
55

56 57
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
58 59
#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
60

61 62 63 64 65
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

66
static inline int32_t div_fp(s64 x, s64 y)
67
{
68
	return div64_s64((int64_t)x << FRAC_BITS, y);
69 70
}

71 72 73 74 75 76 77 78 79 80 81
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

82 83 84 85 86 87 88 89 90 91
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

92 93
/**
 * struct sample -	Store performance sample
94
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
95 96
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
97
 *			P state. This can be different than core_avg_perf
98 99 100 101 102 103 104 105 106 107 108 109
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
110
struct sample {
111
	int32_t core_avg_perf;
112
	int32_t busy_scaled;
113 114
	u64 aperf;
	u64 mperf;
115
	u64 tsc;
116
	u64 time;
117 118
};

119 120 121 122 123 124 125 126 127 128 129
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
130 131
 * @max_freq:		@max_pstate frequency in cpufreq units
 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
132 133 134
 *
 * Stores the per cpu model P state limits and current P state.
 */
135 136 137 138
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
139
	int	max_pstate_physical;
140
	int	scaling;
141
	int	turbo_pstate;
142 143
	unsigned int max_freq;
	unsigned int turbo_freq;
144 145
};

146 147 148 149 150 151 152 153 154 155 156 157 158
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
159
struct vid_data {
160 161 162
	int min;
	int max;
	int turbo;
163 164 165
	int32_t ratio;
};

166 167 168 169 170 171 172 173 174 175 176 177
/**
 * struct _pid -	Stores PID data
 * @setpoint:		Target set point for busyness or performance
 * @integral:		Storage for accumulated error values
 * @p_gain:		PID proportional gain
 * @i_gain:		PID integral gain
 * @d_gain:		PID derivative gain
 * @deadband:		PID deadband
 * @last_err:		Last error storage for integral part of PID calculation
 *
 * Stores PID coefficients and last error for PID controller.
 */
178 179 180 181 182 183 184
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
185
	int32_t last_err;
186 187
};

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
/**
 * struct perf_limits - Store user and policy limits
 * @no_turbo:		User requested turbo state from intel_pstate sysfs
 * @turbo_disabled:	Platform turbo status either from msr
 *			MSR_IA32_MISC_ENABLE or when maximum available pstate
 *			matches the maximum turbo pstate
 * @max_perf_pct:	Effective maximum performance limit in percentage, this
 *			is minimum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @min_perf_pct:	Effective minimum performance limit in percentage, this
 *			is maximum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @max_perf:		This is a scaled value between 0 to 255 for max_perf_pct
 *			This value is used to limit max pstate
 * @min_perf:		This is a scaled value between 0 to 255 for min_perf_pct
 *			This value is used to limit min pstate
 * @max_policy_pct:	The maximum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @max_sysfs_pct:	The maximum performance in percentage enforced by
 *			intel pstate sysfs interface, unused when per cpu
 *			controls are enforced
 * @min_policy_pct:	The minimum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @min_sysfs_pct:	The minimum performance in percentage enforced by
 *			intel pstate sysfs interface, unused when per cpu
 *			controls are enforced
 *
 * Storage for user and policy defined limits.
 */
struct perf_limits {
	int no_turbo;
	int turbo_disabled;
	int max_perf_pct;
	int min_perf_pct;
	int32_t max_perf;
	int32_t min_perf;
	int max_policy_pct;
	int max_sysfs_pct;
	int min_policy_pct;
	int min_sysfs_pct;
};

230 231 232
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
233
 * @policy:		CPUFreq policy value
234
 * @update_util:	CPUFreq utility callback information
235
 * @update_util_set:	CPUFreq utility callback is set
236 237
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
238 239 240 241 242 243 244 245 246 247
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @pid:		Stores PID parameters for this CPU
 * @last_sample_time:	Last Sample time
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
248 249 250
 * @perf_limits:	Pointer to perf_limit unique to this CPU
 *			Not all field in the structure are applicable
 *			when per cpu controls are enforced
251 252
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
253 254 255
 * @epp_powersave:	Last saved HWP energy performance preference
 *			(EPP) or energy performance bias (EPB),
 *			when policy switched to performance
256
 * @epp_policy:		Last saved policy used to set EPP/EPB
257 258 259 260
 * @epp_default:	Power on default HWP energy performance
 *			preference/bias
 * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
 *			operation
261 262 263
 *
 * This structure stores per CPU instance data for all CPUs.
 */
264 265 266
struct cpudata {
	int cpu;

267
	unsigned int policy;
268
	struct update_util_data update_util;
269
	bool   update_util_set;
270 271

	struct pstate_data pstate;
272
	struct vid_data vid;
273 274
	struct _pid pid;

275
	u64	last_update;
276
	u64	last_sample_time;
277 278
	u64	prev_aperf;
	u64	prev_mperf;
279
	u64	prev_tsc;
280
	u64	prev_cummulative_iowait;
281
	struct sample sample;
282
	struct perf_limits *perf_limits;
283 284 285 286
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
287
	unsigned int iowait_boost;
288
	s16 epp_powersave;
289
	s16 epp_policy;
290 291
	s16 epp_default;
	s16 epp_saved;
292 293 294
};

static struct cpudata **all_cpu_data;
295 296

/**
297
 * struct pstate_adjust_policy - Stores static PID configuration data
298 299 300 301 302 303 304 305 306 307
 * @sample_rate_ms:	PID calculation sample rate in ms
 * @sample_rate_ns:	Sample rate calculation in ns
 * @deadband:		PID deadband
 * @setpoint:		PID Setpoint
 * @p_gain_pct:		PID proportional gain
 * @i_gain_pct:		PID integral gain
 * @d_gain_pct:		PID derivative gain
 *
 * Stores per CPU model static PID configuration data.
 */
308 309
struct pstate_adjust_policy {
	int sample_rate_ms;
310
	s64 sample_rate_ns;
311 312 313 314 315 316 317
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

318 319 320 321 322 323 324 325 326 327 328 329 330 331
/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 * @get_target_pstate:	Callback to a function to calculate next P state to use
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
332 333
struct pstate_funcs {
	int (*get_max)(void);
334
	int (*get_max_physical)(void);
335 336
	int (*get_min)(void);
	int (*get_turbo)(void);
337
	int (*get_scaling)(void);
338
	u64 (*get_val)(struct cpudata*, int pstate);
339
	void (*get_vid)(struct cpudata *);
340
	int32_t (*get_target_pstate)(struct cpudata *);
341 342
};

343 344 345 346 347
/**
 * struct cpu_defaults- Per CPU model default config data
 * @pid_policy:	PID config data
 * @funcs:		Callback function data
 */
348 349 350
struct cpu_defaults {
	struct pstate_adjust_policy pid_policy;
	struct pstate_funcs funcs;
351 352
};

353
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
354
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
355

356 357 358
static struct pstate_adjust_policy pid_params __read_mostly;
static struct pstate_funcs pstate_funcs __read_mostly;
static int hwp_active __read_mostly;
359
static bool per_cpu_limits __read_mostly;
360

361 362 363
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
364

365 366 367 368
static struct perf_limits performance_limits = {
	.no_turbo = 0,
	.turbo_disabled = 0,
	.max_perf_pct = 100,
369
	.max_perf = int_ext_tofp(1),
370
	.min_perf_pct = 100,
371
	.min_perf = int_ext_tofp(1),
372 373 374 375 376 377 378
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
};

static struct perf_limits powersave_limits = {
379
	.no_turbo = 0,
380
	.turbo_disabled = 0,
381
	.max_perf_pct = 100,
382
	.max_perf = int_ext_tofp(1),
383 384
	.min_perf_pct = 0,
	.min_perf = 0,
385 386
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
387 388
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
389 390
};

391 392 393 394 395 396
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
static struct perf_limits *limits = &performance_limits;
#else
static struct perf_limits *limits = &powersave_limits;
#endif

397 398
static DEFINE_MUTEX(intel_pstate_limits_lock);

399
#ifdef CONFIG_ACPI
400 401 402 403 404 405 406 407 408 409

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

	return acpi_ppc;
}

410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
#ifdef CONFIG_ACPI_CPPC_LIB

/* The work item is needed to avoid CPU hotplug locking issues */
static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
{
	sched_set_itmt_support();
}

static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);

static void intel_pstate_set_itmt_prio(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return;

	/*
	 * The priorities can be set regardless of whether or not
	 * sched_set_itmt_support(true) has been called and it is valid to
	 * update them at any time after it has been called.
	 */
	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);

	if (max_highest_perf <= min_highest_perf) {
		if (cppc_perf.highest_perf > max_highest_perf)
			max_highest_perf = cppc_perf.highest_perf;

		if (cppc_perf.highest_perf < min_highest_perf)
			min_highest_perf = cppc_perf.highest_perf;

		if (max_highest_perf > min_highest_perf) {
			/*
			 * This code can be run during CPU online under the
			 * CPU hotplug locks, so sched_set_itmt_support()
			 * cannot be called from here.  Queue up a work item
			 * to invoke it.
			 */
			schedule_work(&sched_itmt_work);
		}
	}
}
#else
static void intel_pstate_set_itmt_prio(int cpu)
{
}
#endif

461 462 463 464 465 466
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

467 468
	if (hwp_active) {
		intel_pstate_set_itmt_prio(policy->cpu);
469
		return;
470
	}
471

472
	if (!intel_pstate_get_ppc_enable_status())
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
515
	 * correct max turbo frequency based on the turbo state.
516 517
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
518
	if (!limits->turbo_disabled)
519 520 521
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
522
	pr_debug("_PPC limits will be enforced\n");
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}

#else
543
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
544 545 546
{
}

547
static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
548 549 550 551
{
}
#endif

552
static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
553
			     int deadband, int integral) {
554 555
	pid->setpoint = int_tofp(setpoint);
	pid->deadband  = int_tofp(deadband);
556
	pid->integral  = int_tofp(integral);
557
	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
558 559 560 561
}

static inline void pid_p_gain_set(struct _pid *pid, int percent)
{
562
	pid->p_gain = div_fp(percent, 100);
563 564 565 566
}

static inline void pid_i_gain_set(struct _pid *pid, int percent)
{
567
	pid->i_gain = div_fp(percent, 100);
568 569 570 571
}

static inline void pid_d_gain_set(struct _pid *pid, int percent)
{
572
	pid->d_gain = div_fp(percent, 100);
573 574
}

575
static signed int pid_calc(struct _pid *pid, int32_t busy)
576
{
577
	signed int result;
578 579 580
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

581
	fp_error = pid->setpoint - busy;
582

583
	if (abs(fp_error) <= pid->deadband)
584 585 586 587 588 589
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

590 591 592 593 594 595 596 597
	/*
	 * We limit the integral here so that it will never
	 * get higher than 30.  This prevents it from becoming
	 * too large an input over long periods of time and allows
	 * it to get factored out sooner.
	 *
	 * The value of 30 was chosen through experimentation.
	 */
598 599 600 601 602 603
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

604 605
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
606 607

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
608
	result = result + (1 << (FRAC_BITS-1));
609 610 611 612 613
	return (signed int)fp_toint(result);
}

static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
{
614 615 616
	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
617

618
	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
619 620 621 622 623
}

static inline void intel_pstate_reset_all_pid(void)
{
	unsigned int cpu;
624

625 626 627 628 629 630
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu])
			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
	}
}

631 632 633 634 635 636 637
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
638
	limits->turbo_disabled =
639 640 641 642
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
{
	u64 epb;
	int ret;

	if (!static_cpu_has(X86_FEATURE_EPB))
		return -ENXIO;

	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return (s16)ret;

	return (s16)(epb & 0x0f);
}

static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
{
	s16 epp;

662 663 664 665 666 667 668 669 670 671 672
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * When hwp_req_data is 0, means that caller didn't read
		 * MSR_HWP_REQUEST, so need to read and get EPP.
		 */
		if (!hwp_req_data) {
			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
					    &hwp_req_data);
			if (epp)
				return epp;
		}
673
		epp = (hwp_req_data >> 24) & 0xff;
674
	} else {
675 676
		/* When there is no EPP present, HWP uses EPB settings */
		epp = intel_pstate_get_epb(cpu_data);
677
	}
678 679 680 681

	return epp;
}

682
static int intel_pstate_set_epb(int cpu, s16 pref)
683 684
{
	u64 epb;
685
	int ret;
686 687

	if (!static_cpu_has(X86_FEATURE_EPB))
688
		return -ENXIO;
689

690 691 692
	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return ret;
693 694 695

	epb = (epb & ~0x0f) | pref;
	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
696 697

	return 0;
698 699
}

700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
/*
 * EPP/EPB display strings corresponding to EPP index in the
 * energy_perf_strings[]
 *	index		String
 *-------------------------------------
 *	0		default
 *	1		performance
 *	2		balance_performance
 *	3		balance_power
 *	4		power
 */
static const char * const energy_perf_strings[] = {
	"default",
	"performance",
	"balance_performance",
	"balance_power",
	"power",
	NULL
};

static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
{
	s16 epp;
	int index = -EINVAL;

	epp = intel_pstate_get_epp(cpu_data, 0);
	if (epp < 0)
		return epp;

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * Range:
		 *	0x00-0x3F	:	Performance
		 *	0x40-0x7F	:	Balance performance
		 *	0x80-0xBF	:	Balance power
		 *	0xC0-0xFF	:	Power
		 * The EPP is a 8 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 6) + 1;
	} else if (static_cpu_has(X86_FEATURE_EPB)) {
		/*
		 * Range:
		 *	0x00-0x03	:	Performance
		 *	0x04-0x07	:	Balance performance
		 *	0x08-0x0B	:	Balance power
		 *	0x0C-0x0F	:	Power
		 * The EPB is a 4 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 2) + 1;
	}

	return index;
}

static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
					      int pref_index)
{
	int epp = -EINVAL;
	int ret;

	if (!pref_index)
		epp = cpu_data->epp_default;

	mutex_lock(&intel_pstate_limits_lock);

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		u64 value;

		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
		if (ret)
			goto return_pref;

		value &= ~GENMASK_ULL(31, 24);

		/*
		 * If epp is not default, convert from index into
		 * energy_perf_strings to epp value, by shifting 6
		 * bits left to use only top two bits in epp.
		 * The resultant epp need to shifted by 24 bits to
		 * epp position in MSR_HWP_REQUEST.
		 */
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 6;

		value |= (u64)epp << 24;
		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
	} else {
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 2;
		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
	}
return_pref:
	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
}

static ssize_t show_energy_performance_available_preferences(
				struct cpufreq_policy *policy, char *buf)
{
	int i = 0;
	int ret = 0;

	while (energy_perf_strings[i] != NULL)
		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);

	ret += sprintf(&buf[ret], "\n");

	return ret;
}

cpufreq_freq_attr_ro(energy_performance_available_preferences);

static ssize_t store_energy_performance_preference(
		struct cpufreq_policy *policy, const char *buf, size_t count)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	char str_preference[21];
	int ret, i = 0;

	ret = sscanf(buf, "%20s", str_preference);
	if (ret != 1)
		return -EINVAL;

	while (energy_perf_strings[i] != NULL) {
		if (!strcmp(str_preference, energy_perf_strings[i])) {
			intel_pstate_set_energy_pref_index(cpu_data, i);
			return count;
		}
		++i;
	}

	return -EINVAL;
}

static ssize_t show_energy_performance_preference(
				struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	int preference;

	preference = intel_pstate_get_energy_pref_index(cpu_data);
	if (preference < 0)
		return preference;

	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
}

cpufreq_freq_attr_rw(energy_performance_preference);

static struct freq_attr *hwp_cpufreq_attrs[] = {
	&energy_performance_preference,
	&energy_performance_available_preferences,
	NULL,
};

860
static void intel_pstate_hwp_set(struct cpufreq_policy *policy)
D
Dirk Brandewie 已提交
861
{
862
	int min, hw_min, max, hw_max, cpu, range, adj_range;
863
	struct perf_limits *perf_limits = limits;
864 865
	u64 value, cap;

866
	for_each_cpu(cpu, policy->cpus) {
867
		int max_perf_pct, min_perf_pct;
868 869
		struct cpudata *cpu_data = all_cpu_data[cpu];
		s16 epp;
870 871 872 873

		if (per_cpu_limits)
			perf_limits = all_cpu_data[cpu]->perf_limits;

874 875 876 877 878
		rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
		hw_min = HWP_LOWEST_PERF(cap);
		hw_max = HWP_HIGHEST_PERF(cap);
		range = hw_max - hw_min;

879 880 881
		max_perf_pct = perf_limits->max_perf_pct;
		min_perf_pct = perf_limits->min_perf_pct;

D
Dirk Brandewie 已提交
882
		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
883
		adj_range = min_perf_pct * range / 100;
884
		min = hw_min + adj_range;
D
Dirk Brandewie 已提交
885 886 887
		value &= ~HWP_MIN_PERF(~0L);
		value |= HWP_MIN_PERF(min);

888
		adj_range = max_perf_pct * range / 100;
889
		max = hw_min + adj_range;
890
		if (limits->no_turbo) {
891 892 893
			hw_max = HWP_GUARANTEED_PERF(cap);
			if (hw_max < max)
				max = hw_max;
D
Dirk Brandewie 已提交
894 895 896 897
		}

		value &= ~HWP_MAX_PERF(~0L);
		value |= HWP_MAX_PERF(max);
898 899 900 901 902 903

		if (cpu_data->epp_policy == cpu_data->policy)
			goto skip_epp;

		cpu_data->epp_policy = cpu_data->policy;

904 905 906 907 908 909
		if (cpu_data->epp_saved >= 0) {
			epp = cpu_data->epp_saved;
			cpu_data->epp_saved = -EINVAL;
			goto update_epp;
		}

910 911
		if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
			epp = intel_pstate_get_epp(cpu_data, value);
912
			cpu_data->epp_powersave = epp;
913
			/* If EPP read was failed, then don't try to write */
914
			if (epp < 0)
915 916 917 918 919 920
				goto skip_epp;


			epp = 0;
		} else {
			/* skip setting EPP, when saved value is invalid */
921
			if (cpu_data->epp_powersave < 0)
922 923 924 925 926 927 928 929 930 931 932 933 934
				goto skip_epp;

			/*
			 * No need to restore EPP when it is not zero. This
			 * means:
			 *  - Policy is not changed
			 *  - user has manually changed
			 *  - Error reading EPB
			 */
			epp = intel_pstate_get_epp(cpu_data, value);
			if (epp)
				goto skip_epp;

935
			epp = cpu_data->epp_powersave;
936
		}
937
update_epp:
938 939 940 941 942 943 944
		if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
			value &= ~GENMASK_ULL(31, 24);
			value |= (u64)epp << 24;
		} else {
			intel_pstate_set_epb(cpu, epp);
		}
skip_epp:
D
Dirk Brandewie 已提交
945 946
		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
	}
947
}
D
Dirk Brandewie 已提交
948

949 950 951
static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
{
	if (hwp_active)
952
		intel_pstate_hwp_set(policy);
953 954 955 956

	return 0;
}

957 958 959 960 961 962 963 964 965 966 967 968
static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];

	if (!hwp_active)
		return 0;

	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);

	return 0;
}

969 970
static int intel_pstate_resume(struct cpufreq_policy *policy)
{
971 972
	int ret;

973 974 975
	if (!hwp_active)
		return 0;

976 977
	mutex_lock(&intel_pstate_limits_lock);

978 979
	all_cpu_data[policy->cpu]->epp_policy = 0;

980 981 982 983 984
	ret = intel_pstate_hwp_set_policy(policy);

	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
985 986
}

987
static void intel_pstate_update_policies(void)
988
{
989 990 991 992
	int cpu;

	for_each_possible_cpu(cpu)
		cpufreq_update_policy(cpu);
D
Dirk Brandewie 已提交
993 994
}

995 996 997 998 999 1000 1001
/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
	*(u32 *)data = val;
	intel_pstate_reset_all_pid();
	return 0;
}
1002

1003 1004 1005 1006 1007
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
1008
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
1009 1010 1011 1012 1013 1014 1015

struct pid_param {
	char *name;
	void *value;
};

static struct pid_param pid_files[] = {
1016 1017 1018 1019 1020 1021
	{"sample_rate_ms", &pid_params.sample_rate_ms},
	{"d_gain_pct", &pid_params.d_gain_pct},
	{"i_gain_pct", &pid_params.i_gain_pct},
	{"deadband", &pid_params.deadband},
	{"setpoint", &pid_params.setpoint},
	{"p_gain_pct", &pid_params.p_gain_pct},
1022 1023 1024
	{NULL, NULL}
};

1025
static void __init intel_pstate_debug_expose_params(void)
1026
{
1027
	struct dentry *debugfs_parent;
1028 1029 1030 1031 1032 1033 1034
	int i = 0;

	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
	while (pid_files[i].name) {
		debugfs_create_file(pid_files[i].name, 0660,
1035 1036
				    debugfs_parent, pid_files[i].value,
				    &fops_pid_param);
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
		i++;
	}
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
1048
		return sprintf(buf, "%u\n", limits->object);		\
1049 1050
	}

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1062
	turbo_fp = div_fp(no_turbo, total);
1063 1064 1065 1066
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
	return sprintf(buf, "%u\n", turbo_pct);
}

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	return sprintf(buf, "%u\n", total);
}

1078 1079 1080 1081 1082 1083
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

	update_turbo_state();
1084 1085
	if (limits->turbo_disabled)
		ret = sprintf(buf, "%u\n", limits->turbo_disabled);
1086
	else
1087
		ret = sprintf(buf, "%u\n", limits->no_turbo);
1088 1089 1090 1091

	return ret;
}

1092
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1093
			      const char *buf, size_t count)
1094 1095 1096
{
	unsigned int input;
	int ret;
1097

1098 1099 1100
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1101

1102 1103
	mutex_lock(&intel_pstate_limits_lock);

1104
	update_turbo_state();
1105
	if (limits->turbo_disabled) {
J
Joe Perches 已提交
1106
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1107
		mutex_unlock(&intel_pstate_limits_lock);
1108
		return -EPERM;
1109
	}
D
Dirk Brandewie 已提交
1110

1111
	limits->no_turbo = clamp_t(int, input, 0, 1);
1112

1113 1114
	mutex_unlock(&intel_pstate_limits_lock);

1115 1116
	intel_pstate_update_policies();

1117 1118 1119 1120
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1121
				  const char *buf, size_t count)
1122 1123 1124
{
	unsigned int input;
	int ret;
1125

1126 1127 1128 1129
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

1130 1131
	mutex_lock(&intel_pstate_limits_lock);

1132 1133 1134 1135 1136 1137 1138
	limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);
	limits->max_perf_pct = max(limits->min_perf_pct,
				   limits->max_perf_pct);
1139
	limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
1140

1141 1142
	mutex_unlock(&intel_pstate_limits_lock);

1143 1144
	intel_pstate_update_policies();

1145 1146 1147 1148
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1149
				  const char *buf, size_t count)
1150 1151 1152
{
	unsigned int input;
	int ret;
1153

1154 1155 1156
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1157

1158 1159
	mutex_lock(&intel_pstate_limits_lock);

1160 1161 1162 1163 1164 1165 1166
	limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->min_perf_pct = min(limits->max_perf_pct,
				   limits->min_perf_pct);
1167
	limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
1168

1169 1170
	mutex_unlock(&intel_pstate_limits_lock);

1171 1172
	intel_pstate_update_policies();

1173 1174 1175 1176 1177 1178 1179 1180 1181
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
1182
define_one_global_ro(turbo_pct);
1183
define_one_global_ro(num_pstates);
1184 1185 1186

static struct attribute *intel_pstate_attributes[] = {
	&no_turbo.attr,
1187
	&turbo_pct.attr,
1188
	&num_pstates.attr,
1189 1190 1191 1192 1193 1194 1195
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};

1196
static void __init intel_pstate_sysfs_expose_params(void)
1197
{
1198
	struct kobject *intel_pstate_kobject;
1199 1200 1201 1202
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
1203 1204 1205
	if (WARN_ON(!intel_pstate_kobject))
		return;

1206
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
	if (WARN_ON(rc))
		return;

	/*
	 * If per cpu limits are enforced there are no global limits, so
	 * return without creating max/min_perf_pct attributes
	 */
	if (per_cpu_limits)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
	WARN_ON(rc);

	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
	WARN_ON(rc);

1223 1224
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
1225

1226
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
1227
{
1228
	/* First disable HWP notification interrupt as we don't process them */
1229 1230
	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1231

1232
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1233
	cpudata->epp_policy = 0;
1234 1235
	if (cpudata->epp_default == -EINVAL)
		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
D
Dirk Brandewie 已提交
1236 1237
}

1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
#define MSR_IA32_POWER_CTL_BIT_EE	19

/* Disable energy efficiency optimization */
static void intel_pstate_disable_ee(int cpu)
{
	u64 power_ctl;
	int ret;

	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
	if (ret)
		return;

	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
		pr_info("Disabling energy efficiency optimization\n");
		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
	}
}

1257
static int atom_get_min_pstate(void)
1258 1259
{
	u64 value;
1260

1261
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
1262
	return (value >> 8) & 0x7F;
1263 1264
}

1265
static int atom_get_max_pstate(void)
1266 1267
{
	u64 value;
1268

1269
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
1270
	return (value >> 16) & 0x7F;
1271
}
1272

1273
static int atom_get_turbo_pstate(void)
1274 1275
{
	u64 value;
1276

1277
	rdmsrl(ATOM_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
1278
	return value & 0x7F;
1279 1280
}

1281
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1282 1283 1284 1285 1286
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

1287
	val = (u64)pstate << 8;
1288
	if (limits->no_turbo && !limits->turbo_disabled)
1289 1290 1291 1292 1293 1294 1295
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1296
	vid = ceiling_fp(vid_fp);
1297

1298 1299 1300
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

1301
	return val | vid;
1302 1303
}

1304
static int silvermont_get_scaling(void)
1305 1306 1307
{
	u64 value;
	int i;
1308 1309 1310
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
1311 1312

	rdmsrl(MSR_FSB_FREQ, value);
1313 1314
	i = value & 0x7;
	WARN_ON(i > 4);
1315

1316 1317
	return silvermont_freq_table[i];
}
1318

1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
1333 1334
}

1335
static void atom_get_vid(struct cpudata *cpudata)
1336 1337 1338
{
	u64 value;

1339
	rdmsrl(ATOM_VIDS, value);
D
Dirk Brandewie 已提交
1340 1341
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1342 1343 1344 1345
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
1346

1347
	rdmsrl(ATOM_TURBO_VIDS, value);
1348
	cpudata->vid.turbo = value & 0x7f;
1349 1350
}

1351
static int core_get_min_pstate(void)
1352 1353
{
	u64 value;
1354

1355
	rdmsrl(MSR_PLATFORM_INFO, value);
1356 1357 1358
	return (value >> 40) & 0xFF;
}

1359
static int core_get_max_pstate_physical(void)
1360 1361
{
	u64 value;
1362

1363
	rdmsrl(MSR_PLATFORM_INFO, value);
1364 1365 1366
	return (value >> 8) & 0xFF;
}

1367
static int core_get_max_pstate(void)
1368
{
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
	u64 tar;
	u64 plat_info;
	int max_pstate;
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
		/* Do some sanity checking for safety */
		if (plat_info & 0x600000000) {
			u64 tdp_ctrl;
			u64 tdp_ratio;
			int tdp_msr;

			err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
			if (err)
				goto skip_tar;

1389
			tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x3);
1390 1391 1392 1393
			err = rdmsrl_safe(tdp_msr, &tdp_ratio);
			if (err)
				goto skip_tar;

1394 1395 1396 1397 1398
			/* For level 1 and 2, bits[23:16] contain the ratio */
			if (tdp_ctrl)
				tdp_ratio >>= 16;

			tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1399 1400 1401 1402 1403 1404 1405 1406
			if (tdp_ratio - 1 == tar) {
				max_pstate = tar;
				pr_debug("max_pstate=TAC %x\n", max_pstate);
			} else {
				goto skip_tar;
			}
		}
	}
1407

1408 1409
skip_tar:
	return max_pstate;
1410 1411
}

1412
static int core_get_turbo_pstate(void)
1413 1414 1415
{
	u64 value;
	int nont, ret;
1416

1417
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1418
	nont = core_get_max_pstate();
1419
	ret = (value) & 255;
1420 1421 1422 1423 1424
	if (ret <= nont)
		ret = nont;
	return ret;
}

1425 1426 1427 1428 1429
static inline int core_get_scaling(void)
{
	return 100000;
}

1430
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1431 1432 1433
{
	u64 val;

1434
	val = (u64)pstate << 8;
1435
	if (limits->no_turbo && !limits->turbo_disabled)
1436 1437
		val |= (u64)1 << 32;

1438
	return val;
1439 1440
}

1441 1442 1443 1444 1445
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1446
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1447 1448 1449 1450 1451 1452 1453
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
static struct cpu_defaults core_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
1465
		.get_max_physical = core_get_max_pstate_physical,
1466 1467
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
1468
		.get_scaling = core_get_scaling,
1469
		.get_val = core_get_val,
1470
		.get_target_pstate = get_target_pstate_use_performance,
1471 1472 1473
	},
};

1474
static const struct cpu_defaults silvermont_params = {
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1488
		.get_val = atom_get_val,
1489 1490
		.get_scaling = silvermont_get_scaling,
		.get_vid = atom_get_vid,
1491
		.get_target_pstate = get_target_pstate_use_cpu_load,
1492 1493 1494
	},
};

1495
static const struct cpu_defaults airmont_params = {
1496 1497 1498
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
1499
		.setpoint = 60,
1500 1501 1502 1503 1504
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
1505 1506 1507 1508
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1509
		.get_val = atom_get_val,
1510
		.get_scaling = airmont_get_scaling,
1511
		.get_vid = atom_get_vid,
1512
		.get_target_pstate = get_target_pstate_use_cpu_load,
1513 1514 1515
	},
};

1516
static const struct cpu_defaults knl_params = {
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
1527
		.get_max_physical = core_get_max_pstate_physical,
1528 1529
		.get_min = core_get_min_pstate,
		.get_turbo = knl_get_turbo_pstate,
1530
		.get_scaling = core_get_scaling,
1531
		.get_val = core_get_val,
1532
		.get_target_pstate = get_target_pstate_use_performance,
1533 1534 1535
	},
};

1536
static const struct cpu_defaults bxt_params = {
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
		.get_max_physical = core_get_max_pstate_physical,
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
		.get_scaling = core_get_scaling,
		.get_val = core_get_val,
		.get_target_pstate = get_target_pstate_use_cpu_load,
	},
};

1556 1557 1558
static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
1559
	int max_perf_adj;
1560
	int min_perf;
1561
	struct perf_limits *perf_limits = limits;
1562

1563
	if (limits->no_turbo || limits->turbo_disabled)
1564 1565
		max_perf = cpu->pstate.max_pstate;

1566 1567 1568
	if (per_cpu_limits)
		perf_limits = cpu->perf_limits;

1569 1570 1571 1572 1573
	/*
	 * performance can be limited by user through sysfs, by cpufreq
	 * policy, or by cpu specific default values determined through
	 * experimentation.
	 */
1574
	max_perf_adj = fp_ext_toint(max_perf * perf_limits->max_perf);
1575 1576
	*max = clamp_t(int, max_perf_adj,
			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1577

1578
	min_perf = fp_ext_toint(max_perf * perf_limits->min_perf);
1579
	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1580 1581
}

1582
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1583
{
1584 1585
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1586 1587 1588 1589 1590 1591 1592
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1593 1594
}

1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
	int min_pstate, max_pstate;

	update_turbo_state();
	intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
	intel_pstate_set_pstate(cpu, max_pstate);
}

1609 1610
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1611 1612
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1613
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1614
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1615
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1616 1617
	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1618

1619 1620
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1621 1622

	intel_pstate_set_min_pstate(cpu);
1623 1624
}

1625
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1626
{
1627
	struct sample *sample = &cpu->sample;
1628

1629
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1630 1631
}

1632
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1633 1634
{
	u64 aperf, mperf;
1635
	unsigned long flags;
1636
	u64 tsc;
1637

1638
	local_irq_save(flags);
1639 1640
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1641
	tsc = rdtsc();
1642
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1643
		local_irq_restore(flags);
1644
		return false;
1645
	}
1646
	local_irq_restore(flags);
1647

1648
	cpu->last_sample_time = cpu->sample.time;
1649
	cpu->sample.time = time;
1650 1651
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1652
	cpu->sample.tsc =  tsc;
1653 1654
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1655
	cpu->sample.tsc -= cpu->prev_tsc;
1656

1657 1658
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1659
	cpu->prev_tsc = tsc;
1660 1661 1662 1663 1664 1665 1666 1667
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
	return !!cpu->last_sample_time;
1668 1669
}

1670 1671
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1672 1673
	return mul_ext_fp(cpu->sample.core_avg_perf,
			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1674 1675
}

1676 1677
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1678 1679
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1680 1681
}

1682 1683 1684
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
{
	struct sample *sample = &cpu->sample;
1685
	int32_t busy_frac, boost;
1686
	int target, avg_pstate;
1687

1688
	busy_frac = div_fp(sample->mperf, sample->tsc);
1689

1690 1691
	boost = cpu->iowait_boost;
	cpu->iowait_boost >>= 1;
1692

1693 1694
	if (busy_frac < boost)
		busy_frac = boost;
1695

1696
	sample->busy_scaled = busy_frac * 100;
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716

	target = limits->no_turbo || limits->turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1717 1718
}

1719
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1720
{
1721
	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1722
	u64 duration_ns;
1723

1724
	/*
1725 1726 1727 1728 1729
	 * perf_scaled is the ratio of the average P-state during the last
	 * sampling period to the P-state requested last time (in percent).
	 *
	 * That measures the system's response to the previous P-state
	 * selection.
1730
	 */
1731 1732
	max_pstate = cpu->pstate.max_pstate_physical;
	current_pstate = cpu->pstate.current_pstate;
1733
	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1734
			       div_fp(100 * max_pstate, current_pstate));
1735

1736
	/*
1737 1738 1739
	 * Since our utilization update callback will not run unless we are
	 * in C0, check if the actual elapsed time is significantly greater (3x)
	 * than our sample interval.  If it is, then we were idle for a long
1740
	 * enough period of time to adjust our performance metric.
1741
	 */
1742
	duration_ns = cpu->sample.time - cpu->last_sample_time;
1743
	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1744
		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1745
		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1746 1747 1748
	} else {
		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
		if (sample_ratio < int_tofp(1))
1749
			perf_scaled = 0;
1750 1751
	}

1752 1753
	cpu->sample.busy_scaled = perf_scaled;
	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1754 1755
}

1756
static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1757 1758 1759 1760 1761
{
	int max_perf, min_perf;

	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
	pstate = clamp_t(int, pstate, min_perf, max_perf);
1762
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1763 1764 1765 1766 1767 1768
	return pstate;
}

static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
	pstate = intel_pstate_prepare_request(cpu, pstate);
1769 1770 1771
	if (pstate == cpu->pstate.current_pstate)
		return;

1772
	cpu->pstate.current_pstate = pstate;
1773 1774 1775
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1776 1777
static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
{
1778
	int from, target_pstate;
1779 1780 1781
	struct sample *sample;

	from = cpu->pstate.current_pstate;
1782

1783 1784
	target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
		cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
1785

1786 1787
	update_turbo_state();

1788
	intel_pstate_update_pstate(cpu, target_pstate);
1789 1790

	sample = &cpu->sample;
1791
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1792
		fp_toint(sample->busy_scaled),
1793 1794 1795 1796 1797
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1798 1799
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1800 1801
}

1802
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1803
				     unsigned int flags)
1804
{
1805
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1806 1807
	u64 delta_ns;

1808
	if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
		if (flags & SCHED_CPUFREQ_IOWAIT) {
			cpu->iowait_boost = int_tofp(1);
		} else if (cpu->iowait_boost) {
			/* Clear iowait_boost if the CPU may have been idle. */
			delta_ns = time - cpu->last_update;
			if (delta_ns > TICK_NSEC)
				cpu->iowait_boost = 0;
		}
		cpu->last_update = time;
	}
1819

1820
	delta_ns = time - cpu->sample.time;
1821
	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1822 1823
		bool sample_taken = intel_pstate_sample(cpu, time);

1824
		if (sample_taken) {
1825
			intel_pstate_calc_avg_perf(cpu);
1826 1827 1828
			if (!hwp_active)
				intel_pstate_adjust_busy_pstate(cpu);
		}
1829
	}
1830 1831 1832
}

#define ICPU(model, policy) \
1833 1834
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1835 1836

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_params),
	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_params),
	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_params),
	ICPU(INTEL_FAM6_IVYBRIDGE,		core_params),
	ICPU(INTEL_FAM6_HASWELL_CORE,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_params),
	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_params),
	ICPU(INTEL_FAM6_HASWELL_X,		core_params),
	ICPU(INTEL_FAM6_HASWELL_ULT,		core_params),
	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_params),
	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_params),
	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_X,		core_params),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_params),
	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_params),
	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_params),
1854
	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_params),
1855
	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_params),
1856 1857 1858 1859
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

1860
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1861
	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1862 1863
	ICPU(INTEL_FAM6_BROADWELL_X, core_params),
	ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
D
Dirk Brandewie 已提交
1864 1865 1866
	{}
};

1867 1868 1869 1870 1871
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_params),
	{}
};

1872 1873 1874 1875
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
	cpu = all_cpu_data[cpunum];

	if (!cpu) {
		unsigned int size = sizeof(struct cpudata);

		if (per_cpu_limits)
			size += sizeof(struct perf_limits);

		cpu = kzalloc(size, GFP_KERNEL);
		if (!cpu)
			return -ENOMEM;

		all_cpu_data[cpunum] = cpu;
		if (per_cpu_limits)
			cpu->perf_limits = (struct perf_limits *)(cpu + 1);

1892 1893 1894
		cpu->epp_default = -EINVAL;
		cpu->epp_powersave = -EINVAL;
		cpu->epp_saved = -EINVAL;
1895
	}
1896 1897 1898 1899

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1900

1901
	if (hwp_active) {
1902 1903 1904 1905 1906 1907
		const struct x86_cpu_id *id;

		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
		if (id)
			intel_pstate_disable_ee(cpunum);

1908
		intel_pstate_hwp_enable(cpu);
1909 1910 1911
		pid_params.sample_rate_ms = 50;
		pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
	}
1912

1913
	intel_pstate_get_cpu_pstates(cpu);
1914

1915 1916
	intel_pstate_busy_pid_reset(cpu);

J
Joe Perches 已提交
1917
	pr_debug("controlling: cpu %d\n", cpunum);
1918 1919 1920 1921 1922 1923

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
1924
	struct cpudata *cpu = all_cpu_data[cpu_num];
1925

1926
	return cpu ? get_avg_frequency(cpu) : 0;
1927 1928
}

1929
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1930
{
1931 1932
	struct cpudata *cpu = all_cpu_data[cpu_num];

1933 1934 1935
	if (cpu->update_util_set)
		return;

1936 1937
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
1938 1939
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
				     intel_pstate_update_util);
1940
	cpu->update_util_set = true;
1941 1942 1943 1944
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
1945 1946 1947 1948 1949
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

1950
	cpufreq_remove_update_util_hook(cpu);
1951
	cpu_data->update_util_set = false;
1952 1953 1954
	synchronize_sched();
}

1955 1956 1957 1958 1959
static void intel_pstate_set_performance_limits(struct perf_limits *limits)
{
	limits->no_turbo = 0;
	limits->turbo_disabled = 0;
	limits->max_perf_pct = 100;
1960
	limits->max_perf = int_ext_tofp(1);
1961
	limits->min_perf_pct = 100;
1962
	limits->min_perf = int_ext_tofp(1);
1963 1964 1965 1966 1967 1968
	limits->max_policy_pct = 100;
	limits->max_sysfs_pct = 100;
	limits->min_policy_pct = 0;
	limits->min_sysfs_pct = 0;
}

1969 1970 1971
static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
					    struct perf_limits *limits)
{
1972

1973 1974 1975
	limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
					      policy->cpuinfo.max_freq);
	limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0, 100);
1976 1977 1978
	if (policy->max == policy->min) {
		limits->min_policy_pct = limits->max_policy_pct;
	} else {
1979 1980
		limits->min_policy_pct = DIV_ROUND_UP(policy->min * 100,
						      policy->cpuinfo.max_freq);
1981 1982 1983
		limits->min_policy_pct = clamp_t(int, limits->min_policy_pct,
						 0, 100);
	}
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

	/* Normalize user input to [min_policy_pct, max_policy_pct] */
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);

	/* Make sure min_perf_pct <= max_perf_pct */
	limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);

1998 1999 2000 2001
	limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
	limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
	limits->max_perf = round_up(limits->max_perf, EXT_FRAC_BITS);
	limits->min_perf = round_up(limits->min_perf, EXT_FRAC_BITS);
2002 2003 2004 2005 2006

	pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
		 limits->max_perf_pct, limits->min_perf_pct);
}

2007 2008
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
2009
	struct cpudata *cpu;
2010
	struct perf_limits *perf_limits = NULL;
2011

2012 2013 2014
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

2015 2016 2017
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

2018
	cpu = all_cpu_data[policy->cpu];
2019 2020
	cpu->policy = policy->policy;

2021 2022 2023 2024 2025
	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
2026 2027
	}

2028 2029 2030
	if (per_cpu_limits)
		perf_limits = cpu->perf_limits;

2031 2032
	mutex_lock(&intel_pstate_limits_lock);

2033 2034 2035 2036 2037
	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
		if (!perf_limits) {
			limits = &performance_limits;
			perf_limits = limits;
		}
2038 2039
		if (policy->max >= policy->cpuinfo.max_freq &&
		    !limits->no_turbo) {
J
Joe Perches 已提交
2040
			pr_debug("set performance\n");
2041
			intel_pstate_set_performance_limits(perf_limits);
2042 2043 2044
			goto out;
		}
	} else {
J
Joe Perches 已提交
2045
		pr_debug("set powersave\n");
2046 2047 2048 2049
		if (!perf_limits) {
			limits = &powersave_limits;
			perf_limits = limits;
		}
2050

2051
	}
2052

2053
	intel_pstate_update_perf_limits(policy, perf_limits);
2054
 out:
2055
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2056 2057 2058 2059 2060 2061 2062 2063
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
	}

2064 2065
	intel_pstate_set_update_util_hook(policy->cpu);

2066
	intel_pstate_hwp_set_policy(policy);
D
Dirk Brandewie 已提交
2067

2068 2069
	mutex_unlock(&intel_pstate_limits_lock);

2070 2071 2072 2073 2074
	return 0;
}

static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
2075
	cpufreq_verify_within_cpu_limits(policy);
2076

2077
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2078
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2079 2080
		return -EINVAL;

2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
	/* When per-CPU limits are used, sysfs limits are not used */
	if (!per_cpu_limits) {
		unsigned int max_freq, min_freq;

		max_freq = policy->cpuinfo.max_freq *
						limits->max_sysfs_pct / 100;
		min_freq = policy->cpuinfo.max_freq *
						limits->min_sysfs_pct / 100;
		cpufreq_verify_within_limits(policy, min_freq, max_freq);
	}

2092 2093 2094
	return 0;
}

2095 2096 2097 2098 2099
static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
{
	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
}

2100
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2101
{
2102
	pr_debug("CPU %d exiting\n", policy->cpu);
2103

2104
	intel_pstate_clear_update_util_hook(policy->cpu);
2105 2106 2107
	if (hwp_active)
		intel_pstate_hwp_save_state(policy);
	else
2108 2109
		intel_cpufreq_stop_cpu(policy);
}
2110

2111 2112 2113
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);
2114

2115
	policy->fast_switch_possible = false;
D
Dirk Brandewie 已提交
2116

2117
	return 0;
2118 2119
}

2120
static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2121 2122
{
	struct cpudata *cpu;
2123
	int rc;
2124 2125 2126 2127 2128 2129 2130

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

2131 2132 2133 2134 2135 2136 2137
	/*
	 * We need sane value in the cpu->perf_limits, so inherit from global
	 * perf_limits limits, which are seeded with values based on the
	 * CONFIG_CPU_FREQ_DEFAULT_GOV_*, during boot up.
	 */
	if (per_cpu_limits)
		memcpy(cpu->perf_limits, limits, sizeof(struct perf_limits));
2138

2139 2140
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2141 2142

	/* cpuinfo and default policy values */
2143
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2144 2145 2146 2147 2148
	update_turbo_state();
	policy->cpuinfo.max_freq = limits->turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

2149
	intel_pstate_init_acpi_perf_limits(policy);
2150 2151
	cpumask_set_cpu(policy->cpu, policy->cpus);

2152 2153
	policy->fast_switch_possible = true;

2154 2155 2156
	return 0;
}

2157
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2158
{
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
	if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2169 2170 2171 2172

	return 0;
}

2173
static struct cpufreq_driver intel_pstate = {
2174 2175 2176
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
2177
	.suspend	= intel_pstate_hwp_save_state,
2178
	.resume		= intel_pstate_resume,
2179 2180
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
2181
	.exit		= intel_pstate_cpu_exit,
2182
	.stop_cpu	= intel_pstate_stop_cpu,
2183 2184 2185
	.name		= "intel_pstate",
};

2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct perf_limits *perf_limits = limits;

	update_turbo_state();
	policy->cpuinfo.max_freq = limits->turbo_disabled ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;

	cpufreq_verify_within_cpu_limits(policy);

	if (per_cpu_limits)
		perf_limits = cpu->perf_limits;

2200 2201
	mutex_lock(&intel_pstate_limits_lock);

2202 2203
	intel_pstate_update_perf_limits(policy, perf_limits);

2204 2205
	mutex_unlock(&intel_pstate_limits_lock);

2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
	return 0;
}

static unsigned int intel_cpufreq_turbo_update(struct cpudata *cpu,
					       struct cpufreq_policy *policy,
					       unsigned int target_freq)
{
	unsigned int max_freq;

	update_turbo_state();

	max_freq = limits->no_turbo || limits->turbo_disabled ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
	policy->cpuinfo.max_freq = max_freq;
	if (policy->max > max_freq)
		policy->max = max_freq;

	if (target_freq > max_freq)
		target_freq = max_freq;

	return target_freq;
}

static int intel_cpufreq_target(struct cpufreq_policy *policy,
				unsigned int target_freq,
				unsigned int relation)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct cpufreq_freqs freqs;
	int target_pstate;

	freqs.old = policy->cur;
	freqs.new = intel_cpufreq_turbo_update(cpu, policy, target_freq);

	cpufreq_freq_transition_begin(policy, &freqs);
	switch (relation) {
	case CPUFREQ_RELATION_L:
		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
		break;
	case CPUFREQ_RELATION_H:
		target_pstate = freqs.new / cpu->pstate.scaling;
		break;
	default:
		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
		break;
	}
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	if (target_pstate != cpu->pstate.current_pstate) {
		cpu->pstate.current_pstate = target_pstate;
		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
			      pstate_funcs.get_val(cpu, target_pstate));
	}
	cpufreq_freq_transition_end(policy, &freqs, false);

	return 0;
}

static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
					      unsigned int target_freq)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	int target_pstate;

	target_freq = intel_cpufreq_turbo_update(cpu, policy, target_freq);
	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
	intel_pstate_update_pstate(cpu, target_pstate);
	return target_freq;
}

static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
	policy->cur = policy->cpuinfo.min_freq;

	return 0;
}

static struct cpufreq_driver intel_cpufreq = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_cpufreq_verify_policy,
	.target		= intel_cpufreq_target,
	.fast_switch	= intel_cpufreq_fast_switch,
	.init		= intel_cpufreq_cpu_init,
	.exit		= intel_pstate_cpu_exit,
	.stop_cpu	= intel_cpufreq_stop_cpu,
	.name		= "intel_cpufreq",
};

static struct cpufreq_driver *intel_pstate_driver = &intel_pstate;

2302 2303 2304
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
2305
static unsigned int force_load __initdata;
2306

2307
static int __init intel_pstate_msrs_not_valid(void)
2308
{
2309
	if (!pstate_funcs.get_max() ||
2310 2311
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
2312 2313 2314 2315
		return -ENODEV;

	return 0;
}
2316

2317
static void __init copy_pid_params(struct pstate_adjust_policy *policy)
2318 2319
{
	pid_params.sample_rate_ms = policy->sample_rate_ms;
2320
	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
2321 2322 2323 2324 2325 2326 2327
	pid_params.p_gain_pct = policy->p_gain_pct;
	pid_params.i_gain_pct = policy->i_gain_pct;
	pid_params.d_gain_pct = policy->d_gain_pct;
	pid_params.deadband = policy->deadband;
	pid_params.setpoint = policy->setpoint;
}

2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
#ifdef CONFIG_ACPI
static void intel_pstate_use_acpi_profile(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_MOBILE)
		pstate_funcs.get_target_pstate =
				get_target_pstate_use_cpu_load;
}
#else
static void intel_pstate_use_acpi_profile(void)
{
}
#endif

2341
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2342 2343
{
	pstate_funcs.get_max   = funcs->get_max;
2344
	pstate_funcs.get_max_physical = funcs->get_max_physical;
2345 2346
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
2347
	pstate_funcs.get_scaling = funcs->get_scaling;
2348
	pstate_funcs.get_val   = funcs->get_val;
2349
	pstate_funcs.get_vid   = funcs->get_vid;
2350 2351
	pstate_funcs.get_target_pstate = funcs->get_target_pstate;

2352
	intel_pstate_use_acpi_profile();
2353 2354
}

2355
#ifdef CONFIG_ACPI
2356

2357
static bool __init intel_pstate_no_acpi_pss(void)
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

2386
static bool __init intel_pstate_has_acpi_ppc(void)
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

2406 2407 2408 2409
struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2410
	int  oem_pwr_table;
2411 2412 2413
};

/* Hardware vendor-specific info that has its own power management modes */
2414
static struct hw_vendor_info vendor_info[] __initdata = {
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
	{1, "HP    ", "ProLiant", PSS},
	{1, "ORACLE", "X4-2    ", PPC},
	{1, "ORACLE", "X4-2L   ", PPC},
	{1, "ORACLE", "X4-2B   ", PPC},
	{1, "ORACLE", "X3-2    ", PPC},
	{1, "ORACLE", "X3-2L   ", PPC},
	{1, "ORACLE", "X3-2B   ", PPC},
	{1, "ORACLE", "X4470M2 ", PPC},
	{1, "ORACLE", "X4270M3 ", PPC},
	{1, "ORACLE", "X4270M2 ", PPC},
	{1, "ORACLE", "X4170M2 ", PPC},
2426 2427 2428 2429
	{1, "ORACLE", "X4170 M3", PPC},
	{1, "ORACLE", "X4275 M3", PPC},
	{1, "ORACLE", "X6-2    ", PPC},
	{1, "ORACLE", "Sudbury ", PPC},
2430 2431 2432
	{0, "", ""},
};

2433
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2434 2435 2436
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;
D
Dirk Brandewie 已提交
2437 2438 2439 2440 2441 2442 2443 2444 2445
	const struct x86_cpu_id *id;
	u64 misc_pwr;

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
2446

2447 2448
	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2449 2450 2451
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
2452
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2453 2454 2455 2456 2457 2458
			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
						ACPI_OEM_TABLE_ID_SIZE))
			switch (v_info->oem_pwr_table) {
			case PSS:
				return intel_pstate_no_acpi_pss();
			case PPC:
2459 2460
				return intel_pstate_has_acpi_ppc() &&
					(!force_load);
2461
			}
2462 2463 2464 2465
	}

	return false;
}
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475

static void intel_pstate_request_control_from_smm(void)
{
	/*
	 * It may be unsafe to request P-states control from SMM if _PPC support
	 * has not been enabled.
	 */
	if (acpi_ppc)
		acpi_processor_pstate_control();
}
2476 2477
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2478
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2479
static inline void intel_pstate_request_control_from_smm(void) {}
2480 2481
#endif /* CONFIG_ACPI */

2482 2483 2484 2485 2486
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
	{}
};

2487 2488
static int __init intel_pstate_init(void)
{
2489
	int cpu, rc = 0;
2490
	const struct x86_cpu_id *id;
2491
	struct cpu_defaults *cpu_def;
2492

2493 2494 2495
	if (no_load)
		return -ENODEV;

2496 2497 2498
	if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
		copy_cpu_funcs(&core_params.funcs);
		hwp_active++;
2499
		intel_pstate.attr = hwp_cpufreq_attrs;
2500 2501 2502
		goto hwp_cpu_matched;
	}

2503 2504 2505 2506
	id = x86_match_cpu(intel_pstate_cpu_ids);
	if (!id)
		return -ENODEV;

2507
	cpu_def = (struct cpu_defaults *)id->driver_data;
2508

2509 2510
	copy_pid_params(&cpu_def->pid_policy);
	copy_cpu_funcs(&cpu_def->funcs);
2511

2512 2513 2514
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

2515 2516 2517 2518 2519 2520 2521 2522
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

J
Joe Perches 已提交
2523
	pr_info("Intel P-state driver initializing\n");
2524

2525
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2526 2527 2528
	if (!all_cpu_data)
		return -ENOMEM;

2529 2530 2531
	if (!hwp_active && hwp_only)
		goto out;

2532 2533
	intel_pstate_request_control_from_smm();

2534
	rc = cpufreq_register_driver(intel_pstate_driver);
2535 2536 2537
	if (rc)
		goto out;

2538 2539 2540 2541
	if (intel_pstate_driver == &intel_pstate && !hwp_active &&
	    pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
		intel_pstate_debug_expose_params();

2542
	intel_pstate_sysfs_expose_params();
2543

2544
	if (hwp_active)
J
Joe Perches 已提交
2545
		pr_info("HWP enabled\n");
2546

2547 2548
	return rc;
out:
2549 2550 2551
	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
2552 2553 2554
			if (intel_pstate_driver == &intel_pstate)
				intel_pstate_clear_update_util_hook(cpu);

2555 2556 2557 2558 2559 2560
			kfree(all_cpu_data[cpu]);
		}
	}

	put_online_cpus();
	vfree(all_cpu_data);
2561 2562 2563 2564
	return -ENODEV;
}
device_initcall(intel_pstate_init);

2565 2566 2567 2568 2569
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

2570
	if (!strcmp(str, "disable")) {
2571
		no_load = 1;
2572 2573 2574 2575 2576
	} else if (!strcmp(str, "passive")) {
		pr_info("Passive mode enabled\n");
		intel_pstate_driver = &intel_cpufreq;
		no_hwp = 1;
	}
2577
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
2578
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
2579
		no_hwp = 1;
2580
	}
2581 2582
	if (!strcmp(str, "force"))
		force_load = 1;
2583 2584
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
2585 2586
	if (!strcmp(str, "per_cpu_perf_limits"))
		per_cpu_limits = true;
2587 2588 2589 2590 2591 2592

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

2593 2594 2595 2596
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

2597 2598 2599
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");