framework.py 207.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
H
huzhiqiang 已提交
19
from collections.abc import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26
import copy
27
from types import MethodType, FunctionType
28

Y
Yu Yang 已提交
29
import numpy as np
30
import subprocess
S
sneaxiy 已提交
31
import multiprocessing
32
import sys
33
import logging
M
minqiyang 已提交
34
from .. import compat as cpt
35
from .proto import framework_pb2
36 37

from . import core
38
from . import unique_name
39 40
import paddle.version as fluid_version
import warnings
41
import functools
42
from .variable_index import _getitem_impl_, _setitem_impl_
Y
Yu Yang 已提交
43

44
__all__ = [
45 46 47 48
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
49
    'name_scope',
S
sneaxiy 已提交
50 51
    'cuda_places',
    'cpu_places',
52
    'xpu_places',
S
sneaxiy 已提交
53
    'cuda_pinned_places',
L
lujun 已提交
54
    'in_dygraph_mode',
C
chengduo 已提交
55
    'is_compiled_with_cuda',
56
    'is_compiled_with_rocm',
57
    'is_compiled_with_xpu',
58
    'Variable',
59
    'require_version',
60
    'device_guard',
G
guofei 已提交
61 62
    'set_flags',
    'get_flags',
63
]
Y
Yu Yang 已提交
64

Q
qiaolongfei 已提交
65 66 67 68
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
69 70
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
71
_dygraph_tracer_ = None
72
_global_expected_place_ = None
73
_current_device = None
74
global_prog_seed = 0
75
_global_flags_ = core.globals()
76

77

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
185
def in_dygraph_mode():
L
lujun 已提交
186
    """
187

188 189 190 191 192 193 194
    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .
L
lujun 已提交
195 196

    Returns:
197
        bool: Whether paddle runs in dynamic graph mode.
L
lujun 已提交
198 199 200 201

    Examples:
        .. code-block:: python

202 203 204 205 206 207 208 209
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
L
lujun 已提交
210 211

    """
L
lujun 已提交
212
    return _dygraph_tracer_ is not None
213 214


215 216 217
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
218
        ), "We don't support %s in imperative mode" % func.__name__
219 220 221 222 223 224 225 226
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
227 228 229 230 231 232 233 234 235
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
236
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
237 238 239 240 241
        return func(*args, **kwargs)

    return __impl__


242 243 244 245 246 247
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
248
# same base class.
249 250 251
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
252 253 254 255 256
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
            % (func.__name__, func.__name__))
257 258 259 260

    return __impl__


T
tangwei12 已提交
261 262
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


280 281
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
282
static_only = wrap_decorator(_static_only_)
283
fake_interface_only = wrap_decorator(_fake_interface_only_)
284 285


L
lujun 已提交
286 287
def _dygraph_tracer():
    return _dygraph_tracer_
288

W
Wu Yi 已提交
289

290 291 292 293
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
294
def _current_expected_place():
295 296 297
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
298 299 300 301 302 303 304 305 306 307 308
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CUDAPlace(0)
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
325 326


L
Leo Chen 已提交
327 328 329 330
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
T
tangwei12 已提交
331

L
Leo Chen 已提交
332 333 334 335 336 337 338 339 340 341 342 343
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
344
def _cpu_num():
345
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
346 347 348 349 350 351 352 353
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
354
        os.environ['CPU_NUM'] = str(1)
355
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
356 357 358 359 360 361 362 363 364 365
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
366 367


368 369 370 371 372 373 374 375 376
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


C
chengduo 已提交
392 393 394 395
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

396
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
397 398 399 400

    Examples:
        .. code-block:: python

401 402
            import paddle
            support_gpu = paddle.is_compiled_with_cuda()
C
chengduo 已提交
403 404 405 406
    """
    return core.is_compiled_with_cuda()


407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_gpu = paddle.is_compiled_with_rocm()
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
422
def cuda_places(device_ids=None):
L
lujun 已提交
423
    """
424 425 426 427
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
428
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
429 430

    If :code:`device_ids` is None, environment variable of
431
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
432
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
433
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
434
    If :code:`FLAGS_selected_gpus` is not set, all visible
435
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
436 437

    If :code:`device_ids` is not None, it should be the device
438
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
439
    the returned list would be 
C
Chen Weihang 已提交
440
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
441

442
    Parameters:
443
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
444 445

    Returns:
C
Chen Weihang 已提交
446
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
447 448 449 450

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
451 452
            import paddle
            import paddle.static as static
T
tangwei12 已提交
453

454 455
            # required: gpu
            
C
Chen Weihang 已提交
456 457 458
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
459 460

    """
S
sneaxiy 已提交
461 462 463
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
464
        device_ids = _cuda_ids()
S
sneaxiy 已提交
465 466 467 468 469
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
    This function creates a list of :code:`paddle.XPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_xpus` would be checked first. For example, if
    :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
    be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
    If :code:`FLAGS_selected_xpus` is not set, all visible
    xpu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be 
    [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
    
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
492 493
            # required: xpu

494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
    assert core.is_compiled_with_xpu(), \
        "Not compiled with XPU"
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
509
def cpu_places(device_count=None):
L
lujun 已提交
510
    """
C
Chen Weihang 已提交
511
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
512

S
add doc  
sneaxiy 已提交
513 514
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
515 516
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
517 518
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
519

520 521
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
522 523

    Returns:
C
Chen Weihang 已提交
524
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
525 526 527 528

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
529 530
            import paddle
            import paddle.static as static
T
tangwei12 已提交
531

C
Chen Weihang 已提交
532 533 534
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
535 536
    """

S
sneaxiy 已提交
537 538 539 540 541 542
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
543
    """
544
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
545 546 547

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
548 549 550 551
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
552

553 554
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
555 556

    Returns:
557
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
558 559 560 561

    Examples:
        .. code-block:: python

562
            import paddle.fluid as fluid
L
lujun 已提交
563 564 565 566 567
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
568 569 570
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
571 572
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
573 574


575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
601
@signature_safe_contextmanager
602 603
def name_scope(prefix=None):
    """
604 605
    :api_attr: Static Graph

606
    Generate hierarchical name prefix for the operators in Static Graph.
607

T
Tao Luo 已提交
608 609 610
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
611
        Don't use it in dygraph, since it will cause memory leak.
612 613

    Args:
T
Tao Luo 已提交
614
        prefix(str, optional): prefix. Default is none.
615 616 617

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
618

619 620 621
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
622
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
623
             b = a + 1
624
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
625
                c = b * 1
626
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
627
                d = c / 1
628 629 630
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
631 632 633
                g = f - 1

          # Op are created in the default main program.  
634
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
650 651
    """
    # TODO(panyx0718): Only [0-9a-z].
652
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
653 654 655
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
656
        assert prefix, "namescope prefix can not be empty."
657 658
        global _name_scope
        _name_scope = _name_scope.child(prefix)
659 660 661 662
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
663 664 665 666 667 668 669 670 671 672 673 674


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
675 676 677
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
678 679 680 681


def grad_var_name(var_name):
    """
682 683
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
684 685 686
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
687

688
def convert_np_dtype_to_dtype_(np_dtype):
689 690
    """
    Convert the data type in numpy to the data type in Paddle
691

692
    Args:
693
        np_dtype(np.dtype): the data type in numpy.
694

695 696
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
697 698

    """
699 700
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
701
        return core.VarDesc.VarType.FP32
702
    elif dtype == np.float64:
703
        return core.VarDesc.VarType.FP64
704
    elif dtype == np.float16:
705
        return core.VarDesc.VarType.FP16
706
    elif dtype == np.int32:
707
        return core.VarDesc.VarType.INT32
708
    elif dtype == np.int16:
709
        return core.VarDesc.VarType.INT16
710
    elif dtype == np.int64:
711
        return core.VarDesc.VarType.INT64
712
    elif dtype == np.bool:
713
        return core.VarDesc.VarType.BOOL
714
    elif dtype == np.uint16:
715 716 717
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
718 719
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
720 721
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
722 723 724 725
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
726
    else:
M
minqiyang 已提交
727
        raise ValueError("Not supported numpy dtype %s" % dtype)
728 729 730


def dtype_is_floating(dtype):
731 732 733
    """
    Check the data type is floating or not.
    Args:
734
        dtype(np.dtype|core.VarDesc.VarType): data type.
735 736 737 738 739
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
740
    if not isinstance(dtype, core.VarDesc.VarType):
741 742
        dtype = convert_np_dtype_to_dtype_(dtype)

743 744 745 746
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
747 748


Y
Yang Yang(Tony) 已提交
749
def _debug_string_(proto, throw_on_error=True):
750 751 752 753 754 755 756 757 758 759 760
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
761
    error_fields = list()
Y
Yang Yang(Tony) 已提交
762
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
763 764
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
765 766 767
    return proto.__str__()


768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
805
class Variable(object):
806
    """
J
Jiabin Yang 已提交
807
    **Notes**:
808
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
809

810 811
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
812 813 814
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
815
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
816 817
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
818

819
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
820
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
821

T
tianshuo78520a 已提交
822
    Most of a Variable's member variables can be set to be None. It mean
823
    it is not available or will be specified later.
824

825
    Examples:
826 827
        In Static Graph Mode:

828 829
        .. code-block:: python

830
            import paddle.fluid as fluid
831
            cur_program = fluid.Program()
832 833 834 835
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
J
Jiabin Yang 已提交
836
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
837 838 839 840 841 842 843 844 845

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

846 847
    """

Y
Yu Yang 已提交
848 849
    def __init__(self,
                 block,
Y
Yu Yang 已提交
850
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
851 852 853 854
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
855
                 capacity=None,
Q
QI JUN 已提交
856
                 persistable=None,
F
fengjiayi 已提交
857
                 error_clip=None,
Y
Yu Yang 已提交
858
                 stop_gradient=False,
F
fengjiayi 已提交
859
                 is_data=False,
H
Huihuang Zheng 已提交
860
                 need_check_feed=False,
H
hong 已提交
861
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
862
                 **kwargs):
Y
Yu Yang 已提交
863 864
        self.block = block
        if name is None:
Y
Yu Yang 已提交
865
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
866

Y
Yu Yang 已提交
867
        if dtype is not None:
868
            if not isinstance(dtype, core.VarDesc.VarType):
869
                dtype = convert_np_dtype_to_dtype_(dtype)
870

H
hong 已提交
871 872
        self.belong_to_optimizer = belong_to_optimizer

873 874 875 876 877
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
878

879 880 881
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
882

883 884 885
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
L
Leo Chen 已提交
886 887
            raise ValueError("Variable '{0}' has been created before. The "
                             "previous type is {1}, the new type is {2}. They"
888 889
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
890

891
        if shape is not None:
892
            if is_new_var:
893 894 895 896 897 898
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
899 900
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
901 902 903 904 905 906 907
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
L
Leo Chen 已提交
908 909
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous data type is {1}, the new "
910 911 912 913 914 915 916 917 918
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
L
Leo Chen 已提交
919 920
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous lod_level is {1}, the new "
921 922 923 924 925 926 927 928 929
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
930 931
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
932 933
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
934

935 936
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
937

938 939 940 941 942 943 944
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
945

946 947 948 949
        self.block.vars[name] = self
        self.op = None
        self._stop_gradient = stop_gradient
        self.is_data = is_data
Y
Yu Yang 已提交
950

951 952 953
    def detach(self):
        """
        Returns a new Variable, detached from the current graph.
954 955
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
956

957
        Returns:
J
Jiabin Yang 已提交
958
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
959 960 961 962

        Examples:
            .. code-block:: python

963
                import paddle
964

965 966 967 968
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
969

970 971
                # create a detached Variable
                y = x.detach()
972
        """
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987

        assert self.type == core.VarDesc.VarType.SELECTED_ROWS or \
            self.type == core.VarDesc.VarType.LOD_TENSOR, \
            "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=True)

        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]})
        return output
988

989
    @fake_interface_only
990
    def numpy(self):
991
        """
J
Jiabin Yang 已提交
992
        **Notes**:
T
tianshuo78520a 已提交
993
            **This API is ONLY available in Dygraph mode**
994

J
Jiabin Yang 已提交
995
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
996 997 998 999 1000

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1001
            ndarray: dtype is same as current Variable
1002 1003 1004 1005 1006 1007

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1008
                from paddle.fluid.dygraph import Linear
1009 1010 1011 1012
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1013
                    linear = Linear(32, 64)
1014
                    data = to_variable(data)
1015
                    x = linear(data)
1016 1017 1018
                    print(x.numpy())

        """
1019
        pass
1020

1021
    @fake_interface_only
1022
    def backward(self, retain_graph=False):
1023
        """
J
Jiabin Yang 已提交
1024
        **Notes**:
T
tianshuo78520a 已提交
1025
            **This API is ONLY available in Dygraph mode**
1026

1027
        Run backward of current Graph which starts from current Tensor.
1028

J
Jiabin Yang 已提交
1029
        Args:
1030 1031 1032 1033
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1034

J
Jiabin Yang 已提交
1035 1036
        Returns:
            NoneType: None
1037 1038 1039 1040 1041

        Examples:
            .. code-block:: python

                import numpy as np
1042 1043
                import paddle
                paddle.disable_static()
1044 1045

                x = np.ones([2, 2], np.float32)
1046 1047 1048 1049 1050 1051 1052
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1053 1054
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1055
                loss.backward()
1056 1057

        """
1058
        pass
1059

1060
    @fake_interface_only
1061
    def gradient(self):
1062
        """
J
Jiabin Yang 已提交
1063
        **Notes**:
T
tianshuo78520a 已提交
1064
            **This API is ONLY available in Dygraph mode**
1065 1066 1067

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1068
        Returns:
1069
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1070 1071 1072 1073 1074 1075 1076

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1077
                # example1: return ndarray
1078 1079 1080 1081 1082 1083 1084 1085 1086
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1087
                    loss2.backward()
1088 1089
                    print(loss2.gradient())

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1103
        """
1104
        pass
1105

1106
    @fake_interface_only
1107
    def clear_gradient(self):
1108
        """
J
Jiabin Yang 已提交
1109
        **Notes**:
T
tianshuo78520a 已提交
1110
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1111 1112

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1113

J
Jiabin Yang 已提交
1114
        Clear  (set to ``0`` ) the Gradient of Current Variable
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1133
                    loss2.backward()
1134 1135 1136 1137 1138
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1139
        pass
X
Xin Pan 已提交
1140

1141 1142 1143 1144
    @fake_interface_only
    def register_hook(self, hook):
        pass

1145
    def __str__(self):
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1162 1163
                import paddle
                import paddle.static as static
1164

1165 1166 1167
                paddle.enable_static()

                cur_program = static.Program()
1168 1169 1170 1171 1172 1173
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1174 1175
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1176
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
1177 1178
            dtype_str = str(self.dtype).split('.')[1]
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".\
T
tangwei12 已提交
1179 1180
                format(name=self.name, type=type_str, shape=self.shape,
                       dtype=dtype_str, stop_gradient=self.stop_gradient)
1181
        else:
1182 1183
            var_str = "{name} : {type})".\
                format(name=self.name, type=type_str)
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196

        if type(self) == Parameter:
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

        return var_str
Y
Yang Yang(Tony) 已提交
1197

F
update  
fengjiayi 已提交
1198
    def to_string(self, throw_on_error, with_details=False):
1199 1200 1201
        """
        Get debug string.

J
Jiabin Yang 已提交
1202 1203 1204 1205 1206
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1207

1208 1209
        Returns:
            str: The debug string.
1210 1211 1212 1213 1214

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1215
                import paddle
1216

1217
                paddle.enable_static()
1218 1219 1220 1221 1222
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1223
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1224
                print("=============with detail===============")
1225
                print(new_variable.to_string(True, True))
1226
        """
F
update  
fengjiayi 已提交
1227 1228
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1229
        protostr = self.desc.serialize_to_string()
1230
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1231 1232 1233 1234
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
1235 1236 1237
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1238
        return res_str
1239 1240 1241

    __repr__ = __str__

1242
    @property
1243
    def stop_gradient(self):
J
Jiabin Yang 已提交
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1259 1260
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1261 1262 1263
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1264 1265
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1266 1267 1268 1269
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1270
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1271 1272
                assert (out1.gradient() == 0).all()
        """
1273
        return self._stop_gradient
1274

1275 1276
    @stop_gradient.setter
    def stop_gradient(self, s):
1277
        self._stop_gradient = s
1278

1279 1280
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1302
        return self.desc.persistable()
1303

Y
Yu Yang 已提交
1304 1305
    @persistable.setter
    def persistable(self, p):
1306
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1307

Y
Yu Yang 已提交
1308 1309
    @property
    def name(self):
J
Jiabin Yang 已提交
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1326
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1327

1328 1329 1330 1331 1332 1333 1334 1335
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
          gradient Variable from a naming convention but doesn't guarantee
          the gradient exists.**
T
tangwei12 已提交
1336

1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1348 1349
    @name.setter
    def name(self, new_name):
1350
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1351

Y
Yu Yang 已提交
1352 1353
    @property
    def shape(self):
J
Jiabin Yang 已提交
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1371
        # convert to tuple, make it as same as numpy API.
1372
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1373 1374

    @property
F
fengjiayi 已提交
1375
    def dtype(self):
J
Jiabin Yang 已提交
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1392
        return self.desc.dtype()
Y
Yu Yang 已提交
1393 1394 1395

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1417 1418 1419
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1420
        return self.desc.lod_level()
Y
Yu Yang 已提交
1421

Y
Yu Yang 已提交
1422 1423
    @property
    def type(self):
J
Jiabin Yang 已提交
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1440
        return self.desc.type()
Y
Yu Yang 已提交
1441

1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
        Variable. It remains in the current graph, that is, the cloned Variable 
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
            Variable: The cloned Variable.

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=self.stop_gradient)

        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]})
        return output

W
Wu Yi 已提交
1476
    def _set_error_clip(self, error_clip):
1477 1478 1479 1480 1481 1482 1483 1484 1485
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1486 1487
        self.error_clip = error_clip

1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1528
            raise ValueError("slice step can not be zero")
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1604
    def _cloneVar(self, copy=False):
1605 1606
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1607 1608
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1609 1610 1611 1612
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1613
        new_var = self._cloneVar()
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1624
        new_var = self._cloneVar()
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1635
                return self._cloneVar(True)
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1654
                return self._cloneVar(True)
1655
            index = int(item)
1656
            if (index > 0 and index >= self.shape[axis]) \
1657 1658 1659 1660 1661 1662 1663
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1664
        return _getitem_impl_(self, item)
1665

1666
    def __setitem__(self, item, value):
1667
        return _setitem_impl_(self, item, value)
1668

1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
    def get_value(self, scope=None):
        """
        Get the value of variable in given scope. 

        Args:
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            Tensor: the value in given scope.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
        # The 'framework' is a low-level module, and 'executor' 
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
        Set the value to the tensor in given scope. 

        Args:
            value(Tensor/ndarray) : The value to be set.
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        '''

        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".
                format(type(value)))

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
                    "{} expected a shape {}, but the received shape is {}.".
                    format(self.name, list(t.shape()), list(value_shape)))

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
    def size(self):
        """
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
            Variable: the number of elements for current Variable

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
            dtype=core.VarDesc.VarType.INT64)

        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]})
        return output

Y
Yu Yang 已提交
1851

F
fengjiayi 已提交
1852 1853 1854
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1855

1856 1857
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1858 1859 1860 1861
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1862
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1863 1864 1865 1866 1867
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
1868 1869 1870 1871
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1872 1873 1874 1875 1876 1877 1878 1879 1880
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1881
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1882 1883 1884 1885 1886 1887
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1888 1889 1890 1891 1892 1893 1894 1895
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1896 1897
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1898 1899
        return self.op_proto_map[type]

1900 1901
    def update_op_proto(self):
        op_protos = get_all_op_protos()
1902
        custom_op_names = []
1903 1904 1905
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
1906 1907 1908
                custom_op_names.append(proto.type)

        return custom_op_names
1909

1910 1911 1912 1913
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1914
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1915
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
1916 1917
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
1918 1919
        }

F
fengjiayi 已提交
1920

X
Xin Pan 已提交
1921
class Operator(object):
1922
    """
1923 1924 1925 1926 1927 1928 1929
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1930
        type(str): The type of operator. Default None.
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1951
        Block.append_op or Block._prepend_op instead.
1952 1953 1954 1955

    Examples:
        .. code-block:: python

1956
            import paddle.fluid as fluid
1957
            cur_program = fluid.Program()
1958 1959 1960 1961 1962
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1963
    """
1964
    OP_WITHOUT_KERNEL_SET = {
1965 1966
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1967
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
1968 1969
        'gen_bkcl_id', 'c_gen_bkcl_id', 'gen_nccl_id', 'c_gen_nccl_id',
        'c_comm_init', 'c_sync_calc_stream', 'c_sync_comm_stream',
W
WangXi 已提交
1970
        'queue_generator', 'dequeue', 'enqueue', 'heter_listen_and_serv',
B
Baibaifan 已提交
1971 1972
        'c_wait_comm', 'c_wait_compute', 'c_gen_hccl_id', 'c_comm_init_hccl',
        'copy_cross_scope'
1973
    }
1974

Y
Yu Yang 已提交
1975 1976
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1977
                 desc,
Y
Yu Yang 已提交
1978 1979 1980
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1981
                 attrs=None):
L
lujun 已提交
1982
        if in_dygraph_mode():
1983 1984
            if type is None:
                raise ValueError(
1985
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
1986
            self._type = type
M
minqiyang 已提交
1987
            self.attrs = attrs if attrs else {}
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
2002
                )] = self.block.program._op_role
2003 2004 2005

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
2006 2007
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
2008 2009 2010 2011 2012 2013 2014 2015

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
2016
                    "`type` to initialized an Operator can not be None.")
2017 2018
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2019 2020 2021 2022 2023 2024 2025
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
2026 2027 2028 2029 2030 2031 2032

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)

2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2064
                        if not isinstance(in_args, (list, tuple)):
2065 2066 2067 2068 2069 2070
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2071
                        for index, arg in enumerate(in_args):
2072 2073 2074 2075
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2076
                            elif isinstance(arg, (Variable, core.VarBase)):
2077
                                in_arg_names.append(cpt.to_text(arg.name))
2078
                            else:
2079 2080 2081 2082
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2083 2084
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2109 2110 2111 2112
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2113
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
2114
                        if not in_dygraph_mode():
2115 2116 2117 2118
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2137
    def _has_kernel(self, op_type):
2138 2139
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2140
    def to_string(self, throw_on_error):
2141
        """
2142 2143
        Get debug string.

2144
        Args:
2145 2146
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2147

2148 2149
        Returns:
            str: The debug string.
2150 2151

        """
2152
        protostr = self.desc.serialize_to_string()
2153
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2154 2155
        return _debug_string_(proto, throw_on_error)

2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2188
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
T
tangwei12 已提交
2243 2244
                format(outputs=outputs_str, op_type=self.type,
                       inputs=inputs_str, attrs=attrs_str)
2245 2246 2247 2248 2249
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2250
    def __str__(self):
2251
        return self._to_readable_code()
2252 2253 2254

    __repr__ = __str__

F
fengjiayi 已提交
2255 2256
    @property
    def type(self):
2257
        return self.desc.type()
F
fengjiayi 已提交
2258 2259

    def input(self, name):
2260
        r"""
2261
        Get the input arguments according to the input parameter name.
2262

2263 2264
        Args:
            name(str): The input parameter name.
2265

2266 2267 2268
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2269
        """
F
fengjiayi 已提交
2270 2271
        return self.desc.input(name)

W
Wu Yi 已提交
2272
    def _rename_input(self, old_name, new_name):
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2283
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2284

W
Wu Yi 已提交
2285
    def _rename_output(self, old_name, new_name):
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2296
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2297

F
fengjiayi 已提交
2298 2299 2300 2301
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2302 2303 2304 2305 2306 2307 2308 2309
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2310
    def output(self, name):
2311
        r"""
2312
        Get output arguments by the output parameter name.
2313

2314 2315
        Args:
            name(str): The output parameter name.
2316

2317 2318 2319
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2320
        """
F
fengjiayi 已提交
2321 2322 2323 2324 2325 2326
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2327 2328 2329 2330 2331 2332 2333 2334
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2335
    def has_attr(self, name):
2336
        """
2337 2338
        Whether this Operator has the attribute with name or not.

2339
        Args:
2340
            name(str): the attribute name.
2341

2342 2343
        Returns:
            bool: True if has this attribute.
2344 2345

        """
F
fengjiayi 已提交
2346 2347 2348
        return self.desc.has_attr(name)

    def attr_type(self, name):
2349
        """
2350
        Get the type of attribute by attribute's name.
2351

2352 2353
        Args:
            name(str): the attribute name.
2354

2355 2356
        Returns:
            core.AttrType: the attribute type.
2357
        """
F
fengjiayi 已提交
2358 2359
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2360
    def _set_attr(self, name, val):
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2371 2372
        self._update_desc_attr(name, val)

2373 2374 2375
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2387 2388
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2389 2390
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2391
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2392 2393 2394 2395
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2396
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2397

F
fengjiayi 已提交
2398 2399 2400 2401 2402
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2403
        """
2404 2405
        Get the attribute by name.

2406
        Args:
2407
            name(str): the attribute name.
2408

2409 2410
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2411 2412
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2413
        return self.desc.attr(name)
Y
Yu Yang 已提交
2414

W
Wu Yi 已提交
2415
    def _block_attr_id(self, name):
2416
        """
G
gongweibao 已提交
2417
        Get the block attribute's id by name.
2418

2419 2420
        Args:
            name(str): the attribute name.
2421

2422 2423
        Returns:
            int: the block index.
2424
        """
W
Wu Yi 已提交
2425
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2426

W
Wu Yi 已提交
2427
    def _block_attr(self, name):
G
gongweibao 已提交
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2438
        id = self._block_attr_id(name)
G
gongweibao 已提交
2439 2440 2441
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2442
    def _blocks_attr(self, name):
G
gongweibao 已提交
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2453
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2454 2455 2456 2457 2458
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2459
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2470
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2471

J
JiayiFeng 已提交
2472
    def all_attrs(self):
F
fengjiayi 已提交
2473
        """
2474 2475 2476
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2477
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2478 2479 2480 2481
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2482 2483
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2484
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2485 2486 2487
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2488
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2489 2490 2491 2492
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2493 2494
        return attr_map

2495 2496 2497
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
2498 2499 2500 2501

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

2502 2503 2504
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
2505 2506 2507 2508 2509 2510 2511 2512

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
2513 2514
            return False

2515 2516 2517 2518 2519 2520
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

Y
Yu Yang 已提交
2521

Y
Yu Yang 已提交
2522
class Block(object):
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2537
        use `Program._create_block()` to create a block.
2538 2539 2540 2541

    Examples:
        .. code-block:: python

2542 2543 2544
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2545 2546 2547 2548 2549 2550 2551 2552 2553
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2554
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2555
        self.desc = program.desc.block(idx)
2556
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2557
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2558
        self.program = program
2559
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2560

2561
    def __str__(self):
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2596
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
2608

F
fengjiayi 已提交
2609 2610
    def to_string(self, throw_on_error, with_details=False):
        """
2611 2612
        Get debug string.

F
fengjiayi 已提交
2613 2614
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2615
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2616
            with_details(bool): more details about variables and parameters
2617 2618
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2619

2620 2621
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2622 2623 2624 2625
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2626
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2627 2628
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2629
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2630
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2631
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2632
            for op in self.ops:
F
fengjiayi 已提交
2633 2634
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2635 2636 2637
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2638 2639
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2640 2641
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2642 2643 2644

    __repr__ = __str__

Y
Yu Yang 已提交
2645 2646
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2647
        return self.desc.parent
Y
Yu Yang 已提交
2648

Y
Yu Yang 已提交
2649 2650 2651 2652
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2653
    def _set_forward_block_idx(self, idx):
2654 2655 2656 2657 2658 2659 2660 2661 2662
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2663
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2664

2665 2666 2667 2668 2669 2670 2671 2672
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
2673 2674
    @property
    def idx(self):
Y
Yu Yang 已提交
2675
        return self.desc.id
Y
Yu Yang 已提交
2676

Q
Qiao Longfei 已提交
2677
    def var(self, name):
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2691
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2692 2693 2694
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2695 2696
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2697
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2698
        return v
Q
Qiao Longfei 已提交
2699

X
Xin Pan 已提交
2700
    def _find_var_recursive(self, name):
2701 2702 2703 2704 2705 2706 2707
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2708
            Variable: the Variable with the giving name. Or None if not found.
2709
        """
Y
Yu Yang 已提交
2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2734
        return None
Y
Yu Yang 已提交
2735

X
Xin Pan 已提交
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2755

Q
Qiao Longfei 已提交
2756
    def all_parameters(self):
2757
        return list(self.iter_parameters())
2758

2759
    def iter_parameters(self):
M
minqiyang 已提交
2760
        return (item[1] for item in six.iteritems(self.vars)
2761
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2762

Y
Yu Yang 已提交
2763
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
2764 2765 2766
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
2767 2768 2769
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
2770
        return var
Y
Yu Yang 已提交
2771

Q
Qiao Longfei 已提交
2772 2773 2774
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
2775
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
2776 2777
        """
        Rename variable in vars and ops' inputs and outputs
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
2790
        """
M
minqiyang 已提交
2791 2792
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
2793

T
typhoonzero 已提交
2794
        if not self.has_var(name):
2795
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
2796 2797
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
2798
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
2799 2800 2801 2802 2803 2804
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2805
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2806 2807 2808 2809
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2810
        orig_var_type = v.type
M
minqiyang 已提交
2811
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2812
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2813
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2814
        if var_type == "Parameter":
L
Leo Chen 已提交
2815 2816
            if in_dygraph_mode():
                var = ParamBase(
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
2827 2828
                var = Parameter(
                    self,
2829 2830 2831 2832 2833 2834 2835 2836 2837
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
2838
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2839 2840
            var = Variable(
                self,
T
typhoonzero 已提交
2841
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2842 2843 2844 2845
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2846
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2847 2848 2849
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2850
        self._sync_with_cpp()
2851
        return var
T
typhoonzero 已提交
2852

2853 2854 2855
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
2856
        self.desc._remove_var(cpt.to_bytes(name))
2857 2858
        del self.vars[name]

Y
Yu Yang 已提交
2859 2860
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
2861
        param = None
L
Leo Chen 已提交
2862
        if in_dygraph_mode():
2863
            param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
2864 2865
        else:
            param = Parameter(global_block, *args, **kwargs)
2866 2867 2868 2869 2870 2871
            # NOTE: Why only set stop_gradient=False in static mode
            # Because in dygraph mode, the `stop_gradient` and `trainable`
            # are related, and `trainable` default vallue is `True` or
            # it is specified by users, there is no need to set
            # `stop_gradient` for ParamBase here.
            param.stop_gradient = False
2872
        if 'initializer' in kwargs:
2873 2874 2875 2876 2877

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2878
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
2879
                        # are treated as initialization ops that cause error.
2880
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
2881 2882 2883 2884 2885
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
                                "c_broadcast", "c_sync_comm_stream",
                                "coalesce_tensor"
                        ]:
2886
                            continue
2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
2898
                # TODO already inited, do nothing, should log a warning
2899 2900 2901
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
2902
        return param
Y
Yu Yang 已提交
2903

Y
Yu Yang 已提交
2904
    def append_op(self, *args, **kwargs):
2905 2906 2907 2908 2909 2910
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2911
        if in_dygraph_mode():
2912
            attrs = kwargs.get("attrs", {})
J
Jiabin Yang 已提交
2913
            type = kwargs.get("type", None)
2914 2915 2916
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
2917
                type=type,
M
minqiyang 已提交
2918 2919
                inputs=None,
                outputs=None,
2920
                attrs=attrs)
2921

M
minqiyang 已提交
2922 2923 2924
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
2925
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
2926 2927

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2928
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2929 2930
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2931
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2932
        else:
2933 2934
            from paddle.fluid.dygraph.base import param_guard

2935
            op_desc = self.desc.append_op()
2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
                op = Operator(
                    block=self,
                    desc=op_desc,
                    type=kwargs.get("type", None),
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None))
2949

M
minqiyang 已提交
2950
            self.ops.append(op)
M
minqiyang 已提交
2951

2952 2953
        return op

W
Wu Yi 已提交
2954
    def _insert_op(self, index, *args, **kwargs):
2955 2956 2957 2958 2959 2960 2961 2962 2963
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
2964
        self._sync_with_cpp()
F
fangshuixun007 已提交
2965
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
2966

2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
        Insert an Operator according to the giving arguments, 
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
2984 2985 2986 2987 2988 2989 2990 2991 2992
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
2993 2994
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
2995
        self.desc._remove_op(index, index + 1)
2996 2997
        del self.ops[index]

W
Wu Yi 已提交
2998
    def _slice_ops(self, start, end):
2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
3009
        return self.ops[start:end]
Y
Yancey1989 已提交
3010

W
Wu Yi 已提交
3011
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
3012
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3013 3014
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
3015
            op = Operator(
J
Jiabin Yang 已提交
3016
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
3017

J
Jiabin Yang 已提交
3018
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3019
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3020 3021
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
3022
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3023
        else:
3024 3025 3026 3027 3028 3029 3030 3031
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
3032
            self.ops.insert(0, op)
3033

Y
Yu Yang 已提交
3034 3035
        return op

W
Wu Yi 已提交
3036
    def _sync_with_cpp(self):
3037
        """
3038 3039
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
3040
        """
Q
Qiao Longfei 已提交
3041 3042 3043 3044 3045
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

3046
        # sync variables removed from c++ end
3047
        for var in list(self.vars.keys()):
M
minqiyang 已提交
3048
            if not self.desc.find_var(cpt.to_bytes(var)):
3049 3050
                self.vars.pop(var)

Q
Qiao Longfei 已提交
3051
        # sync operators from cpp
3052 3053 3054 3055
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3072 3073 3074 3075 3076

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3077
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3078 3079 3080 3081 3082 3083 3084

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3098 3099 3100 3101
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3102
    def _copy_param_info_from(self, other):
3103
        """
3104 3105
        Copy the information of parameters from the other block.

3106
        Args:
3107 3108 3109 3110 3111
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3112 3113 3114 3115 3116

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3117 3118
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3119
        for p in other.iter_parameters():
3120 3121 3122
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3123 3124
                # if the Parameter is pruned, v may be None
                continue
3125
            assert isinstance(v, Variable)
3126
            new_p = None
L
Leo Chen 已提交
3127 3128
            if in_dygraph_mode():
                new_p = ParamBase(
3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
3140 3141
                new_p = Parameter(
                    block=self,
3142 3143 3144
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
3145 3146
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
3147 3148 3149 3150 3151 3152
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
3153 3154
            self.vars[new_p.name] = new_p

3155
    def _clone_variable(self, var, force_persistable=True):
3156 3157
        """
        Clone a variable into current block.
3158

3159 3160
        Args:
            var: the variable to be cloned.
3161 3162 3163
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3164 3165

        Returns:
3166
            Variable: the new  variable cloned from 'var' in current block.
3167 3168
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3169 3170 3171 3172 3173
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3174 3175
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3176
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3177 3178 3179 3180 3181 3182
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3183
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3184 3185
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3186 3187 3188 3189 3190 3191 3192
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3193
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3194 3195
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3196
        return ret_var
3197

Y
Yu Yang 已提交
3198

3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3294
    def remove_input_by_id(self, node_id):
3295 3296 3297 3298 3299 3300
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3301
        self.node.remove_input(node_id)
3302

3303
    def remove_input(self, node):
3304 3305 3306 3307
        """
        Remove a node from inputs.

        Args:
3308
            node(IrNode): the node being removed.
3309
        """
3310
        self.node.remove_input(node.node)
3311

3312
    def append_input(self, node):
3313 3314 3315 3316
        """
        Append a node in inputs.

        Args:
3317
            node(IrNode): the node being appended.
3318
        """
3319
        self.node.append_input(node.node)
3320 3321 3322 3323 3324 3325 3326 3327

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3328
    def remove_output_by_id(self, node_id):
3329 3330 3331 3332 3333 3334
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3335
        self.node.remove_output(node_id)
3336

3337
    def remove_output(self, node):
3338 3339 3340 3341
        """
        Remove a node from outputs.

        Args:
3342
            node(IrNode): the node being removed.
3343
        """
3344
        self.node.remove_output(node.node)
3345

3346
    def append_output(self, node):
3347 3348 3349 3350
        """
        Append a node in outputs.

        Args:
3351
            node(IrNode): the node being appended.
3352
        """
3353
        self.node.append_output(node.node)
3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3401
            "The node variable description can not be None."
3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3412
            "The node variable description can not be None."
3413 3414
        return self.node.var().persistable()

3415 3416 3417 3418 3419 3420 3421 3422
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3423
            "The node variable description can not be None."
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3434
            "The node variable description can not be None."
3435 3436 3437 3438 3439 3440 3441 3442 3443 3444
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3445
            "The node variable description can not be None."
3446 3447
        return self.node.var().shape()

3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3495
            "The node operator description can not be None."
3496 3497
        self.node.op()._rename_input(old_input_name, new_input_name)

3498 3499 3500 3501 3502 3503 3504 3505 3506
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3507
            "The node operator description can not be None."
3508 3509
        self.node.op()._rename_output(old_output_name, new_output_name)

3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3521
            "The node operator description can not be None."
3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3535
            "The node operator description can not be None."
3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3546
            "The node operator description can not be None."
3547 3548
        return self.node.op().set_type(new_type)

3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3564
            "The node operator description can not be None."
3565 3566 3567 3568
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3569
                all(isinstance(v, Block) for v in val):
3570 3571
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3572
                isinstance(val, core.ProgramDesc):
3573 3574 3575 3576
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3577 3578 3579 3580 3581 3582 3583 3584
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3585
            "The node operator description can not be None."
3586 3587 3588 3589 3590 3591 3592 3593 3594 3595
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3596
            "The node operator description can not be None."
3597 3598
        return self.node.op().output_arg_names()

3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3620 3621
class IrGraph(object):
    """
3622
    Python IrGraph. Beneath it is a core.Graph, which is used for
3623
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3624 3625
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3626 3627 3628 3629
    """

    def __init__(self, graph, for_test=False):
        """
3630 3631
        Construct an IrGraph using core.Graph.

3632 3633 3634 3635 3636 3637 3638 3639 3640
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3641 3642 3643 3644
    def clone(self):
        """
        Create a new and duplicated IrGraph.

3645 3646 3647
        Warns:
            The method only clones the graph structure, not its attributes.

3648 3649 3650
        Returns:
            IrGraph: A new and duplicated graph.
        """
3651
        g = self.graph.clone()
3652 3653
        return IrGraph(g, self._for_test)

3654
    def is_test(self):
3655 3656 3657
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
3658 3659
        return self._for_test

W
WangZhen 已提交
3660
    def all_nodes(self):
3661 3662 3663
        """
        Return all nodes included in the graph as a set.
        """
3664
        return {IrNode(node) for node in self.graph.nodes()}
3665

3666
    def all_var_nodes(self):
3667 3668 3669
        """
        Return all variable nodes included in the graph as a set.
        """
3670
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
3671

3672
    def all_persistable_nodes(self):
3673 3674 3675
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
3676 3677 3678 3679 3680
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3681
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3682

3683
    def all_op_nodes(self):
3684 3685 3686
        """
        Return all operator nodes included in the graph as a set.
        """
3687
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3688

3689
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3701
            IrVarNode: the created persistable variable node.
3702
        """
3703 3704 3705 3706 3707
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3708
        return IrVarNode(self.graph.create_var_node(var_desc))
3709 3710

    def create_var_node(self, name, var_type, shape, var_dtype):
3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3722
            IrVarNode: the created variable node.
3723 3724
        """

3725 3726 3727 3728
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3729
        return IrVarNode(self.graph.create_var_node(var_desc))
3730

3731 3732 3733 3734 3735 3736
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

3737
    def create_var_node_from_desc(self, var_desc):
3738 3739 3740 3741 3742 3743 3744 3745
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
3746
            IrVarNode: the created variable node.
3747
        """
3748
        return IrVarNode(self.graph.create_var_node(var_desc))
3749 3750

    def create_op_node(self, op_type, attrs, inputs, outputs):
3751 3752 3753 3754 3755 3756 3757
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
3758
            outputs(dict): the outputs of the operator node.
3759 3760

        Returns:
3761
            IrOpNode: the created operator node.
3762
        """
3763 3764
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
3765
        for attr, value in six.iteritems(attrs):
3766
            self._update_desc_attr(op_desc, attr, value)
3767
        for input_name, var_nodes in six.iteritems(inputs):
3768 3769 3770 3771
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
3772
        for output_name, var_nodes in six.iteritems(outputs):
3773 3774 3775 3776
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
3777
        return IrOpNode(self.graph.create_op_node(op_desc))
3778 3779

    def create_op_node_from_desc(self, op_desc):
3780 3781 3782 3783 3784 3785 3786
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
3787
            IrOpNode: the created operator node.
3788
        """
3789
        return IrOpNode(self.graph.create_op_node(op_desc))
3790 3791

    def update_input_link(self, old_input_node, new_input_node, op_node):
3792 3793 3794 3795
        """
        Update the input's link of a operator node.

        Args:
3796 3797 3798
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
3799
        """
3800
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
T
tangwei12 已提交
3801
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
3802
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
3803 3804 3805 3806
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
3807
        op_node.rename_input(old_input_node.name(), new_input_node.name())
3808

3809 3810 3811 3812 3813 3814 3815 3816 3817 3818
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
T
tangwei12 已提交
3819
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
3820
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
3821 3822 3823 3824 3825 3826
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

3827
    def link_to(self, node_in, node_out):
3828 3829 3830 3831
        """
        Connect two nodes.

        Args:
3832 3833
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
3834
        """
3835
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
3836
            'The two arguments(node_in&node_out) must be in the graph nodes.'
3837 3838
        node_in.append_output(node_out)
        node_out.append_input(node_in)
3839 3840

    def safe_remove_nodes(self, remove_nodes):
3841 3842 3843 3844 3845 3846 3847
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
3848
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
3849 3850 3851 3852
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
3853 3854
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
3855

Z
Zhen Wang 已提交
3856 3857 3858 3859 3860 3861 3862 3863
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3864
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
3865 3866 3867 3868
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3869
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
3870 3871 3872
                        ]
                    else:
                        var_nodes[each_var_name].append(
3873 3874
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
3875 3876
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
3877
    def has_circle(self):
3878 3879 3880 3881 3882 3883
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
3884 3885 3886
        return core.has_circle(self.graph)

    def graph_num(self):
3887 3888 3889 3890 3891 3892
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
3893 3894 3895
        return core.graph_num(self.graph)

    def topology_sort(self):
3896 3897 3898
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
3899
        Notes: the `graph` can not contain a circle.
3900 3901

        Returns:
Z
Zhen Wang 已提交
3902
            list(IrNode): nodes in topology order.
3903
        """
3904
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
3905
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
3906 3907

    def build_adjacency_list(self):
3908 3909 3910 3911
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3912
            dict{IrNode: set(IrNode)}: the adjacency list.
3913
        """
3914 3915 3916 3917 3918
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
3919

3920 3921 3922 3923 3924 3925 3926 3927
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
3928
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
3929 3930 3931 3932 3933
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

3934 3935
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
T
tangwei12 已提交
3936 3937 3938
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True)
3939 3940 3941 3942 3943
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

3944
        remove_ctr_vars = set()
3945
        if remove_ctr_var:
3946
            for node in self.all_var_nodes():
3947 3948 3949
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
3950 3951
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

3952 3953
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
3954 3955 3956 3957 3958 3959
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
3960 3961 3962 3963
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
3964 3965
        if not os.path.exists(save_path):
            os.makedirs(save_path)
3966 3967 3968 3969 3970 3971 3972
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
3973 3974 3975
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
3976
        WARN: When the graph includes backward operator nodes, the
3977 3978 3979 3980 3981 3982
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
3983
        convert_pass = core.get_pass('graph_to_program_pass')
3984 3985
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
3986 3987 3988 3989
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
4017
class Program(object):
D
dzhwinter 已提交
4018
    """
4019
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
4020
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
4021
    it will contain nested block.
4022

J
Jiabin Yang 已提交
4023 4024 4025
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
4026

J
Jiabin Yang 已提交
4027
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
4028
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
4029 4030 4031 4032 4033 4034 4035
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
4036
    **Notes**:
4037 4038 4039
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
4040 4041

    Returns:
J
Jiabin Yang 已提交
4042
        Program: An empty Program.
D
dzhwinter 已提交
4043 4044

    Examples:
4045 4046
        .. code-block:: python

4047 4048 4049 4050
            import paddle
            import paddle.static as static

            paddle.enable_static()
4051

4052 4053 4054 4055 4056
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
4057
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
4058 4059 4060

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
4061 4062 4063

    """

4064 4065
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
4066 4067
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
4068 4069
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
4070
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
4071
        self.__op_role_var = []
T
tangwei12 已提交
4072

4073 4074
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
4075
        self._is_distributed = False
4076
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
4077
        self._is_chief = False
4078 4079 4080
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
4081
        self._endpoints = []
4082 4083 4084
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
4085
        self._trainers_endpoints = []
4086
        # the distributed lookup table names
T
tangwei12 已提交
4087
        self._distributed_lookup_table = None
4088 4089 4090

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
4091 4092
        self._use_lamb = False

4093 4094 4095
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4096

4097 4098 4099
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4100
        self._program_config = None
4101

H
hutuxian 已提交
4102 4103 4104
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4105 4106 4107
        # appending gradients times
        self._appending_grad_times = 0

4108 4109 4110 4111
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4112 4113 4114
        # compiled program, i.e. Graph
        self._graph = None

4115 4116 4117 4118 4119 4120 4121 4122 4123 4124
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

4125 4126
                import paddle
                import paddle.static as static
4127

4128 4129 4130
                paddle.enable_static()

                prog = static.default_main_program()
4131 4132 4133 4134 4135
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
4136
                prog1 = static.default_main_program()
4137 4138 4139 4140 4141 4142 4143 4144
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
4145
    @property
4146
    def _op_role(self):
Y
yuyang18 已提交
4147 4148 4149 4150 4151 4152 4153 4154
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
4155
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
4156 4157 4158 4159
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
4160 4161
        return self._current_role

4162 4163
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
4164 4165 4166
        self._current_role = role

    @property
4167
    def _op_role_var(self):
Y
yuyang18 已提交
4168
        """
4169
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4170

4171
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4172 4173 4174

        Notes: This is a very low-level API. Users should not use it directly.
        """
4175
        return self.__op_role_var
Y
yuyang18 已提交
4176

4177
    @signature_safe_contextmanager
4178 4179 4180 4181 4182
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4183 4184 4185 4186
        try:
            yield
        finally:
            self._current_role = tmp_role
4187

S
rename  
sneaxiy 已提交
4188
    @signature_safe_contextmanager
W
Wu Yi 已提交
4189
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4190 4191 4192 4193 4194 4195 4196
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4197
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4198 4199 4200

        Examples:

4201
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4202
            >>> p, g = backward(...)
W
Wu Yi 已提交
4203
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4204 4205
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4206
        tmp_role = self._current_role
4207
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4208

Y
yuyang18 已提交
4209 4210
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4211
        self.__op_role_var = [
4212 4213 4214
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
4215 4216 4217 4218 4219
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
4220

S
rename  
sneaxiy 已提交
4221
    @signature_safe_contextmanager
X
Xin Pan 已提交
4222
    def _lr_schedule_guard(self, is_with_opt=False):
4223 4224 4225 4226 4227 4228 4229
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4230 4231 4232 4233
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4234 4235 4236

        Examples:

4237
            >>> import paddle.fluid as fluid
4238 4239 4240 4241
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4242 4243

        tmp_role = self._current_role
4244
        tmp_var = self.__op_role_var
4245

4246 4247
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4248 4249
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4250
        # TODO(typhoonzero): how to set target learning rate var
4251
        self.__op_role_var = []
4252 4253 4254 4255 4256
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
4257

4258
    def __str__(self):
Y
yuyang18 已提交
4259 4260 4261 4262 4263 4264 4265 4266 4267
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

4288 4289
            import paddle
            import paddle.static as static
4290

4291 4292 4293
            paddle.enable_static()

            cur_program = static.Program()
4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
4305
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
4306 4307 4308 4309
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
4310
            program_str += '\n'
4311
        return program_str
Y
Yang Yang(Tony) 已提交
4312

F
fengjiayi 已提交
4313 4314 4315
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
4316

J
Jiabin Yang 已提交
4317 4318 4319
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
4320

J
Jiabin Yang 已提交
4321
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
4322

H
haowang101779990 已提交
4323
        Returns:
J
Jiabin Yang 已提交
4324
            str: The debug string describe current Program.
Y
yuyang18 已提交
4325 4326

        Raises:
J
Jiabin Yang 已提交
4327
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
4328

4329 4330 4331
        Examples:
            .. code-block:: python

4332 4333 4334 4335
                import paddle
                import paddle.static as static

                paddle.enable_static()
4336

4337 4338 4339
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
4340
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
4341
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
4342
                print("program string without detail: {}".format(prog_string))
4343
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
4344
        """
4345 4346 4347 4348 4349 4350 4351 4352 4353
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
4354 4355 4356 4357 4358 4359
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
4360 4361
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
4362 4363
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
4364

W
Wu Yi 已提交
4365
    def _get_desc(self):
Y
yuyang18 已提交
4366 4367 4368 4369 4370 4371 4372
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
4373 4374
        return self.desc

X
version  
Xin Pan 已提交
4375 4376 4377
    def _version(self):
        return self.desc._version()

4378
    def clone(self, for_test=False):
Y
yuyang18 已提交
4379
        """
4380 4381 4382 4383
        .. note:::
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
4384

4385
        Create a new Program with forward content of original one when ``for_test=True``.
4386
        Create a new Program as same as the original one when ``for_test=False``.
4387

4388
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
4389 4390 4391
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
4392

4393 4394
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
4395 4396
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
4397
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
4398

J
Jiabin Yang 已提交
4399
        For Example:
4400
          ::
L
Luo Tao 已提交
4401

4402 4403 4404 4405 4406 4407
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
4408
            pred = static.nn.fc(x=img, size=10, actvation='relu')
4409
            loss = paddle.mean(pred)
4410
            # Here we use clone before Momentum
4411 4412
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
4413
            optimizer.minimize(loss)
4414

J
Jiabin Yang 已提交
4415
        Args:
4416

4417 4418
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
4419

J
Jiabin Yang 已提交
4420
        Returns:
4421
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
4422

Y
yuyang18 已提交
4423 4424 4425

        Examples:

4426 4427 4428 4429 4430 4431 4432
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


4449
            1. To clone a test program, the sample code is:
4450 4451 4452
                .. code-block:: python

                    import six
4453 4454 4455 4456 4457 4458
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

4471 4472
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
4473 4474 4475

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
4476 4477 4478
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
4479
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
4480 4481
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
4482
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
4483 4484
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
4485
                            test_program = train_program.clone(for_test=True)
4486
                    print_prog(test_program)
J
Jiabin Yang 已提交
4487 4488 4489 4490

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

4491
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
4492 4493 4494 4495
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

4496 4497 4498
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
4499 4500 4501
                            sgd.minimize(avg_loss)


4502
            2. The clone method can be avoid if you create program for training and program for testing individually.
4503 4504 4505
                .. code-block:: python

                    import six
4506 4507 4508 4509 4510 4511
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
4523

4524
                    def network():
4525
                        img = static.data(name='image', shape=[None, 784])
4526
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
4527 4528
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
4529
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
4530 4531
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
4532 4533
                        return avg_loss

4534 4535 4536 4537 4538
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
4539
                            avg_loss = network()
4540
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
4541
                            sgd.minimize(avg_loss)
4542
                    # the test startup program is not used.
4543 4544
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
4545 4546
                            avg_loss = network()
                    print_prog(test_program_2)
4547

4548
            The two code snippets above will generate and print same programs.
4549
        """
4550

T
tangwei12 已提交
4551
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
4552 4553 4554
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4555
        pruned_origin_block_id_map = None
4556
        if for_test:
4557 4558 4559 4560 4561 4562 4563 4564 4565
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
4566
        else:
4567
            p = Program()
G
gongweibao 已提交
4568 4569
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
4570
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
4571 4572 4573
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
4574 4575

            p._current_role = self._current_role
4576
            p.__op_role_var = self.__op_role_var
4577
            p._appending_grad_times = self._appending_grad_times
4578 4579
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
4580

T
tangwei12 已提交
4581
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
4582
            # its desc.
W
Wu Yi 已提交
4583
            p._sync_with_cpp()
4584

W
Wu Yi 已提交
4585
        p._copy_param_info_from(self)
4586
        p._copy_data_info_from(self, pruned_origin_block_id_map)
4587
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
4588
        return p
4589

4590
    def _prune(self, targets):
Y
yuyang18 已提交
4591 4592 4593 4594 4595 4596 4597 4598
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
4599
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
4600 4601 4602 4603
                need to be pruned

        Returns:
            Program:  A new, pruned program.
4604
        """
4605
        return self._prune_with_input([], targets)
4606 4607

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
4608
        """
4609 4610 4611 4612 4613 4614 4615 4616 4617 4618
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
4619
            targets(list|Variable|Operator): A list of variables, operators, or variable names
4620 4621 4622 4623 4624 4625
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
4626
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
4627 4628 4629
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4630 4631
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
4632 4633
        if not isinstance(targets, list):
            targets = [targets]
4634 4635 4636

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
4637 4638 4639
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
4640

4641 4642 4643 4644
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
4645 4646 4647
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
4648
                else:
4649 4650 4651
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
4652 4653 4654 4655 4656 4657 4658 4659

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
                    continue

4660 4661 4662 4663 4664 4665 4666 4667 4668
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
4669
                        # Skip optimize op except for optimize op in targets,
4670 4671 4672 4673 4674 4675
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
                            break
4676 4677 4678 4679 4680 4681 4682 4683
                if target_op is None:
                    raise ValueError(
                        "The target variable used for pruning should have an "
                        "associated operator that generates it.")
                else:
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
4684

4685
        res = Program()
4686 4687 4688
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
4689 4690 4691
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4692
        res._sync_with_cpp()
4693 4694 4695 4696 4697

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

4698 4699
        return res

X
Xin Pan 已提交
4700
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
4701
        """
F
fengjiayi 已提交
4702 4703 4704 4705 4706
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

4707
        3. change the :code:`is_test`
Y
yuyang18 已提交
4708 4709 4710
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

4711
        Args:
X
Xin Pan 已提交
4712 4713
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
4714

Y
yuyang18 已提交
4715 4716 4717 4718 4719 4720
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
4721
        res = Program()
4722
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
4723 4724 4725 4726

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
4727
        if prune_read_op:
4728 4729 4730 4731 4732 4733 4734 4735 4736
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
4737
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
4738 4739

        # change all `is_test` attributes to True
M
minqiyang 已提交
4740
        for i in six.moves.range(res.desc.num_blocks()):
4741
            block = res.desc.block(i)
M
minqiyang 已提交
4742
            for j in six.moves.range(block.op_size()):
4743 4744
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
4745
                    op._set_attr('is_test', True)
4746 4747 4748
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
M
minqiyang 已提交
4749 4750 4751
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4752
        res._sync_with_cpp()
4753 4754
        return res

4755 4756
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
4757
        """
4758 4759 4760
        .. note::
            1. All information about parameters will be lost after serialization; 
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
4761

4762 4763
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
4764

J
Jiabin Yang 已提交
4765
        Args:
Y
yuyang18 已提交
4766

J
Jiabin Yang 已提交
4767
            binary_str_type (str): the binary prootbuf string.
4768

J
Jiabin Yang 已提交
4769 4770
        Returns:
            Program: A deserialized Program.
4771 4772 4773 4774

        Examples:
            .. code-block:: python

4775 4776 4777 4778
                import paddle
                import paddle.static as static

                paddle.enable_static()
4779

4780 4781 4782 4783
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
4784

4785
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
4786

4787
                    z = paddle.matmul(x=x, y=y)
4788

4789 4790
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
4791

4792
                    print(static.default_main_program())
4793
                    print(prog_restored)
Y
yuyang18 已提交
4794
        """
4795 4796
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
4797
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
4798
        p._sync_with_cpp()
4799
        return p
Y
Yu Yang 已提交
4800

4801
    @staticmethod
4802
    def _construct_from_desc(desc):
4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
4818 4819
    @property
    def random_seed(self):
Y
yuyang18 已提交
4820
        """
J
Jiabin Yang 已提交
4821
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
4822 4823
        the random seed from random device.

4824 4825
        .. note:: 
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
4826 4827 4828

        Returns:
            int64: Random seed in current Program
4829

4830 4831 4832 4833

        Examples:
            .. code-block:: python

4834 4835 4836
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
4837

4838 4839 4840
                paddle.enable_static()

                prog = static.default_main_program()
4841
                random_seed = prog.random_seed
4842
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
4843 4844 4845
                print(random_seed)
                ## 0
                ## the default random seed is 0
4846

4847
                # Here we need to set random seed before we use paddle.nn.functional.dropout
4848
                prog.random_seed = 1
4849
                z_var = F.dropout(x_var, 0.7)
4850

4851
                print(prog.random_seed)
4852 4853
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
4854
        """
D
dzhwinter 已提交
4855 4856
        return self._seed

Q
qiaolongfei 已提交
4857 4858
    @property
    def num_blocks(self):
Y
yuyang18 已提交
4859
        """
4860 4861
        The number of :ref:`api_guide_Block_en`  in this Program.

4862 4863
        .. note:: 
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
4864 4865 4866

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
4867

4868 4869 4870 4871

        Examples:
            .. code-block:: python

4872 4873 4874 4875
                import paddle
                import paddle.static as static

                paddle.enable_static()
4876

4877
                prog = static.default_main_program()
4878 4879
                num_blocks = prog.num_blocks
                print(num_blocks)
4880

4881 4882
                # print result:
                # 1
Y
yuyang18 已提交
4883
        """
Q
qiaolongfei 已提交
4884 4885
        return self.desc.num_blocks()

D
dzhwinter 已提交
4886 4887 4888
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
4889 4890 4891
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
4892 4893
        self._seed = seed

Y
Yu Yang 已提交
4894
    def __repr__(self):
4895
        return self.__str__()
4896

Y
Yu Yang 已提交
4897
    def global_block(self):
Y
yuyang18 已提交
4898
        """
4899 4900
        .. note::
            This API has no effect in Dygraph mode.
4901 4902 4903

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
4904 4905
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
4906

4907 4908 4909 4910

        Examples:
            .. code-block:: python

4911 4912 4913 4914
                import paddle
                import paddle.static as static

                paddle.enable_static()
4915

4916
                prog = static.default_main_program()
4917 4918
                gb_block = prog.global_block()
                print(gb_block)
4919

Y
yuyang18 已提交
4920
        """
Y
Yu Yang 已提交
4921 4922
        return self.blocks[0]

Q
Qiao Longfei 已提交
4923
    def block(self, index):
Y
yuyang18 已提交
4924
        """
4925 4926
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
4927

4928 4929
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
4930 4931
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
4932

J
Jiabin Yang 已提交
4933 4934
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
4935 4936 4937 4938

        Examples:
            .. code-block:: python

4939 4940 4941 4942
                import paddle
                import paddle.static as static

                paddle.enable_static()
4943

4944
                prog = static.default_main_program()
4945 4946
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
4947
        """
Q
Qiao Longfei 已提交
4948 4949
        return self.blocks[index]

Y
Yu Yang 已提交
4950
    def current_block(self):
Y
yuyang18 已提交
4951
        """
4952 4953
        .. note::
            This API has no effect in Dygraph mode.
4954

J
Jiabin Yang 已提交
4955 4956
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
4957

J
Jiabin Yang 已提交
4958 4959
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
4960

4961 4962 4963
        Examples:
            .. code-block:: python

4964 4965 4966 4967
                import paddle
                import paddle.static as static

                paddle.enable_static()
4968

4969
                prog = static.default_main_program()
4970 4971
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
4972
        """
Y
Yu Yang 已提交
4973 4974
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
4975
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
4976 4977 4978 4979 4980
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
4981

Y
yuyang18 已提交
4982 4983 4984 4985 4986
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
4987
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
4988 4989 4990
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
4991 4992 4993 4994
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
4995
    def _rollback(self):
Y
yuyang18 已提交
4996 4997 4998 4999 5000
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
5001 5002
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
5003
    def _sync_with_cpp(self):
Y
yuyang18 已提交
5004 5005 5006 5007 5008 5009 5010 5011 5012 5013
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
5014 5015 5016
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
5017
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
5018

W
Wu Yi 已提交
5019
    def _copy_param_info_from(self, other):
5020
        """
5021
        Copy the information of parameters from other program.
D
dzhwinter 已提交
5022

Y
yuyang18 已提交
5023 5024 5025
        Notes: This is a very low level API. Users should not invoke it
        directly.

5026 5027 5028 5029 5030 5031 5032
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5033 5034 5035
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5036

W
Wu Yi 已提交
5037
        self.global_block()._copy_param_info_from(other.global_block())
5038

5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5050 5051 5052
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5053 5054
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
5055
        self._parameters_on_pservers = other._parameters_on_pservers
5056
        self._endpoints = other._endpoints
5057
        self._ps_endpoint = other._ps_endpoint
5058 5059
        self._distributed_lookup_table = other._distributed_lookup_table

5060
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
5061 5062
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
5063

Y
yuyang18 已提交
5064 5065 5066
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
5067 5068
        Args:
            other(Program): Other program
5069 5070 5071 5072
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
5073 5074 5075 5076 5077

        Returns:
            None
        """
        if not isinstance(other, Program):
5078 5079 5080
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
5081

5082 5083 5084 5085 5086
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
5087 5088 5089

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
5090 5091
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
5092
            for var in list(block.vars.values()):
5093 5094 5095 5096 5097 5098 5099
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
5100

5101
    def list_vars(self):
Y
yuyang18 已提交
5102
        """
5103
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
5104

J
Jiabin Yang 已提交
5105
        Returns:
5106
            iterable Tensors: The Generator will yield every Tensor in this program.
5107 5108 5109 5110

        Examples:
            .. code-block:: python

5111 5112
                import paddle
                import paddle.static as static
5113

5114 5115 5116 5117 5118
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
5119 5120
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
5121

5122 5123
                # var img : paddle.VarType.LOD_TENSOR.shape(-1, 1, 28, 28).astype(VarType.FP32)
                # var label : paddle.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)
Y
yuyang18 已提交
5124
        """
5125
        for each_block in self.blocks:
5126
            for each_var in list(each_block.vars.values()):
5127 5128
                yield each_var

5129 5130 5131 5132 5133 5134 5135 5136 5137 5138
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

5139 5140 5141 5142
                import paddle
                import paddle.static as static

                paddle.enable_static()
5143

5144 5145
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
5146
                hidden = static.nn.fc(x=data, size=10)
5147 5148
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
5149 5150 5151 5152 5153 5154 5155

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
5156 5157
                # persist trainable param fc_0.w_0 : paddle.VarType.LOD_TENSOR.shape(13, 10).astype(VarType.FP32)
                # persist trainable param fc_0.b_0 : paddle.VarType.LOD_TENSOR.shape(10,).astype(VarType.FP32)
5158 5159 5160 5161 5162 5163 5164 5165 5166 5167
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
            mode(str, optional): Source of the obtained parameters and buffers. 
                    'opt' :  The return value only contains the variable in the optimizer. 
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.  
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
            raise TypeError("Type of `mode` should be string, but received {}.".
                            format(type(mode)))

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".
                    format(mode))

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".
                    format(var.name))
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
        Set parameters and persistable buffers in state_dict to program. 
        An exception will throw if shape or dtype of the parameters is not match.
        
        .. note::
            This function MUST called after run start_up_program

        Args:
            state_dict(dict): the dict store parameters and persistable buffers. 
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
        
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
                    type(state_dict)))

        vars_dict = {var.name: var for var in self.list_vars()}
        condition = True if 'StructuredToParameterName@@' in state_dict else False
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
                except TypeError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
            else:
                warnings.warn((
                    "Skip loading for '{0}'. Because '{0}' not in the program.".
                    format(name)))

Y
Yu Yang 已提交
5335

5336
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
5337
class Parameter(Variable):
5338
    """
5339
    Parameter is derived from Variable. A parameter is a persistable
5340
    Variable, and will be updated by optimizers after each iteration.
5341
    The training of a neural network is essentially the updating of
5342 5343
    its parameters.

5344
    Relative to a general Variable, a Parameter has several its own
5345 5346
    member variables:

5347 5348 5349 5350 5351 5352 5353 5354 5355 5356
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
5357 5358
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5359 5360
    """

5361 5362 5363 5364 5365 5366
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
5367 5368 5369 5370 5371
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
5372
        if len(shape) == 0:
5373 5374
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
5375 5376 5377

        for each in shape:
            if each < 0:
5378 5379 5380
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
5381 5382

        Variable.__init__(
5383 5384 5385 5386 5387 5388 5389
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
5390 5391 5392 5393
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

5394 5395
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
5396
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
5397

5398 5399
        self.need_clip = kwargs.get('need_clip', True)

5400 5401
        self.is_distributed = False

F
fengjiayi 已提交
5402
    def __str__(self):
5403
        return self._to_readable_code()
F
fengjiayi 已提交
5404

F
update  
fengjiayi 已提交
5405 5406 5407
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
5408

F
update  
fengjiayi 已提交
5409 5410 5411 5412 5413 5414 5415 5416
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

5417 5418 5419 5420 5421 5422 5423 5424 5425
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
5426 5427 5428 5429 5430 5431
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
5432
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
5433
            for attr_name in additional_attr:
5434 5435
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
5436 5437
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
5438 5439 5440 5441
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
5442

5443 5444
class ParamBase(core.VarBase):
    """
5445 5446 5447
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
5448 5449 5450
    The training of a neural network is essentially the updating of
    its ParamBase.

5451
    Relative to a general Tensor, a ParamBase has several its own
5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
5464 5465
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

5496 5497
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
5498 5499 5500 5501 5502 5503 5504

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

5505 5506
        self.need_clip = kwargs.get('need_clip', True)

5507
        self.is_distributed = False
5508
        # self.block = default_main_program().global_block()
5509

5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

5523
    def __str__(self):
5524
        """
5525
        Convert a ParamBase object to a readable string.
5526

5527
        Returns(str): A readable string.
5528 5529 5530 5531

        Examples:
            .. code-block:: python

5532
                import paddle
5533 5534 5535 5536 5537 5538 5539
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
5540
        """
5541 5542
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
5543

5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
5555

5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

5574 5575 5576 5577 5578 5579 5580
    def _copy_to(self, device, blocking):
        print("in ParamBase copy_to func")
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
        return new_param

5581 5582 5583
    __repr__ = __str__


Y
Yu Yang 已提交
5584
# program is a global instance.
Y
Yu Yang 已提交
5585 5586
_main_program_ = Program()
_startup_program_ = Program()
5587

5588

5589
def default_startup_program():
Y
Yu Yang 已提交
5590
    """
Y
yuyang18 已提交
5591 5592
    Get default/global startup program.

5593 5594
    The :code:`paddle.nn` function will append the initialization operators into startup program.
    The :code:`startup_program` will initialize the parameters by the OPs. 
T
tangwei12 已提交
5595

5596 5597
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
5598

5599 5600
    Returns:
        Program: current default startup program.
5601

5602
    Returns type: 
5603 5604 5605 5606

    Examples:
        .. code-block:: python

5607
            import paddle
5608

5609
            paddle.enable_static()
5610 5611 5612 5613
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
5614
    """
Y
Yu Yang 已提交
5615
    return _startup_program_
5616

5617

5618
def default_main_program():
Y
Yu Yang 已提交
5619
    """
5620
    This API can be used to get ``default main program`` which store the 
5621
    descriptions of Ops and tensors.
T
tangwei12 已提交
5622

5623
    For example ``z = paddle.add(x, y)`` will create a new ``add`` 
5624
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . 
Y
yuyang18 已提交
5625

5626 5627
    The ``default main program`` is the default value for ``Program`` parameter in 
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
5628
    :code:`default_main_program` when the program is not specified.
5629

5630
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
5631

Y
Yu Yang 已提交
5632
    Returns:
5633
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
5634 5635 5636 5637

    Examples:
        ..  code-block:: python

5638
            import paddle
5639

5640
            paddle.enable_static()
5641
            # Sample Network:
5642 5643 5644
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
5645

5646 5647 5648
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
5649
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
5650
    """
Y
Yu Yang 已提交
5651
    return _main_program_
Y
Yu Yang 已提交
5652 5653 5654 5655 5656


def switch_main_program(program):
    """
    Switch the main program to a new program.
5657

Y
Yu Yang 已提交
5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
5672
    Switch the startup program to a new program
Y
Yu Yang 已提交
5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
5685
@signature_safe_contextmanager
Y
Yu Yang 已提交
5686 5687
def program_guard(main_program, startup_program=None):
    """
5688 5689
    :api_attr: Static Graph

5690 5691 5692
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
5693

G
guofei 已提交
5694
    Args:
5695 5696
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
5697 5698 5699 5700
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
5701
    Examples:
5702
       .. code-block:: python
T
tangwei12 已提交
5703

5704
          import paddle
Y
yuyang18 已提交
5705

5706 5707 5708 5709 5710
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
5711
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
5712 5713 5714

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
5715

Y
Yu Yang 已提交
5716
    Examples:
5717
       .. code-block:: python
Y
yuyang18 已提交
5718

5719
          import paddle
5720

5721 5722 5723 5724 5725
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
5726

Y
Yu Yang 已提交
5727
    """
5728
    from .data_feeder import check_type
5729 5730
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
5731 5732
    main_program = switch_main_program(main_program)
    if startup_program is not None:
5733
        check_type(startup_program, 'startup_program', Program,
5734
                   'paddle.static.program_guard')
Y
Yu Yang 已提交
5735
        startup_program = switch_startup_program(startup_program)
5736 5737 5738 5739 5740 5741
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
5742 5743


W
Wu Yi 已提交
5744
def _get_var(name, program=None):
X
xuwei06 已提交
5745
    """
Y
yuyang18 已提交
5746
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
5747

X
xuwei06 已提交
5748 5749 5750
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
5751
        If None, default_global_program() will be used.
X
xuwei06 已提交
5752 5753 5754 5755 5756 5757 5758

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
5759
    assert isinstance(program, Program)
X
xuwei06 已提交
5760 5761

    return program.global_block().var(name)
5762 5763


S
rename  
sneaxiy 已提交
5764
@signature_safe_contextmanager
L
lujun 已提交
5765 5766
def _dygraph_guard(tracer):
    global _dygraph_tracer_
5767
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
5768
    _dygraph_tracer_ = tracer
5769
    core._switch_tracer(tracer)
M
minqiyang 已提交
5770

5771 5772 5773
    try:
        yield
    finally:
5774 5775
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
5776 5777


S
rename  
sneaxiy 已提交
5778
@signature_safe_contextmanager
L
lujun 已提交
5779
def _dygraph_place_guard(place):
5780 5781 5782
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
M
minqiyang 已提交
5783

5784 5785
    _set_dygraph_tracer_expected_place(place)

5786 5787 5788
    try:
        yield
    finally:
5789
        _global_expected_place_ = tmp_place
5790
        _set_dygraph_tracer_expected_place(tmp_place)
5791 5792


5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
5809 5810
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs. 
5811 5812 5813 5814 5815 5816 5817 5818 5819
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

Z
Zhang Ting 已提交
5820
            import paddle
5821

Z
Zhang Ting 已提交
5822 5823 5824
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
5825
            if support_gpu:
Z
Zhang Ting 已提交
5826
                place = paddle.CUDAPlace(0)
5827 5828

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
5829 5830 5831
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
5832

Z
Zhang Ting 已提交
5833
            with paddle.static.device_guard("cpu"):
5834
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
5835 5836
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
5837
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
5838
                out = paddle.reshape(data1, shape=shape)
5839

Z
Zhang Ting 已提交
5840 5841
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
5842 5843 5844
            result = exe.run(fetch_list=[out])
    """

5845 5846 5847 5848 5849
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
5850
    if device not in ['cpu', 'gpu', 'npu', '', None]:
5851
        raise ValueError(
5852
            "The Attr(device) should be 'cpu' 'npu' or 'gpu', and it can also be empty string or None "
5853
            "when there is no need to specify device. But received %s" % device)
5854 5855
    if index:
        device = ":".join([device, index])
5856
    pre_device = switch_device(device)
5857 5858 5859 5860
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                fluid.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
5879 5880
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
            res = fluid.get_flags(flags)
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
5909 5910
            if (_global_flags().is_public(key)):
                value = _global_flags()[key]
G
guofei 已提交
5911 5912 5913 5914 5915 5916 5917
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
5918 5919
        if (_global_flags().is_public(flags)):
            value = _global_flags()[flags]
G
guofei 已提交
5920 5921 5922 5923 5924 5925 5926 5927
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
5928 5929 5930 5931 5932 5933 5934


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
    if isinstance(place, (core.Place, core.XPUPlace, core.CPUPlace,
5935
                          core.CUDAPinnedPlace, core.CUDAPlace, core.NPUPlace)):
5936 5937 5938 5939 5940 5941 5942 5943 5944
        return place

    if not isinstance(place, str):
        raise ValueError(
            "place only support string which is 'Place' and so on.")

    place = place.lower()
    if (place == "cpu"):
        return core.CPUPlace()
5945

5946 5947 5948
    if (place == "device"):
        return core.Place()

5949
    # GPU
5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with CUDA".format(avaliable_gpu_place))
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
5965 5966

    # XPU
5967 5968 5969 5970 5971 5972 5973 5974 5975 5976
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with XPU".format(avaliable_xpu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with NPU".format(avaliable_npu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

5990
    raise ValueError(
5991 5992
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace and NPUPlace, but received {}.".
        format(place))
5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret