nn.py 377.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
S
sneaxiy 已提交
21
import six
P
peizhilin 已提交
22
import os
S
sneaxiy 已提交
23
import inspect
Y
Yu Yang 已提交
24
from ..layer_helper import LayerHelper
25
from ..initializer import Normal, Constant, NumpyArrayInitializer
S
sneaxiy 已提交
26
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
27
from ..param_attr import ParamAttr
S
sneaxiy 已提交
28
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
29
from .tensor import concat, assign
30
from . import utils
F
fengjiayi 已提交
31
from .. import unique_name
32
from functools import reduce
33
from .. import core
X
Xin Pan 已提交
34
from ..imperative import layers
Y
Yu Yang 已提交
35 36

__all__ = [
X
Xin Pan 已提交
37 38 39 40 41 42 43 44 45 46
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
47
    'bpr_loss',
X
Xin Pan 已提交
48 49 50 51 52 53 54 55 56 57
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
58 59
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
60
    'batch_norm',
H
heqiaozhi 已提交
61
    'data_norm',
X
Xin Pan 已提交
62 63 64 65 66 67
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
68
    'sequence_unpad',
X
Xin Pan 已提交
69 70 71 72 73 74 75 76
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
77
    'sequence_slice',
X
Xin Pan 已提交
78 79 80 81 82 83 84 85 86 87 88 89
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
90
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
91 92 93 94 95
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
96
    'group_norm',
X
Xin Pan 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
110
    'roi_align',
X
Xin Pan 已提交
111 112 113 114
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
115
    'resize_nearest',
X
Xin Pan 已提交
116 117 118 119 120 121
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
122
    'selu',
X
Xin Pan 已提交
123 124 125
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
126
    'margin_rank_loss',
X
Xin Pan 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
170
    'space_to_depth',
W
whs 已提交
171
    'affine_grid',
S
sneaxiy 已提交
172
    'sequence_reverse',
173
    'affine_channel',
B
barrierye 已提交
174
    'similarity_focus',
M
minqiyang 已提交
175
    'hash',
D
dengkaipeng 已提交
176
    'grid_sampler',
G
gmcather 已提交
177 178
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
179
    'bilinear_tensor_product',
C
chengduo 已提交
180 181
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
182
    'lstm',
S
shippingwang 已提交
183
    'shuffle_channel',
S
sneaxiy 已提交
184
    'py_func',
185
    'psroi_pool',
H
heqiaozhi 已提交
186
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
187
    'huber_loss',
Z
zhaozhehao 已提交
188
    'tree_conv',
Y
Yu Yang 已提交
189 190
]

J
jerrywgz 已提交
191 192
kIgnoreIndex = -100

Y
Yu Yang 已提交
193 194 195 196 197 198 199

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
200
       is_test=False,
201
       name=None):
Y
Yu Yang 已提交
202
    """
203
    **Fully Connected Layer**
Y
Yu Yang 已提交
204

205 206 207 208 209 210 211 212
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
213
    to the output as well.
C
caoying03 已提交
214

C
caoying03 已提交
215
    This process can be formulated as follows:
216 217 218

    .. math::

219
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
220 221 222

    In the above equation:

C
caoying03 已提交
223 224 225 226
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
227
    * :math:`Act`: The activation function.
C
caoying03 已提交
228
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
229 230

    Args:
R
ranqiu 已提交
231 232 233 234 235 236 237 238 239 240
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
241
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
242 243 244 245
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
246 247
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
248
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
249
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
250
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
251

252
    Returns:
F
fengjiayi 已提交
253
        Variable: The transformation result.
254 255

    Raises:
C
caoying03 已提交
256
        ValueError: If rank of the input tensor is less than 2.
257 258 259 260

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
261
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
262
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
263
    """
C
caoying03 已提交
264

C
caoying03 已提交
265
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
266 267 268 269

    dtype = helper.input_dtype()

    mul_results = []
270 271
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
272 273 274
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
275

Y
Yu Yang 已提交
276
        w = helper.create_parameter(
277
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
278
        tmp = helper.create_variable_for_type_inference(dtype)
279
        helper.append_op(
280 281 282
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
283
            outputs={"Out": tmp},
M
mozga-intel 已提交
284 285
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
286 287 288 289
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
290
    else:
X
Xin Pan 已提交
291
        pre_bias = helper.create_variable_for_type_inference(dtype)
292
        helper.append_op(
293 294 295
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
296
            attrs={"use_mkldnn": False})
297 298 299 300
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
301 302


303 304 305
def embedding(input,
              size,
              is_sparse=False,
306
              is_distributed=False,
307 308 309
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
310
    """
311 312
    **Embedding Layer**

313
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
314 315
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
316 317 318

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
319 320

    Args:
321 322 323 324 325
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
326
        is_distributed(bool): Whether to run lookup table from remote parameter server.
327 328
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
329
            with zeros whenever lookup encounters it in :attr:`input`. If
330
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
331 332
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
333
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
334

335 336 337
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
338

339 340
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
341

C
chengduoZH 已提交
342
          dict_size = len(dataset.ids)
343
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
344
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
345 346 347
    """

    helper = LayerHelper('embedding', **locals())
348
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
349 350
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
351 352
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
353
    tmp = helper.create_variable_for_type_inference(dtype)
354 355
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
356 357 358 359 360
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
361 362 363
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
364
            'remote_prefetch': remote_prefetch,
365 366
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
367 368 369
    return tmp


W
wopeizl 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
386

W
wopeizl 已提交
387 388 389 390 391 392 393 394 395 396 397
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
398

W
wopeizl 已提交
399 400 401 402
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
403

W
wopeizl 已提交
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
490 491


P
phlrain 已提交
492 493 494 495 496 497
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
498
         dropout_prob=0.0,
P
phlrain 已提交
499 500 501 502 503
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
504
    """
P
phlrain 已提交
505
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
506 507

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
508
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
509 510
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
511
    .. math::
M
minqiyang 已提交
512 513 514 515 516 517 518

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
519
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
520 521 522 523

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
524 525

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
526 527 528 529 530 531
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
532 533 534
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
535
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
536

M
minqiyang 已提交
537
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
538 539 540 541 542
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
543
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
544 545 546 547 548
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
549
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
550 551
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
552 553
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
554 555 556 557 558 559
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
560
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
561

L
liuhongyu 已提交
562 563

    Returns:
M
minqiyang 已提交
564 565
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
566
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
567

H
haowang101779990 已提交
568 569 570 571
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
572
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
573 574
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
575
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
591
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
592 593 594 595 596 597
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
598 599 600
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
660 661 662 663 664 665 666 667 668 669
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
670
                  proj_activation='tanh',
671
                  dtype='float32',
X
xuezhong 已提交
672 673 674 675 676
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
677 678 679
    """
    **Dynamic LSTMP Layer**

680 681 682 683 684 685
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
686 687 688 689 690

    The formula is as follows:

    .. math::

691
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
692

693
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
694

695
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
696

697
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
698

699
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
700

701
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
702

703
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
704

Y
Yibing Liu 已提交
705 706 707 708 709 710
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
711
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
712
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
713
          bias vector).
Y
Yibing Liu 已提交
714 715 716
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
717
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
718
    * :math:`h`: The hidden state.
719
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
720 721
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
722
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
723
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
724
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
725 726
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
727 728 729 730

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
731

Y
Yibing Liu 已提交
732 733 734 735 736 737 738 739 740 741 742 743
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
744
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
745 746
                               hidden-hidden weight and projection weight.

747 748
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
749 750
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
751 752
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
753
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
754 755 756 757 758

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
759
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
760 761 762 763 764 765
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
766
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
767 768 769
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
770
                                - The shape is (1 x 7D).
C
chengduo 已提交
771 772 773 774 775

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
776 777 778 779 780 781 782 783 784
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
785
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
786 787
                              default "tanh".
        proj_activation(str): The activation for projection output.
788
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
789
                              default "tanh".
Y
Yibing Liu 已提交
790
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
791 792
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
793 794 795 796 797 798 799 800 801 802 803
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
804 805

    Returns:
806 807 808 809
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
810 811

    Examples:
812

Y
Yibing Liu 已提交
813 814
        .. code-block:: python

815 816 817 818
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
819
            hidden_dim, proj_dim = 512, 256
820
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
821
                                     act=None, bias_attr=None)
822 823 824
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
825 826 827 828
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
829
    """
830

C
chengduo 已提交
831
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
832
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
833
    size = size // 4
Y
Yibing Liu 已提交
834 835 836 837 838 839 840 841 842 843
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
844 845 846 847 848 849
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
865

X
xuezhong 已提交
866 867 868 869 870
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
871 872
    helper.append_op(
        type='lstmp',
873
        inputs=inputs,
Y
Yibing Liu 已提交
874 875 876 877 878 879 880 881 882
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
883 884
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
885 886 887 888 889 890 891 892 893
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
894 895 896 897 898 899 900
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
901 902
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
903
    """
904
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
905

906 907 908
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
909

G
guosheng 已提交
910 911 912 913 914 915 916 917 918
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
919

G
guosheng 已提交
920
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
921

Q
Qiao Longfei 已提交
922 923 924

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
925 926 927 928 929 930 931 932 933 934 935 936
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
937
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
938 939
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
940 941 942 943
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
944
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
945 946

    Args:
947 948
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
949
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
950
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
951 952
            is the hidden size.
        size(int): The dimension of the gru cell.
953
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
954 955
            hidden-hidden weight matrix. Note:

956
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
957
              :math:`D` is the hidden size.
958
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
959
              The first part are weights of the update gate and reset gate with
960
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
961
              candidate hidden state with shape :math:`(D \\times D)`.
962 963 964 965 966

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
967
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
968
            the bias in the update gate, reset gate and candidate calculations.
969 970 971
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
972 973
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
974
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
975 976 977
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
978
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
979
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
980 981 982 983
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
984 985

    Returns:
G
guosheng 已提交
986
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
987
            and sequence length is the same with the input.
988

G
guosheng 已提交
989
    Examples:
990

G
guosheng 已提交
991 992
        .. code-block:: python

993 994 995 996
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
997
            hidden_dim = 512
998
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
999
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1000 1001 1002 1003 1004 1005 1006 1007 1008
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1009
    batch_size = input.shape[0]
G
guosheng 已提交
1010
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1011
    if h_0:
G
guosheng 已提交
1012
        assert h_0.shape == (
Y
Yancey 已提交
1013 1014 1015
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1016

X
Xin Pan 已提交
1017 1018 1019 1020
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1034 1035
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1036 1037 1038 1039
        })
    return hidden


Y
Yu Yang 已提交
1040 1041 1042
def gru_unit(input,
             hidden,
             size,
1043 1044
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1045
             activation='tanh',
Q
Qiao Longfei 已提交
1046 1047
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1048
    """
1049 1050 1051
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1052
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1053
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1054

1055 1056
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1057

1058
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1059

1060
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1061

1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1077 1078

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1079 1080 1081
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1082 1083
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1084 1085
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1086 1087 1088
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1089 1090 1091

    Args:
        input (Variable): The fc transformed input value of current step.
1092
        hidden (Variable): The hidden value of gru unit from previous step.
1093
        size (integer): The input dimension value.
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1108
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1109
            the bias in the update gate, reset gate and candidate calculations.
1110 1111 1112
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1113 1114
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1115 1116 1117 1118
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1119

1120 1121 1122 1123 1124 1125
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1126

1127
             # assuming we have x_t_data and prev_hidden of size=10
1128
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1129 1130
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1143
    size = size // 3
Y
Yu Yang 已提交
1144 1145

    # create weight
1146 1147
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1148

X
Xin Pan 已提交
1149 1150 1151
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1152
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1153
    # create bias
1154
    if helper.bias_attr:
Y
Yu Yang 已提交
1155 1156 1157
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1158
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1159 1160 1161

    helper.append_op(
        type='gru_unit',
1162
        inputs=inputs,
Y
Yu Yang 已提交
1163 1164 1165 1166 1167 1168
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1169 1170
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1171 1172 1173 1174 1175
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1176
@templatedoc()
1177
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1178 1179 1180 1181 1182 1183 1184
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1185
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1186 1187 1188 1189
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1190 1191 1192
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1193 1194

    """
Y
Yu Yang 已提交
1195 1196 1197 1198 1199 1200
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1201 1202 1203 1204 1205 1206 1207 1208
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1224 1225 1226 1227
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1228

W
wopeizl 已提交
1229 1230
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1231

W
wopeizl 已提交
1232
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1233

W
wopeizl 已提交
1234
        label(${label_type}): ${label_comment}
1235

W
wopeizl 已提交
1236 1237
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1238

W
wopeizl 已提交
1239 1240
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1241

W
wopeizl 已提交
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1252
                "Transition": transition,
W
wopeizl 已提交
1253 1254
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1255

W
wopeizl 已提交
1256
    return viterbi_path
Y
Yu Yang 已提交
1257 1258


Y
yi.wu 已提交
1259
@templatedoc()
F
fengjiayi 已提交
1260
def cos_sim(X, Y):
Y
Yu Yang 已提交
1261
    """
Y
yi.wu 已提交
1262 1263 1264
    ${comment}

    Args:
1265 1266
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1267

Y
yi.wu 已提交
1268
    Returns:
1269
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1270
    """
F
fengjiayi 已提交
1271
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1272 1273 1274
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1285 1286 1287 1288 1289
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1290
            dropout_implementation="downgrade_in_infer"):
1291 1292 1293 1294 1295
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1296
    training. The dropout operator randomly sets (according to the given dropout
1297 1298 1299
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1300 1301
    dropout op can be removed from the program to make the program more efficient.

1302
    Args:
1303 1304
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1305 1306 1307 1308 1309 1310 1311
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1312 1313
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1314
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1315 1316 1317 1318 1319 1320

                                           - train: out = input * mask
                                           - inference: out = input * dropout_prob

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1321
                                        2. upscale_in_train, upscale the outcome at training time
1322

H
haowang101779990 已提交
1323 1324
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1325

H
haowang101779990 已提交
1326 1327
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1328

M
minqiyang 已提交
1329

1330
    Returns:
1331
        Variable: A tensor variable is the shape with `x`.
1332 1333

    Examples:
1334

1335 1336
        .. code-block:: python

1337 1338
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1339 1340
    """

F
fengjiayi 已提交
1341
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1342 1343 1344
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1345 1346 1347 1348

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1349 1350 1351 1352 1353
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1354 1355 1356 1357
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1358 1359
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1360
        })
1361 1362 1363
    return out


J
jerrywgz 已提交
1364
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1365
    """
Y
Yibing Liu 已提交
1366 1367
    **Cross Entropy Layer**

1368 1369 1370
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1371 1372

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1373
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1374

Y
Yibing Liu 已提交
1375
        .. math::
Y
yangyaming 已提交
1376

Y
Yibing Liu 已提交
1377 1378 1379
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1380 1381
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1382 1383 1384 1385 1386

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1387
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1388 1389 1390
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1391 1392
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1393
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1394

Y
Yibing Liu 已提交
1395
    Args:
Y
yangyaming 已提交
1396
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1397 1398 1399 1400
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1401
        label (Variable|list): the ground truth which is a 2-D tensor. When
1402 1403 1404 1405
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1406
        soft_label (bool): a flag indicating whether to
1407
                                           interpretate the given labels as soft
1408
                                           labels. Default: `False`.
M
minqiyang 已提交
1409 1410
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1411
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1412 1413 1414 1415 1416

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1417 1418 1419
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1420

H
haowang101779990 已提交
1421 1422
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1423

H
haowang101779990 已提交
1424 1425
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1426 1427 1428 1429 1430 1431

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1432
    """
F
fengjiayi 已提交
1433
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1434
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1435 1436 1437 1438 1439
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1440 1441
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1442 1443 1444
    return out


F
frankwhzhang 已提交
1445
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1446 1447 1448
    """
    Bayesian Personalized Ranking Loss Operator.

1449
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1450 1451 1452 1453 1454 1455
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1456 1457 1458 1459 1460 1461
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1462 1463
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1464 1465 1466
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1467 1468 1469
    Examples:
        .. code-block:: python

1470
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1471
    """
1472 1473 1474 1475 1476 1477

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1478
                'Label': [label]},
1479 1480 1481 1482
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1483
def square_error_cost(input, label):
Y
Yu Yang 已提交
1484
    """
1485 1486
    **Square error cost layer**

1487 1488
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1489

1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1503 1504
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1505 1506

    Returns:
G
guosheng 已提交
1507
        Variable: The tensor variable storing the element-wise squared error \
1508
                  difference of input and label.
1509 1510 1511 1512 1513 1514 1515 1516

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1517
    """
F
fengjiayi 已提交
1518
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1519
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1520 1521 1522 1523 1524 1525
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1526
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1527
    helper.append_op(
F
fengjiayi 已提交
1528 1529
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1530 1531 1532
    return square_out


Y
yi.wu 已提交
1533
@templatedoc()
Y
Yu Yang 已提交
1534 1535 1536 1537
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1538
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1539
    """
Y
yi.wu 已提交
1540
    **Chunk Evaluator**
Y
yi.wu 已提交
1541

Y
yangyaming 已提交
1542
    This function computes and outputs the precision, recall and
1543
    F1-score of chunk detection.
Y
yi.wu 已提交
1544

M
minqiyang 已提交
1545
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1546
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1547 1548 1549 1550 1551 1552

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1553

Y
yi.wu 已提交
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1579

Y
yi.wu 已提交
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1604
    Args:
1605 1606 1607 1608 1609
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1610

Y
yi.wu 已提交
1611
    Returns:
Y
update  
yi.wu 已提交
1612 1613 1614
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1615

Y
yi.wu 已提交
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1628
    """
F
fengjiayi 已提交
1629
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1630 1631

    # prepare output
X
Xin Pan 已提交
1632 1633 1634 1635 1636 1637 1638
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1639 1640 1641 1642 1643 1644 1645 1646

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1647 1648 1649 1650
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1651 1652 1653
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1654 1655
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1656
        })
1657 1658
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1659 1660


1661
@templatedoc()
Y
Yu Yang 已提交
1662 1663 1664 1665 1666 1667 1668
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1669 1670
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1671 1672 1673 1674
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1675 1676 1677 1678 1679 1680 1681

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1695

1696 1697
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1698 1699 1700 1701 1702 1703 1704
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1705
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1716
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1717 1718 1719 1720 1721 1722
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1723
def sequence_softmax(input, use_cudnn=False, name=None):
1724 1725 1726
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1727
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1744 1745 1746
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1747

1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1759 1760
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1761
    softmax_out = helper.create_variable_for_type_inference(dtype)
1762 1763 1764 1765 1766 1767 1768 1769
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1770
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1771
    """
1772
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1773
    has the same shape as the input.
Q
qiaolongfei 已提交
1774

1775 1776 1777 1778 1779 1780
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1781
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1782 1783 1784 1785 1786 1787 1788

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1789
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1790 1791 1792 1793 1794 1795 1796 1797

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1798 1799 1800
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1813 1814
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1815
    softmax_out = helper.create_variable_for_type_inference(dtype)
1816 1817 1818 1819 1820 1821 1822 1823
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1824 1825 1826
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1827 1828
           stride=1,
           padding=0,
1829
           dilation=1,
Y
Yu Yang 已提交
1830 1831 1832
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1833
           use_cudnn=True,
1834 1835
           act=None,
           name=None):
Y
Yu Yang 已提交
1836
    """
C
chengduoZH 已提交
1837
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1838 1839
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1840
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1841 1842 1843 1844 1845 1846 1847
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1848 1849 1850
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1851

1852
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1853

C
chengduoZH 已提交
1854 1855
    .. math::

C
refine  
chengduoZH 已提交
1856
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1857

T
tensor-tang 已提交
1858
    Where:
C
chengduoZH 已提交
1859

1860 1861 1862 1863 1864
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1865
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1866 1867 1868

    Example:

1869 1870
        - Input:

W
weixing02 已提交
1871
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1872

W
weixing02 已提交
1873
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1874

1875
        - Output:
T
tensor-tang 已提交
1876

W
weixing02 已提交
1877
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1878

C
chengduoZH 已提交
1879
        Where
1880 1881

        .. math::
C
chengduoZH 已提交
1882

W
weixing02 已提交
1883 1884
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1885 1886

    Args:
1887
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1888
        num_filters(int): The number of filter. It is as same as the output
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1906 1907 1908 1909 1910
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1911
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1912 1913 1914 1915 1916
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1917 1918
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1919 1920
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1921
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1922
            will be named automatically. Default: None
C
chengduoZH 已提交
1923 1924

    Returns:
G
guosheng 已提交
1925
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1926 1927
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1928
    Raises:
1929 1930
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1931

C
chengduoZH 已提交
1932 1933 1934
    Examples:
        .. code-block:: python

1935 1936
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1937 1938 1939
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1940
    assert param_attr is not False, "param_attr should not be False here."
1941
    l_type = 'conv2d'
X
xzl 已提交
1942 1943
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1944
        l_type = 'depthwise_conv2d'
1945 1946 1947 1948

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1949 1950 1951 1952 1953
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1954
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1955

C
chengduoZH 已提交
1956 1957 1958
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1959
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1960

C
chengduoZH 已提交
1961 1962
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1963 1964

    input_shape = input.shape
M
minqiyang 已提交
1965
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1966 1967

    def _get_default_param_initializer():
C
chengduo 已提交
1968 1969
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1970 1971 1972 1973 1974 1975 1976 1977
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1978
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1979

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1994
    helper.append_op(
1995
        type=l_type,
Y
Yu Yang 已提交
1996 1997 1998 1999 2000
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2001 2002 2003
        attrs={
            'strides': stride,
            'paddings': padding,
2004
            'dilations': dilation,
C
chengduoZH 已提交
2005
            'groups': groups,
2006
            'use_cudnn': use_cudnn,
2007
            'use_mkldnn': False,
2008
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2009
        })
Y
Yu Yang 已提交
2010 2011 2012 2013 2014 2015

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2033 2034 2035 2036 2037 2038
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2039 2040 2041 2042 2043 2044 2045 2046 2047

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2048 2049
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2050 2051 2052
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2053
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2079
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2080 2081
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2082
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2083 2084
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2085
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2086 2087
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2088
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2089 2090 2091 2092 2093 2094
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2105 2106
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2107 2108
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2109
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2110
            will be named automatically. Default: None.
C
chengduoZH 已提交
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2123 2124
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2125 2126 2127
    """

    l_type = 'conv3d'
C
chengduo 已提交
2128
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2139
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2153 2154 2155
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2156 2157 2158 2159 2160 2161 2162 2163
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2164
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2179
            'use_mkldnn': False
C
chengduoZH 已提交
2180 2181
        })

2182
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2183 2184 2185 2186

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2187
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2188
    """
Y
yangyaming 已提交
2189 2190 2191
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2203
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2204 2205 2206 2207 2208
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2209
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2210 2211 2212 2213 2214 2215 2216

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2217 2218
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2219

L
Luo Tao 已提交
2220 2221
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2222
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2223
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2224
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2225 2226 2227 2228 2229 2230 2231

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2232

Y
yangyaming 已提交
2233
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2234 2235 2236 2237 2238
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2239 2240
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2241
    """
F
fengjiayi 已提交
2242
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2243
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2244 2245
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2246 2247 2248 2249 2250 2251

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2252 2253
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2254

Y
yangyaming 已提交
2255 2256 2257 2258 2259
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2260 2261 2262
    return pool_out


C
add doc  
chengduoZH 已提交
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2282
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2283 2284 2285 2286 2287
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2288
def sequence_first_step(input):
L
Luo Tao 已提交
2289
    """
L
Luo Tao 已提交
2290
    This function gets the first step of sequence.
L
Luo Tao 已提交
2291 2292 2293 2294

    .. code-block:: text

       x is a 1-level LoDTensor:
2295
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2296 2297 2298 2299 2300
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2301
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2302
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2303

L
Luo Tao 已提交
2304 2305 2306 2307 2308 2309 2310 2311 2312
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2313

Y
yangyaming 已提交
2314
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2315 2316 2317
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2318 2319 2320
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2321
def sequence_last_step(input):
L
Luo Tao 已提交
2322
    """
L
Luo Tao 已提交
2323
    This function gets the last step of sequence.
L
Luo Tao 已提交
2324 2325 2326 2327

    .. code-block:: text

       x is a 1-level LoDTensor:
2328
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2329 2330 2331 2332 2333
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2334
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2335
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2336

L
Luo Tao 已提交
2337 2338 2339 2340 2341 2342 2343 2344 2345
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2346

Y
yangyaming 已提交
2347
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2348 2349 2350
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2351 2352 2353
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2354 2355 2356 2357
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2358
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2359 2360 2361 2362 2363
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2364

H
haowang101779990 已提交
2365
              - Case:
Y
Yibing Liu 已提交
2366

2367
            Given the input Variable **input**:
2368

2369 2370 2371
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2372

2373
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2374

2375
            the output Variable will be
2376

2377 2378 2379
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2380

M
minqiyang 已提交
2381
    Note:
H
haowang101779990 已提交
2382
          The first dimension size of **input**, **offset** and **length**
2383
          should be equal. The **offset** should start from 0.
2384

Y
Yibing Liu 已提交
2385
    Args:
2386
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2387
                         sequences.
Y
Yibing Liu 已提交
2388 2389 2390 2391 2392 2393
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2394
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2405
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2406 2407 2408 2409
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2410
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2425
@templatedoc()
Y
Yu Yang 已提交
2426
def pool2d(input,
C
chengduoZH 已提交
2427 2428
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2429 2430
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2431
           global_pooling=False,
C
chengduoZH 已提交
2432
           use_cudnn=True,
2433
           ceil_mode=False,
2434 2435
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2436
    """
F
fengjiayi 已提交
2437
    ${comment}
2438 2439

    Args:
2440 2441 2442
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2443
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2444
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2445 2446
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2447
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2448 2449 2450 2451 2452 2453
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2454 2455 2456
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2457
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2458
                        layer will be named automatically.
2459
        exclusive (bool): Whether to exclude padding points in average pooling
2460
                          mode, default is true
F
fengjiayi 已提交
2461

2462
    Returns:
F
fengjiayi 已提交
2463
        Variable: The pooling result.
F
fengjiayi 已提交
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2476
          pool2d = fluid.layers.pool2d(
2477 2478 2479 2480
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2481
                            global_pooling=False)
Y
Yu Yang 已提交
2482 2483 2484 2485 2486
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2487

C
chengduoZH 已提交
2488 2489 2490 2491 2492
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2493 2494 2495 2496
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2497 2498
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2499

C
Add doc  
chengduoZH 已提交
2500
    l_type = 'pool2d'
2501 2502

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2503
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2504
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2505 2506

    helper.append_op(
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2518 2519
            "use_mkldnn": False,
            "exclusive": exclusive,
2520 2521 2522 2523 2524
        })

    return pool_out


D
dengkaipeng 已提交
2525
@templatedoc()
2526 2527 2528 2529 2530 2531 2532 2533
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2534 2535
           name=None,
           exclusive=True):
2536
    """
2537
    ${comment}
2538 2539

    Args:
D
dengkaipeng 已提交
2540 2541 2542 2543 2544
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2545 2546 2547 2548 2549
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2550 2551 2552 2553 2554 2555 2556
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2557
        exclusive (bool): Whether to exclude padding points in average pooling
2558
                          mode, default is true
2559

2560
    Returns:
2561
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2575 2576 2577 2578 2579
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2580

C
chengduoZH 已提交
2581 2582 2583 2584 2585
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2586 2587 2588
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2589

C
chengduoZH 已提交
2590 2591
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2592

2593 2594
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2595
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2596
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2597 2598

    helper.append_op(
2599
        type=l_type,
Y
Yu Yang 已提交
2600 2601 2602 2603 2604 2605 2606
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2607
            "paddings": pool_padding,
2608
            "use_cudnn": use_cudnn,
2609
            "ceil_mode": ceil_mode,
2610 2611
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2612 2613 2614 2615 2616
        })

    return pool_out


2617 2618 2619 2620 2621 2622 2623
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2624 2625 2626 2627 2628 2629 2630
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
2631

2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2645 2646 2647 2648 2649 2650 2651 2652 2653

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2654 2655
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2670
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2671
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2672
          # of input data into m * n grids averagely and performs poolings in each
2673 2674
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2675
          #
2676 2677 2678 2679 2680 2681 2682 2683
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2684 2685
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2686
          pool_out = fluid.layers.adaptive_pool2d(
2687 2688
                            input=data,
                            pool_size=[3, 3],
2689
                            pool_type='avg')
2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2700
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2726
    return (pool_out, mask) if require_index else pool_out
2727 2728 2729 2730 2731 2732 2733 2734 2735


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2736 2737 2738 2739 2740 2741 2742
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
2743

2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2761 2762 2763

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
2764 2765 2766
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
2767
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2768
            it must contain three integers, (Depth, Height, Width).
2769
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2770 2771
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2786 2787
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2788
          # of input data into l * m * n grids averagely and performs poolings in each
2789 2790
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2791
          #
2792 2793 2794 2795 2796 2797 2798 2799 2800
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2801
          #                 output[:, :, i, j, k] =
2802 2803
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
2804 2805
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2806
          pool_out, mask = fluid.layers.adaptive_pool3d(
2807
                            input=data,
D
dengkaipeng 已提交
2808
                            pool_size=[3, 3, 3],
2809
                            pool_type='avg')
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2820
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2846
    return (pool_out, mask) if require_index else pool_out
2847 2848


Y
Yu Yang 已提交
2849 2850 2851 2852 2853 2854 2855
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2856
               data_layout='NCHW',
Y
Yang Yang 已提交
2857
               in_place=False,
2858 2859
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2860
               moving_variance_name=None,
2861
               do_model_average_for_mean_and_var=False,
2862 2863
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2864
    """
Q
qiaolongfei 已提交
2865 2866 2867 2868
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2869

Q
qiaolongfei 已提交
2870
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2871

Q
qiaolongfei 已提交
2872 2873
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2874 2875 2876
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2889

2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2903
    Args:
Q
qiaolongfei 已提交
2904
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2905 2906 2907 2908
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2909 2910 2911 2912 2913 2914 2915 2916
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2917
        data_layout(string, default NCHW): NCHW|NHWC
2918
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2919 2920 2921 2922
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2923
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2924
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2925 2926 2927 2928 2929
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2930 2931

    Returns:
Q
qiaolongfei 已提交
2932
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2933 2934 2935 2936 2937 2938 2939

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2940
    """
C
chengduo 已提交
2941
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2942 2943 2944
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
2945 2946 2947 2948
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
2966 2967 2968
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.param_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2969 2970

    bias = helper.create_parameter(
2971
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
2972 2973
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.bias_attr.learning_rate == 0.:
M
minqiyang 已提交
2974
        bias.stop_gradient = True
Y
Yu Yang 已提交
2975

2976 2977
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2978 2979 2980
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2981
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2982
        shape=param_shape,
W
Wu Yi 已提交
2983
        dtype=dtype)
2984 2985 2986 2987 2988 2989
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2990
            trainable=False,
W
wanghaoshuang 已提交
2991
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2992
        shape=param_shape,
W
Wu Yi 已提交
2993
        dtype=dtype)
2994
    variance.stop_gradient = True
Y
Yu Yang 已提交
2995 2996 2997 2998 2999 3000

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3001 3002 3003 3004
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3005

X
Xin Pan 已提交
3006 3007
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3025 3026 3027 3028
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3029
            "data_layout": data_layout,
X
Xin Pan 已提交
3030
            "use_mkldnn": False,
3031 3032
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3033
        })
Y
Yu Yang 已提交
3034 3035 3036 3037

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python

            data = fluid.layers.data(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.data_norm(input=hidden1)
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3157
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3158 3159 3160 3161

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3162
@templatedoc()
G
guosheng 已提交
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3173
    ${comment}
G
guosheng 已提交
3174 3175 3176

    The formula is as follows:

Y
yuyang18 已提交
3177
    ..  math::
G
guosheng 已提交
3178 3179 3180 3181 3182 3183 3184

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3185 3186 3187 3188 3189 3190 3191 3192
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3193

G
guosheng 已提交
3194 3195
    Args:
        input(Variable): The input tensor variable.
3196
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3197
            normalization. Default True.
3198
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3199 3200
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3201
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3202
            Default 1.
3203
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3204
            division by zero. Default 1e-05.
G
guosheng 已提交
3205
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3206 3207
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3208 3209
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3210
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3211 3212
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3213
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3214
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3215
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3216 3217 3218
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3219 3220

    Returns:
Y
yuyang18 已提交
3221
        ${y_comment}
G
guosheng 已提交
3222 3223 3224

    Examples:

Y
yuyang18 已提交
3225 3226 3227
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3243
    if shift:
G
guosheng 已提交
3244 3245 3246 3247 3248 3249
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3250 3251 3252 3253 3254
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3282
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3330 3331
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
Dun 已提交
3332
    group_norm_out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
3348 3349 3350 3351
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3352 3353 3354
                     padding=0,
                     stride=1,
                     dilation=1,
3355
                     groups=None,
C
caoying03 已提交
3356
                     param_attr=None,
3357
                     bias_attr=None,
C
chengduoZH 已提交
3358
                     use_cudnn=True,
3359
                     act=None,
C
caoying03 已提交
3360
                     name=None):
Y
Yu Yang 已提交
3361
    """
3362 3363 3364 3365 3366 3367 3368 3369
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3370 3371
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3372 3373 3374
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3375 3376 3377 3378 3379

    For each input :math:`X`, the equation is:

    .. math::

3380
        Out = \sigma (W \\ast X + b)
3381

3382
    Where:
3383 3384 3385

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3386 3387 3388 3389
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3390

3391 3392 3393 3394
    Example:

        - Input:

3395
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3396

3397
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3398 3399 3400

        - Output:

3401
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3402 3403

        Where
Y
Yu Yang 已提交
3404

3405 3406
        .. math::

3407 3408
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3409 3410
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3411 3412

    Args:
3413 3414 3415 3416
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3417 3418 3419 3420
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3439 3440 3441 3442 3443 3444 3445 3446 3447 3448
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3449
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3450 3451 3452
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3453
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3454
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3455 3456

    Returns:
3457
        Variable: The tensor variable storing the convolution transpose result.
3458 3459

    Raises:
3460 3461
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3462 3463 3464 3465

    Examples:
       .. code-block:: python

3466 3467
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3468
    """
C
chengduo 已提交
3469
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3470 3471 3472 3473 3474 3475 3476 3477
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3478 3479 3480
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3481 3482 3483
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3484

C
chengduoZH 已提交
3485 3486
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3487

Y
Yu Yang 已提交
3488 3489 3490 3491 3492
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3493

Y
Yu Yang 已提交
3494 3495
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3496

C
chengduoZH 已提交
3497
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3498
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3499
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3500
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3501
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3502 3503 3504
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3505

3506 3507 3508 3509 3510 3511 3512
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3513
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3514
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3515

Y
Yu Yang 已提交
3516 3517 3518
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3519
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3520
    helper.append_op(
3521
        type=op_type,
Y
Yu Yang 已提交
3522 3523
        inputs={'Input': [input],
                'Filter': [img_filter]},
3524
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3525
        attrs={
3526
            'output_size': output_size,
3527 3528 3529 3530 3531
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3532 3533
        })

3534 3535 3536
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3537 3538


3539
def conv3d_transpose(input,
Y
Yu Yang 已提交
3540 3541 3542
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3543 3544 3545
                     padding=0,
                     stride=1,
                     dilation=1,
3546
                     groups=None,
C
caoying03 已提交
3547
                     param_attr=None,
3548
                     bias_attr=None,
C
chengduoZH 已提交
3549
                     use_cudnn=True,
3550
                     act=None,
C
caoying03 已提交
3551
                     name=None):
Y
Yu Yang 已提交
3552
    """
3553
    **Convlution3D transpose layer**
3554

3555
    The convolution3D transpose layer calculates the output based on the input,
3556
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3557 3558 3559 3560 3561 3562
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3563 3564 3565
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3566 3567 3568 3569 3570

    For each input :math:`X`, the equation is:

    .. math::

3571
        Out = \sigma (W \\ast X + b)
3572 3573 3574

    In the above equation:

3575 3576
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3577 3578 3579 3580
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3581

3582 3583 3584 3585
    Example:

        - Input:

3586
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3587

3588
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3589 3590 3591

        - Output:

3592
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3593 3594

        Where
Y
Yu Yang 已提交
3595

3596 3597
        .. math::

3598 3599 3600
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3601 3602

    Args:
3603
        input(Variable): The input image with [N, C, D, H, W] format.
3604 3605 3606
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3607
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3608 3609
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3610
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3611 3612 3613
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3614 3615
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3616
        stride(int|tuple): The stride size. If stride is a tuple, it must
3617 3618
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3619
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3620 3621 3622
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3623 3624 3625 3626 3627
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3628 3629 3630 3631 3632 3633 3634 3635 3636
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3637 3638
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3639 3640
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3641 3642
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3643 3644

    Returns:
3645
        Variable: The tensor variable storing the convolution transpose result.
3646 3647

    Raises:
3648 3649
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3650 3651 3652 3653

    Examples:
       .. code-block:: python

3654 3655
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3656
    """
C
chengduo 已提交
3657
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3658 3659
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3660
    if not isinstance(input, Variable):
3661
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3662 3663
    input_channel = input.shape[1]

3664 3665 3666
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3667

C
chengduoZH 已提交
3668 3669 3670
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3671 3672 3673 3674 3675 3676
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3677 3678 3679
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3680

3681
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3682
                         padding[0] - 1) // dilation[0] + 1
3683
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3684
                         padding[1] - 1) // dilation[1] + 1
3685
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3686
                         padding[2] - 1) // dilation[2] + 1
3687
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3688
    else:
3689 3690
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3691

3692
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3693
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3694 3695 3696
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3697
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3698
    helper.append_op(
3699
        type=l_type,
Y
Yu Yang 已提交
3700 3701
        inputs={'Input': [input],
                'Filter': [img_filter]},
3702
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3703 3704 3705 3706
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3707
            'groups': groups,
C
chengduoZH 已提交
3708 3709
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3710

3711 3712
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3713
    return out
Y
yangyaming 已提交
3714 3715


Y
yangyaming 已提交
3716
def sequence_expand(x, y, ref_level=-1, name=None):
3717
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3718 3719 3720 3721
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3722 3723 3724 3725 3726

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3727
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3728
                x.data = [[a], [b], [c], [d]]
3729 3730 3731
                x.dims = [4, 1]

            y is a LoDTensor:
3732 3733
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3734

Y
yangyaming 已提交
3735
            ref_level: 0
3736

Y
yangyaming 已提交
3737
            then output is a 1-level LoDTensor:
3738
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3739
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3740 3741 3742 3743
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3744
                x.data = [[a], [b], [c]]
3745 3746 3747
                x.dims = [3, 1]

            y is a LoDTensor:
3748
                y.lod = [[2, 0, 3]]
3749

Y
yangyaming 已提交
3750
            ref_level: -1
3751

Y
yangyaming 已提交
3752 3753 3754
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3755 3756 3757
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3758 3759
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3760
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3761
                        will be named automatically.
3762 3763 3764 3765 3766 3767 3768 3769 3770 3771

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3772
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3773
    """
Y
yangyaming 已提交
3774
    helper = LayerHelper('sequence_expand', input=x, **locals())
3775
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3776
    tmp = helper.create_variable_for_type_inference(dtype)
3777
    helper.append_op(
Y
yangyaming 已提交
3778 3779 3780 3781 3782
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3783
    return tmp
3784 3785


C
chengduo 已提交
3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3842
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3843 3844 3845 3846 3847 3848 3849 3850
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3851
@templatedoc()
3852
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3853 3854 3855 3856 3857
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3858 3859 3860
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3861
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3862 3863 3864 3865
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3866 3867 3868
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3869

F
fengjiayi 已提交
3870
    Returns:
M
minqiyang 已提交
3871
        Variable: The padded sequence batch and the original lengths before
3872
                  padding. All sequences has the same length.
M
minqiyang 已提交
3873

F
fengjiayi 已提交
3874 3875 3876 3877 3878 3879 3880
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3881
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3882
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3883 3884 3885 3886 3887
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3888 3889
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3890 3891 3892 3893

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3894 3895 3896 3897 3898 3899
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3900 3901
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3902
        attrs={'padded_length': maxlen})
3903
    return out, length
F
fengjiayi 已提交
3904 3905


3906
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3907
    """
3908
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3909

3910 3911
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3912 3913 3914 3915 3916 3917 3918 3919 3920
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3921 3922 3923
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3924
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3925 3926 3927 3928 3929 3930

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3931
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3932 3933 3934 3935 3936 3937

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3938 3939
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3954
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3966 3967 3968 3969 3970 3971 3972
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
3973
                is_accumulated=True,
3974 3975
                name=None,
                return_parent_idx=False):
3976
    """
3977 3978
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3979 3980 3981

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3982 3983

    This layer does the search in beams for one time step. Specifically, it
3984 3985 3986
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
3998 3999 4000 4001

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4002

4003
    Args:
4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4027 4028
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4029 4030
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4031 4032 4033 4034
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4035

4036
    Returns:
4037 4038 4039 4040
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4041 4042 4043 4044

    Examples:
        .. code-block:: python

4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4062
    helper = LayerHelper('beam_search', **locals())
4063 4064 4065 4066 4067 4068
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4069

X
Xin Pan 已提交
4070 4071 4072
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4073 4074 4075 4076 4077
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4078 4079 4080

    helper.append_op(
        type='beam_search',
4081
        inputs=inputs,
Q
Qiao Longfei 已提交
4082 4083 4084
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4085
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4086 4087 4088 4089 4090 4091
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4092
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4093
        })
4094 4095 4096 4097
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4098 4099


4100 4101 4102 4103 4104 4105 4106
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4107

4108 4109 4110 4111 4112 4113 4114 4115 4116
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4117

4118 4119 4120 4121 4122 4123
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4124

4125 4126
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4127

4128 4129 4130 4131 4132 4133
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4134 4135
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4151 4152 4153 4154
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4155
              param_attr=None,
C
caoying03 已提交
4156 4157
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4158 4159 4160 4161
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4162
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4163

4164
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4165

4166
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4167

4168
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4169 4170 4171

            h_t & = o_t tanh(c_t)

4172 4173 4174 4175 4176 4177
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4178 4179 4180

        .. math::

4181
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4182 4183 4184 4185 4186 4187 4188 4189

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
4190
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
4191 4192

    Args:
Y
yangyaming 已提交
4193 4194 4195 4196 4197 4198
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4199
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4212 4213
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4214 4215

    Returns:
Y
yangyaming 已提交
4216
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4217 4218

    Raises:
4219 4220 4221 4222
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4223 4224 4225 4226 4227 4228

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
4229
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
4230
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
4231
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4248
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4249 4250 4251 4252
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4253 4254
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4255 4256 4257
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4258
    size = cell_t_prev.shape[1]
4259
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4260 4261
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4262
                param_attr=param_attr,
4263
                bias_attr=bias_attr)
Y
yangyaming 已提交
4264
    dtype = x_t.dtype
X
Xin Pan 已提交
4265 4266
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4267 4268 4269 4270 4271 4272 4273 4274 4275

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4276
    return h, c
G
guosheng 已提交
4277 4278


C
caoying03 已提交
4279
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4280
    """
Y
yangyaming 已提交
4281
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4282 4283 4284

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4285
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4286 4287
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4288 4289
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4290
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4291
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4292
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4293 4294
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4295 4296 4297

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4298

G
guosheng 已提交
4299 4300 4301 4302 4303 4304
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4305
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4306 4307 4308 4309
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4310 4311 4312 4313

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4314
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4315 4316 4317
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4318 4319
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4320
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4321 4322
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4323 4324 4325 4326 4327
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4328
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4329 4330 4331 4332
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4333 4334


C
caoying03 已提交
4335
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4336
    """
Y
Yibing Liu 已提交
4337
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4338 4339 4340

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4341 4342 4343
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4344
            must be in the range :math:`[-rank(input), rank(input))`. If
4345
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4346
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4347 4348
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4349
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4350
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4351
                       will be named automatically.
G
guosheng 已提交
4352 4353

    Returns:
Y
Yibing Liu 已提交
4354
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4355

G
guosheng 已提交
4356 4357 4358 4359 4360 4361 4362 4363 4364 4365
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4366 4367
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4368 4369 4370 4371 4372 4373 4374

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4375 4376
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4377
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4378 4379
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4380 4381 4382 4383 4384
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4385
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4386 4387 4388 4389
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4390 4391


C
caoying03 已提交
4392
def reduce_max(input, dim=None, keep_dim=False, name=None):
4393
    """
Y
yangyaming 已提交
4394
    Computes the maximum of tensor elements over the given dimension.
4395 4396 4397

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4398
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4399 4400 4401
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4402
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4403 4404
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4405
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4406 4407
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4408 4409 4410

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4411

4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4423 4424 4425 4426 4427 4428 4429

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4430 4431
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4432
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4433 4434
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4435 4436 4437 4438 4439
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4440
            'dim': dim if dim != None else [0],
4441 4442 4443 4444 4445 4446
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4447
def reduce_min(input, dim=None, keep_dim=False, name=None):
4448
    """
Y
yangyaming 已提交
4449
    Computes the minimum of tensor elements over the given dimension.
4450 4451 4452

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4453
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4454 4455 4456
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4457
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4458 4459
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4460
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4461 4462
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4463 4464 4465

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4466

4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4478 4479 4480 4481 4482 4483 4484

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4485 4486
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4487
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4488 4489
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4490 4491 4492 4493 4494
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4495
            'dim': dim if dim != None else [0],
4496 4497 4498 4499
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4500 4501


4502 4503 4504 4505 4506 4507
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4508
        dim (list|int|None): The dimensions along which the product is performed. If
4509 4510
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4511 4512
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4513 4514 4515
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4516
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4517
            layer will be named automatically.
4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4532
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4533
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4534 4535 4536 4537 4538 4539 4540

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4541 4542
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4543
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4544 4545
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4546 4547 4548 4549 4550
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4551
            'dim': dim if dim != None else [0],
4552 4553 4554 4555 4556 4557
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4558
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4559
    """
C
caoying03 已提交
4560
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4561 4562 4563

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4564 4565 4566 4567 4568
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4569
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4570
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4571
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4572 4573
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4574 4575

    Returns:
D
dzhwinter 已提交
4576
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4577 4578 4579 4580 4581 4582 4583 4584 4585

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4586 4587
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4603
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4617 4618 4619 4620 4621 4622 4623 4624 4625


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4626
    .. math::
4627 4628

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4629 4630 4631 4632 4633

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4634
        x(Variable|list): The input tensor to l2_normalize layer.
4635
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4636 4637
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4638
        epsilon(float): The epsilon value is used to avoid division by zero, \
4639
            the defalut value is 1e-10.
4640
        name(str|None): A name for this layer(optional). If set None, the layer \
4641
            will be named automatically.
C
caoying03 已提交
4642 4643

    Returns:
4644
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4645 4646

    Examples:
4647

C
caoying03 已提交
4648 4649
        .. code-block:: python

4650 4651 4652 4653
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4654 4655
    """

F
fengjiayi 已提交
4656 4657
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4658 4659
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4660 4661
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4662
    helper.append_op(
4663 4664 4665 4666
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4667
        attrs={
4668 4669
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4670 4671
        })
    return out
4672 4673


S
sneaxiy 已提交
4674
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4675
    """
Y
ying 已提交
4676 4677 4678 4679
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4680

C
chengduoZH 已提交
4681
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4682
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4683

4684 4685 4686 4687 4688
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4689
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4690

C
chengduoZH 已提交
4691
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4692
      performs in the following way.
G
guosheng 已提交
4693

4694
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4695
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4696
        last two dimensions and a batched matrix multiply supporting broadcast
4697
        applies on the two tensors.
G
guosheng 已提交
4698

Y
ying 已提交
4699 4700
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4701
    removed after matrix multiplication.
G
guosheng 已提交
4702 4703 4704

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4705 4706 4707
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4708
        alpha (float): The scale of output. Default 1.0.
4709
        name(str|None): A name for this layer(optional). If set None, the layer
4710
            will be named automatically.
G
guosheng 已提交
4711 4712

    Returns:
4713
        Variable: The product Tensor variable.
G
guosheng 已提交
4714

G
guosheng 已提交
4715 4716 4717
    Examples:
        .. code-block:: python

4718
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4719 4720
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4721

4722 4723
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4724

4725 4726
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4727

4728 4729
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4730 4731 4732 4733

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4734 4735
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4736

Y
ying 已提交
4737
            # x: [M], y: [N]
4738
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4739
    """
Y
ying 已提交
4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4752
            y_shape = y_shape + [1]
Y
ying 已提交
4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4769
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4770
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4771
    helper.append_op(
4772 4773 4774 4775
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4776 4777 4778
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4779
            'alpha': float(alpha),
S
sneaxiy 已提交
4780
        })
4781
    return out
4782 4783


4784
def topk(input, k, name=None):
Q
qingqing01 已提交
4785 4786 4787 4788
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4789
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4790 4791 4792 4793 4794 4795
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4817 4818 4819
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
4820
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4821
                 of input.
4822
        name(str|None): A name for this layer(optional). If set None, the layer
4823
                       will be named automatically.
F
fengjiayi 已提交
4824
                       Default: None
Q
qingqing01 已提交
4825 4826

    Returns:
4827 4828 4829
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4830
        within the last dimension of input.
Q
qingqing01 已提交
4831

F
fengjiayi 已提交
4832 4833
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4834 4835 4836 4837 4838 4839 4840

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4841 4842
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
4843 4844 4845 4846 4847 4848
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
4849 4850
    helper.append_op(
        type="top_k",
W
whs 已提交
4851
        inputs=inputs,
Q
qingqing01 已提交
4852 4853
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
4854
        attrs=attrs)
Q
qingqing01 已提交
4855 4856 4857 4858 4859
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4860
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4861
    """
Y
ying 已提交
4862 4863 4864 4865 4866 4867 4868 4869 4870
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4871

Y
ying 已提交
4872
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4873

4874
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4875 4876
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4877
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4878

4879
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4880 4881
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4882

4883 4884 4885
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4886
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4887
                          the length of reference string.
4888
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4889
                                     calculating edit distance.
4890
        name (str): The name of this layer. It is optional.
4891

W
wanghaoshuang 已提交
4892
    Returns:
W
wanghaoshuang 已提交
4893
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4894 4895 4896 4897

    Examples:
        .. code-block:: python

T
tink2123 已提交
4898 4899
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4900
            cost = fluid.layers.edit_distance(input=x,label=y)
4901
    """
4902
    helper = LayerHelper("edit_distance", **locals())
4903

4904
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4905
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4906 4907
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4908 4909 4910 4911 4912

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4913
            attrs={"tokens": ignored_tokens})
4914 4915 4916 4917 4918
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4919
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4920
            attrs={"tokens": ignored_tokens})
4921 4922
        label = erased_label

4923
    # edit distance op
X
Xin Pan 已提交
4924 4925
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4926 4927 4928 4929
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4930 4931
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4932 4933
        attrs={"normalized": normalized})

4934
    return edit_distance_out, sequence_num
4935 4936 4937 4938 4939


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4940

Y
ying 已提交
4941 4942 4943 4944
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4962
        input.lod = [[4, 4]]
M
minqiyang 已提交
4963

W
whs 已提交
4964
        Computation:
4965

W
whs 已提交
4966 4967 4968 4969 4970 4971
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
4972 4973 4974 4975 4976

        output.data = [[2],
                       [1],
                       [3]]

4977
        output.lod = [[2, 1]]
4978

W
whs 已提交
4979

4980 4981
    Args:

Y
ying 已提交
4982 4983 4984 4985 4986 4987 4988 4989 4990
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4991
        name (str): The name of this layer. It is optional.
4992 4993

    Returns:
H
haowang101779990 已提交
4994 4995 4996
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
4997
                  LoD [[]] and dims [1, 1].
4998 4999 5000 5001 5002

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
5003

5004
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5005
    """
5006
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5007
    _, topk_indices = topk(input, k=1)
5008 5009

    # ctc align op
X
Xin Pan 已提交
5010
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5011 5012 5013
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5014
        outputs={"Output": [ctc_out]},
5015 5016
        attrs={"merge_repeated": True,
               "blank": blank})
5017
    return ctc_out
5018 5019


W
Wu Yi 已提交
5020
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
5021
    """
5022 5023
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5024
    to compute Connectionist Temporal Classification (CTC) loss.
5025 5026
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5027 5028 5029
    input tensor.

    Args:
5030
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
5031 5032 5033 5034
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
5035
       label (Variable): The ground truth of variable-length sequence,
5036 5037 5038
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5039 5040
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5041 5042 5043
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5044
         follewed by a mean_op.
W
Wu Yi 已提交
5045
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
5046 5047

    Returns:
5048 5049
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5050 5051

    Examples:
5052

W
wanghaoshuang 已提交
5053
        .. code-block:: python
5054

5055 5056 5057
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5058 5059

    """
F
fengjiayi 已提交
5060
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
5061 5062
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
5063 5064 5065 5066 5067 5068
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5069 5070 5071 5072 5073
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5074
    return loss_out
5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5090 5091 5092
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5093 5094 5095 5096 5097
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5098

5099
            out.lod  = [[0, 1, 3]]
5100 5101 5102 5103

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5104 5105 5106 5107 5108 5109 5110
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5111 5112 5113

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5114 5115

    Returns:
5116

5117 5118 5119 5120 5121
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

5122
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
5123
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
5124 5125
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5126
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5127 5128 5129 5130 5131 5132
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5133 5134


5135 5136 5137 5138
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5139 5140 5141 5142 5143 5144
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5145
        num_neg_samples=None,
5146 5147 5148
        name=None,
        sampler="uniform",
        custom_dist=None,
5149 5150
        seed=0,
        is_sparse=False):
5151 5152 5153 5154 5155 5156 5157
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5158 5159
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5160
            sample is 1.0.
C
chengduo 已提交
5161 5162 5163 5164 5165 5166 5167 5168 5169
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5170
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5171 5172
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5173 5174 5175
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5176
        custom_dist (float[]): A float[] with size=num_total_classes.
5177 5178 5179 5180
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5181
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5182

5183
    Returns:
Y
Yibing Liu 已提交
5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
5211 5212 5213 5214 5215 5216 5217 5218 5219

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
5220

5221
    """
Y
Yang Yu 已提交
5222 5223 5224
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5225 5226

    dim = input.shape[1]
Y
Yang Yu 已提交
5227 5228 5229 5230 5231 5232
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5233
    inputs = {}
C
chengduo 已提交
5234 5235 5236 5237 5238 5239 5240
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5241 5242 5243
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5244

5245 5246 5247 5248
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5249 5250 5251 5252 5253 5254 5255

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5256 5257 5258 5259 5260 5261 5262 5263 5264
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5265
            if normal_prob - 1.0 > 0:
5266
                bigs.append((i, normal_prob))
5267
            elif 1.0 - normal_prob > 0:
5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5283
            if big_left - 1.0 > 0:
5284
                bigs.append((big_idx, big_left))
5285
            elif 1.0 - big_left > 0:
5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5315 5316 5317 5318
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5319 5320 5321 5322 5323
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5324 5325 5326 5327
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5328

Y
Yang Yu 已提交
5329 5330
    attrs = {
        'num_total_classes': int(num_total_classes),
5331 5332
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5333
        'sampler': sampler,
5334 5335
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5336
    }
Y
Yang Yu 已提交
5337 5338 5339

    helper.append_op(
        type='nce',
C
chengduo 已提交
5340
        inputs=inputs,
Y
Yang Yu 已提交
5341 5342 5343 5344 5345 5346
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5347
    return cost / (num_neg_samples + 1)
5348 5349


C
chengduo 已提交
5350 5351
def hsigmoid(input,
             label,
5352
             num_classes,
C
chengduo 已提交
5353 5354
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5355
             name=None,
5356 5357 5358
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5359
             is_sparse=False):
W
weixing02 已提交
5360 5361
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5362
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5363
    complete binary tree, or you can use is_custom to pass your own tree to
5364
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5365 5366 5367 5368 5369 5370
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5371
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5372
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5373

5374 5375
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5376 5377 5378 5379
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5380
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5381
       related to the same batch of inputs.
5382

W
weixing02 已提交
5383
    Args:
M
minqiyang 已提交
5384
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5385 5386 5387 5388
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5389 5390
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5391
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5403
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5404
            it should be in leaf -> root order
M
minqiyang 已提交
5405 5406 5407
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5408
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5409
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5410
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5411
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5412
             of W and input will be sparse.
W
weixing02 已提交
5413 5414

    Returns:
J
JiabinYang 已提交
5415
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5416 5417 5418 5419 5420

    Examples:

        .. code-block:: python

G
guosheng 已提交
5421 5422 5423
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5424 5425 5426 5427
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5428 5429
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5430
    dim = input.shape[1]
5431
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5432 5433 5434
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5435 5436 5437 5438
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
5439 5440
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
5441 5442 5443
    else:
        pass

J
JiabinYang 已提交
5444
    weights = None
5445 5446 5447 5448
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5449
    if not is_custom:
J
JiabinYang 已提交
5450 5451 5452 5453 5454 5455 5456 5457
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5458
            shape=[num_classes, dim],
J
JiabinYang 已提交
5459 5460
            is_bias=False,
            dtype=input.dtype)
5461 5462 5463
    inputs = {
        "X": input,
        "W": weights,
5464
        "PathTable": path_table,
5465
        "PathCode": path_code,
5466 5467
        "Label": label
    }
W
weixing02 已提交
5468
    if helper.bias_attr:
5469
        if not is_custom:
J
JiabinYang 已提交
5470 5471
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5472
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5473 5474 5475 5476 5477 5478
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5479
                shape=[num_classes, 1],
J
JiabinYang 已提交
5480 5481 5482
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5483 5484
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5485
        inputs=inputs,
W
weixing02 已提交
5486
        outputs={"Out": out,
5487 5488 5489 5490 5491 5492 5493
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5494 5495 5496
    return out


Y
fix ci.  
ying 已提交
5497
def transpose(x, perm, name=None):
Y
ying 已提交
5498 5499 5500 5501 5502 5503 5504
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5505 5506 5507
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5508 5509 5510 5511 5512 5513 5514

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5515
            # use append_batch_size=False to avoid prepending extra
5516
            # batch size in shape
5517
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5518
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5519
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5520 5521
    """

Y
fix ci.  
ying 已提交
5522
    if len(perm) != len(x.shape):
Y
ying 已提交
5523 5524 5525
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5526 5527 5528 5529 5530 5531
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5532 5533

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5534 5535
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5536
    helper.append_op(
5537
        type='transpose2',
Y
fix ci.  
ying 已提交
5538
        inputs={'X': [x]},
5539 5540
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5541 5542
        attrs={'axis': perm})
    return out
5543 5544


5545 5546 5547 5548 5549 5550 5551
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5552
    """
5553 5554 5555 5556 5557 5558 5559
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5560 5561 5562 5563 5564 5565 5566 5567 5568 5569

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5588 5589 5590 5591 5592 5593 5594 5595 5596
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5597 5598 5599
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5600 5601 5602 5603 5604
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5632 5633 5634
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5647
            output.dims = {8, 8}
5648

5649
            output.lod = [[4, 4]]
5650

T
Tink_Y 已提交
5651
    Examples:
5652 5653 5654

        .. code-block:: python

5655 5656
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5657 5658

    """
W
wanghaoshuang 已提交
5659 5660 5661 5662 5663 5664 5665 5666 5667 5668

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5669 5670 5671 5672 5673 5674 5675
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5676
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5677
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5678
    helper.append_op(
5679
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5680
    return out
5681 5682


Y
yuyang18 已提交
5683
@templatedoc()
5684
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5685 5686
    """
    ${comment}
5687 5688

    Args:
Y
yuyang18 已提交
5689
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5690 5691
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5692 5693 5694 5695 5696
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5697
        ${out_comment}.
5698 5699

    Examples:
Y
yuyang18 已提交
5700 5701 5702 5703
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5704 5705 5706 5707 5708 5709
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5710
    out = helper.create_variable_for_type_inference(dtype)
5711 5712 5713 5714 5715
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5716
    return helper.append_activation(out)
5717 5718


Y
yuyang18 已提交
5719
@templatedoc()
5720 5721
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5722 5723 5724 5725 5726 5727 5728
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5729 5730

    Args:
Y
yuyang18 已提交
5731 5732
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5733 5734

    Returns:
Y
yuyang18 已提交
5735
        ${out_comment}.
5736 5737
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5738 5739 5740 5741 5742

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5743
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5744 5745 5746 5747 5748 5749
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5750 5751


5752 5753 5754
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5755
                               ignore_index=kIgnoreIndex,
5756 5757
                               numeric_stable_mode=False,
                               return_softmax=False):
5758 5759
    """
    **Softmax With Cross Entropy Operator.**
5760

5761 5762 5763 5764
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5765

5766 5767 5768
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5769

5770 5771 5772
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5773

5774
    The equation is as follows:
5775

5776
    1) Hard label (one-hot label, so every sample has exactly one class)
5777

5778 5779 5780 5781
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5782

5783 5784 5785
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5786

5787 5788 5789 5790
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5791 5792 5793
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5794

H
haowang101779990 已提交
5795
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
5796

H
haowang101779990 已提交
5797
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
5798

H
haowang101779990 已提交
5799
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
5800 5801 5802

    and then cross entropy loss is calculated by softmax and label.

5803 5804 5805 5806 5807 5808 5809 5810
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5811 5812
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
5813
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
5814 5815 5816
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5817 5818 5819
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
5820
                                    stable algorithm. Default: False
5821
        return_softmax (bool): A flag indicating whether to return the softmax
5822
                               along with the cross entropy loss. Default: False
5823

5824
    Returns:
H
haowang101779990 已提交
5825 5826 5827 5828 5829
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
                                            (loss, softmax), where the cross entropy loss is \
                                            a 2-D tensor with shape [N x 1], and softmax is a \
                                            2-D tensor with shape [N x K].
5830 5831 5832 5833 5834 5835 5836

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5837 5838
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5839 5840
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5841 5842
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5843 5844 5845 5846 5847 5848
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5849 5850 5851 5852 5853
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5854 5855 5856 5857

    if return_softmax:
        return loss, softmax

5858 5859 5860
    return loss


5861 5862 5863
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
5864
                                       num_true=1,
5865
                                       remove_accidental_hits=True,
X
xuezhong 已提交
5866 5867 5868
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
5869
                                       seed=0):
X
xuezhong 已提交
5870 5871 5872 5873 5874
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
5875
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
5876 5877 5878 5879 5880 5881 5882 5883
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
5884
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
5885 5886 5887 5888 5889 5890 5891 5892
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
5893
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
5905
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
5906 5907 5908 5909 5910
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
5911
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
5912
            logits.
X
xuezhong 已提交
5913 5914 5915 5916 5917
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
5918 5919 5920
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

            logits = fluid.layers.data(name='data', shape=[256], dtype='float32')
            label = fluid.layers.data(name='label', shape=[5], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
            out = fluid.layers.sampled_softmax_with_cross_entropy(
                logits=fc, label=label, num_samples=25)
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
5941 5942
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
X
xuezhong 已提交
5943 5944 5945 5946 5947

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
5948
            'Labels': label,
X
xuezhong 已提交
5949 5950
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
5951 5952 5953 5954
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
5955
            'SampledLabels': sampled_label,
X
xuezhong 已提交
5956 5957 5958
            'SampledLogits': sampled_logits
        },
        attrs={
X
xuezhong 已提交
5959
            'use_customized_samples': use_customized_samples,
5960
            'uniq': True,
X
xuezhong 已提交
5961 5962 5963 5964
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
5965 5966
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
5967 5968 5969 5970 5971 5972
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

5973 5974
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
5975
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
5976
                'Label': sampled_softlabel},
X
xuezhong 已提交
5977 5978 5979
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
5980
            'soft_label': True,
X
xuezhong 已提交
5981 5982 5983
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
5984
    return loss / num_true
X
xuezhong 已提交
5985 5986


5987 5988
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5989 5990
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5991
    For each instance, it computes the smooth L1 loss element by element first
5992
    and then sums all the losses. So the shape of ouput Variable is
5993
    [batch_size, 1].
5994

5995 5996
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5997
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5998
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5999
            L1 loss op with same shape as :attr:`x`.
6000
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6001 6002
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6003
            by this tensor element by element.
6004
        outside_weight (Variable|None): A tensor with rank at least 2. This
6005 6006
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6007
            element by element.
6008
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6009 6010
           scalar with default value 1.0.

6011
    Returns:
6012
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6013 6014 6015 6016 6017

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6018 6019
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6020
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6021
            out = fluid.layers.smooth_l1(x=fc, y=label)
6022
    """
6023

6024
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
6025 6026
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
6039 6040 6041 6042


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
6043
    This layer creates the one-hot representations for input indices.
6044 6045

    Args:
Y
Yibing Liu 已提交
6046 6047
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6048 6049

    Returns:
Y
Yibing Liu 已提交
6050
        Variable: The one-hot representations of input.
6051 6052

    Examples:
C
caoying03 已提交
6053
        .. code-block:: python
6054

Y
Yibing Liu 已提交
6055 6056
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
6057 6058
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
6059
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6060 6061 6062 6063 6064 6065
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
6066 6067


Y
Yu Yang 已提交
6068
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6069
    """
Y
yi.wu 已提交
6070 6071 6072
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6073 6074 6075 6076 6077 6078

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6079 6080
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6081 6082 6083 6084 6085 6086

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
6087 6088
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
6089 6090
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
6091 6092 6093 6094 6095
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
6096
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
6097
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
6098 6099
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
6100
            outputs={'Out': [counter]},
M
minqiyang 已提交
6101 6102
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
6103 6104 6105
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
6106 6107


6108
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
6109
    """
C
caoying03 已提交
6110 6111
    Gives a new shape to the input Tensor without changing its data.

6112 6113 6114 6115 6116
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
6117

6118
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
6119

6120 6121 6122 6123
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

6124
    2. 0 means the actual dimension value is going to be copied from the
6125 6126 6127 6128
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
6129 6130

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
6131
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
6132
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
6133

6134
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6135 6136
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6137 6138
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6139
    dimensions.
C
caoying03 已提交
6140

6141
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6142 6143 6144 6145
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6146 6147

    Args:
6148
        x(variable): The input tensor.
C
caoying03 已提交
6149 6150
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6151 6152 6153 6154 6155
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6156 6157
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
6158 6159 6160
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
6161
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
6162
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6163

6164
    Returns:
G
guosheng 已提交
6165 6166 6167 6168
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6169

X
Xin Pan 已提交
6170 6171 6172
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6173 6174
    Examples:
        .. code-block:: python
G
guosheng 已提交
6175

6176
            data = fluid.layers.data(
6177
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
6178
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
6179
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
6180 6181 6182
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
6183
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
6184 6185 6186 6187 6188
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
6189

6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6205
    helper = LayerHelper("reshape2", **locals())
6206 6207
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6208
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6209
    helper.append_op(
6210
        type="reshape2",
X
Xin Pan 已提交
6211
        inputs=inputs,
D
dzhwinter 已提交
6212
        attrs={"shape": shape},
6213 6214
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6215

D
dzhwinter 已提交
6216
    return helper.append_activation(out)
6217

6218

6219
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6220
    """
M
minqiyang 已提交
6221 6222 6223
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6224
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6225

H
haowang101779990 已提交
6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6247

Y
Yibing Liu 已提交
6248
    Args:
6249
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6250
        axes (list): List of integers, indicating the dimensions to be squeezed.
6251
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6252 6253 6254 6255 6256 6257 6258 6259

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
6260
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6261 6262
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6263 6264
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6265
    helper.append_op(
6266
        type="squeeze2",
6267
        inputs={"X": input},
Y
Yibing Liu 已提交
6268
        attrs={"axes": axes},
6269 6270
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6271

6272 6273 6274
    return out


6275
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6276
    """
M
minqiyang 已提交
6277 6278 6279
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6280

M
minqiyang 已提交
6281
    For example:
H
haowang101779990 已提交
6282 6283 6284

    .. code-block:: text

M
minqiyang 已提交
6285
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6286
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6287

Y
Yibing Liu 已提交
6288
    Args:
6289
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6290
        axes (list): List of integers, indicating the dimensions to be inserted.
6291
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6292 6293 6294 6295 6296 6297 6298 6299

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
6300
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6301 6302
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6303 6304
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6305
    helper.append_op(
6306
        type="unsqueeze2",
6307
        inputs={"X": input},
Y
Yibing Liu 已提交
6308
        attrs={"axes": axes},
6309 6310
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6311

6312 6313
    return out

6314

Y
yangyaming 已提交
6315
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6316
    """
Y
Yibing Liu 已提交
6317
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6318 6319 6320 6321
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6322
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6323 6324 6325 6326 6327 6328

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6329
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6330 6331 6332
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6333
            target_lod: [4, 2]
Y
yangyaming 已提交
6334 6335

            then we get a 1-level LoDTensor:
6336
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6337 6338 6339 6340 6341 6342
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6343
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6344 6345 6346 6347
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6348
                y.data = [[2, 4]]
Y
yangyaming 已提交
6349 6350 6351
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6352
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6353 6354 6355 6356 6357 6358
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6359
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6360 6361 6362 6363
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6364
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6365 6366 6367 6368
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6369
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6370 6371 6372 6373 6374
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6375
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6376
                           from :attr:`y`.
Y
yangyaming 已提交
6377
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6378
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6379 6380

    Returns:
Y
Yibing Liu 已提交
6381
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6382 6383

    Raises:
Y
Yibing Liu 已提交
6384
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6385 6386 6387 6388 6389 6390 6391 6392 6393

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6394
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
6420
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
6449 6450
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6463 6464 6465
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6479 6480 6481 6482


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6483
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6484
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6485

G
guosheng 已提交
6486 6487 6488 6489
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6512
                         The length of :attr:paddings must be
G
guosheng 已提交
6513 6514 6515 6516 6517 6518 6519 6520 6521 6522
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6523

G
guosheng 已提交
6524 6525 6526 6527 6528 6529
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6530
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6531 6532 6533 6534 6535 6536 6537
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6538 6539


C
chengduo 已提交
6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6571 6572
		And
            pad_value = -1,
C
chengduo 已提交
6573

T
Tink_Y 已提交
6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6609
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6610 6611 6612 6613 6614 6615 6616 6617 6618
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6619 6620 6621 6622 6623 6624 6625
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
6626 6627
    called label-smoothing regularization (LSR).

6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
6651
                              be :math:`(1, class\_num)`.
6652 6653
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
6654
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6674
    smooth_label = helper.create_variable_for_type_inference(dtype)
6675 6676 6677 6678 6679 6680 6681
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6682 6683


W
wopeizl 已提交
6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6720 6721


J
jerrywgz 已提交
6722 6723 6724 6725 6726 6727
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6728 6729
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6746 6747 6748
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6749 6750 6751 6752 6753 6754
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6755
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6796 6797
        .. code-block:: python

W
whs 已提交
6798 6799 6800 6801
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6802
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6803 6804 6805 6806 6807 6808
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6809 6810


6811 6812 6813 6814
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6815
                 resample='BILINEAR',
6816 6817
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
6818
                 align_mode=1):
6819
    """
Q
qiaolongfei 已提交
6820
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6821

6822
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6823 6824 6825
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6826

6827
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6828

6829
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6830

6831 6832 6833 6834 6835 6836 6837 6838 6839 6840
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

T
tink2123 已提交
6841
    Align_corners and align_mode are optinal parameters,the calculation method 
6842 6843 6844 6845
    of interpolation can be selected by them.

    Example:

T
tink2123 已提交
6846
      For scale:
6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858
      
        if align_corners = True && out_size > 1 :

          scale_factor = (in_size-1.0)/(out_size-1.0)
        
        else:
          
          scale_factor = float(in_size/out_size)
        
      
      Nearest neighbor interpolation:
      
T
tink2123 已提交
6859
      if:
6860 6861 6862 6863 6864 6865 6866 6867
          align_corners = False

          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = \left \lfloor {H_{in} * scale_{}factor}} \right \rfloor
          W_out = \left \lfloor {W_{in} * scale_{}factor}} \right \rfloor

T
tink2123 已提交
6868
      else:
6869 6870 6871 6872 6873 6874 6875 6876 6877 6878
          align_corners = True

          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = round(H_{in} * scale_{factor})
          W_out = round(W_{in} * scale_{factor})

      Bilinear interpolation:

T
tink2123 已提交
6879
      if:
6880 6881 6882 6883 6884 6885 6886 6887 6888
          align_corners = False , align_mode = 0
          
          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:
          
          H_out = (H_{in}+0.5) * scale_{factor} - 0.5
          W_out = (W_{in}+0.5) * scale_{factor} - 0.5


T
tink2123 已提交
6889
      else:
6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904
       
          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = H_{in} * scale_{factor}
          W_out = W_{in} * scale_{factor}

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.



6905
    Args:
6906
        input (Variable): The input tensor of image resize layer,
6907 6908
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
6909
        out_shape(list|tuple|Variable|None): Output shape of image resize
6910 6911
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
6912
        scale(float|None): The multiplier for the input height or width.
6913 6914 6915
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
6916 6917
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
6918
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
6919
                       currently.
6920
                       Default: 'BILINEAR'
6921 6922 6923
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6924
                                :attr:`out_shape` and :attr:`scale` specifying
6925 6926 6927 6928 6929 6930 6931
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6932 6933
                                constructing stage.
                                Default: None
6934 6935 6936 6937
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
6938
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
6939 6940
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
6941 6942

    Returns:
Q
update  
qiaolongfei 已提交
6943 6944
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
6945

6946 6947 6948
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
6949
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
6950 6951 6952
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.
6953 6954
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
6955

6956 6957 6958
    Examples:
        .. code-block:: python

6959
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
6960
    """
6961 6962 6963 6964
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
6965 6966
    if resample not in resample_methods:
        raise ValueError(
6967
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
6968
        )
6969
    resample_type = resample_methods[resample]
6970 6971 6972 6973 6974 6975

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

6976
    if out_shape is None and scale is None:
6977
        raise ValueError("One of out_shape and scale must not be None.")
6978
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6979
    dtype = helper.input_dtype()
6980 6981 6982 6983

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6984 6985 6986
    out_h = 0
    out_w = 0
    inputs = {"X": input}
6987
    if out_shape is not None:
6988 6989 6990 6991
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
6992
            inputs['OutSize'] = out_shape
6993 6994 6995 6996 6997 6998 6999 7000
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
7001 7002 7003 7004
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

7005 7006 7007 7008 7009
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
7010
    out = helper.create_variable_for_type_inference(dtype)
7011
    helper.append_op(
7012
        type='{}_interp'.format(resample_type),
7013
        inputs=inputs,
7014
        outputs={"Out": out},
7015 7016 7017 7018 7019 7020 7021
        attrs={
            "out_h": out_h,
            "out_w": out_w,
            "interp_method": resample_type,
            "align_corners": align_corners,
            "align_mode": align_mode
        })
7022
    return out
F
stash  
fengjiayi 已提交
7023 7024


7025
@templatedoc(op_type="bilinear_interp")
7026 7027 7028 7029
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7030 7031
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
7032
                    align_mode=1):
7033
    """
7034 7035
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
7036 7037
    in priority order.

7038 7039 7040 7041
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
7042 7043
    again in the other direction.

7044
    For details of bilinear interpolation, please refer to Wikipedia:
7045
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
7046

T
tink2123 已提交
7047
    Align_corners and align_mode are optinal parameters,the calculation 
7048 7049 7050
    method of interpolation can be selected by them.


T
tink2123 已提交
7051
    Align_corners and align_mode are optinal parameters,the calculation method 
7052 7053 7054 7055
    of interpolation can be selected by them.

    Example:

T
tink2123 已提交
7056
      For scale:
7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067
      
        if align_corners = True && out_size > 1 :

          scale_factor = (in_size-1.0)/(out_size-1.0)
        
        else:
          
          scale_factor = float(in_size/out_size)     

    Bilinear interpolation:

T
tink2123 已提交
7068
      if:
7069 7070 7071 7072 7073 7074 7075 7076 7077
          align_corners = False , align_mode = 0
          
          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:
          
          H_out = (H_{in}+0.5) * scale_{factor} - 0.5
          W_out = (W_{in}+0.5) * scale_{factor} - 0.5


T
tink2123 已提交
7078 7079
      else:

7080 7081 7082 7083 7084 7085 7086 7087
          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = H_{in} * scale_{factor}
          W_out = W_{in} * scale_{factor}



Y
yuyang18 已提交
7088 7089 7090 7091
    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
7092

Y
yuyang18 已提交
7093 7094 7095 7096 7097
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
7098 7099 7100
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7101
                                :attr:`out_shape` and :attr:`scale` specifying
7102 7103 7104 7105 7106 7107 7108
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7109 7110
                                constructing stage.
                                Default: None
7111 7112
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
7113 7114 7115

    Returns:
        ${out_comment}.
7116 7117 7118 7119 7120

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
7121 7122
    """

7123 7124
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
7125 7126


7127
@templatedoc(op_type="nearest_interp")
7128 7129 7130 7131
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7132 7133
                   actual_shape=None,
                   align_corners=True):
7134
    """
7135
    Resize input by performing nearest neighbor interpolation in both the
7136 7137
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
7138 7139
    out_shape and scale in priority order.

7140 7141
    Example:

T
tink2123 已提交
7142
      For scale:
7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154
      
        if align_corners = True && out_size > 1 :

          scale_factor = (in_size-1.0)/(out_size-1.0)
        
        else:
          
          scale_factor = float(in_size/out_size)
        
      
      Nearest neighbor interpolation:
      
T
tink2123 已提交
7155
      if:
7156 7157 7158 7159 7160 7161 7162 7163
          align_corners = False

          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = \left \lfloor {H_{in} * scale_{}factor}} \right \rfloor
          W_out = \left \lfloor {W_{in} * scale_{}factor}} \right \rfloor

T
tink2123 已提交
7164
      else:
7165 7166 7167 7168 7169 7170 7171 7172 7173
          align_corners = True

          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = round(H_{in} * scale_{factor})
          W_out = round(W_{in} * scale_{factor})


7174
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7175
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7176 7177 7178 7179 7180

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
7181

Y
yuyang18 已提交
7182 7183 7184 7185 7186
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
7187 7188 7189
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7190
                                :attr:`out_shape` and :attr:`scale` specifying
7191 7192 7193 7194 7195 7196 7197
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7198 7199
                                constructing stage.
                                Default: None
7200
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
7201 7202 7203

    Returns:
        ${out_comment}.
7204 7205 7206 7207 7208

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
7209 7210
    """

7211 7212
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
7213 7214 7215 7216


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
7217 7218 7219
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7220 7221 7222 7223 7224 7225 7226
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
7227
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7228

7229
    Returns:
Q
update  
qiaolongfei 已提交
7230
        Variable: The output is a 4-D tensor of the shape
7231
        (num_batches, channls, out_h, out_w).
7232 7233 7234 7235 7236 7237 7238 7239 7240 7241
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7242 7243 7244
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7245 7246 7247
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
7248 7249
def gather(input, index):
    """
Q
qiaolongfei 已提交
7250 7251
    **Gather Layer**

7252
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7253 7254 7255 7256
    of X indexed by `index` and concatenate them together.

    .. math::

7257
        Out = X[Index]
W
whs 已提交
7258 7259 7260 7261 7262 7263 7264


    .. code-block:: text


                Given:

7265 7266
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7267 7268 7269 7270 7271 7272 7273 7274 7275 7276
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
7277
        input (Variable): The source input with rank>=1.
W
whs 已提交
7278 7279 7280 7281 7282 7283
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7284

W
whs 已提交
7285 7286 7287 7288 7289 7290
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7291
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7292 7293 7294 7295 7296 7297 7298 7299
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7331
    out = helper.create_variable_for_type_inference(dtype)
7332 7333 7334 7335 7336 7337 7338 7339 7340
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
7341 7342 7343 7344 7345 7346 7347 7348 7349
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
7350

Q
Qingsheng Li 已提交
7351
    Given the following input:
H
haowang101779990 已提交
7352

Q
Qingsheng Li 已提交
7353
    .. code-block:: text
H
haowang101779990 已提交
7354

Q
Qingsheng Li 已提交
7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
7367

Q
Qingsheng Li 已提交
7368
    .. code-block:: text
H
haowang101779990 已提交
7369

Q
Qingsheng Li 已提交
7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
7385
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
7386 7387 7388 7389 7390 7391 7392 7393 7394 7395

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7396
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
7397 7398 7399 7400 7401 7402 7403 7404 7405
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
7419

7420 7421 7422
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
7423
    """
F
stash  
fengjiayi 已提交
7424
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
7425
    dtype = x.dtype
X
Xin Pan 已提交
7426
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
7427
    if seed is None:
7428
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
7429
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
7430
    if isinstance(seed, int):
F
fengjiayi 已提交
7431 7432 7433 7434 7435
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
7436 7437 7438 7439
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
7440
        inputs={"X": x,
F
stash  
fengjiayi 已提交
7441 7442
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
7443 7444
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
7445
    return out
W
whs 已提交
7446 7447


7448
def log(x, name=None):
W
wanghaoshuang 已提交
7449 7450 7451 7452 7453
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

7454
        Out = \\ln(x)
W
wanghaoshuang 已提交
7455 7456

    Args:
7457
        x (Variable): Input tensor.
7458 7459
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7460 7461 7462 7463 7464 7465 7466 7467

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

7468
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
7469 7470
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
7471
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7472
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
7473
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
7474 7475 7476
    return out


7477
def relu(x, name=None):
W
wanghaoshuang 已提交
7478 7479
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
7480
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
7481 7482 7483 7484
    the tensor elementwise.

    .. math::

7485
        Out = \\max(0, x)
W
wanghaoshuang 已提交
7486 7487

    Args:
7488
        x (Variable): The input tensor.
7489 7490
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7491 7492 7493 7494 7495 7496 7497 7498

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

7499
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
7500 7501
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
7502
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7503
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
7504 7505
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
7506
    return out
7507 7508


C
chengduo 已提交
7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
7550 7551 7552
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
7553 7554 7555 7556
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
7557
    .. math::
7558

H
haowang101779990 已提交
7559
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
7560

7561
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
7562 7563 7564 7565 7566
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
7567
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
7568
                           Its shape should be the same as input.
7569
        num_classes (int): The possible number of labels.
W
whs 已提交
7570 7571

    Returns:
M
minqiyang 已提交
7572 7573
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
7574
                     Three variables:
M
minqiyang 已提交
7575

H
haowang101779990 已提交
7576 7577 7578
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
7579 7580 7581 7582

    Examples:

        .. code-block:: python
7583

W
whs 已提交
7584 7585 7586 7587
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7588 7589 7590
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
7591 7592
    helper.append_op(
        type="mean_iou",
W
whs 已提交
7593 7594
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
7595
        outputs={
W
whs 已提交
7596 7597 7598
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
7599 7600 7601
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
7670
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
7671 7672 7673 7674 7675

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
7676
            isinstance(shape, Variable)):
7677 7678 7679 7680 7681
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
7682
    out = helper.create_variable_for_type_inference(x.dtype)
7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
7700 7701


W
whs 已提交
7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
7719

W
whs 已提交
7720
              out_shape = [2, 3, 5, 5]
7721

W
whs 已提交
7722
          Step 1:
7723

W
whs 已提交
7724 7725 7726
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
7727

W
whs 已提交
7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
7773
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
7774
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
7787

W
whs 已提交
7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
7799
            isinstance(out_shape, Variable)):
W
whs 已提交
7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


7821 7822
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
7823

7824 7825
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
7826
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
7827 7828 7829
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
7830

7831 7832
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
7833

H
haowang101779990 已提交
7834 7835
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
7836 7837
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
7838

H
haowang101779990 已提交
7839 7840 7841 7842 7843 7844 7845 7846
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
7847 7848 7849

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
7884
    out = helper.create_variable_for_type_inference("float32")
7885 7886 7887 7888 7889 7890 7891 7892

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
7893 7894


M
minqiyang 已提交
7895 7896
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
7897
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
7898
    which compares left score and right score passed in.
M
minqiyang 已提交
7899
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
7900 7901 7902

    .. math::

H
haowang101779990 已提交
7903
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
7904 7905

    Args:
M
minqiyang 已提交
7906
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
7907 7908
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
7909
       margin (float): Indicates the given margin.
M
minqiyang 已提交
7910 7911
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
7912

M
minqiyang 已提交
7913
    Returns:
M
minqiyang 已提交
7914
       Variable: The ranking loss.
H
haowang101779990 已提交
7915

M
minqiyang 已提交
7916
    Raises:
M
minqiyang 已提交
7917
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
7918

M
minqiyang 已提交
7919
    Examples:
H
haowang101779990 已提交
7920

M
minqiyang 已提交
7921
        .. code-block:: python
H
haowang101779990 已提交
7922

M
minqiyang 已提交
7923 7924 7925 7926 7927
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
7928
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
7929 7930 7931 7932 7933 7934
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
7935 7936
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
7960
        .. code-block:: text
W
whs 已提交
7961

T
Tink_Y 已提交
7962
	      Given that X is a channel of image from input:
M
minqiyang 已提交
7963

T
Tink_Y 已提交
7964 7965
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
7966

T
Tink_Y 已提交
7967
	      Case 0:
M
minqiyang 已提交
7968

T
Tink_Y 已提交
7969 7970 7971
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
7972

T
Tink_Y 已提交
7973 7974 7975
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
7976

T
Tink_Y 已提交
7977
	      Case 1:
M
minqiyang 已提交
7978

T
Tink_Y 已提交
7979 7980
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
7981

T
Tink_Y 已提交
7982 7983 7984
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
7985

T
Tink_Y 已提交
7986
	      Case 2:
M
minqiyang 已提交
7987

T
Tink_Y 已提交
7988 7989
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
7990

T
Tink_Y 已提交
7991 7992 7993
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
7994 7995


W
whs 已提交
7996 7997
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
7998
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8022
    out = helper.create_variable_for_type_inference(dtype)
8023 8024 8025 8026 8027 8028 8029 8030 8031
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8032
    helper.append_op(
8033
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8034 8035 8036 8037

    return out


8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8050 8051 8052 8053 8054

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8055 8056
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
8057 8058
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
8059
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8080 8081 8082 8083 8084

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8085 8086
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
8087 8088
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
8089
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8110 8111 8112 8113 8114

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8115 8116
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
8117 8118
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
8119
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8141 8142 8143 8144 8145

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8146
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
8147
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
8148 8149
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8150
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8173 8174 8175 8176 8177

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8178 8179
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
8180 8181
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
8182
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8204 8205 8206 8207 8208

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8209 8210
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
8211 8212
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8213
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8214 8215 8216 8217 8218 8219 8220 8221
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8222 8223 8224 8225
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8226 8227
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8228 8229 8230

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
8231
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
8232
          weight (alpha).
J
jerrywgz 已提交
8233
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
8234 8235 8236
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
8237
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
8238
          will be named automatically.
J
jerrywgz 已提交
8239 8240 8241 8242 8243 8244 8245 8246

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
8247
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
8261
        attr=helper.param_attr,
J
jerrywgz 已提交
8262 8263 8264 8265
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
8266
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8267 8268 8269 8270 8271 8272 8273 8274 8275
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


8276 8277 8278 8279 8280 8281 8282 8283 8284 8285
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8286
    Returns:
8287
        output(${out_type}): ${out_comment}
8288 8289 8290

    Examples:

8291
    .. code-block:: python
8292

H
haowang101779990 已提交
8293 8294
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
8295 8296
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
8297
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8316
    Returns:
8317
        output(${out_type}): ${out_comment}
8318 8319 8320 8321 8322

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8323 8324
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
8325 8326
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
8327
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8345
    Returns:
8346
        output(${out_type}): ${out_comment}
8347 8348 8349 8350 8351

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8352 8353
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.soft_relu(x, threshold=20.0)
8354 8355
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
8356
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8357 8358 8359 8360 8361 8362 8363 8364
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


8365 8366 8367 8368
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
8369

H
haowang101779990 已提交
8370
    For Example:
M
minqiyang 已提交
8371

H
haowang101779990 已提交
8372
    .. code-block:: text
8373

H
haowang101779990 已提交
8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
8395 8396 8397

    Args:
        x (Variable): A tensor of rank >= axis.
8398 8399
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
8400 8401 8402 8403 8404 8405 8406 8407
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
8408 8409 8410
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
8411 8412 8413 8414
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
8415
        ValueError: If axis is not in range [0, rank(x)].
8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
8432 8433
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
8434
    helper.append_op(
8435
        type='flatten2',
8436
        inputs={"X": x},
8437 8438
        outputs={'Out': out,
                 'XShape': x_shape},
8439 8440
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
8441 8442


C
chenweihang 已提交
8443
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
8444
    """
C
chenweihang 已提交
8445
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
8446
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
8447 8448
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
8449

H
haowang101779990 已提交
8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
8467 8468

    Args:
C
chenweihang 已提交
8469 8470 8471
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
8483 8484
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
8485 8486 8487 8488 8489 8490
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
8491
    return out
8492

8493

S
sneaxiy 已提交
8494 8495 8496 8497 8498 8499 8500 8501 8502
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
8503

S
sneaxiy 已提交
8504
    .. math::
8505

S
sneaxiy 已提交
8506 8507 8508
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
8509
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
8510 8511 8512 8513
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
8514 8515 8516
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
8517 8518
    Returns:
        Variable: The output sequence mask.
8519

S
sneaxiy 已提交
8520 8521
    """

Q
qingqing01 已提交
8522
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
8523
    if name is None:
X
Xin Pan 已提交
8524
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
8525
    else:
X
Xin Pan 已提交
8526
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
8527

Q
qingqing01 已提交
8528 8529 8530
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
8531 8532
        outputs={'Y': out},
        attrs={
8533
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
8534 8535 8536
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
8537 8538


X
Xin Pan 已提交
8539
def stack(x, axis=0):
S
sneaxiy 已提交
8540 8541 8542 8543
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
8544 8545 8546 8547 8548 8549 8550

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
8551
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
8552
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
8553

C
chengduozh 已提交
8554 8555
    For Example:

C
chengduozh 已提交
8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
8594
    Args:
8595
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
8596
        axis (int|None): The axis along which all inputs are stacked.
8597

S
sneaxiy 已提交
8598 8599
    Returns:
        Variable: The stacked variable.
8600

S
sneaxiy 已提交
8601 8602
    """

X
Xin Pan 已提交
8603 8604 8605 8606 8607 8608
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
8609
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
8610
    helper.append_op(
S
sneaxiy 已提交
8611 8612
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
8613

X
Xin Pan 已提交
8614
    return out
D
dzhwinter 已提交
8615 8616 8617 8618 8619 8620 8621


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
8622

D
dzhwinter 已提交
8623 8624 8625
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
8626
    raised.
D
dzhwinter 已提交
8627 8628

    Args:
M
minqiyang 已提交
8629
        x (Variable): Input variable.
D
dzhwinter 已提交
8630 8631
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
8632

D
dzhwinter 已提交
8633 8634
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
8635

D
dzhwinter 已提交
8636 8637 8638 8639 8640 8641 8642 8643 8644 8645
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
8646
    for _ in range(num):
X
Xin Pan 已提交
8647
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
8648 8649 8650 8651 8652 8653 8654 8655

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
8668

W
whs 已提交
8669 8670 8671 8672
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
8673

W
whs 已提交
8674
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
8675

W
whs 已提交
8676
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
8677

W
whs 已提交
8678 8679 8680 8681
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
8682

W
whs 已提交
8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8699
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8700 8701 8702 8703 8704 8705
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
8706 8707


G
fix  
gongweibao 已提交
8708 8709 8710
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
8711
@templatedoc()
G
fix  
gongweibao 已提交
8712 8713 8714 8715 8716 8717 8718 8719 8720
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
8721
    ${comment}
G
fix  
gongweibao 已提交
8722 8723

    Args:
G
gongweibao 已提交
8724 8725 8726
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8727
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
8728 8729 8730
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8731 8732
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
8733
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8734

8735 8736 8737 8738 8739
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
8740 8741 8742
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
8743
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
8760 8761


G
gongweibao 已提交
8762
@templatedoc()
X
Xin Pan 已提交
8763
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8764
    """
G
gongweibao 已提交
8765
    ${comment}
G
fix  
gongweibao 已提交
8766 8767

    Args:
G
gongweibao 已提交
8768 8769 8770 8771
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8772 8773 8774
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
8775
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8776

8777 8778 8779 8780
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
8781 8782 8783
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
8784
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8785 8786 8787 8788 8789 8790 8791 8792 8793 8794
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
8795
            'use_mkldnn': False
G
fix  
gongweibao 已提交
8796 8797 8798 8799 8800
        })

    return out


G
gongweibao 已提交
8801
@templatedoc()
G
fix  
gongweibao 已提交
8802
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8803
    """
G
gongweibao 已提交
8804
    ${comment}
G
fix  
gongweibao 已提交
8805 8806

    Args:
G
gongweibao 已提交
8807 8808 8809 8810
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
8811
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8812 8813

    Returns:
G
gongweibao 已提交
8814
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8815

8816 8817 8818 8819 8820 8821 8822 8823 8824 8825
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
8826 8827 8828
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
8829
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
8841
@templatedoc()
G
fix  
gongweibao 已提交
8842 8843 8844 8845 8846 8847 8848 8849 8850
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
8851
    ${comment}
G
fix  
gongweibao 已提交
8852 8853

    Args:
G
gongweibao 已提交
8854 8855
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
8856
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8857 8858 8859 8860
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8861
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8862 8863

    Returns:
G
gongweibao 已提交
8864
        out (Variable): ${out_comment}
8865 8866 8867 8868 8869 8870 8871 8872

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
8873 8874 8875
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
8876
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
8895
@templatedoc()
X
Xin Pan 已提交
8896
def sum(x):
G
fix  
gongweibao 已提交
8897
    """
G
gongweibao 已提交
8898
    ${comment}
G
fix  
gongweibao 已提交
8899 8900

    Args:
G
gongweibao 已提交
8901
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
8902 8903

    Returns:
G
gongweibao 已提交
8904
        out (Variable): ${out_comment}
8905 8906 8907 8908 8909 8910

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
8911 8912 8913
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
8914 8915
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
8916 8917 8918 8919
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
8920
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
8921 8922 8923 8924

    return out


G
gongweibao 已提交
8925
@templatedoc()
G
fix  
gongweibao 已提交
8926 8927
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
8928
    ${comment}
G
fix  
gongweibao 已提交
8929 8930

    Args:
G
gongweibao 已提交
8931 8932 8933 8934
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
8935 8936

    Returns:
G
gongweibao 已提交
8937
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8938

8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
8950 8951 8952
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
8953 8954
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
8968 8969
    **Shape Layer**

C
fix doc  
chengduozh 已提交
8970
    Get the shape of the input.
G
fix  
gongweibao 已提交
8971 8972

    Args:
C
chengduozh 已提交
8973
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
8974 8975

    Returns:
C
fix doc  
chengduozh 已提交
8976
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
8977

8978 8979 8980 8981 8982 8983
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
8984 8985 8986
    """

    helper = LayerHelper('shape', **locals())
8987
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
8988
    helper.append_op(
G
fix  
gongweibao 已提交
8989
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
8990 8991

    return out
G
merge  
gongweibao 已提交
8992 8993


S
sneaxiy 已提交
8994 8995 8996 8997 8998 8999 9000 9001
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
9002 9003
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
9004
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9005 9006 9007
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9008

S
sneaxiy 已提交
9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
9020
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
9021 9022 9023 9024 9025 9026 9027 9028
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
9029
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
9030
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
9031 9032 9033 9034 9035 9036

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
9037
    if name is None:
X
Xin Pan 已提交
9038
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9039 9040 9041
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9042 9043 9044 9045 9046 9047 9048 9049 9050 9051

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
9052
    return helper.append_activation(out)
S
sneaxiy 已提交
9053 9054


X
Xin Pan 已提交
9055
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9056 9057 9058
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
9059
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9060 9061 9062
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
9063
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9064 9065 9066
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
9067
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9068 9069 9070
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
9071
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9072 9073 9074
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
9075
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9076 9077 9078
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
9079
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
9091 9092
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
9093
        ])
M
minqiyang 已提交
9094 9095


9096
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
9097 9098
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
9099 9100
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
9101 9102 9103

    if out is None:
        if name is None:
X
Xin Pan 已提交
9104
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
9120
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9132 9133 9134 9135 9136 9137 9138 9139 9140

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
9141 9142 9143 9144 9145 9146 9147
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9148
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9160 9161 9162 9163 9164 9165 9166 9167 9168

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
9169 9170 9171 9172 9173 9174 9175
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9176
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9188 9189 9190 9191 9192 9193 9194 9195 9196

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
9197 9198 9199 9200 9201 9202 9203
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9204
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
9205 9206 9207 9208 9209 9210 9211 9212 9213 9214
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9215 9216 9217 9218 9219 9220 9221

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
9222 9223 9224 9225
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9241 9242 9243 9244 9245 9246 9247

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
9248 9249 9250 9251 9252
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
9253 9254 9255 9256
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9280 9281 9282 9283 9284 9285 9286

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
9287 9288 9289 9290 9291
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
9292 9293 9294 9295
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9296 9297 9298 9299 9300 9301 9302 9303

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
9322
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9323 9324 9325 9326 9327 9328 9329 9330 9331 9332
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
9375
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9376 9377 9378 9379 9380 9381 9382 9383 9384
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
9385 9386
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
9387 9388 9389 9390 9391 9392
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
9393 9394 9395
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
9396 9397
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
9398 9399 9400 9401 9402 9403
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
9404
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
9405
        name(basestring|None): Name of the output.
9406 9407
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
9408 9409 9410

    Returns:
        out(${out_type}): ${out_comment}
9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
9425 9426 9427 9428 9429
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
9430
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9431 9432 9433 9434 9435 9436 9437 9438
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
9439 9440
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
9461
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9462 9463 9464 9465 9466 9467 9468 9469 9470 9471
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
9472 9473


J
JiabinYang 已提交
9474
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
9475
    """
J
JiabinYang 已提交
9476
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
9477 9478 9479

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
9480
    The attr blocksize indicates the input block size.
9481 9482

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
9483
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
9484 9485

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
9486
    (but keeping all data)
J
JiabinYang 已提交
9487

J
JiabinYang 已提交
9488
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
9489
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
9490 9491 9492 9493 9494
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
9495
    Args:
J
JiabinYang 已提交
9496
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
9497
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
9498 9499

    Returns:
J
JiabinYang 已提交
9500
        Variable: The output LoDtensor.
J
JiabinYang 已提交
9501 9502

    Raises:
J
JiabinYang 已提交
9503
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
9504 9505 9506 9507 9508 9509

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
9510
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
9511
                x=data, blocksize=2)
J
JiabinYang 已提交
9512 9513
    """

J
JiabinYang 已提交
9514
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
9515

J
JiabinYang 已提交
9516 9517
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
9518 9519

    if name is None:
J
JiabinYang 已提交
9520 9521
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
9522 9523 9524 9525 9526
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
9527
        type="space_to_depth",
J
JiabinYang 已提交
9528
        inputs={"X": x},
J
JiabinYang 已提交
9529
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
9530
        outputs={"Out": out})
J
JiabinYang 已提交
9531 9532
    return out

J
JiabinYang 已提交
9533

S
sneaxiy 已提交
9534 9535
@templatedoc()
def sequence_reverse(x, name=None):
9536
    """
S
sneaxiy 已提交
9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
9548
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9549 9550 9551 9552 9553 9554 9555 9556 9557 9558
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
9559 9560


9561 9562 9563 9564 9565 9566
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
9567

9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
9587
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
9600 9601


B
barrierye 已提交
9602
def similarity_focus(input, axis, indexes, name=None):
9603
    """
B
barrierye 已提交
9604
    SimilarityFocus Operator
B
barrierye 已提交
9605 9606

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
9607

9608 9609 9610
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
9611
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
9612 9613 9614 9615 9616 9617 9618
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
9619
       each index.
B
barrierye 已提交
9620 9621 9622 9623
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
9673
    Args:
9674
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
9675
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
9676
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
9677
            1, 2 or 3.
B
barrierye 已提交
9678
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
9679 9680

    Returns:
H
haowang101779990 已提交
9681 9682
        Variable: A tensor variable with the same shape and same type \
                  as the input.
9683

B
barrierye 已提交
9684 9685
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
9686

B
barrierye 已提交
9687
            data = fluid.layers.data(
B
barrierye 已提交
9688 9689
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
H
haowang101779990 已提交
9690

B
barrierye 已提交
9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
9703 9704 9705 9706 9707
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
9708 9709 9710 9711 9712 9713 9714
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
9715 9716


M
minqiyang 已提交
9717 9718
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
9719 9720
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
9721 9722
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
9761
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
9762
        name (str, default None): The name of this layer.
M
minqiyang 已提交
9763 9764 9765 9766 9767 9768

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
9769

M
minqiyang 已提交
9770 9771 9772
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
9773 9774
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
9775 9776
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
9777 9778 9779 9780 9781 9782 9783
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
9784 9785


D
dengkaipeng 已提交
9786
@templatedoc()
9787 9788
def grid_sampler(x, grid, name=None):
    """
9789
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
9790
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
9791 9792 9793 9794
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
9795
    interpolation value of 4 nearest corner points.
9796

H
haowang101779990 已提交
9797
    .. code-block:: text
9798

H
haowang101779990 已提交
9799 9800
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
9801

H
haowang101779990 已提交
9802 9803
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
9804

H
haowang101779990 已提交
9805 9806 9807
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
9808

H
haowang101779990 已提交
9809 9810 9811 9812 9813 9814 9815 9816 9817
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
9818

H
haowang101779990 已提交
9819 9820 9821 9822
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
9823

H
haowang101779990 已提交
9824 9825 9826 9827
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
9828

H
haowang101779990 已提交
9829 9830 9831 9832
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
9833

H
haowang101779990 已提交
9834 9835
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
9836 9837

    Args:
9838 9839 9840
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
9841 9842

    Returns:
H
haowang101779990 已提交
9843
        Variable: Output of shape [N, C, H, W] data samples input X
9844 9845
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
9846 9847 9848 9849 9850 9851 9852 9853
    Examples:

        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
            out = fluid.layers.grid_sampler(x=x, grid=grid)
9854

D
dengkaipeng 已提交
9855 9856 9857 9858 9859 9860 9861 9862 9863
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

9864
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
9865 9866
    ipts = {'X': x, 'Grid': grid}

9867
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
9868 9869 9870
    return out


G
gmcather 已提交
9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
9937
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
9938 9939 9940 9941 9942 9943 9944
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
H
heqiaozhi 已提交
9945

H
heqiaozhi 已提交
9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
9960 9961 9962 9963
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
9964
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
9965 9966
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
9967
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
9968 9969

    .. math::
H
haowang101779990 已提交
9970 9971 9972
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
9973 9974

    Where:
H
haowang101779990 已提交
9975 9976
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
H
haowang101779990 已提交
9991

G
gmcather 已提交
9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
10008 10009 10010 10011 10012 10013 10014 10015 10016 10017


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
10018
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
10019

Q
Qiao Longfei 已提交
10020
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
10021 10022 10023
    For example:

    .. math::
H
haowang101779990 已提交
10024
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
10025

Q
Qiao Longfei 已提交
10026
    In this formula:
10027 10028
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
10029
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
10030
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
10031 10032 10033
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
10034 10035
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
10036 10037 10038
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
10039
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
10040
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
10041
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
10042 10043 10044 10045
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
10046
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
10047 10048 10049 10050

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
10051
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
10052 10053
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
10054
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
10055 10056 10057 10058

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
10059
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
10100 10101


S
shippingwang 已提交
10102
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
10103 10104
    """
    **Shuffle Channel Operator**
10105

S
shippingwang 已提交
10106 10107 10108 10109 10110 10111
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
10112
    
S
shippingwang 已提交
10113
    .. code-block:: text
10114

S
shippingwang 已提交
10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
10143
    Args: 
S
shippingwang 已提交
10144 10145
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
10146 10147

    Returns:
S
shippingwang 已提交
10148 10149
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
10150 10151

    Raises:
S
shippingwang 已提交
10152
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
10153 10154 10155

    Examples:
        .. code-block:: python
10156 10157

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
10158
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
10159 10160 10161
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
10162
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
10163 10164 10165 10166 10167 10168 10169 10170 10171

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
10172
    return out
S
Add  
shippingwang 已提交
10173 10174


S
sneaxiy 已提交
10175
class PyFuncRegistry(object):
S
sneaxiy 已提交
10176 10177 10178
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
10179
        if func is None or not callable(func):
S
sneaxiy 已提交
10180 10181 10182
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
10183
        # find named args using reflection
S
sneaxiy 已提交
10184 10185 10186 10187 10188 10189 10190
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
10191 10192 10193
        '''
        Why record self here?

M
minqiyang 已提交
10194 10195
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
10196
           to find the registered function corresponding
M
minqiyang 已提交
10197
           to :code:`idx`.
S
sneaxiy 已提交
10198

M
minqiyang 已提交
10199 10200
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
10201
           whose reference count is 1 would cause
M
minqiyang 已提交
10202
           segmentation fault error in C++ side.
S
sneaxiy 已提交
10203 10204
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
10205
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
10220 10221 10222 10223 10224 10225 10226 10227 10228
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
10229

S
sneaxiy 已提交
10230 10231
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
10232 10233

        ret = []
S
sneaxiy 已提交
10234 10235 10236
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
10237 10238
                continue

S
sneaxiy 已提交
10239 10240
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
10241

S
sneaxiy 已提交
10242 10243 10244
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
10245

S
sneaxiy 已提交
10246
        return tuple(ret)
S
sneaxiy 已提交
10247 10248


S
sneaxiy 已提交
10249 10250 10251 10252
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
10253

S
sneaxiy 已提交
10254 10255 10256 10257 10258 10259 10260 10261
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
10262
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
10263

S
sneaxiy 已提交
10264 10265
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
10266 10267 10268 10269
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
10270
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
10271
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
10272 10273
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
10274 10275 10276 10277 10278
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
10279
            should create :code:`out` beforehand.
S
sneaxiy 已提交
10280
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
10281
                                       None means no backward. Default None.
S
sneaxiy 已提交
10282
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
10283
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
10284 10285
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
10286
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
10287 10288 10289

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
10290 10291

    Examples:
M
minqiyang 已提交
10292

S
sneaxiy 已提交
10293 10294 10295 10296 10297
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
10298
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
10299 10300
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
10301
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
10302 10303 10304
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
10305
        >>>
S
sneaxiy 已提交
10306 10307 10308 10309 10310
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
10311
        >>>     print(x)
S
sneaxiy 已提交
10312 10313 10314 10315 10316 10317
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
10318
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
10319 10320
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
10321 10322
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
10323 10324 10325 10326 10327 10328 10329 10330
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
10331
    """
S
sneaxiy 已提交
10332
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
10333 10334 10335
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
10336
        x = [x]
S
sneaxiy 已提交
10337 10338
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10339

S
sneaxiy 已提交
10340 10341 10342
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
10343
        out_list = [out]
S
sneaxiy 已提交
10344
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
10345
        out_list = out
S
sneaxiy 已提交
10346 10347 10348
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10349

S
sneaxiy 已提交
10350 10351
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
10352
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
10353 10354

    for each_out in out_list:
S
sneaxiy 已提交
10355 10356
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
10357 10358
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
10359

S
sneaxiy 已提交
10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
10375 10376 10377 10378

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
10379 10380
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
10381 10382 10383
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
10384
        })
S
sneaxiy 已提交
10385
    return out
S
sneaxiy 已提交
10386 10387 10388


# For debug usage
S
sneaxiy 已提交
10389 10390 10391 10392
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.psroi_pool(input=x, rois=rois, 490, 1.0, 7, 7)
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
10445

M
minqiyang 已提交
10446

M
minqiyang 已提交
10447
def huber_loss(input, label, delta):
10448
    """
M
minqiyang 已提交
10449 10450 10451
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
10452 10453 10454 10455

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
10456
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
10457 10458 10459 10460

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
10461
        huber\_loss = 0.5 * (label - input) * (label - input)
10462 10463 10464 10465 10466 10467 10468


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
10469
        delta (float): The parameter of huber loss, which controls
10470 10471 10472
                       the range of outliers

    Returns:
M
minqiyang 已提交
10473
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
10474 10475 10476 10477 10478

    Examples:
        .. code-block:: python

            predictions = fluid.layers.softmax(x)
M
minqiyang 已提交
10479
            loss = fluid.layers.huber_loss(input=predictions, label=label, 1.0)
10480
    """
M
minqiyang 已提交
10481
    helper = LayerHelper('huber_loss', **locals())
10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562


@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

          nodes_vector = layers.data(name='vectors', shape=[None, 10, 5], dtype='float32)
          # None for batch size, 10 for max_node_size of dataset, 5 for vector width
          edge_set = layers.data(name='edge_set', shape=[None, 10, 2], dtype='float32')
          # None for batch size, 10 for max_node_size of dataset, 2 for every edge has two nodes
          # edges must be directional
          out_vector = layers.tree_conv(nodes_vector, edge_set, 6, 1, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # the shape of output will be [None, 10, 6, 1],
          # None for batch size, 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = layers.reshape(out_vector, shape=[None, 10, 6])
          # After reshape, output tensor could be nodes_vector for next tree convolution
          out_vector_2 = layers.tree_conv(out_vector, edge_set, 3, 4, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # also output tensor could be pooling(the pooling in paper called global pooling)
          pooled = layers.reduce_max(out_vector, dims=2) # global pooling
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)