nn.py 410.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
21
import warnings
S
sneaxiy 已提交
22
import six
P
peizhilin 已提交
23
import os
S
sneaxiy 已提交
24
import inspect
Y
Yu Yang 已提交
25
from ..layer_helper import LayerHelper
26
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
27
from ..framework import Variable, OpProtoHolder, in_dygraph_mode
L
lujun 已提交
28
from ..dygraph import base
Y
yangyaming 已提交
29
from ..param_attr import ParamAttr
S
sneaxiy 已提交
30
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
31
from .tensor import concat, assign
32
from . import utils
F
fengjiayi 已提交
33
from .. import unique_name
34
from functools import reduce
35
from .. import core
L
lujun 已提交
36
from ..dygraph import layers
Y
Yu Yang 已提交
37 38

__all__ = [
X
Xin Pan 已提交
39 40 41 42 43 44 45 46 47 48
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
49
    'bpr_loss',
X
Xin Pan 已提交
50 51 52 53 54 55 56 57 58 59
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
60 61
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
62
    'batch_norm',
H
heqiaozhi 已提交
63
    'data_norm',
X
Xin Pan 已提交
64 65 66 67 68 69
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
70
    'sequence_unpad',
X
Xin Pan 已提交
71 72 73 74 75 76
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
Z
zhoukunsheng 已提交
77 78
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
79 80
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
81
    'sequence_slice',
X
Xin Pan 已提交
82 83 84 85 86 87 88 89 90 91 92 93
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
94
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
95 96 97 98 99
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
100
    'group_norm',
D
dengkaipeng 已提交
101
    'spectral_norm',
X
Xin Pan 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
115
    'roi_align',
X
Xin Pan 已提交
116 117 118 119
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
120
    'resize_nearest',
X
Xin Pan 已提交
121 122 123 124 125 126
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
127
    'selu',
X
Xin Pan 已提交
128 129 130
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
131
    'margin_rank_loss',
X
Xin Pan 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
Z
zhoukunsheng 已提交
158 159
    'elementwise_mod',
    'elementwise_floordiv',
X
Xin Pan 已提交
160 161 162 163 164 165 166
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
Z
zhoukunsheng 已提交
167
    'rank',
X
Xin Pan 已提交
168 169 170 171 172 173 174 175 176 177
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
178
    'space_to_depth',
W
whs 已提交
179
    'affine_grid',
S
sneaxiy 已提交
180
    'sequence_reverse',
181
    'affine_channel',
B
barrierye 已提交
182
    'similarity_focus',
M
minqiyang 已提交
183
    'hash',
D
dengkaipeng 已提交
184
    'grid_sampler',
G
gmcather 已提交
185 186
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
187
    'bilinear_tensor_product',
C
chengduo 已提交
188 189
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
190
    'lstm',
S
shippingwang 已提交
191
    'shuffle_channel',
192
    'temporal_shift',
S
sneaxiy 已提交
193
    'py_func',
194
    'psroi_pool',
H
heqiaozhi 已提交
195
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
196
    'huber_loss',
D
dengkaipeng 已提交
197
    'kldiv_loss',
Z
zhaozhehao 已提交
198
    'tree_conv',
C
ceci3 已提交
199
    'npair_loss',
R
ruri 已提交
200
    'pixel_shuffle',
201
    'fsp_matrix',
H
heqiaozhi 已提交
202
    'continuous_value_model',
Z
zhoukunsheng 已提交
203
    'where',
Z
zhoukunsheng 已提交
204
    'sign',
Y
Yu Yang 已提交
205 206
]

J
jerrywgz 已提交
207 208
kIgnoreIndex = -100

Y
Yu Yang 已提交
209 210 211 212 213 214 215

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
216
       is_test=False,
217
       name=None):
Y
Yu Yang 已提交
218
    """
219
    **Fully Connected Layer**
Y
Yu Yang 已提交
220

221
    This function creates a fully connected layer in the network. It can take
222
    one or multiple tensors as its inputs(input can be a list of Variable, see
A
Aurelius84 已提交
223
    Args in detail). It creates a variable called weights for each input tensor,
224 225 226 227
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
A
Aurelius84 已提交
228
    multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
229 230
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
231

232
    When the input is single tensor:
C
caoying03 已提交
233

234 235 236 237 238
    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:
239 240 241

    .. math::

242
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
243 244 245

    In the above equation:

246 247 248
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
249
    * :math:`b`: The bias parameter created by this layer (if needed).
250
    * :math:`Act`: The activation function.
C
caoying03 已提交
251
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
252

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
271
    Args:
R
ranqiu 已提交
272 273 274 275 276 277 278 279 280 281
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
282
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
283 284 285 286
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
287 288
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
289
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
290
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
291
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
292

293
    Returns:
F
fengjiayi 已提交
294
        Variable: The transformation result.
295 296

    Raises:
C
caoying03 已提交
297
        ValueError: If rank of the input tensor is less than 2.
298 299 300 301

    Examples:
        .. code-block:: python

302
          # when input is single tensor
F
fengjiayi 已提交
303
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
304
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
305 306 307 308 309

          # when input are multiple tensors
          data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
          data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
310
    """
C
caoying03 已提交
311
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
312 313 314 315

    dtype = helper.input_dtype()

    mul_results = []
316 317
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
318 319 320
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
321

Y
Yu Yang 已提交
322
        w = helper.create_parameter(
323
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
324
        tmp = helper.create_variable_for_type_inference(dtype)
325
        helper.append_op(
326 327 328
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
329
            outputs={"Out": tmp},
M
mozga-intel 已提交
330 331
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
332 333 334 335
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
336
    else:
X
Xin Pan 已提交
337
        pre_bias = helper.create_variable_for_type_inference(dtype)
338
        helper.append_op(
339 340 341
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
342
            attrs={"use_mkldnn": False})
343 344 345 346
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
347 348


349 350 351
def embedding(input,
              size,
              is_sparse=False,
352
              is_distributed=False,
353 354 355
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
356
    """
357 358
    **Embedding Layer**

359
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
360 361
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
362 363 364

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
365 366

    Args:
367 368 369 370 371
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
372
        is_distributed(bool): Whether to run lookup table from remote parameter server.
373 374
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
375
            with zeros whenever lookup encounters it in :attr:`input`. If
376
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
377 378
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
379
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
380

381 382 383
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
384

385 386
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
387

C
chengduoZH 已提交
388
          dict_size = len(dataset.ids)
389
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
390
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
391 392 393
    """

    helper = LayerHelper('embedding', **locals())
394
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
395 396
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
397 398
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
399
    tmp = helper.create_variable_for_type_inference(dtype)
400 401
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
402 403 404 405 406
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
407 408 409
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
410
            'remote_prefetch': remote_prefetch,
411 412
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
413 414 415
    return tmp


W
wopeizl 已提交
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
432

W
wopeizl 已提交
433 434 435 436 437 438 439 440 441 442 443
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
444

W
wopeizl 已提交
445 446 447 448
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
449

W
wopeizl 已提交
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
L
lujun 已提交
493
    assert in_dygraph_mode(
494
    ) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!"
W
wopeizl 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
538 539


P
phlrain 已提交
540 541 542 543 544 545
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
546
         dropout_prob=0.0,
P
phlrain 已提交
547 548 549 550 551
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
552
    """
P
phlrain 已提交
553
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
554 555

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
556
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
557 558
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
559
    .. math::
M
minqiyang 已提交
560 561 562 563 564 565 566

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
567
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
568 569 570 571

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
572 573

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
574 575 576 577 578 579
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
580 581 582
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
583
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
584

M
minqiyang 已提交
585
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
586 587 588 589 590
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
591
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
592 593 594 595 596
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
597
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
598 599
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
600 601
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
602 603 604 605 606 607
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
608
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
609

L
liuhongyu 已提交
610 611

    Returns:
M
minqiyang 已提交
612 613
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
614
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
615

H
haowang101779990 已提交
616 617 618 619
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
620
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
621 622
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
623
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
639
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
640 641 642 643 644 645
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
646 647 648
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
708 709 710 711 712 713 714 715 716 717
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
718
                  proj_activation='tanh',
719
                  dtype='float32',
X
xuezhong 已提交
720 721 722 723 724
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
725 726 727
    """
    **Dynamic LSTMP Layer**

728 729 730 731 732 733
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
734 735 736 737 738

    The formula is as follows:

    .. math::

739
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
740

741
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
742

743
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
744

745
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
746

747
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
748

749
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
750

751
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
752

Y
Yibing Liu 已提交
753 754 755 756 757 758
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
759
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
760
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
761
          bias vector).
Y
Yibing Liu 已提交
762 763 764
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
765
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
766
    * :math:`h`: The hidden state.
767
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
768 769
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
770
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
771
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
772
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
773 774
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
775 776 777 778

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
779

Y
Yibing Liu 已提交
780 781 782 783 784 785 786 787 788 789 790 791
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
792
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
793 794
                               hidden-hidden weight and projection weight.

795 796
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
797 798
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
799 800
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
801
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
802 803 804 805 806

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
807
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
808 809 810 811 812 813
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
814
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
815 816 817
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
818
                                - The shape is (1 x 7D).
C
chengduo 已提交
819 820 821 822 823

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
824 825 826 827 828 829 830 831 832
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
833
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
834 835
                              default "tanh".
        proj_activation(str): The activation for projection output.
836
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
837
                              default "tanh".
Y
Yibing Liu 已提交
838
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
839 840
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
841 842 843 844 845 846 847 848 849 850 851
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
852 853

    Returns:
854 855 856 857
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
858 859

    Examples:
860

Y
Yibing Liu 已提交
861 862
        .. code-block:: python

863 864 865 866
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
867
            hidden_dim, proj_dim = 512, 256
868
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
869
                                     act=None, bias_attr=None)
870 871 872
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
873 874 875 876
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
877
    """
878

L
lujun 已提交
879
    assert in_dygraph_mode(
880 881
    ) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!"

C
chengduo 已提交
882
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
883
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
884
    size = size // 4
Y
Yibing Liu 已提交
885 886 887 888 889 890 891 892 893 894
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
895 896 897 898 899 900
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
916

X
xuezhong 已提交
917 918 919 920 921
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
922 923
    helper.append_op(
        type='lstmp',
924
        inputs=inputs,
Y
Yibing Liu 已提交
925 926 927 928 929 930 931 932 933
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
934 935
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
936 937 938 939 940 941 942 943 944
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
945 946 947 948 949 950 951
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
952 953
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
954
    """
955
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
956

957 958 959
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
960

G
guosheng 已提交
961 962 963 964 965 966 967 968 969
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
970

G
guosheng 已提交
971
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
972

Q
Qiao Longfei 已提交
973 974 975

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
976 977 978 979 980 981 982 983 984 985 986 987
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
988
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
989 990
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
991 992 993 994
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
995
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
996 997

    Args:
998 999
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
1000
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
1001
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
1002 1003
            is the hidden size.
        size(int): The dimension of the gru cell.
1004
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
1005 1006
            hidden-hidden weight matrix. Note:

1007
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
1008
              :math:`D` is the hidden size.
1009
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
1010
              The first part are weights of the update gate and reset gate with
1011
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
1012
              candidate hidden state with shape :math:`(D \\times D)`.
1013 1014 1015 1016 1017

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1018
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1019
            the bias in the update gate, reset gate and candidate calculations.
1020 1021 1022
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
1023 1024
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1025
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
1026 1027 1028
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
1029
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
1030
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
1031 1032 1033 1034
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
1035 1036

    Returns:
G
guosheng 已提交
1037
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
1038
            and sequence length is the same with the input.
1039

G
guosheng 已提交
1040
    Examples:
1041

G
guosheng 已提交
1042 1043
        .. code-block:: python

1044 1045 1046 1047
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1048
            hidden_dim = 512
1049
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1050
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1051 1052
    """

L
lujun 已提交
1053
    assert in_dygraph_mode(
1054 1055
    ) is not True, "please use gru instead of dynamic_gru in dygraph mode!"

G
guosheng 已提交
1056 1057 1058 1059 1060 1061 1062
    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1063
    batch_size = input.shape[0]
G
guosheng 已提交
1064
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1065
    if h_0:
G
guosheng 已提交
1066
        assert h_0.shape == (
Y
Yancey 已提交
1067 1068 1069
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1070

X
Xin Pan 已提交
1071 1072 1073 1074
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1088 1089
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1090 1091 1092 1093
        })
    return hidden


Y
Yu Yang 已提交
1094 1095 1096
def gru_unit(input,
             hidden,
             size,
1097 1098
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1099
             activation='tanh',
Q
Qiao Longfei 已提交
1100 1101
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1102
    """
1103 1104 1105
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1106
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1107
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1108

1109 1110
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1111

1112
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1113

1114
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1115

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1131 1132

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1133 1134 1135
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1136 1137
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1138 1139
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1140 1141 1142
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1143 1144 1145

    Args:
        input (Variable): The fc transformed input value of current step.
1146
        hidden (Variable): The hidden value of gru unit from previous step.
1147
        size (integer): The input dimension value.
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1162
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1163
            the bias in the update gate, reset gate and candidate calculations.
1164 1165 1166
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1167 1168
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1169 1170 1171 1172
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1173

1174 1175 1176 1177 1178 1179
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1180

1181
             # assuming we have x_t_data and prev_hidden of size=10
1182
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1183 1184
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1197
    size = size // 3
Y
Yu Yang 已提交
1198 1199

    # create weight
1200 1201
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1202

X
Xin Pan 已提交
1203 1204 1205
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1206
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1207
    # create bias
1208
    if helper.bias_attr:
Y
Yu Yang 已提交
1209 1210 1211
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1212
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1213 1214 1215

    helper.append_op(
        type='gru_unit',
1216
        inputs=inputs,
Y
Yu Yang 已提交
1217 1218 1219 1220 1221 1222
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1223 1224
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1225 1226 1227 1228 1229
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1230
@templatedoc()
1231
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1232 1233 1234 1235 1236 1237 1238
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1239
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1240 1241 1242 1243
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1244 1245 1246
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1247

J
JesseyXujin 已提交
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
    Examples:
        .. code-block:: python

             import paddle.fluid as fluid
             emission = fluid.layers.data(name='emission', shape=[1000], dtype='float32')
             target = fluid.layers.data(name='target', shape=[1], dtype='int32')
             crf_cost = fluid.layers.linear_chain_crf(
                 input=emission,
                 label=target,
                 param_attr=fluid.ParamAttr(
                     name='crfw',
                     learning_rate=0.2))

Y
yuyang18 已提交
1261
    """
Y
Yu Yang 已提交
1262 1263 1264 1265 1266 1267
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1268 1269 1270 1271 1272 1273 1274 1275
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1291 1292 1293 1294
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1295

W
wopeizl 已提交
1296 1297
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1298

W
wopeizl 已提交
1299
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1300

W
wopeizl 已提交
1301
        label(${label_type}): ${label_comment}
1302

W
wopeizl 已提交
1303 1304
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1305

W
wopeizl 已提交
1306 1307
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1308

Y
Yibing Liu 已提交
1309 1310 1311 1312 1313 1314 1315
           images = fluid.layers.data(name='pixel', shape=[784], dtype='float32')
           label = fluid.layers.data(name='label', shape=[1], dtype='int32')
           hidden = fluid.layers.fc(input=images, size=2)
           crf = fluid.layers.linear_chain_crf(input=hidden, label=label, 
                     param_attr=fluid.ParamAttr(name="crfw"))
           crf_decode = fluid.layers.crf_decoding(input=hidden, 
                     param_attr=fluid.ParamAttr(name="crfw"))
W
wopeizl 已提交
1316 1317 1318 1319 1320 1321 1322 1323
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1324
                "Transition": transition,
W
wopeizl 已提交
1325 1326
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1327

W
wopeizl 已提交
1328
    return viterbi_path
Y
Yu Yang 已提交
1329 1330


Y
yi.wu 已提交
1331
@templatedoc()
F
fengjiayi 已提交
1332
def cos_sim(X, Y):
Y
Yu Yang 已提交
1333
    """
Y
yi.wu 已提交
1334 1335 1336
    ${comment}

    Args:
1337 1338
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1339

Y
yi.wu 已提交
1340
    Returns:
1341
        Variable: the output of cosine(X, Y).
L
lvmengsi 已提交
1342 1343 1344 1345 1346 1347 1348

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
            y = fluid.layers.data(name='y', shape=[1, 7], dtype='float32', append_batch_size=False)
            out = fluid.layers.cos_sim(x, y)
Y
Yu Yang 已提交
1349
    """
F
fengjiayi 已提交
1350
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1351 1352 1353
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1364 1365 1366 1367 1368
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1369
            dropout_implementation="downgrade_in_infer"):
1370 1371 1372 1373 1374
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1375
    training. The dropout operator randomly sets (according to the given dropout
1376 1377 1378
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1379 1380
    dropout op can be removed from the program to make the program more efficient.

1381
    Args:
1382 1383
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1384 1385 1386 1387 1388 1389 1390
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1391 1392
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1393
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1394 1395

                                           - train: out = input * mask
C
ceci3 已提交
1396
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1397 1398 1399

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1400
                                        2. upscale_in_train, upscale the outcome at training time
1401

H
haowang101779990 已提交
1402 1403
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1404

H
haowang101779990 已提交
1405 1406
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1407

M
minqiyang 已提交
1408

1409
    Returns:
1410
        Variable: A tensor variable is the shape with `x`.
1411 1412

    Examples:
1413

1414 1415
        .. code-block:: python

1416 1417
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1418 1419
    """

F
fengjiayi 已提交
1420
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1421 1422
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
Z
Zeng Jinle 已提交
1423
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
C
chengduo 已提交
1424 1425 1426 1427

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1428 1429 1430 1431 1432
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1433 1434 1435 1436
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1437 1438
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1439
        })
1440 1441 1442
    return out


J
jerrywgz 已提交
1443
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1444
    """
Y
Yibing Liu 已提交
1445 1446
    **Cross Entropy Layer**

1447 1448 1449
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1450 1451

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1452
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1453

Y
Yibing Liu 已提交
1454
        .. math::
Y
yangyaming 已提交
1455

Y
Yibing Liu 已提交
1456 1457 1458
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1459 1460
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1461 1462 1463 1464 1465

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1466
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1467 1468 1469
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1470 1471
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1472
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1473

Y
Yibing Liu 已提交
1474
    Args:
Y
yangyaming 已提交
1475
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1476 1477 1478 1479
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1480
        label (Variable|list): the ground truth which is a 2-D tensor. When
1481 1482 1483 1484
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1485
        soft_label (bool): a flag indicating whether to
1486
                                           interpretate the given labels as soft
1487
                                           labels. Default: `False`.
M
minqiyang 已提交
1488 1489
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1490
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1491 1492 1493 1494 1495

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1496 1497 1498
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1499

H
haowang101779990 已提交
1500 1501
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1502

H
haowang101779990 已提交
1503 1504
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1505 1506 1507 1508

    Examples:
        .. code-block:: python

L
lvmengsi 已提交
1509 1510 1511 1512
          classdim = 7
          x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
          label = fluid.layers.data(name='label', shape=[3, 1], dtype='float32', append_batch_size=False)
          predict = fluid.layers.fc(input=x, size=classdim, act='softmax')
Y
Yibing Liu 已提交
1513
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1514
    """
S
sneaxiy 已提交
1515 1516
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1517
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1518
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1519 1520 1521 1522 1523
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1524 1525
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1526 1527 1528
    return out


S
sneaxiy 已提交
1529 1530 1531 1532
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1533
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1534 1535 1536 1537 1538
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1539
                 'MatchX': [match_x],
S
sneaxiy 已提交
1540 1541 1542 1543 1544
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1545
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1546 1547 1548
    """
    Bayesian Personalized Ranking Loss Operator.

1549
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1550 1551 1552 1553 1554 1555
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1556 1557 1558 1559 1560 1561
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1562 1563
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1564 1565 1566
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1567 1568 1569
    Examples:
        .. code-block:: python

1570
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1571
    """
1572 1573 1574 1575 1576 1577

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1578
                'Label': [label]},
1579 1580 1581 1582
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1583
def square_error_cost(input, label):
Y
Yu Yang 已提交
1584
    """
1585 1586
    **Square error cost layer**

1587 1588
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1589

1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1603 1604
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1605 1606

    Returns:
G
guosheng 已提交
1607
        Variable: The tensor variable storing the element-wise squared error \
1608
                  difference of input and label.
1609 1610 1611 1612

    Examples:
        .. code-block:: python

R
ruri 已提交
1613 1614 1615
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
1616

Y
Yu Yang 已提交
1617
    """
F
fengjiayi 已提交
1618
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1619
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1620 1621 1622 1623 1624 1625
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1626
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1627
    helper.append_op(
F
fengjiayi 已提交
1628 1629
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1630 1631 1632
    return square_out


Y
yi.wu 已提交
1633
@templatedoc()
Y
Yu Yang 已提交
1634 1635 1636 1637
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1638
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1639
    """
Y
yi.wu 已提交
1640
    **Chunk Evaluator**
Y
yi.wu 已提交
1641

Y
yangyaming 已提交
1642
    This function computes and outputs the precision, recall and
1643
    F1-score of chunk detection.
Y
yi.wu 已提交
1644

M
minqiyang 已提交
1645
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1646
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1647 1648 1649 1650 1651 1652

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1653

Y
yi.wu 已提交
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1679

Y
yi.wu 已提交
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1704
    Args:
1705 1706 1707 1708 1709
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1710

Y
yi.wu 已提交
1711
    Returns:
Y
update  
yi.wu 已提交
1712 1713 1714
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1715

Y
yi.wu 已提交
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1728
    """
F
fengjiayi 已提交
1729
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1730 1731

    # prepare output
X
Xin Pan 已提交
1732 1733 1734 1735 1736 1737 1738
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1739 1740 1741 1742 1743 1744 1745 1746

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1747 1748 1749 1750
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1751 1752 1753
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1754 1755
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1756
        })
1757 1758
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1759 1760


1761
@templatedoc()
Y
Yu Yang 已提交
1762 1763 1764 1765 1766 1767 1768
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1769 1770
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1771 1772 1773 1774
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1775 1776 1777 1778 1779 1780 1781

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1795

1796 1797
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1798 1799
    """

L
lujun 已提交
1800
    assert not in_dygraph_mode(), (
1801
        "sequence layer is not supported in dygraph mode yet.")
Y
Yu Yang 已提交
1802 1803 1804 1805 1806
    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1807
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1818
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1819 1820 1821 1822 1823 1824
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1825
def sequence_softmax(input, use_cudnn=False, name=None):
1826 1827 1828
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1829
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1846 1847 1848
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1849

1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
L
lujun 已提交
1861
    assert not in_dygraph_mode(), (
1862
        "sequence layer is not supported in dygraph mode yet.")
1863 1864
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1865
    softmax_out = helper.create_variable_for_type_inference(dtype)
1866 1867 1868 1869 1870 1871 1872 1873
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


D
dengkaipeng 已提交
1874
def softmax(input, use_cudnn=False, name=None, axis=-1):
Q
qiaolongfei 已提交
1875
    """
1876
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1877
    has the same shape as the input.
Q
qiaolongfei 已提交
1878

D
dengkaipeng 已提交
1879
    The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
1880
    Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
1881
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
1882 1883 1884
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
1885
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
1886
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1887 1888 1889 1890 1891 1892 1893

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1894
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1895 1896 1897 1898 1899 1900 1901 1902

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
1903 1904
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
1905 1906
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
D
dengkaipeng 已提交
1907 1908 1909
        axis (int): The index of dimension to perform softmax calculations, it should
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
            input variable. Default: -1.
Q
qiaolongfei 已提交
1910 1911 1912 1913 1914 1915 1916 1917

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

J
JesseyXujin 已提交
1918 1919
             import paddle.fluid as fluid
             x = fluid.layers.data(name='x', shape=[2], dtype='float32')
Q
qiaolongfei 已提交
1920
             fc = fluid.layers.fc(input=x, size=10)
D
dengkaipeng 已提交
1921
             # perform softmax in the second dimension
D
dengkaipeng 已提交
1922
             softmax = fluid.layers.softmax(input=fc, axis=1)
D
dengkaipeng 已提交
1923 1924
             # perform softmax in the last dimension
             softmax = fluid.layers.softmax(input=fc, axis=-1)
Q
qiaolongfei 已提交
1925 1926

    """
1927 1928
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1929
    softmax_out = helper.create_variable_for_type_inference(dtype)
1930 1931 1932 1933
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
D
dengkaipeng 已提交
1934 1935
        attrs={"axis": axis,
               "use_cudnn": use_cudnn})
1936 1937 1938
    return softmax_out


Y
Yu Yang 已提交
1939 1940 1941
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1942 1943
           stride=1,
           padding=0,
1944
           dilation=1,
Y
Yu Yang 已提交
1945 1946 1947
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1948
           use_cudnn=True,
1949 1950
           act=None,
           name=None):
Y
Yu Yang 已提交
1951
    """
C
chengduoZH 已提交
1952
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1953 1954
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1955
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1956 1957 1958 1959 1960 1961 1962
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1963 1964 1965
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1966

1967
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1968

C
chengduoZH 已提交
1969 1970
    .. math::

C
refine  
chengduoZH 已提交
1971
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1972

T
tensor-tang 已提交
1973
    Where:
C
chengduoZH 已提交
1974

1975 1976 1977 1978 1979
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1980
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1981 1982 1983

    Example:

1984 1985
        - Input:

W
weixing02 已提交
1986
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1987

W
weixing02 已提交
1988
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1989

1990
        - Output:
T
tensor-tang 已提交
1991

W
weixing02 已提交
1992
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1993

C
chengduoZH 已提交
1994
        Where
1995 1996

        .. math::
C
chengduoZH 已提交
1997

W
weixing02 已提交
1998 1999
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
2000 2001

    Args:
2002
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
2003
        num_filters(int): The number of filter. It is as same as the output
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
2021 2022 2023 2024 2025
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
2026
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
2027 2028 2029 2030 2031
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2032 2033
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2034 2035
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
2036
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2037
            will be named automatically. Default: None
C
chengduoZH 已提交
2038 2039

    Returns:
G
guosheng 已提交
2040
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
2041 2042
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
2043
    Raises:
2044 2045
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
2046

C
chengduoZH 已提交
2047 2048 2049
    Examples:
        .. code-block:: python

2050 2051
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
2052 2053 2054
    """

    num_channels = input.shape[1]
C
chengduo 已提交
2055
    assert param_attr is not False, "param_attr should not be False here."
2056
    l_type = 'conv2d'
X
xzl 已提交
2057 2058
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
2059
        l_type = 'depthwise_conv2d'
2060 2061 2062 2063

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
2064 2065 2066 2067 2068
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2069
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
2070

C
chengduoZH 已提交
2071 2072 2073
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
2074
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2075

C
chengduoZH 已提交
2076 2077
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2078 2079

    input_shape = input.shape
M
minqiyang 已提交
2080
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
2081 2082

    def _get_default_param_initializer():
C
chengduo 已提交
2083 2084
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
2085 2086 2087 2088 2089 2090 2091 2092
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2093
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2094

2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
2109
    helper.append_op(
2110
        type=l_type,
Y
Yu Yang 已提交
2111 2112 2113 2114 2115
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2116 2117 2118
        attrs={
            'strides': stride,
            'paddings': padding,
2119
            'dilations': dilation,
C
chengduoZH 已提交
2120
            'groups': groups,
2121
            'use_cudnn': use_cudnn,
2122
            'use_mkldnn': False,
2123
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2124
        })
Y
Yu Yang 已提交
2125 2126 2127 2128 2129 2130

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2148 2149 2150 2151 2152 2153
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2154 2155 2156 2157 2158 2159 2160 2161 2162

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2163 2164
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2165 2166 2167
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2168
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2194
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2195 2196
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2197
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2198 2199
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2200
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2201 2202
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2203
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2204 2205 2206 2207 2208 2209
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2220 2221
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2222 2223
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2224
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2225
            will be named automatically. Default: None.
C
chengduoZH 已提交
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2238 2239
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2240 2241 2242
    """

    l_type = 'conv3d'
C
chengduo 已提交
2243
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2254
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2268 2269 2270
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2271 2272 2273 2274 2275 2276 2277 2278
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2279
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2294
            'use_mkldnn': False
C
chengduoZH 已提交
2295 2296
        })

2297
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2298 2299 2300 2301

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2302
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2303
    """
Y
yangyaming 已提交
2304 2305 2306
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2318
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2319 2320 2321 2322 2323
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2324
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2325 2326 2327 2328 2329 2330 2331

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2332 2333
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2334

L
Luo Tao 已提交
2335 2336
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2337
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2338
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2339
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2340 2341 2342 2343 2344 2345 2346

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2347

Y
yangyaming 已提交
2348
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2349 2350 2351 2352 2353
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2354 2355
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2356
    """
L
lujun 已提交
2357
    assert not in_dygraph_mode(), (
2358
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
2359
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2360
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2361 2362
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2363 2364 2365 2366 2367 2368

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2369 2370
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2371

Y
yangyaming 已提交
2372 2373 2374 2375 2376
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2377 2378 2379
    return pool_out


C
add doc  
chengduoZH 已提交
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
L
lujun 已提交
2398
    assert not in_dygraph_mode(), (
2399
        "sequence layer is not supported in dygraph mode yet.")
C
add doc  
chengduoZH 已提交
2400
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2401
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2402 2403 2404 2405 2406
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2407
def sequence_first_step(input):
L
Luo Tao 已提交
2408
    """
L
Luo Tao 已提交
2409
    This function gets the first step of sequence.
L
Luo Tao 已提交
2410 2411 2412 2413

    .. code-block:: text

       x is a 1-level LoDTensor:
2414
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2415 2416 2417 2418 2419
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2420
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2421
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2422

L
Luo Tao 已提交
2423 2424 2425 2426 2427 2428 2429 2430 2431
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2432

Y
yangyaming 已提交
2433
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2434 2435 2436
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2437 2438 2439
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2440
def sequence_last_step(input):
L
Luo Tao 已提交
2441
    """
L
Luo Tao 已提交
2442
    This function gets the last step of sequence.
L
Luo Tao 已提交
2443 2444 2445 2446

    .. code-block:: text

       x is a 1-level LoDTensor:
2447
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2448 2449 2450 2451 2452
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2453
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2454
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2455

L
Luo Tao 已提交
2456 2457 2458 2459 2460 2461 2462 2463 2464
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2465

Y
yangyaming 已提交
2466
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2467 2468 2469
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2470 2471 2472
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2473 2474 2475 2476
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2477
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2478 2479 2480 2481 2482
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2483

H
haowang101779990 已提交
2484
              - Case:
Y
Yibing Liu 已提交
2485

2486
            Given the input Variable **input**:
2487

2488 2489 2490
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2491

2492
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2493

2494
            the output Variable will be
2495

2496 2497 2498
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2499

M
minqiyang 已提交
2500
    Note:
H
haowang101779990 已提交
2501
          The first dimension size of **input**, **offset** and **length**
2502
          should be equal. The **offset** should start from 0.
2503

Y
Yibing Liu 已提交
2504
    Args:
2505
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2506
                         sequences.
Y
Yibing Liu 已提交
2507 2508 2509 2510 2511 2512
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2513
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2524
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2525 2526
                                                   length=length)
    """
L
lujun 已提交
2527
    assert not in_dygraph_mode(), (
2528
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
2529 2530
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2531
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2546
@templatedoc()
Y
Yu Yang 已提交
2547
def pool2d(input,
C
chengduoZH 已提交
2548 2549
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2550 2551
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2552
           global_pooling=False,
C
chengduoZH 已提交
2553
           use_cudnn=True,
2554
           ceil_mode=False,
2555 2556
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2557
    """
F
fengjiayi 已提交
2558
    ${comment}
2559 2560

    Args:
2561 2562 2563
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2564
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2565
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2566 2567
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2568
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2569 2570 2571 2572 2573 2574
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2575 2576 2577
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2578
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2579
                        layer will be named automatically.
2580
        exclusive (bool): Whether to exclude padding points in average pooling
2581
                          mode, default is true
F
fengjiayi 已提交
2582

2583
    Returns:
F
fengjiayi 已提交
2584
        Variable: The pooling result.
F
fengjiayi 已提交
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2597
          pool2d = fluid.layers.pool2d(
2598 2599 2600 2601
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2602
                            global_pooling=False)
Y
Yu Yang 已提交
2603 2604 2605 2606 2607
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2608

C
chengduoZH 已提交
2609 2610 2611 2612 2613
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2614 2615 2616 2617
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2618 2619
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2620

C
Add doc  
chengduoZH 已提交
2621
    l_type = 'pool2d'
2622 2623

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2624
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2625
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2626 2627

    helper.append_op(
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2639 2640
            "use_mkldnn": False,
            "exclusive": exclusive,
2641 2642 2643 2644 2645
        })

    return pool_out


D
dengkaipeng 已提交
2646
@templatedoc()
2647 2648 2649 2650 2651 2652 2653 2654
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2655 2656
           name=None,
           exclusive=True):
2657
    """
2658
    ${comment}
2659 2660

    Args:
D
dengkaipeng 已提交
2661 2662 2663 2664 2665
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2666 2667 2668 2669 2670
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2671 2672 2673 2674 2675 2676 2677
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2678
        exclusive (bool): Whether to exclude padding points in average pooling
2679
                          mode, default is true
2680

2681
    Returns:
2682
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2696 2697 2698 2699 2700
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2701

C
chengduoZH 已提交
2702 2703 2704 2705 2706
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2707 2708 2709
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2710

C
chengduoZH 已提交
2711 2712
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2713

2714 2715
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2716
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2717
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2718 2719

    helper.append_op(
2720
        type=l_type,
Y
Yu Yang 已提交
2721 2722 2723 2724 2725 2726 2727
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2728
            "paddings": pool_padding,
2729
            "use_cudnn": use_cudnn,
2730
            "ceil_mode": ceil_mode,
2731 2732
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2733 2734 2735 2736 2737
        })

    return pool_out


2738 2739 2740 2741 2742 2743 2744
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2745 2746 2747 2748 2749 2750 2751
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
2752

2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2766 2767 2768 2769 2770 2771 2772 2773 2774

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2775 2776
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2791
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2792
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2793
          # of input data into m * n grids averagely and performs poolings in each
2794 2795
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2796
          #
2797 2798 2799 2800 2801 2802 2803 2804
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2805 2806
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2807
          pool_out = fluid.layers.adaptive_pool2d(
2808 2809
                            input=data,
                            pool_size=[3, 3],
2810
                            pool_type='avg')
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2821
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2847
    return (pool_out, mask) if require_index else pool_out
2848 2849 2850 2851 2852 2853 2854 2855 2856


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2857 2858 2859 2860 2861 2862 2863
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
2864

2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2882 2883 2884

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
2885 2886 2887
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
2888
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2889
            it must contain three integers, (Depth, Height, Width).
2890
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2891 2892
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2907 2908
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2909
          # of input data into l * m * n grids averagely and performs poolings in each
2910 2911
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2912
          #
2913 2914 2915 2916 2917 2918 2919 2920 2921
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2922
          #                 output[:, :, i, j, k] =
2923 2924
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
2925 2926
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2927
          pool_out, mask = fluid.layers.adaptive_pool3d(
2928
                            input=data,
D
dengkaipeng 已提交
2929
                            pool_size=[3, 3, 3],
2930
                            pool_type='avg')
2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2941
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2967
    return (pool_out, mask) if require_index else pool_out
2968 2969


Y
Yu Yang 已提交
2970 2971 2972 2973 2974 2975 2976
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2977
               data_layout='NCHW',
Y
Yang Yang 已提交
2978
               in_place=False,
2979 2980
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2981
               moving_variance_name=None,
2982
               do_model_average_for_mean_and_var=False,
2983 2984
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2985
    """
Q
qiaolongfei 已提交
2986 2987 2988 2989
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2990

Q
qiaolongfei 已提交
2991
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2992

Q
qiaolongfei 已提交
2993 2994
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2995 2996 2997
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
3010

3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

3024
    Args:
Q
qingqing01 已提交
3025
        input(variable): The rank of input variable can be 2, 3, 4, 5.
Q
qiaolongfei 已提交
3026
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
3027 3028 3029 3030 3031 3032 3033 3034 3035
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float, Default 0.9): The value used for the moving_mean and
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
3036 3037 3038 3039 3040 3041 3042 3043
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
3044
        data_layout(string, default NCHW): NCHW|NHWC
3045
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
3046 3047 3048 3049
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
3050
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
3051
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
3052 3053 3054 3055 3056
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
3057 3058

    Returns:
Q
qiaolongfei 已提交
3059
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
3060 3061 3062 3063 3064

    Examples:

        .. code-block:: python

L
lvmengsi 已提交
3065
            x = fluid.layers.data(name='x', shape=[3, 7, 3, 7], dtype='float32', append_batch_size=False)
Q
qiaolongfei 已提交
3066 3067
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
3068
    """
C
chengduo 已提交
3069
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
3070 3071 3072
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
3073 3074 3075 3076
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
3095
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
3096

3097 3098
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
3099 3100 3101
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3102
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3103
        shape=param_shape,
W
Wu Yi 已提交
3104
        dtype=dtype)
3105 3106 3107 3108 3109 3110
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
3111
            trainable=False,
W
wanghaoshuang 已提交
3112
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3113
        shape=param_shape,
W
Wu Yi 已提交
3114
        dtype=dtype)
3115
    variance.stop_gradient = True
Y
Yu Yang 已提交
3116 3117 3118 3119 3120 3121

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3122 3123 3124 3125
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3126

X
Xin Pan 已提交
3127 3128
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3146 3147 3148 3149
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3150
            "data_layout": data_layout,
X
Xin Pan 已提交
3151
            "use_mkldnn": False,
3152 3153
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3154
        })
Y
Yu Yang 已提交
3155 3156 3157 3158

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python

            data = fluid.layers.data(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.data_norm(input=hidden1)
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3278
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3279 3280 3281 3282

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3283
@templatedoc()
G
guosheng 已提交
3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3294
    ${comment}
G
guosheng 已提交
3295 3296 3297

    The formula is as follows:

Y
yuyang18 已提交
3298
    ..  math::
G
guosheng 已提交
3299 3300 3301 3302 3303 3304 3305

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3306 3307 3308 3309 3310 3311 3312 3313
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3314

G
guosheng 已提交
3315 3316
    Args:
        input(Variable): The input tensor variable.
3317
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3318
            normalization. Default True.
3319
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3320 3321
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3322
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3323
            Default 1.
3324
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3325
            division by zero. Default 1e-05.
G
guosheng 已提交
3326
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3327 3328
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3329 3330
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3331
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3332 3333
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3334
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3335
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3336
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3337 3338 3339
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3340 3341

    Returns:
Y
yuyang18 已提交
3342
        ${y_comment}
G
guosheng 已提交
3343 3344 3345

    Examples:

Y
yuyang18 已提交
3346 3347 3348
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3349
    """
L
lujun 已提交
3350
    assert in_dygraph_mode(
L
lujun 已提交
3351
    ) is not True, "please use FC instead of fc in dygraph mode!"
G
guosheng 已提交
3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3366
    if shift:
G
guosheng 已提交
3367 3368 3369 3370 3371 3372
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3373 3374 3375 3376 3377
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3405
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3453 3454
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


@templatedoc()
3472
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3473 3474 3475
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3476
    This layer calculates the spectral normalization value of weight parameters of
3477
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3478
    Parameters. Calculations are showed as follows.
3479

D
dengkaipeng 已提交
3480 3481 3482
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3483
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3496
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3497 3498 3499 3500

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3501

D
dengkaipeng 已提交
3502
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3503 3504
                

D
dengkaipeng 已提交
3505 3506 3507 3508
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3509 3510 3511
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3512 3513 3514
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
3515
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
3516 3517 3518 3519 3520 3521 3522 3523

    Examples:

        >>> weight = fluid.layers.data(name='weight', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.spectral_norm(weight=data, dim=1, power_iters=2)
    """
    helper = LayerHelper('spectral_norm', **locals())
3524
    dtype = weight.dtype
D
dengkaipeng 已提交
3525 3526 3527

    # create intput and parameters
    inputs = {'Weight': weight}
3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3546 3547

    # create output
3548
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3549 3550

    helper.append_op(
3551
        type="spectral_norm",
D
Dun 已提交
3552
        inputs=inputs,
3553 3554 3555 3556 3557 3558
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3559

3560
    return out
D
Dun 已提交
3561 3562


Y
Yu Yang 已提交
3563 3564 3565 3566
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3567 3568 3569
                     padding=0,
                     stride=1,
                     dilation=1,
3570
                     groups=None,
C
caoying03 已提交
3571
                     param_attr=None,
3572
                     bias_attr=None,
C
chengduoZH 已提交
3573
                     use_cudnn=True,
3574
                     act=None,
C
caoying03 已提交
3575
                     name=None):
Y
Yu Yang 已提交
3576
    """
3577 3578 3579 3580 3581 3582 3583 3584
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3585 3586
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3587 3588 3589
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3590 3591 3592 3593 3594

    For each input :math:`X`, the equation is:

    .. math::

3595
        Out = \sigma (W \\ast X + b)
3596

3597
    Where:
3598 3599 3600

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3601 3602 3603 3604
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3605

3606 3607 3608 3609
    Example:

        - Input:

3610
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3611

3612
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3613 3614 3615

        - Output:

3616
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3617 3618

        Where
Y
Yu Yang 已提交
3619

3620 3621
        .. math::

3622 3623
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3624 3625
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3626 3627

    Args:
3628 3629 3630 3631
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3632 3633 3634 3635
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3664
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3665 3666 3667
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3668
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3669
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3670 3671

    Returns:
3672
        Variable: The tensor variable storing the convolution transpose result.
3673 3674

    Raises:
3675 3676
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3677 3678 3679 3680

    Examples:
       .. code-block:: python

3681 3682
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3683
    """
C
chengduo 已提交
3684
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3685 3686 3687 3688 3689 3690 3691 3692
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3693 3694 3695
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3696 3697 3698
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3699

C
chengduoZH 已提交
3700 3701
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3702

Y
Yu Yang 已提交
3703 3704 3705 3706 3707
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3708

Y
Yu Yang 已提交
3709 3710
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3711

C
chengduoZH 已提交
3712
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3713
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3714
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3715
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3716
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3717 3718 3719
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3720

3721 3722 3723 3724 3725 3726 3727
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3728
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3729
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3730

Y
Yu Yang 已提交
3731 3732 3733
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3734
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3735
    helper.append_op(
3736
        type=op_type,
Y
Yu Yang 已提交
3737 3738
        inputs={'Input': [input],
                'Filter': [img_filter]},
3739
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3740
        attrs={
3741
            'output_size': output_size,
3742 3743 3744 3745 3746
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3747 3748
        })

3749 3750 3751
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3752 3753


3754
def conv3d_transpose(input,
Y
Yu Yang 已提交
3755 3756 3757
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3758 3759 3760
                     padding=0,
                     stride=1,
                     dilation=1,
3761
                     groups=None,
C
caoying03 已提交
3762
                     param_attr=None,
3763
                     bias_attr=None,
C
chengduoZH 已提交
3764
                     use_cudnn=True,
3765
                     act=None,
C
caoying03 已提交
3766
                     name=None):
Y
Yu Yang 已提交
3767
    """
3768
    **Convlution3D transpose layer**
3769

3770
    The convolution3D transpose layer calculates the output based on the input,
3771
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3772 3773 3774 3775 3776 3777
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3778 3779 3780
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3781 3782 3783 3784 3785

    For each input :math:`X`, the equation is:

    .. math::

3786
        Out = \sigma (W \\ast X + b)
3787 3788 3789

    In the above equation:

3790 3791
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3792 3793 3794 3795
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3796

3797 3798 3799 3800
    Example:

        - Input:

3801
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3802

3803
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3804 3805 3806

        - Output:

3807
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3808 3809

        Where
Y
Yu Yang 已提交
3810

3811 3812
        .. math::

3813 3814 3815
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3816 3817

    Args:
3818
        input(Variable): The input image with [N, C, D, H, W] format.
3819 3820 3821
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3822
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3823 3824
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3825
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3826 3827 3828
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3829 3830
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3831
        stride(int|tuple): The stride size. If stride is a tuple, it must
3832 3833
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3834
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3835 3836 3837
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3838 3839 3840 3841 3842
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3843 3844 3845 3846 3847 3848 3849 3850 3851
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3852 3853
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3854 3855
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3856 3857
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3858 3859

    Returns:
3860
        Variable: The tensor variable storing the convolution transpose result.
3861 3862

    Raises:
3863 3864
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3865 3866 3867 3868

    Examples:
       .. code-block:: python

3869 3870
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3871
    """
C
chengduo 已提交
3872
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3873 3874
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3875
    if not isinstance(input, Variable):
3876
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3877 3878
    input_channel = input.shape[1]

3879 3880 3881
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3882

C
chengduoZH 已提交
3883 3884 3885
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3886 3887 3888 3889 3890 3891
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3892 3893 3894
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3895

3896
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3897
                         padding[0] - 1) // dilation[0] + 1
3898
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3899
                         padding[1] - 1) // dilation[1] + 1
3900
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3901
                         padding[2] - 1) // dilation[2] + 1
3902
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3903
    else:
3904 3905
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3906

3907
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3908
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3909 3910 3911
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3912
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3913
    helper.append_op(
3914
        type=l_type,
Y
Yu Yang 已提交
3915 3916
        inputs={'Input': [input],
                'Filter': [img_filter]},
3917
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3918 3919 3920 3921
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3922
            'groups': groups,
C
chengduoZH 已提交
3923 3924
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3925

3926 3927
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3928
    return out
Y
yangyaming 已提交
3929 3930


Y
yangyaming 已提交
3931
def sequence_expand(x, y, ref_level=-1, name=None):
3932
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3933 3934 3935 3936
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3937 3938 3939 3940 3941

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3942
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3943
                x.data = [[a], [b], [c], [d]]
3944 3945 3946
                x.dims = [4, 1]

            y is a LoDTensor:
3947 3948
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3949

Y
yangyaming 已提交
3950
            ref_level: 0
3951

Y
yangyaming 已提交
3952
            then output is a 1-level LoDTensor:
3953
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3954
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3955 3956 3957 3958
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3959
                x.data = [[a], [b], [c]]
3960 3961 3962
                x.dims = [3, 1]

            y is a LoDTensor:
3963
                y.lod = [[2, 0, 3]]
3964

Y
yangyaming 已提交
3965
            ref_level: -1
3966

Y
yangyaming 已提交
3967 3968 3969
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3970 3971 3972
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3973 3974
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3975
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3976
                        will be named automatically.
3977 3978 3979 3980 3981 3982 3983 3984 3985 3986

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3987
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3988
    """
L
lujun 已提交
3989
    assert not in_dygraph_mode(), (
3990
        "sequence layer is not supported in dygraph mode yet.")
Y
yangyaming 已提交
3991
    helper = LayerHelper('sequence_expand', input=x, **locals())
3992
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3993
    tmp = helper.create_variable_for_type_inference(dtype)
3994
    helper.append_op(
Y
yangyaming 已提交
3995 3996 3997 3998 3999
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
4000
    return tmp
4001 4002


C
chengduo 已提交
4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
L
lujun 已提交
4057
    assert not in_dygraph_mode(), (
4058
        "sequence layer is not supported in dygraph mode yet.")
C
chengduo 已提交
4059 4060
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4061
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
4062 4063 4064 4065 4066 4067 4068 4069
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
4070
@templatedoc()
4071
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
4072 4073 4074 4075 4076
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
4077 4078 4079
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
4080
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
4081 4082 4083 4084
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
4085 4086 4087
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
4088

F
fengjiayi 已提交
4089
    Returns:
M
minqiyang 已提交
4090
        Variable: The padded sequence batch and the original lengths before
4091
                  padding. All sequences has the same length.
M
minqiyang 已提交
4092

F
fengjiayi 已提交
4093 4094 4095 4096 4097 4098 4099
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
4100
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
4101
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
4102 4103 4104
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

L
lujun 已提交
4105
    assert not in_dygraph_mode(), (
4106
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
4107 4108
    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4109 4110
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
4111 4112 4113 4114

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
4115 4116 4117 4118 4119 4120
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
4121 4122
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
4123
        attrs={'padded_length': maxlen})
4124
    return out, length
F
fengjiayi 已提交
4125 4126


4127
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4128
    """
4129
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4130

4131 4132
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4133 4134 4135 4136 4137 4138 4139 4140 4141
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4142 4143 4144
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4145
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4146 4147 4148 4149 4150 4151

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4152
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4153 4154 4155 4156 4157 4158

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4159 4160
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

L
lujun 已提交
4173
    assert not in_dygraph_mode(), (
4174
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
4175 4176
    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4177
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4189 4190 4191 4192 4193 4194 4195
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4196
                is_accumulated=True,
4197 4198
                name=None,
                return_parent_idx=False):
4199
    """
4200 4201
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4202 4203 4204

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4205 4206

    This layer does the search in beams for one time step. Specifically, it
4207 4208 4209
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4221 4222 4223 4224

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4225

4226
    Args:
4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4250 4251
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4252 4253
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4254 4255 4256 4257
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4258

4259
    Returns:
4260 4261 4262 4263
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4264 4265 4266 4267

    Examples:
        .. code-block:: python

4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4285
    helper = LayerHelper('beam_search', **locals())
4286 4287 4288 4289 4290 4291
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4292

X
Xin Pan 已提交
4293 4294 4295
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4296 4297 4298 4299 4300
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4301 4302 4303

    helper.append_op(
        type='beam_search',
4304
        inputs=inputs,
Q
Qiao Longfei 已提交
4305 4306 4307
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4308
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4309 4310 4311 4312 4313 4314
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4315
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4316
        })
4317 4318 4319 4320
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4321 4322


4323 4324 4325 4326 4327 4328 4329
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4330

4331 4332 4333 4334 4335 4336 4337 4338 4339
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4340

4341 4342 4343 4344 4345 4346
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4347

4348 4349
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4350

4351 4352 4353 4354 4355 4356
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4357 4358
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4374 4375 4376 4377
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4378
              param_attr=None,
C
caoying03 已提交
4379 4380
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4381 4382 4383 4384
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4385
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4386

4387
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4388

4389
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4390

4391
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4392 4393 4394

            h_t & = o_t tanh(c_t)

4395 4396 4397 4398 4399 4400
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4401 4402 4403

        .. math::

4404
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4405 4406 4407 4408 4409 4410 4411 4412

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
4413
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
4414 4415

    Args:
Y
yangyaming 已提交
4416 4417 4418 4419 4420 4421
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4422
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4435 4436
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4437 4438

    Returns:
Y
yangyaming 已提交
4439
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4440 4441

    Raises:
4442 4443 4444 4445
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4446 4447 4448 4449 4450 4451

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
4452
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
4453
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
4454
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4471
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4472 4473 4474 4475
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4476 4477
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4478 4479 4480
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4481
    size = cell_t_prev.shape[1]
4482
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4483 4484
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4485
                param_attr=param_attr,
4486
                bias_attr=bias_attr)
Y
yangyaming 已提交
4487
    dtype = x_t.dtype
X
Xin Pan 已提交
4488 4489
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4490 4491 4492 4493 4494 4495 4496 4497 4498

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4499
    return h, c
G
guosheng 已提交
4500 4501


C
caoying03 已提交
4502
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4503
    """
Y
yangyaming 已提交
4504
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4505 4506 4507

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4508
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4509 4510
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4511 4512
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4513
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4514
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4515
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4516 4517
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4518 4519 4520

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4521

G
guosheng 已提交
4522 4523 4524 4525 4526 4527
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4528
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4529 4530 4531 4532
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4533 4534 4535 4536

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4537
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4538 4539 4540
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4541 4542
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4543
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4544 4545
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4546 4547 4548 4549 4550
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4551
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4552 4553 4554 4555
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4556 4557


C
caoying03 已提交
4558
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4559
    """
Y
Yibing Liu 已提交
4560
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4561 4562 4563

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4564 4565 4566
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4567
            must be in the range :math:`[-rank(input), rank(input))`. If
4568
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4569
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4570 4571
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4572
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4573
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4574
                       will be named automatically.
G
guosheng 已提交
4575 4576

    Returns:
Y
Yibing Liu 已提交
4577
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4578

G
guosheng 已提交
4579 4580 4581 4582 4583 4584 4585 4586 4587 4588
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4589 4590
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4591 4592 4593 4594 4595 4596 4597

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4598 4599
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4600
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4601 4602
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4603 4604 4605 4606 4607
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4608
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4609 4610 4611 4612
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4613 4614


C
caoying03 已提交
4615
def reduce_max(input, dim=None, keep_dim=False, name=None):
4616
    """
Y
yangyaming 已提交
4617
    Computes the maximum of tensor elements over the given dimension.
4618 4619 4620

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4621
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4622 4623 4624
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4625
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4626 4627
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4628
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4629 4630
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4631 4632 4633

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4634

4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4646 4647 4648 4649 4650 4651 4652

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4653 4654
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4655
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4656 4657
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4658 4659 4660 4661 4662
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4663
            'dim': dim if dim != None else [0],
4664 4665 4666 4667 4668 4669
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4670
def reduce_min(input, dim=None, keep_dim=False, name=None):
4671
    """
Y
yangyaming 已提交
4672
    Computes the minimum of tensor elements over the given dimension.
4673 4674 4675

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4676
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4677 4678 4679
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4680
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4681 4682
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4683
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4684 4685
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4686 4687 4688

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4689

4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4701 4702 4703 4704 4705 4706 4707

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4708 4709
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4710
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4711 4712
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4713 4714 4715 4716 4717
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4718
            'dim': dim if dim != None else [0],
4719 4720 4721 4722
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4723 4724


4725 4726 4727 4728 4729 4730
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4731
        dim (list|int|None): The dimensions along which the product is performed. If
4732 4733
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4734 4735
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4736 4737 4738
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4739
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4740
            layer will be named automatically.
4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4755
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4756
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4757 4758 4759 4760 4761 4762 4763

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4764 4765
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4766
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4767 4768
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4769 4770 4771 4772 4773
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4774
            'dim': dim if dim != None else [0],
4775 4776 4777 4778 4779 4780
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


Z
zhoukunsheng 已提交
4781 4782
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
4783
    Computes the ``logical and`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4803
        
Z
zhoukunsheng 已提交
4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_all(x)  # False 
            fluid.layers.reduce_all(x, dim=0)  # [True, False]
            fluid.layers.reduce_all(x, dim=-1)  # [False, True]
            fluid.layers.reduce_all(x, dim=1,
                                     keep_dim=True)  # [[False], [True]]

    """
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
4833
    Computes the ``logical or`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical or is computed.
            If :attr:`None`, compute the logical or over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4853

Z
zhoukunsheng 已提交
4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_any(x)  # True
            fluid.layers.reduce_any(x, dim=0)  # [True, False]
            fluid.layers.reduce_any(x, dim=-1)  # [True, False]
            fluid.layers.reduce_any(x, dim=1,
                                     keep_dim=True)  # [[True], [False]]

    """
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
4876 4877 4878 4879 4880
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4881
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4882
    """
C
caoying03 已提交
4883
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4884 4885 4886

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4887 4888 4889 4890 4891
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4892
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4893
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4894
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4895 4896
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4897 4898

    Returns:
D
dzhwinter 已提交
4899
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4900 4901 4902 4903 4904 4905 4906 4907 4908

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4909 4910
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
T
tink2123 已提交
4922
        assert len(num_or_sections) <= input_shape[
G
guosheng 已提交
4923 4924 4925
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4926
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4940 4941 4942 4943 4944 4945 4946 4947 4948


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4949
    .. math::
4950 4951

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4952 4953 4954 4955 4956

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4957
        x(Variable|list): The input tensor to l2_normalize layer.
4958
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4959 4960
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4961
        epsilon(float): The epsilon value is used to avoid division by zero, \
4962
            the defalut value is 1e-12.
4963
        name(str|None): A name for this layer(optional). If set None, the layer \
4964
            will be named automatically.
C
caoying03 已提交
4965 4966

    Returns:
4967
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4968 4969

    Examples:
4970

C
caoying03 已提交
4971 4972
        .. code-block:: python

4973 4974 4975 4976
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4977 4978
    """

F
fengjiayi 已提交
4979 4980
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4981 4982
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4983 4984
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4985
    helper.append_op(
4986 4987 4988 4989
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4990
        attrs={
4991 4992
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4993 4994
        })
    return out
4995 4996


S
sneaxiy 已提交
4997
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4998
    """
Y
ying 已提交
4999 5000 5001 5002
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
5003

C
chengduoZH 已提交
5004
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
5005
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
5006

5007 5008 5009 5010 5011
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
5012
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
5013

C
chengduoZH 已提交
5014
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
5015
      performs in the following way.
G
guosheng 已提交
5016

5017
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
5018
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
5019
        last two dimensions and a batched matrix multiply supporting broadcast
5020
        applies on the two tensors.
G
guosheng 已提交
5021

Y
ying 已提交
5022 5023
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
5024
    removed after matrix multiplication.
G
guosheng 已提交
5025 5026 5027

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
5028 5029 5030
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
5031
        alpha (float): The scale of output. Default 1.0.
5032
        name(str|None): A name for this layer(optional). If set None, the layer
5033
            will be named automatically.
G
guosheng 已提交
5034 5035

    Returns:
5036
        Variable: The product Tensor variable.
G
guosheng 已提交
5037

G
guosheng 已提交
5038 5039 5040
    Examples:
        .. code-block:: python

5041
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
5042 5043
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
5044

5045 5046
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5047

5048 5049
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5050

5051 5052
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
5053 5054 5055 5056

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

5057 5058
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
5059

Y
ying 已提交
5060
            # x: [M], y: [N]
5061
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
5062
    """
Y
ying 已提交
5063 5064 5065 5066 5067 5068 5069

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
5070
            y_shape = y_shape + [1]
Y
ying 已提交
5071 5072 5073 5074 5075 5076 5077

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
5078 5079
            raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
                             (x_shape, y_shape))
Y
ying 已提交
5080

C
chengduo 已提交
5081
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
5082
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
5083 5084 5085
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
5086
                if dim_x != y_shape[i]:
C
chengduo 已提交
5087 5088
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
5089 5090 5091

    __check_input(x, y)

5092
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
5093
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
5094
    helper.append_op(
5095 5096 5097 5098
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
5099 5100 5101
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
5102
            'alpha': float(alpha),
S
sneaxiy 已提交
5103
        })
5104
    return out
5105 5106


5107
def topk(input, k, name=None):
Q
qingqing01 已提交
5108 5109 5110 5111
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
5112
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
5113 5114 5115 5116 5117 5118
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
5140 5141 5142
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
5143
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
5144
                 of input.
5145
        name(str|None): A name for this layer(optional). If set None, the layer
5146
                       will be named automatically.
F
fengjiayi 已提交
5147
                       Default: None
Q
qingqing01 已提交
5148 5149

    Returns:
5150 5151 5152
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
5153
        within the last dimension of input.
Q
qingqing01 已提交
5154

F
fengjiayi 已提交
5155 5156
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
5157 5158 5159 5160

    Examples:
        .. code-block:: python

5161 5162
            import paddle.fluid.layers as layers
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
Q
qingqing01 已提交
5163 5164 5165
            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
5166 5167
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
5168 5169 5170 5171 5172 5173
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
5174 5175
    helper.append_op(
        type="top_k",
W
whs 已提交
5176
        inputs=inputs,
Q
qingqing01 已提交
5177 5178
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
5179
        attrs=attrs)
Q
qingqing01 已提交
5180 5181 5182 5183 5184
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5185
def edit_distance(input, label, normalized=True, ignored_tokens=None):
5186
    """
Y
ying 已提交
5187 5188 5189 5190 5191 5192 5193 5194 5195
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
5196

Y
ying 已提交
5197
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
5198

5199
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
5200 5201
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
5202
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
5203

5204
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
5205 5206
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
5207

5208 5209 5210
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
5211
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
5212
                          the length of reference string.
5213
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
5214
                                     calculating edit distance.
5215
        name (str): The name of this layer. It is optional.
5216

W
wanghaoshuang 已提交
5217
    Returns:
W
wanghaoshuang 已提交
5218
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
5219 5220 5221 5222

    Examples:
        .. code-block:: python

T
tink2123 已提交
5223 5224
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
5225
            cost = fluid.layers.edit_distance(input=x,label=y)
5226
    """
5227
    helper = LayerHelper("edit_distance", **locals())
5228

5229
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
5230
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
5231 5232
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5233 5234 5235 5236 5237

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5238
            attrs={"tokens": ignored_tokens})
5239 5240 5241 5242 5243
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5244
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5245
            attrs={"tokens": ignored_tokens})
5246 5247
        label = erased_label

5248
    # edit distance op
X
Xin Pan 已提交
5249 5250
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5251 5252 5253 5254
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
5255 5256
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5257 5258
        attrs={"normalized": normalized})

5259
    return edit_distance_out, sequence_num
5260 5261 5262 5263 5264


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5265

Y
ying 已提交
5266 5267 5268 5269
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5287
        input.lod = [[4, 4]]
M
minqiyang 已提交
5288

W
whs 已提交
5289
        Computation:
5290

W
whs 已提交
5291 5292 5293 5294 5295 5296
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5297 5298 5299 5300 5301

        output.data = [[2],
                       [1],
                       [3]]

5302
        output.lod = [[2, 1]]
5303

W
whs 已提交
5304

5305 5306
    Args:

Y
ying 已提交
5307 5308 5309 5310 5311 5312 5313 5314 5315
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5316
        name (str): The name of this layer. It is optional.
5317 5318

    Returns:
H
haowang101779990 已提交
5319 5320 5321
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5322
                  LoD [[]] and dims [1, 1].
5323 5324 5325 5326

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
5327
            import paddle.fluid as fluid
5328 5329
            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5330
    """
5331
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5332
    _, topk_indices = topk(input, k=1)
5333 5334

    # ctc align op
X
Xin Pan 已提交
5335
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5336 5337 5338
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5339
        outputs={"Output": [ctc_out]},
5340 5341
        attrs={"merge_repeated": True,
               "blank": blank})
5342
    return ctc_out
5343 5344


W
Wu Yi 已提交
5345
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
5346
    """
5347 5348
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5349
    to compute Connectionist Temporal Classification (CTC) loss.
5350 5351
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5352 5353 5354
    input tensor.

    Args:
5355
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
5356 5357 5358 5359
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
5360
       label (Variable): The ground truth of variable-length sequence,
5361 5362 5363
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5364 5365
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5366 5367 5368
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5369
         follewed by a mean_op.
W
Wu Yi 已提交
5370
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
5371 5372

    Returns:
5373 5374
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5375 5376

    Examples:
5377

W
wanghaoshuang 已提交
5378
        .. code-block:: python
5379

5380 5381 5382
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5383 5384

    """
F
fengjiayi 已提交
5385
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
5386 5387
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
5388 5389 5390 5391 5392 5393
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5394 5395 5396 5397 5398
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5399
    return loss_out
5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5415 5416 5417
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5418 5419 5420 5421 5422
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5423

5424
            out.lod  = [[0, 1, 3]]
5425 5426 5427 5428

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5429 5430 5431 5432 5433 5434 5435
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5436 5437 5438

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5439 5440

    Returns:
5441

5442 5443 5444 5445 5446
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

5447
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
5448
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
5449
    """
L
lujun 已提交
5450
    assert not in_dygraph_mode(), (
5451
        "sequence layer is not supported in dygraph mode yet.")
5452
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5453
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5454 5455 5456 5457 5458 5459
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5460 5461


5462 5463 5464 5465
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5466 5467 5468 5469 5470 5471
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5472
        num_neg_samples=None,
5473 5474 5475
        name=None,
        sampler="uniform",
        custom_dist=None,
5476 5477
        seed=0,
        is_sparse=False):
5478 5479 5480 5481 5482 5483 5484
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5485 5486
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5487
            sample is 1.0.
C
chengduo 已提交
5488 5489 5490 5491 5492 5493 5494 5495 5496
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5497
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5498 5499
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5500 5501 5502
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5503
        custom_dist (float[]): A float[] with size=num_total_classes.
5504 5505 5506 5507
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5508
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5509

5510
    Returns:
Y
Yibing Liu 已提交
5511 5512 5513 5514 5515 5516
        Variable: The output nce loss.

    Examples:
        .. code-block:: python


Y
Yibing Liu 已提交
5517
	    import numpy as np
Y
Yibing Liu 已提交
5518

Y
Yibing Liu 已提交
5519 5520 5521 5522 5523 5524 5525 5526
	    window_size = 5
	    words = []
	    for i in xrange(window_size):
		words.append(fluid.layers.data(
		    name='word_{0}'.format(i), shape=[1], dtype='int64'))

	    dict_size = 10000
	    label_word = int(window_size / 2) + 1
Y
Yibing Liu 已提交
5527

Y
Yibing Liu 已提交
5528 5529 5530 5531
	    embs = []
	    for i in xrange(window_size):
		if i == label_word:
		    continue
Y
Yibing Liu 已提交
5532

Y
Yibing Liu 已提交
5533 5534 5535
		emb = fluid.layers.embedding(input=words[i], size=[dict_size, 32],
				   param_attr='embed', is_sparse=True)
		embs.append(emb)
5536

Y
Yibing Liu 已提交
5537 5538 5539 5540
	    embs = fluid.layers.concat(input=embs, axis=1)
	    loss = fluid.layers.nce(input=embs, label=words[label_word],
		      num_total_classes=dict_size, param_attr='nce.w_0',
		      bias_attr='nce.b_0')
5541

Y
Yibing Liu 已提交
5542 5543 5544 5545 5546 5547 5548 5549
	    #or use custom distribution
	    dist = np.array([0.05,0.5,0.1,0.3,0.05])
	    loss = fluid.layers.nce(input=embs, label=words[label_word],
		      num_total_classes=5, param_attr='nce.w_1',
		      bias_attr='nce.b_1',
		      num_neg_samples=3,
		      sampler="custom_dist",
		      custom_dist=dist)
5550
    """
Y
Yang Yu 已提交
5551 5552 5553
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5554 5555

    dim = input.shape[1]
Y
Yang Yu 已提交
5556 5557 5558 5559 5560 5561
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5562
    inputs = {}
C
chengduo 已提交
5563 5564 5565 5566 5567 5568 5569
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5570 5571 5572
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5573

5574 5575 5576 5577
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5578 5579 5580 5581 5582 5583 5584

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5585 5586
        # assert isinstance(custom_dist, Variable)

Y
Yibing Liu 已提交
5587
        custom_dist_len = num_total_classes
5588 5589 5590 5591 5592 5593
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5594
            if normal_prob - 1.0 > 0:
5595
                bigs.append((i, normal_prob))
5596
            elif 1.0 - normal_prob > 0:
5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5612
            if big_left - 1.0 > 0:
5613
                bigs.append((big_idx, big_left))
5614
            elif 1.0 - big_left > 0:
5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5644 5645 5646 5647
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5648 5649 5650 5651 5652
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5653 5654 5655 5656
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5657

Y
Yang Yu 已提交
5658 5659
    attrs = {
        'num_total_classes': int(num_total_classes),
5660 5661
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5662
        'sampler': sampler,
5663 5664
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5665
    }
Y
Yang Yu 已提交
5666 5667 5668

    helper.append_op(
        type='nce',
C
chengduo 已提交
5669
        inputs=inputs,
Y
Yang Yu 已提交
5670 5671 5672 5673 5674 5675
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5676
    return cost / (num_neg_samples + 1)
5677 5678


C
chengduo 已提交
5679 5680
def hsigmoid(input,
             label,
5681
             num_classes,
C
chengduo 已提交
5682 5683
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5684
             name=None,
5685 5686 5687
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5688
             is_sparse=False):
W
weixing02 已提交
5689 5690
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5691
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5692
    complete binary tree, or you can use is_custom to pass your own tree to
5693
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5694 5695 5696 5697 5698 5699
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5700
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5701
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5702

5703 5704
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5705 5706 5707 5708
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5709
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5710
       related to the same batch of inputs.
5711

W
weixing02 已提交
5712
    Args:
M
minqiyang 已提交
5713
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5714 5715 5716 5717
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5718 5719
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5720
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5732
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5733
            it should be in leaf -> root order
M
minqiyang 已提交
5734 5735 5736
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5737
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5738
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5739
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5740
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5741
             of W and input will be sparse.
W
weixing02 已提交
5742 5743

    Returns:
J
JiabinYang 已提交
5744
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5745 5746 5747 5748 5749

    Examples:

        .. code-block:: python

G
guosheng 已提交
5750 5751 5752
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5753 5754 5755 5756
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5757 5758
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5759
    dim = input.shape[1]
5760
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5761 5762 5763
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5764 5765 5766 5767 5768 5769 5770 5771 5772
    if (not is_custom) and (is_sparse):
        print("Sparse mode should not be used without custom tree")
        is_sparse = False

    if (not is_custom) and ((path_table is not None) or
                            (path_code is not None)):
        raise ValueError(
            "only num_classes should be passed without custom tree")

5773
    if (is_custom) and (path_code is None):
5774
        raise ValueError("path_code should not be None with custom tree")
5775
    elif (is_custom) and (path_table is None):
5776
        raise ValueError("path_table should not be None with custom tree")
5777
    elif (is_custom) and (num_classes is None):
5778
        raise ValueError("num_classes should not be None with custom tree")
5779 5780 5781
    else:
        pass

J
JiabinYang 已提交
5782
    weights = None
5783 5784 5785 5786
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5787
    if not is_custom:
J
JiabinYang 已提交
5788 5789 5790 5791 5792 5793 5794 5795
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5796
            shape=[num_classes, dim],
J
JiabinYang 已提交
5797 5798
            is_bias=False,
            dtype=input.dtype)
5799 5800 5801
    inputs = {
        "X": input,
        "W": weights,
5802
        "PathTable": path_table,
5803
        "PathCode": path_code,
5804 5805
        "Label": label
    }
W
weixing02 已提交
5806
    if helper.bias_attr:
5807
        if not is_custom:
J
JiabinYang 已提交
5808 5809
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5810
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5811 5812 5813 5814 5815 5816
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5817
                shape=[num_classes, 1],
J
JiabinYang 已提交
5818 5819 5820
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5821 5822
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5823
        inputs=inputs,
W
weixing02 已提交
5824
        outputs={"Out": out,
5825 5826 5827 5828 5829 5830 5831
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5832 5833 5834
    return out


Y
fix ci.  
ying 已提交
5835
def transpose(x, perm, name=None):
Y
ying 已提交
5836 5837 5838 5839 5840 5841 5842
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5843 5844 5845
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5846 5847 5848 5849 5850 5851 5852

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5853
            # use append_batch_size=False to avoid prepending extra
5854
            # batch size in shape
5855
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5856
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5857
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5858 5859
    """

Y
fix ci.  
ying 已提交
5860
    if len(perm) != len(x.shape):
Y
ying 已提交
5861 5862 5863
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5864 5865 5866 5867 5868 5869
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5870 5871

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5872 5873
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5874
    helper.append_op(
5875
        type='transpose2',
Y
fix ci.  
ying 已提交
5876
        inputs={'X': [x]},
5877 5878
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5879 5880
        attrs={'axis': perm})
    return out
5881 5882


5883 5884 5885 5886 5887 5888 5889
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5890
    """
5891 5892 5893 5894 5895 5896 5897
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5898 5899 5900 5901 5902 5903 5904 5905 5906 5907

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5926 5927 5928 5929 5930 5931 5932 5933 5934
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5935 5936 5937
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5938 5939 5940 5941 5942
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5970 5971 5972
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5985
            output.dims = {8, 8}
5986

5987
            output.lod = [[4, 4]]
5988

T
Tink_Y 已提交
5989
    Examples:
5990 5991 5992

        .. code-block:: python

5993 5994
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5995 5996

    """
L
lujun 已提交
5997
    assert not in_dygraph_mode(), (
5998
        "sequence layer is not supported in dygraph mode yet.")
W
wanghaoshuang 已提交
5999 6000 6001 6002 6003 6004 6005 6006 6007 6008

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
6009 6010 6011 6012 6013 6014 6015
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
6016
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
6017
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
6018
    helper.append_op(
6019
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
6020
    return out
6021 6022


Y
yuyang18 已提交
6023
@templatedoc()
6024
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
6025 6026
    """
    ${comment}
6027 6028

    Args:
Y
yuyang18 已提交
6029
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
6030 6031
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
6032 6033 6034 6035 6036
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
6037
        ${out_comment}.
6038 6039

    Examples:
Y
yuyang18 已提交
6040 6041 6042 6043
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
6044 6045 6046 6047 6048 6049
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
6050
    out = helper.create_variable_for_type_inference(dtype)
6051 6052 6053 6054 6055
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
6056
    return helper.append_activation(out)
6057 6058


Y
yuyang18 已提交
6059
@templatedoc()
6060 6061
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
6062 6063
    ${comment}

L
lujun 已提交
6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106
    For Example:

    .. code-block:: text

        case 1:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
             [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
             [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

        index = [3,0,1,2]

        out:[[3 0 3 4]    // X[3,0] (3 = index[i], 0 = i); i=0
             [0 1 3 4]    // X[0,1] (0 = index[i], 1 = i); i=1
             [1 2 4 2]    // X[1,2] (0 = index[i], 2 = i); i=2
             [2 3 3 4]]   // X[2,3] (0 = index[i], 3 = i); i=3

        case 2:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]]]

        index = [1,0]

        out:[[1 0 3 4]    // X[1,0] (3 = index[0], 0 = i); i=1
             [0 1 3 4]    // X[0,1] (0 = index[1], 1 = i); i=2
             [0 2 4 4]    // X[0,2] (0 = 0, 2 = i); i=3
             [0 3 3 4]]   // X[0,3] (0 = 0, 3 = i); i=4

    Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
        x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
        index = fluid.layers.data(name='index', shape=[1], dtype='int32')
        out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
6107 6108

    Args:
Y
yuyang18 已提交
6109 6110
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
6111 6112

    Returns:
Y
yuyang18 已提交
6113
        ${out_comment}.
6114 6115
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
6116 6117 6118 6119 6120

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
6121
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
6122 6123 6124 6125 6126 6127
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
6128 6129


6130 6131 6132
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
6133
                               ignore_index=kIgnoreIndex,
6134
                               numeric_stable_mode=True,
6135 6136
                               return_softmax=False,
                               axis=-1):
6137 6138
    """
    **Softmax With Cross Entropy Operator.**
6139

6140
    Cross entropy loss with softmax is used as the output layer extensively. This
6141 6142 6143
    operator computes the softmax normalized values for dimension :attr:`axis` of 
    the input tensor, after which cross-entropy loss is computed. This provides 
    a more numerically stable gradient.
6144

6145 6146 6147
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
6148

6149 6150 6151 6152
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators 
    expects mutually exclusive hard labels, each sample in a batch is in exactly 
    one class with a probability of 1.0. Each sample in the batch will have a 
    single label.
6153

6154
    The equation is as follows:
6155

6156
    1) Hard label (one-hot label, so every sample has exactly one class)
6157

6158 6159 6160 6161
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
6162

6163 6164 6165
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
6166

6167 6168 6169 6170
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

6171 6172
    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated 
    first by:
S
sneaxiy 已提交
6173 6174

    .. math::
6175

H
haowang101779990 已提交
6176
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
6177

H
haowang101779990 已提交
6178
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
6179

H
haowang101779990 已提交
6180
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
6181 6182 6183

    and then cross entropy loss is calculated by softmax and label.

6184
    Args:
6185 6186 6187 6188 6189 6190
        logits (Variable): The input tensor of unscaled log probabilities.
        label (Variable): The ground truth  tensor. If :attr:`soft_label`
            is set to :attr:`True`, Label is a Tensor<float/double> in the 
            same shape with :attr:`logits`. If :attr:`soft_label` is set to 
            :attr:`True`, Label is a Tensor<int64> in the same shape with 
            :attr:`logits` expect shape in dimension :attr:`axis` as 1.
6191
        soft_label (bool): A flag to indicate whether to interpretate the given
6192
            labels as soft labels. Default False.
M
minqiyang 已提交
6193 6194
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
6195 6196
                            if :attr:`soft_label` is set to :attr:`False`. 
                            Default: kIgnoreIndex
S
sneaxiy 已提交
6197 6198
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
6199 6200 6201 6202
                                    when :attr:`soft_label` is :attr:`False` 
                                    and GPU is used. When :attr:`soft_label` 
                                    is :attr:`True` or CPU is used, the 
                                    algorithm is always numerically stable.
6203
                                    Note that the speed may be slower when use
6204
                                    stable algorithm. Default: True
6205
        return_softmax (bool): A flag indicating whether to return the softmax
6206
                               along with the cross entropy loss. Default: False
6207 6208 6209
        axis (int): The index of dimension to perform softmax calculations. It 
                    should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                    is the rank of input :attr:`logits`. Default: -1.
6210

6211
    Returns:
H
haowang101779990 已提交
6212 6213
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
6214 6215 6216 6217
                                            (loss, softmax), softmax is in the same shape \
                                            with input logits and cross entropy loss is in \
                                            the same shape with input logits except shape \
                                            in dimension :attr:`axis` as 1.
6218 6219 6220 6221 6222 6223 6224

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
6225 6226
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
6227 6228
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
6229 6230
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
6231 6232 6233 6234 6235 6236
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
6237 6238 6239
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
6240 6241
            'numeric_stable_mode': numeric_stable_mode,
            'axis': axis
S
sneaxiy 已提交
6242
        })
6243 6244 6245 6246

    if return_softmax:
        return loss, softmax

6247 6248 6249
    return loss


6250 6251 6252
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
6253
                                       num_true=1,
6254
                                       remove_accidental_hits=True,
X
xuezhong 已提交
6255 6256 6257
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
6258
                                       seed=0):
X
xuezhong 已提交
6259 6260 6261 6262 6263
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
6264
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
6265 6266 6267 6268 6269 6270 6271 6272
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
6273
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
6274 6275 6276 6277 6278 6279 6280 6281
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
6282
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
6294
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
6295 6296 6297 6298 6299
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6300
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6301
            logits.
X
xuezhong 已提交
6302 6303 6304 6305 6306
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6307 6308 6309
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

            logits = fluid.layers.data(name='data', shape=[256], dtype='float32')
            label = fluid.layers.data(name='label', shape=[5], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
            out = fluid.layers.sampled_softmax_with_cross_entropy(
                logits=fc, label=label, num_samples=25)
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
6330 6331
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
6332 6333
    logits_dim = helper.create_variable_for_type_inference(dtype=logits.dtype)
    labels_dim = helper.create_variable_for_type_inference(dtype=label.type)
X
xuezhong 已提交
6334 6335 6336 6337 6338

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6339
            'Labels': label,
X
xuezhong 已提交
6340 6341
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6342 6343 6344 6345
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6346
            'SampledLabels': sampled_label,
6347 6348 6349
            'SampledLogits': sampled_logits,
            'LogitsDim': logits_dim,
            'LabelsDim': labels_dim
X
xuezhong 已提交
6350 6351
        },
        attrs={
X
xuezhong 已提交
6352
            'use_customized_samples': use_customized_samples,
6353
            'uniq': True,
X
xuezhong 已提交
6354 6355 6356 6357
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6358 6359
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
6360 6361 6362 6363 6364 6365
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

6366 6367
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
6368
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
6369
                'Label': sampled_softlabel},
X
xuezhong 已提交
6370 6371 6372
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
6373
            'soft_label': True,
X
xuezhong 已提交
6374 6375 6376
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
6377
    return loss / num_true
X
xuezhong 已提交
6378 6379


6380 6381
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
6382 6383
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
6384
    For each instance, it computes the smooth L1 loss element by element first
6385
    and then sums all the losses. So the shape of ouput Variable is
6386
    [batch_size, 1].
6387

6388 6389
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
6390
            L1 loss op with shape [batch_size, dim1, ..., dimN].
6391
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
6392
            L1 loss op with same shape as :attr:`x`.
6393
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6394 6395
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6396
            by this tensor element by element.
6397
        outside_weight (Variable|None): A tensor with rank at least 2. This
6398 6399
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6400
            element by element.
6401
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6402 6403
           scalar with default value 1.0.

6404
    Returns:
6405
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6406 6407 6408 6409 6410

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6411 6412
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6413
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6414
            out = fluid.layers.smooth_l1(x=fc, y=label)
6415
    """
6416

6417
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
6418 6419
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6420 6421 6422 6423 6424 6425 6426 6427 6428 6429
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
6430
        attrs={'sigma': sigma if sigma is not None else 1.0})
6431
    return loss
6432 6433 6434 6435


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
6436
    This layer creates the one-hot representations for input indices.
6437 6438

    Args:
Y
Yibing Liu 已提交
6439 6440
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6441 6442

    Returns:
Y
Yibing Liu 已提交
6443
        Variable: The one-hot representations of input.
6444 6445

    Examples:
C
caoying03 已提交
6446
        .. code-block:: python
6447

Y
Yibing Liu 已提交
6448 6449
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=10)
6450 6451
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
6452
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6453 6454 6455 6456
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
6457 6458
        outputs={'Out': one_hot_out},
        stop_gradient=True)
6459
    return one_hot_out
Y
Yu Yang 已提交
6460 6461


Y
Yu Yang 已提交
6462
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6463
    """
Y
yi.wu 已提交
6464 6465 6466
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6467 6468 6469 6470 6471 6472

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6473 6474
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6475 6476 6477 6478 6479

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
6480
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
6481 6482
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
6483 6484
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
6485 6486 6487 6488 6489
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
6490
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
6491
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
6492 6493
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
6494
            outputs={'Out': [counter]},
M
minqiyang 已提交
6495 6496
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
6497 6498 6499
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
6500 6501


6502
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
6503
    """
C
caoying03 已提交
6504 6505
    Gives a new shape to the input Tensor without changing its data.

6506 6507 6508 6509 6510
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
6511

6512
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
6513

6514 6515 6516 6517
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

6518
    2. 0 means the actual dimension value is going to be copied from the
6519 6520 6521 6522
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
6523 6524

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
6525
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
6526
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
6527

6528
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6529 6530
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6531 6532
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6533
    dimensions.
C
caoying03 已提交
6534

6535
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6536 6537 6538 6539
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6540 6541

    Args:
6542
        x(variable): The input tensor.
C
caoying03 已提交
6543 6544
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6545 6546 6547 6548 6549
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6550 6551
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
6552 6553 6554
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
6555
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
6556
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6557

6558
    Returns:
G
guosheng 已提交
6559 6560 6561 6562
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6563

X
Xin Pan 已提交
6564 6565 6566
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6567 6568
    Examples:
        .. code-block:: python
G
guosheng 已提交
6569

6570
            data = fluid.layers.data(
6571
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
6572
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
6573
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
6574 6575 6576
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
6577
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
6578 6579 6580 6581 6582
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
6583

6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6599
    helper = LayerHelper("reshape2", **locals())
6600 6601
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6602
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6603
    helper.append_op(
6604
        type="reshape2",
X
Xin Pan 已提交
6605
        inputs=inputs,
D
dzhwinter 已提交
6606
        attrs={"shape": shape},
6607 6608
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6609

D
dzhwinter 已提交
6610
    return helper.append_activation(out)
6611

6612

6613
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6614
    """
M
minqiyang 已提交
6615 6616 6617
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6618
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6619

H
haowang101779990 已提交
6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6641

Y
Yibing Liu 已提交
6642
    Args:
6643
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6644
        axes (list): List of integers, indicating the dimensions to be squeezed.
6645
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6646 6647 6648 6649 6650 6651 6652

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

6653
            import paddle.fluid.layers as layers
Y
Yibing Liu 已提交
6654
            x = layers.data(name='x', shape=[5, 1, 10])
6655
            y = layers.squeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6656
    """
L
lujun 已提交
6657
    assert not in_dygraph_mode(), (
L
lujun 已提交
6658
        "squeeze layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
6659
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6660 6661
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6662
    helper.append_op(
6663
        type="squeeze2",
6664
        inputs={"X": input},
Y
Yibing Liu 已提交
6665
        attrs={"axes": axes},
6666 6667
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6668

6669 6670 6671
    return out


6672
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6673
    """
M
minqiyang 已提交
6674 6675 6676
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6677

M
minqiyang 已提交
6678
    For example:
H
haowang101779990 已提交
6679 6680 6681

    .. code-block:: text

M
minqiyang 已提交
6682
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6683
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6684

Y
Yibing Liu 已提交
6685
    Args:
6686
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6687
        axes (list): List of integers, indicating the dimensions to be inserted.
6688
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6689 6690 6691 6692 6693 6694 6695 6696

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
6697
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6698 6699
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6700 6701
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6702
    helper.append_op(
6703
        type="unsqueeze2",
6704
        inputs={"X": input},
Y
Yibing Liu 已提交
6705
        attrs={"axes": axes},
6706 6707
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6708

6709 6710
    return out

6711

Y
yangyaming 已提交
6712
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6713
    """
Y
Yibing Liu 已提交
6714
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6715 6716 6717 6718
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6719
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6720 6721 6722 6723 6724 6725

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6726
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6727 6728 6729
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6730
            target_lod: [4, 2]
Y
yangyaming 已提交
6731 6732

            then we get a 1-level LoDTensor:
6733
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6734 6735 6736 6737 6738 6739
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6740
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6741 6742 6743 6744
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6745
                y.data = [[2, 4]]
Y
yangyaming 已提交
6746 6747 6748
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6749
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6750 6751 6752 6753 6754 6755
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6756
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6757 6758 6759 6760
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6761
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6762 6763 6764 6765
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6766
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6767 6768 6769 6770 6771
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6772
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6773
                           from :attr:`y`.
Y
yangyaming 已提交
6774
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6775
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6776 6777

    Returns:
Y
Yibing Liu 已提交
6778
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6779 6780

    Raises:
Y
Yibing Liu 已提交
6781
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6782 6783 6784 6785 6786 6787 6788 6789 6790

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6791
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

X
xiaoting 已提交
6817
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C-1, i + n/2)}_{j = \\max(0, i - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
6846 6847
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6860 6861 6862
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6876 6877 6878 6879


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6880
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6881
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6882

G
guosheng 已提交
6883 6884 6885 6886
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6909
                         The length of :attr:paddings must be
G
guosheng 已提交
6910 6911 6912 6913 6914 6915 6916 6917 6918 6919
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6920

G
guosheng 已提交
6921
            # x is a rank 2 tensor variable.
S
SunGaofeng 已提交
6922 6923
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape=[224], dtype='float32')
G
guosheng 已提交
6924 6925 6926 6927 6928
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6929
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6930 6931 6932 6933 6934 6935 6936
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6937 6938


C
chengduo 已提交
6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6970 6971
		And
            pad_value = -1,
C
chengduo 已提交
6972

T
Tink_Y 已提交
6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
S
SunGaofeng 已提交
7003 7004 7005
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2,3,2,3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1,3,1,3], dtype='float32')
C
chengduo 已提交
7006 7007 7008 7009 7010
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7011
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
7012 7013 7014 7015 7016 7017 7018 7019 7020
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


7021 7022 7023 7024 7025 7026 7027
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
7028 7029
    called label-smoothing regularization (LSR).

7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
7053
                              be :math:`(1, class\_num)`.
7054 7055
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
7056
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
7076
    smooth_label = helper.create_variable_for_type_inference(dtype)
7077 7078 7079 7080 7081 7082 7083
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
7084 7085


W
wopeizl 已提交
7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116
            import paddle.fluid as fluid

            x = fluid.layers.data(
                name='x', shape=[8, 112, 112], dtype='float32')
            rois = fluid.layers.data(
                name='roi', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.roi_pool(
                input=x,
                rois=rois,
                pooled_height=7,
                pooled_width=7,
                spatial_scale=1.0)

W
wopeizl 已提交
7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
7134 7135


J
jerrywgz 已提交
7136 7137 7138 7139 7140 7141
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
7142 7143
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

J
jerrywgz 已提交
7160 7161 7162 7163
            x = fluid.layers.data(
                name='data', shape=[256, 32, 32], dtype='float32')
            rois = fluid.layers.data(
                name='rois', shape=[4], dtype='float32')
7164 7165 7166
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
7167 7168 7169 7170 7171 7172
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7173
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
7214 7215
        .. code-block:: python

S
SunGaofeng 已提交
7216 7217 7218
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape = [3, 224, 224, 2], dtype='float32')
            label = fluid.layers.data(name='label', shape=[3, 224, 224, 1], dtype='float32')
W
whs 已提交
7219
            predictions = fluid.layers.softmax(x)
S
SunGaofeng 已提交
7220
            loss = fluid.layers.dice_loss(input=predictions, label=label)
W
whs 已提交
7221 7222
    """
    label = one_hot(label, depth=input.shape[-1])
7223
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
7224 7225 7226 7227 7228 7229
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
7230 7231


7232 7233 7234 7235
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
7236
                 resample='BILINEAR',
7237 7238
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
7239
                 align_mode=1):
7240
    """
Q
qiaolongfei 已提交
7241
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
7242

7243
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
7244 7245 7246
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
7247

7248
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
7249

7250
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
7251

7252 7253 7254 7255 7256 7257 7258 7259 7260 7261
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

T
tink2123 已提交
7262
    Align_corners and align_mode are optinal parameters,the calculation method 
7263 7264 7265 7266
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7267
    .. code-block:: text
7268

T
Tink_Y 已提交
7269
        For scale:
7270
          
T
Tink_Y 已提交
7271
            if align_corners = True && out_size > 1 :
7272

T
Tink_Y 已提交
7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
7284

T
Tink_Y 已提交
7285 7286
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7287

T
Tink_Y 已提交
7288 7289
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
7290

T
Tink_Y 已提交
7291 7292
          else:
              align_corners = True
7293

T
Tink_Y 已提交
7294 7295
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7296

T
Tink_Y 已提交
7297 7298
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7299

T
Tink_Y 已提交
7300 7301 7302 7303 7304 7305 7306 7307 7308 7309
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7310

T
Tink_Y 已提交
7311 7312 7313 7314
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7315

T
Tink_Y 已提交
7316 7317
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7318 7319 7320 7321 7322 7323 7324 7325 7326

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.



7327
    Args:
7328
        input (Variable): The input tensor of image resize layer,
7329 7330
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
7331
        out_shape(list|tuple|Variable|None): Output shape of image resize
7332 7333
                                    layer, the shape is (out_h, out_w).
                                    Default: None
D
dengkaipeng 已提交
7334
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7335
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7336
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7337
             Default: None.
7338 7339
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7340
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
7341
                       currently.
7342
                       Default: 'BILINEAR'
7343 7344 7345
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7346
                                :attr:`out_shape` and :attr:`scale` specifying
7347 7348 7349 7350 7351 7352 7353
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7354 7355
                                constructing stage.
                                Default: None
7356 7357 7358 7359
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
7360
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
7361 7362
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
7363 7364

    Returns:
Q
update  
qiaolongfei 已提交
7365 7366
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
7367

7368 7369 7370
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
7371
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
7372 7373 7374
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.
D
dengkaipeng 已提交
7375
        ValueError: scale should be greater than zero.
7376 7377
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
7378

7379 7380 7381
    Examples:
        .. code-block:: python

R
ruri 已提交
7382
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7383
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
7384
    """
7385 7386 7387 7388
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
7389 7390
    if resample not in resample_methods:
        raise ValueError(
7391
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
7392
        )
7393
    resample_type = resample_methods[resample]
7394 7395 7396 7397 7398 7399

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7400
    if out_shape is None and scale is None:
7401
        raise ValueError("One of out_shape and scale must not be None.")
7402
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7403
    dtype = helper.input_dtype()
7404 7405 7406 7407

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

7408
    inputs = {"X": input}
D
dengkaipeng 已提交
7409
    attrs = {
D
dengkaipeng 已提交
7410 7411
        "out_h": 0,
        "out_w": 0,
D
dengkaipeng 已提交
7412 7413 7414 7415 7416
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode
    }

7417
    if out_shape is not None:
7418 7419 7420 7421
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
7422
            inputs['OutSize'] = out_shape
7423 7424
        else:
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
7425 7426
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
7427 7428 7429 7430 7431 7432 7433
            if len(out_shape) != 2:
                raise ValueError("out_shape length should be 2.")

            out_shape = list(map(int, out_shape))
            attrs['out_h'] = out_shape[0]
            attrs['out_w'] = out_shape[1]

7434
    else:
D
dengkaipeng 已提交
7435 7436
        if scale <= 0:
            raise ValueError("scale should be greater than zero.")
D
dengkaipeng 已提交
7437
        attrs['scale'] = float(scale)
7438

7439 7440 7441 7442 7443
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
7444
    out = helper.create_variable_for_type_inference(dtype)
7445
    helper.append_op(
7446
        type='{}_interp'.format(resample_type),
7447
        inputs=inputs,
7448
        outputs={"Out": out},
D
dengkaipeng 已提交
7449
        attrs=attrs)
7450
    return out
F
stash  
fengjiayi 已提交
7451 7452


7453
@templatedoc(op_type="bilinear_interp")
7454 7455 7456 7457
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7458 7459
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
7460
                    align_mode=1):
7461
    """
7462 7463
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
7464 7465
    in priority order.

7466 7467 7468 7469
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
7470 7471
    again in the other direction.

7472
    For details of bilinear interpolation, please refer to Wikipedia:
7473
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
7474

T
tink2123 已提交
7475
    Align_corners and align_mode are optinal parameters,the calculation 
7476 7477 7478 7479
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7480
    .. code-block:: text
7481

T
Tink_Y 已提交
7482
        For scale:
7483
          
T
Tink_Y 已提交
7484
            if align_corners = True && out_size > 1 :
7485

T
Tink_Y 已提交
7486 7487 7488 7489 7490
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     
7491

T
Tink_Y 已提交
7492 7493 7494 7495 7496 7497 7498 7499 7500 7501
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7502 7503


T
Tink_Y 已提交
7504
          else:
T
tink2123 已提交
7505

T
Tink_Y 已提交
7506 7507
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7508

T
Tink_Y 已提交
7509 7510
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7511 7512 7513



Y
yuyang18 已提交
7514 7515 7516
    Args:
        input(${x_type}): ${x_comment}.

D
dengkaipeng 已提交
7517 7518 7519
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7520

Y
yuyang18 已提交
7521
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7522
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7523
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7524
             Default: None.
Y
yuyang18 已提交
7525 7526

        name(str|None): The output variable name.
7527 7528 7529
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7530
                                :attr:`out_shape` and :attr:`scale` specifying
7531 7532 7533 7534 7535 7536 7537
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7538 7539
                                constructing stage.
                                Default: None
7540 7541
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
7542 7543 7544

    Returns:
        ${out_comment}.
7545 7546 7547 7548

    Examples:
        .. code-block:: python

R
ruri 已提交
7549
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7550
            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
7551 7552
    """

7553 7554
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
7555 7556


7557
@templatedoc(op_type="nearest_interp")
7558 7559 7560 7561
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7562 7563
                   actual_shape=None,
                   align_corners=True):
7564
    """
7565
    Resize input by performing nearest neighbor interpolation in both the
T
Tink_Y 已提交
7566 7567
    3rd dimension(in height direction) and the 4th dimension(in width
    direction) based on given output shape which is specified by actual_shape,
7568 7569
    out_shape and scale in priority order.

7570 7571
    Example:

T
Tink_Y 已提交
7572 7573 7574 7575 7576
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
7577

T
Tink_Y 已提交
7578 7579 7580 7581 7582 7583 7584 7585
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
7586
          
T
Tink_Y 已提交
7587 7588
          if:
              align_corners = False
7589

T
Tink_Y 已提交
7590 7591
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7592

T
Tink_Y 已提交
7593 7594
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
7595

T
Tink_Y 已提交
7596 7597
          else:
              align_corners = True
7598

T
Tink_Y 已提交
7599 7600
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7601

T
Tink_Y 已提交
7602 7603
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7604 7605


7606
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7607
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7608 7609 7610 7611

    Args:
        input(${x_type}): ${x_comment}.

D
dengkaipeng 已提交
7612 7613 7614
        out_shape(list|tuple|Variable|None): Output shape of resize nearest
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7615

Y
yuyang18 已提交
7616
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7617
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7618
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7619
             Default: None.
Y
yuyang18 已提交
7620 7621

        name(str|None): The output variable name.
7622 7623 7624
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7625
                                :attr:`out_shape` and :attr:`scale` specifying
7626 7627 7628 7629 7630 7631 7632
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7633 7634
                                constructing stage.
                                Default: None
7635
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
7636 7637 7638

    Returns:
        ${out_comment}.
7639 7640 7641 7642

    Examples:
        .. code-block:: python

R
ruri 已提交
7643
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7644
            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
7645 7646
    """

7647 7648
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
7649 7650 7651 7652


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
7653 7654 7655
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7656 7657 7658 7659 7660 7661 7662
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
7663
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7664

7665
    Returns:
Q
update  
qiaolongfei 已提交
7666
        Variable: The output is a 4-D tensor of the shape
7667
        (num_batches, channls, out_h, out_w).
R
ruri 已提交
7668 7669 7670 7671 7672 7673

    Examples:
        .. code-block:: python

            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
            out = fluid.layers.image_resize_short(input, out_short_len=3)
7674 7675 7676 7677 7678 7679 7680 7681 7682 7683
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7684 7685 7686
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7687 7688 7689
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
7690 7691
def gather(input, index):
    """
Q
qiaolongfei 已提交
7692 7693
    **Gather Layer**

7694
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7695 7696 7697 7698
    of X indexed by `index` and concatenate them together.

    .. math::

7699
        Out = X[Index]
W
whs 已提交
7700 7701 7702 7703 7704 7705 7706


    .. code-block:: text


                Given:

7707 7708
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7709 7710 7711 7712 7713 7714 7715 7716 7717 7718
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
7719
        input (Variable): The source input with rank>=1.
W
whs 已提交
7720 7721 7722 7723 7724 7725
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7726

W
whs 已提交
7727 7728
        .. code-block:: python

Y
Yibing Liu 已提交
7729 7730
            x = fluid.layers.data(name='x', shape=[-1, 5], dtype='float32')
            index = fluid.layers.data(name='index', shape=[-1, 1], dtype='int32')
W
whs 已提交
7731 7732 7733 7734
            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7735
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7736 7737 7738 7739 7740 7741 7742 7743
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7775
    out = helper.create_variable_for_type_inference(dtype)
7776 7777 7778 7779 7780 7781 7782 7783 7784
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
7785 7786 7787 7788 7789 7790 7791 7792 7793
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
7794

Q
Qingsheng Li 已提交
7795
    Given the following input:
H
haowang101779990 已提交
7796

Q
Qingsheng Li 已提交
7797
    .. code-block:: text
H
haowang101779990 已提交
7798

Q
Qingsheng Li 已提交
7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
7811

Q
Qingsheng Li 已提交
7812
    .. code-block:: text
H
haowang101779990 已提交
7813

Q
Qingsheng Li 已提交
7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
7829
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
7830 7831 7832 7833 7834 7835 7836 7837

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
L
lujun 已提交
7838
    assert not in_dygraph_mode(), (
7839
        "sequence layer is not supported in dygraph mode yet.")
Q
Qingsheng Li 已提交
7840 7841
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7842
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
7843 7844 7845 7846 7847 7848 7849 7850 7851
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
7865

7866 7867 7868
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
7869
    """
F
stash  
fengjiayi 已提交
7870
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
7871
    dtype = x.dtype
X
Xin Pan 已提交
7872
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
7873
    if seed is None:
7874
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
7875
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
7876
    if isinstance(seed, int):
F
fengjiayi 已提交
7877 7878 7879 7880 7881
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
7882 7883 7884 7885
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
7886
        inputs={"X": x,
F
stash  
fengjiayi 已提交
7887 7888
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
7889 7890
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
7891
    return out
W
whs 已提交
7892 7893


7894
def log(x, name=None):
W
wanghaoshuang 已提交
7895 7896 7897 7898 7899
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

7900
        Out = \\ln(x)
W
wanghaoshuang 已提交
7901 7902

    Args:
7903
        x (Variable): Input tensor.
7904 7905
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7906 7907 7908 7909 7910 7911 7912 7913

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

7914
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
7915 7916
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
7917
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7918
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
7919
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
7920 7921 7922
    return out


7923
def relu(x, name=None):
W
wanghaoshuang 已提交
7924 7925
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
7926
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
7927 7928 7929 7930
    the tensor elementwise.

    .. math::

7931
        Out = \\max(0, x)
W
wanghaoshuang 已提交
7932 7933

    Args:
7934
        x (Variable): The input tensor.
7935 7936
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7937 7938 7939 7940 7941 7942 7943 7944

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

7945
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
7946
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
7947 7948
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
7949
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7950
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
7951 7952
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
7953
    return out
7954 7955


C
chengduo 已提交
7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
7997 7998 7999
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
8000 8001 8002 8003
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
8004
    .. math::
8005

H
haowang101779990 已提交
8006
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
8007

8008
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
8009 8010 8011 8012 8013
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
8014
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
8015
                           Its shape should be the same as input.
8016
        num_classes (int): The possible number of labels.
W
whs 已提交
8017 8018

    Returns:
M
minqiyang 已提交
8019 8020
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
8021
                     Three variables:
M
minqiyang 已提交
8022

H
haowang101779990 已提交
8023 8024 8025
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
8026 8027 8028 8029

    Examples:

        .. code-block:: python
8030

W
whs 已提交
8031 8032 8033 8034
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8035 8036 8037
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
8038 8039
    helper.append_op(
        type="mean_iou",
W
whs 已提交
8040 8041
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
8042
        outputs={
W
whs 已提交
8043 8044 8045
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
8046 8047 8048
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
S
SunGaofeng 已提交
8091
        offsets (Variable|list/tuple of integer|None): Specifies the cropping
8092
            offsets at each dimension. It can be a Variable or or a list/tupe
S
SunGaofeng 已提交
8093
            of integers. If a tensor Variable, it's rank must be the same as `x`.
8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

S
SunGaofeng 已提交
8111
            import paddle.fluid as fluid
8112 8113 8114 8115 8116 8117
            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
8118
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
8119 8120 8121 8122 8123

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
8124
            isinstance(shape, Variable)):
8125 8126 8127 8128 8129
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
8130
    out = helper.create_variable_for_type_inference(x.dtype)
8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
8148 8149


W
whs 已提交
8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
8167

W
whs 已提交
8168
              out_shape = [2, 3, 5, 5]
8169

W
whs 已提交
8170
          Step 1:
8171

W
whs 已提交
8172 8173 8174
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
8175

W
whs 已提交
8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
8221
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
8222
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
8235

S
SunGaofeng 已提交
8236
            import paddle.fluid as fluid
W
whs 已提交
8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
8248
            isinstance(out_shape, Variable)):
W
whs 已提交
8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


8270 8271
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
8272

8273 8274
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
8275
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
8276 8277 8278
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
8279

8280 8281
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
8282

H
haowang101779990 已提交
8283 8284
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
8285 8286
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
8287

H
haowang101779990 已提交
8288 8289 8290 8291 8292 8293 8294 8295
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
8296 8297 8298

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
8333
    out = helper.create_variable_for_type_inference("float32")
8334 8335 8336 8337 8338 8339 8340 8341

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
8342 8343


M
minqiyang 已提交
8344 8345
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
8346
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
8347
    which compares left score and right score passed in.
M
minqiyang 已提交
8348
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
8349 8350 8351

    .. math::

H
haowang101779990 已提交
8352
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
8353 8354

    Args:
M
minqiyang 已提交
8355
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
8356 8357
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
8358
       margin (float): Indicates the given margin.
M
minqiyang 已提交
8359 8360
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
8361

M
minqiyang 已提交
8362
    Returns:
M
minqiyang 已提交
8363
       Variable: The ranking loss.
H
haowang101779990 已提交
8364

M
minqiyang 已提交
8365
    Raises:
M
minqiyang 已提交
8366
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
8367

M
minqiyang 已提交
8368
    Examples:
H
haowang101779990 已提交
8369

M
minqiyang 已提交
8370
        .. code-block:: python
H
haowang101779990 已提交
8371

Y
Yibing Liu 已提交
8372 8373 8374
           label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
M
minqiyang 已提交
8375 8376
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
8377
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
8378 8379 8380 8381 8382 8383
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
8384 8385
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
8409
        .. code-block:: text
W
whs 已提交
8410

T
Tink_Y 已提交
8411
	      Given that X is a channel of image from input:
M
minqiyang 已提交
8412

T
Tink_Y 已提交
8413 8414
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
8415

T
Tink_Y 已提交
8416
	      Case 0:
M
minqiyang 已提交
8417

T
Tink_Y 已提交
8418 8419 8420
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
8421

T
Tink_Y 已提交
8422 8423 8424
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
8425

T
Tink_Y 已提交
8426
	      Case 1:
M
minqiyang 已提交
8427

T
Tink_Y 已提交
8428 8429
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
8430

T
Tink_Y 已提交
8431 8432 8433
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
8434

T
Tink_Y 已提交
8435
	      Case 2:
M
minqiyang 已提交
8436

T
Tink_Y 已提交
8437 8438
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
8439

T
Tink_Y 已提交
8440 8441 8442
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
8443 8444


W
whs 已提交
8445 8446
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
8447
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8471
    out = helper.create_variable_for_type_inference(dtype)
8472 8473 8474 8475 8476 8477 8478 8479 8480
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8481
    helper.append_op(
8482
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8483 8484 8485 8486

    return out


8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8499 8500 8501 8502 8503

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8504 8505
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
8506 8507
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
8508
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8529 8530 8531 8532 8533

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8534 8535
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
8536 8537
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
8538
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8559 8560 8561 8562 8563

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8564 8565
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
8566 8567
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
8568
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8590 8591 8592 8593 8594

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8595
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
8596
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
8597 8598
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8599
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8622 8623 8624 8625 8626

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8627 8628
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
8629 8630
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
8631
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8653 8654 8655 8656 8657

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8658 8659
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
8660 8661
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8662
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8663 8664 8665 8666 8667 8668 8669 8670
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8671 8672 8673 8674
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8675 8676
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8677 8678 8679

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
8680
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
8681
          weight (alpha).
J
jerrywgz 已提交
8682
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
8683 8684 8685
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
8686
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
8687
          will be named automatically.
J
jerrywgz 已提交
8688 8689 8690 8691 8692 8693 8694 8695

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
8696
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
8710
        attr=helper.param_attr,
J
jerrywgz 已提交
8711 8712 8713 8714
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
8715
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8716 8717 8718 8719 8720 8721 8722 8723 8724
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


8725 8726 8727 8728 8729 8730 8731 8732 8733 8734
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8735
    Returns:
8736
        output(${out_type}): ${out_comment}
8737 8738 8739

    Examples:

8740
    .. code-block:: python
8741

H
haowang101779990 已提交
8742 8743
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
8744 8745
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
8746
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8765
    Returns:
8766
        output(${out_type}): ${out_comment}
8767 8768 8769 8770 8771

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8772 8773
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
8774 8775
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
8776
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8794
    Returns:
8795
        output(${out_type}): ${out_comment}
8796 8797 8798 8799 8800

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8801 8802
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.soft_relu(x, threshold=20.0)
8803 8804
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
8805
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8806 8807 8808 8809 8810 8811 8812 8813
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


8814 8815 8816 8817
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
8818

H
haowang101779990 已提交
8819
    For Example:
M
minqiyang 已提交
8820

H
haowang101779990 已提交
8821
    .. code-block:: text
8822

H
haowang101779990 已提交
8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
8844 8845 8846

    Args:
        x (Variable): A tensor of rank >= axis.
8847 8848
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
8849 8850 8851 8852 8853 8854 8855 8856
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
8857 8858 8859
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
8860 8861 8862 8863
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
8864
        ValueError: If axis is not in range [0, rank(x)].
8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
8881 8882
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
8883
    helper.append_op(
8884
        type='flatten2',
8885
        inputs={"X": x},
8886 8887
        outputs={'Out': out,
                 'XShape': x_shape},
8888 8889
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
8890 8891


C
chenweihang 已提交
8892
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
8893
    """
C
chenweihang 已提交
8894
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
8895
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
8896 8897
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
8898

H
haowang101779990 已提交
8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
8916 8917

    Args:
C
chenweihang 已提交
8918 8919 8920
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
8921 8922 8923 8924 8925 8926 8927 8928 8929 8930

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
L
lujun 已提交
8931
    assert not in_dygraph_mode(), (
8932
        "sequence layer is not supported in dygraph mode yet.")
C
chenweihang 已提交
8933
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
8934 8935
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
8936 8937 8938 8939 8940 8941
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
8942
    return out
8943

8944

S
sneaxiy 已提交
8945 8946 8947 8948 8949 8950 8951 8952 8953
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
8954

S
sneaxiy 已提交
8955
    .. math::
8956

S
sneaxiy 已提交
8957 8958 8959
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
8960
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
8961 8962 8963 8964
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
8965 8966 8967
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
8968 8969
    Returns:
        Variable: The output sequence mask.
8970

S
sneaxiy 已提交
8971
    """
L
lujun 已提交
8972
    assert not in_dygraph_mode(), (
8973
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
8974

Q
qingqing01 已提交
8975
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
8976
    if name is None:
X
Xin Pan 已提交
8977
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
8978
    else:
X
Xin Pan 已提交
8979
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
8980

Q
qingqing01 已提交
8981 8982 8983
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
8984 8985
        outputs={'Y': out},
        attrs={
8986
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
8987 8988 8989
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
8990 8991


X
Xin Pan 已提交
8992
def stack(x, axis=0):
S
sneaxiy 已提交
8993 8994 8995 8996
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
8997 8998 8999 9000 9001 9002 9003

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
9004
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
9005
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
9006

C
chengduozh 已提交
9007 9008
    For Example:

C
chengduozh 已提交
9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
9047
    Args:
9048
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
9049
        axis (int|None): The axis along which all inputs are stacked.
9050

S
sneaxiy 已提交
9051 9052
    Returns:
        Variable: The stacked variable.
9053

9054 9055 9056 9057 9058 9059 9060 9061
    Examples:
        .. code-block:: python

            import paddle.fluid.layers as layers
            x1 = layers.data(name='x1', shape[1, 2], dtype='int32')
            x2 = layers.data(name='x2', shape[1, 2], dtype='int32')
            data = layers.stack([x1,x2])

S
sneaxiy 已提交
9062 9063
    """

X
Xin Pan 已提交
9064 9065 9066 9067 9068 9069
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
9070
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
9071
    helper.append_op(
S
sneaxiy 已提交
9072 9073
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
9074

X
Xin Pan 已提交
9075
    return out
D
dzhwinter 已提交
9076 9077 9078 9079 9080 9081 9082


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
9083

D
dzhwinter 已提交
9084 9085 9086
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
9087
    raised.
D
dzhwinter 已提交
9088 9089

    Args:
M
minqiyang 已提交
9090
        x (Variable): Input variable.
D
dzhwinter 已提交
9091 9092
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
9093

D
dzhwinter 已提交
9094 9095
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
9096

D
dzhwinter 已提交
9097 9098 9099 9100 9101 9102 9103 9104 9105 9106
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
9107
    for _ in range(num):
X
Xin Pan 已提交
9108
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
9109 9110 9111 9112 9113 9114 9115 9116

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
9129

W
whs 已提交
9130 9131 9132 9133
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
9134

W
whs 已提交
9135
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
9136

W
whs 已提交
9137
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
9138

W
whs 已提交
9139 9140 9141 9142
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
9143

W
whs 已提交
9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
9160
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
9161 9162 9163 9164 9165 9166
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
9167 9168


G
fix  
gongweibao 已提交
9169 9170 9171
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
9172
@templatedoc()
G
fix  
gongweibao 已提交
9173 9174 9175 9176 9177 9178 9179 9180 9181
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
9182
    ${comment}
G
fix  
gongweibao 已提交
9183 9184

    Args:
G
gongweibao 已提交
9185 9186 9187
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9188
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
9189 9190 9191
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9192 9193
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
9194
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9195

9196 9197 9198 9199 9200
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
9201 9202 9203
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
9204
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
9221 9222


G
gongweibao 已提交
9223
@templatedoc()
X
Xin Pan 已提交
9224
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9225
    """
G
gongweibao 已提交
9226
    ${comment}
G
fix  
gongweibao 已提交
9227 9228

    Args:
G
gongweibao 已提交
9229 9230 9231 9232
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9233 9234 9235
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
9236
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9237

9238 9239 9240
    Examples:
        .. code-block:: python

J
JesseyXujin 已提交
9241
            import paddle.fluid.layers as layers
9242
            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
9243 9244 9245
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
9246
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9247 9248 9249 9250 9251 9252 9253 9254 9255 9256
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
9257
            'use_mkldnn': False
G
fix  
gongweibao 已提交
9258 9259 9260 9261 9262
        })

    return out


G
gongweibao 已提交
9263
@templatedoc()
G
fix  
gongweibao 已提交
9264
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9265
    """
G
gongweibao 已提交
9266
    ${comment}
G
fix  
gongweibao 已提交
9267 9268

    Args:
G
gongweibao 已提交
9269 9270 9271 9272
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
9273
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9274 9275

    Returns:
G
gongweibao 已提交
9276
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9277

9278 9279 9280
    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
9281
            x = fluid.layers.data(
9282 9283 9284 9285 9286
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

Y
Yibing Liu 已提交
9287
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
9288 9289 9290
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
9291
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
9303
@templatedoc()
G
fix  
gongweibao 已提交
9304 9305 9306 9307 9308 9309 9310 9311 9312
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
9313
    ${comment}
G
fix  
gongweibao 已提交
9314 9315

    Args:
G
gongweibao 已提交
9316 9317
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
9318
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9319 9320 9321 9322
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9323
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9324 9325

    Returns:
G
gongweibao 已提交
9326
        out (Variable): ${out_comment}
9327 9328 9329 9330

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
9331
            input = fluid.layers.data(name="input", shape=[13, 11], dtype='float32')
9332

Y
Yibing Liu 已提交
9333
            out = fluid.layers.gaussian_random_batch_size_like(
9334
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
9335 9336 9337
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
9338
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
9357
@templatedoc()
X
Xin Pan 已提交
9358
def sum(x):
G
fix  
gongweibao 已提交
9359
    """
G
gongweibao 已提交
9360
    ${comment}
G
fix  
gongweibao 已提交
9361 9362

    Args:
G
gongweibao 已提交
9363
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
9364 9365

    Returns:
G
gongweibao 已提交
9366
        out (Variable): ${out_comment}
9367 9368 9369 9370 9371 9372

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
9373 9374 9375
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
9376 9377
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
9378 9379 9380 9381
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
9382
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
9383 9384 9385 9386

    return out


G
gongweibao 已提交
9387
@templatedoc()
G
fix  
gongweibao 已提交
9388 9389
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
9390
    ${comment}
G
fix  
gongweibao 已提交
9391 9392

    Args:
G
gongweibao 已提交
9393 9394 9395 9396
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
9397 9398

    Returns:
G
gongweibao 已提交
9399
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9400

9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
9412 9413 9414
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
9415 9416
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
9430 9431
    **Shape Layer**

C
fix doc  
chengduozh 已提交
9432
    Get the shape of the input.
G
fix  
gongweibao 已提交
9433 9434

    Args:
C
chengduozh 已提交
9435
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
9436 9437

    Returns:
C
fix doc  
chengduozh 已提交
9438
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
9439

9440 9441 9442 9443 9444 9445
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
9446 9447 9448
    """

    helper = LayerHelper('shape', **locals())
9449
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
9450
    helper.append_op(
G
fix  
gongweibao 已提交
9451
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
9452 9453

    return out
G
merge  
gongweibao 已提交
9454 9455


Z
zhoukunsheng 已提交
9456 9457 9458 9459
def rank(input):
    """
    **Rank Layer**

Z
zhoukunsheng 已提交
9460
    Returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
Z
zhoukunsheng 已提交
9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The rank of the input variable.

    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            rank = layers.rank(input) # 4
    """

    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


S
sneaxiy 已提交
9482 9483 9484 9485
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
L
lujun 已提交
9486
    if in_dygraph_mode():
X
Xin Pan 已提交
9487 9488 9489
        x = base.to_variable(x)
        y = base.to_variable(y)

S
sneaxiy 已提交
9490 9491 9492 9493
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
9494 9495
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
9496
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9497 9498 9499
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9500

S
sneaxiy 已提交
9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
9512
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
9513 9514 9515 9516 9517 9518 9519 9520
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
9521
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
9522
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
9523 9524 9525 9526 9527 9528

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
9529
    if name is None:
X
Xin Pan 已提交
9530
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9531 9532 9533
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9534 9535 9536 9537 9538 9539 9540 9541 9542 9543

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
9544
    return helper.append_activation(out)
S
sneaxiy 已提交
9545 9546


X
Xin Pan 已提交
9547
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9548 9549 9550
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
9551
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9552 9553 9554
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
9555
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9556 9557 9558
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
9559
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9560 9561 9562
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
9563
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9564 9565 9566
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
9567
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9568 9569 9570
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
9571
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9572 9573 9574
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


9575 9576 9577 9578 9579 9580 9581 9582
def elementwise_mod(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
9583
for func in [
9584 9585 9586 9587 9588 9589 9590 9591 9592
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
        elementwise_max,
        elementwise_min,
        elementwise_pow,
        elementwise_mod,
        elementwise_floordiv,
S
sneaxiy 已提交
9593 9594 9595 9596 9597
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
9598 9599
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
9600
        ])
M
minqiyang 已提交
9601 9602


9603
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
9604 9605
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
9606 9607
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
9608 9609 9610

    if out is None:
        if name is None:
X
Xin Pan 已提交
9611
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
9627
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9639 9640 9641 9642 9643 9644 9645 9646 9647

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
9648 9649 9650 9651 9652 9653 9654
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9655
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9667 9668 9669 9670 9671 9672 9673 9674 9675

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
9676 9677 9678 9679 9680 9681 9682
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9683
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9695 9696 9697 9698 9699 9700 9701 9702 9703

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
9704 9705 9706 9707 9708 9709 9710
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9711
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
9712 9713 9714 9715 9716 9717 9718 9719 9720 9721
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9722 9723 9724 9725 9726 9727 9728

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
9729 9730 9731 9732
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9748 9749 9750 9751

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
9752
            import paddle.fluid as fluid
9753 9754 9755
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
9756 9757 9758 9759 9760
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
9761 9762 9763 9764
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9788 9789 9790 9791 9792 9793 9794

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
9795 9796 9797 9798 9799
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
9800 9801 9802 9803
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9804 9805 9806 9807 9808 9809 9810 9811

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
9830
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9831 9832 9833 9834 9835 9836 9837 9838 9839 9840
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
9883
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9884 9885 9886 9887 9888 9889 9890 9891 9892
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
9893 9894
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
9895 9896 9897 9898 9899 9900
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
9901 9902 9903
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
9904 9905
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
9906 9907 9908 9909 9910 9911
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
9912
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
9913
        name(basestring|None): Name of the output.
9914 9915
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
9916 9917 9918

    Returns:
        out(${out_type}): ${out_comment}
9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
9933 9934 9935 9936 9937
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
9938
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9939 9940 9941 9942 9943 9944 9945 9946
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
9947 9948
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
J
jerrywgz 已提交
9965 9966 9967 9968 9969 9970 9971 9972 9973

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', 
                shape=[256, 32, 32], 
                dtype='float32')
            out = fluid.layers.maxout(input, groups=2)
X
Xin Pan 已提交
9974 9975 9976 9977
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
9978
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9979 9980 9981 9982 9983 9984 9985 9986 9987 9988
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
9989 9990


J
JiabinYang 已提交
9991
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
9992
    """
J
JiabinYang 已提交
9993
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
9994 9995 9996

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
9997
    The attr blocksize indicates the input block size.
9998 9999

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
10000
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
10001 10002

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
10003
    (but keeping all data)
J
JiabinYang 已提交
10004

J
JiabinYang 已提交
10005
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
10006
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
10007 10008 10009 10010 10011
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
10012
    Args:
J
JiabinYang 已提交
10013
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
10014
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
10015 10016

    Returns:
J
JiabinYang 已提交
10017
        Variable: The output LoDtensor.
J
JiabinYang 已提交
10018 10019

    Raises:
J
JiabinYang 已提交
10020
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
10021 10022 10023 10024 10025

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
10026
                name='data', shape=[1, 4, 2, 2], dtype='float32', append_batch_size=False)
J
JiabinYang 已提交
10027
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
10028
                x=data, blocksize=2)
10029 10030 10031 10032 10033 10034

            exe = fluid.Executor(fluid.CUDAPlace(0))
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
            out_main = exe.run(fluid.default_main_program(),
                          feed={'data': data_np},
                          fetch_list=[space_to_depthed])
J
JiabinYang 已提交
10035 10036
    """

J
JiabinYang 已提交
10037
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
10038

J
JiabinYang 已提交
10039 10040
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
10041 10042

    if name is None:
J
JiabinYang 已提交
10043 10044
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
10045 10046 10047 10048 10049
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
10050
        type="space_to_depth",
J
JiabinYang 已提交
10051
        inputs={"X": x},
J
JiabinYang 已提交
10052
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
10053
        outputs={"Out": out})
J
JiabinYang 已提交
10054 10055
    return out

J
JiabinYang 已提交
10056

S
sneaxiy 已提交
10057 10058
@templatedoc()
def sequence_reverse(x, name=None):
10059
    """
S
sneaxiy 已提交
10060 10061 10062 10063 10064 10065 10066 10067 10068
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
L
lujun 已提交
10069
    assert not in_dygraph_mode(), (
10070
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
10071 10072
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
10073
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10074 10075 10076 10077 10078 10079 10080 10081 10082 10083
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
10084 10085


10086 10087 10088 10089 10090 10091
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
10092 10093 10094 10095 10096
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
10097

10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.
10110
        act (str, default None): Activation to be applied to the output of this layer.
10111 10112 10113 10114 10115 10116 10117

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
10118
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
10130
    return helper.append_activation(out)
10131 10132


B
barrierye 已提交
10133
def similarity_focus(input, axis, indexes, name=None):
10134
    """
B
barrierye 已提交
10135
    SimilarityFocus Operator
B
barrierye 已提交
10136 10137

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
10138

10139 10140 10141
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
10142
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
10143 10144 10145 10146 10147 10148 10149
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
10150
       each index.
B
barrierye 已提交
10151 10152 10153 10154
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
10204
    Args:
10205
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
10206
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
10207
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
10208
            1, 2 or 3.
B
barrierye 已提交
10209
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
10210 10211

    Returns:
H
haowang101779990 已提交
10212 10213
        Variable: A tensor variable with the same shape and same type \
                  as the input.
10214

B
barrierye 已提交
10215 10216
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
10217

B
barrierye 已提交
10218
            data = fluid.layers.data(
Y
Yibing Liu 已提交
10219 10220
                name='data', shape=[-1, 3, 2, 2], dtype='float32')
            fluid.layers.similarity_focus(input=data, axis=1, indexes=[0])
B
barrierye 已提交
10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
10233 10234 10235 10236 10237
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
10238 10239 10240 10241 10242 10243 10244
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
10245 10246


M
minqiyang 已提交
10247 10248
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
10249 10250
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
10251 10252
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
10291
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
10292
        name (str, default None): The name of this layer.
M
minqiyang 已提交
10293 10294 10295 10296 10297 10298

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
10299

10300
           x = fluid.layers.data(name="x", shape=[1], dtype='int32', lod_level=1)
M
minqiyang 已提交
10301
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
10302 10303
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
10304 10305
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
10306 10307 10308 10309 10310 10311 10312
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
10313 10314


D
dengkaipeng 已提交
10315
@templatedoc()
10316 10317
def grid_sampler(x, grid, name=None):
    """
10318
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
10319
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
10320 10321 10322 10323
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
10324
    interpolation value of 4 nearest corner points.
10325

H
haowang101779990 已提交
10326
    .. code-block:: text
10327

H
haowang101779990 已提交
10328 10329
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
10330

H
haowang101779990 已提交
10331 10332
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
10333

H
haowang101779990 已提交
10334 10335 10336
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
10337

H
haowang101779990 已提交
10338 10339 10340 10341 10342 10343 10344 10345 10346
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
10347

H
haowang101779990 已提交
10348 10349 10350 10351
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
10352

H
haowang101779990 已提交
10353 10354 10355 10356
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
10357

H
haowang101779990 已提交
10358 10359 10360 10361
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
10362

H
haowang101779990 已提交
10363 10364
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
10365 10366

    Args:
10367 10368 10369
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
10370 10371

    Returns:
H
haowang101779990 已提交
10372
        Variable: Output of shape [N, C, H, W] data samples input X
10373 10374
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
10375 10376 10377 10378 10379 10380 10381 10382
    Examples:

        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
            out = fluid.layers.grid_sampler(x=x, grid=grid)
10383

D
dengkaipeng 已提交
10384 10385 10386 10387 10388 10389 10390 10391 10392
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

10393
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
10394 10395
    ipts = {'X': x, 'Grid': grid}

10396
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
10397 10398 10399
    return out


G
gmcather 已提交
10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
10427 10428
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          prob = fluid.layers.data(name='prob', shape=[10], dtype='float32')
G
gmcather 已提交
10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
10467
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
10468 10469 10470 10471 10472 10473 10474
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
H
heqiaozhi 已提交
10475

H
heqiaozhi 已提交
10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
10490 10491 10492 10493
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
10494
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
10495 10496
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
10497
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
10498 10499

    .. math::
H
haowang101779990 已提交
10500 10501 10502
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
10503 10504

    Where:
H
haowang101779990 已提交
10505 10506
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
H
haowang101779990 已提交
10521

G
gmcather 已提交
10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
10538 10539 10540 10541 10542 10543 10544 10545 10546 10547


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
10548
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
10549

Q
Qiao Longfei 已提交
10550
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
10551 10552 10553
    For example:

    .. math::
H
haowang101779990 已提交
10554
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
10555

Q
Qiao Longfei 已提交
10556
    In this formula:
10557 10558
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
10559
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
10560
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
10561 10562 10563
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
10564 10565
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
10566 10567 10568
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
10569
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
10570
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
10571
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
10572 10573 10574 10575
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
10576
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
10577 10578 10579 10580

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
10581 10582 10583
          layer1 = fluid.layers.data("t1", shape=[-1, 5], dtype="float32")
          layer2 = fluid.layers.data("t2", shape=[-1, 4], dtype="float32")
          tensor = fluid.layers.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
10584 10585
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
10586
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
10587 10588 10589 10590

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
10591
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
10632 10633


S
shippingwang 已提交
10634
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
10635 10636
    """
    **Shuffle Channel Operator**
10637

S
shippingwang 已提交
10638 10639 10640 10641 10642 10643
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
10644
    
S
shippingwang 已提交
10645
    .. code-block:: text
10646

S
shippingwang 已提交
10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
10675
    Args: 
S
shippingwang 已提交
10676 10677
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
10678 10679

    Returns:
S
shippingwang 已提交
10680 10681
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
10682 10683

    Raises:
S
shippingwang 已提交
10684
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
10685 10686 10687

    Examples:
        .. code-block:: python
10688 10689

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
10690
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
10691 10692 10693
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
10694
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
10695 10696 10697 10698 10699 10700 10701 10702 10703

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
10704
    return out
S
Add  
shippingwang 已提交
10705 10706


10707
@templatedoc()
D
dengkaipeng 已提交
10708
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
10709 10710 10711 10712 10713 10714 10715 10716
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
10717
        shift_ratio(float): ${shift_ratio_comment}
D
dengkaipeng 已提交
10718
        name (str, default None): The name of this layer.
10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
        same shape and same type as the input.

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
D
dengkaipeng 已提交
10731
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
10744 10745
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
10746 10747 10748
    return out


S
sneaxiy 已提交
10749
class PyFuncRegistry(object):
S
sneaxiy 已提交
10750 10751 10752
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
10753
        if func is None or not callable(func):
S
sneaxiy 已提交
10754 10755 10756
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
10757
        # find named args using reflection
S
sneaxiy 已提交
10758 10759 10760 10761 10762 10763 10764
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
10765 10766 10767
        '''
        Why record self here?

M
minqiyang 已提交
10768 10769
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
10770
           to find the registered function corresponding
M
minqiyang 已提交
10771
           to :code:`idx`.
S
sneaxiy 已提交
10772

M
minqiyang 已提交
10773 10774
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
10775
           whose reference count is 1 would cause
M
minqiyang 已提交
10776
           segmentation fault error in C++ side.
S
sneaxiy 已提交
10777 10778
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
10779
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
10794 10795 10796 10797 10798 10799 10800 10801 10802
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
10803

S
sneaxiy 已提交
10804 10805
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
10806 10807

        ret = []
S
sneaxiy 已提交
10808 10809 10810
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
10811 10812
                continue

S
sneaxiy 已提交
10813 10814
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
10815

S
sneaxiy 已提交
10816 10817 10818
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
10819

S
sneaxiy 已提交
10820
        return tuple(ret)
S
sneaxiy 已提交
10821 10822


S
sneaxiy 已提交
10823 10824 10825 10826
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
10827

S
sneaxiy 已提交
10828 10829 10830 10831 10832 10833 10834 10835
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
10836
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
10837

S
sneaxiy 已提交
10838 10839
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
10840 10841 10842 10843
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
10844
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
10845
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
10846 10847
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
10848 10849 10850 10851 10852
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
10853
            should create :code:`out` beforehand.
S
sneaxiy 已提交
10854
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
10855
                                       None means no backward. Default None.
S
sneaxiy 已提交
10856
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
10857
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
10858 10859
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
10860
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
10861 10862 10863

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
10864 10865

    Examples:
M
minqiyang 已提交
10866

S
sneaxiy 已提交
10867 10868 10869 10870 10871
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
10872
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
10873 10874
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
10875
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
10876 10877 10878
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
10879
        >>>
S
sneaxiy 已提交
10880 10881 10882 10883 10884
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
10885
        >>>     print(x)
S
sneaxiy 已提交
10886 10887 10888 10889 10890 10891
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
10892
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
10893 10894
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
10895 10896
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
10897 10898 10899 10900 10901 10902 10903 10904
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
10905
    """
S
sneaxiy 已提交
10906
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
10907 10908 10909
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
10910
        x = [x]
S
sneaxiy 已提交
10911 10912
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10913

S
sneaxiy 已提交
10914 10915 10916
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
10917
        out_list = [out]
S
sneaxiy 已提交
10918
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
10919
        out_list = out
S
sneaxiy 已提交
10920 10921 10922
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10923

S
sneaxiy 已提交
10924 10925
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
10926
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
10927 10928

    for each_out in out_list:
S
sneaxiy 已提交
10929 10930
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
10931 10932
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
10933

S
sneaxiy 已提交
10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
10949 10950 10951 10952

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
10953 10954
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
10955 10956 10957
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
10958
        })
S
sneaxiy 已提交
10959
    return out
S
sneaxiy 已提交
10960 10961 10962


# For debug usage
S
sneaxiy 已提交
10963 10964 10965 10966
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
S
SunGaofeng 已提交
10980 10981 10982 10983 10984
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates.
10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
10997 10998 10999 11000
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[490, 28, 28], dtype='float32')
            rois = fluid.layers.data(name='rois', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.psroi_pool(x, rois, 10, 1.0, 7, 7)
11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
11026

M
minqiyang 已提交
11027

M
minqiyang 已提交
11028
def huber_loss(input, label, delta):
11029
    """
M
minqiyang 已提交
11030 11031 11032
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
11033 11034 11035 11036

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
11037
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
11038 11039 11040 11041

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
11042
        huber\_loss = 0.5 * (label - input) * (label - input)
11043 11044 11045 11046 11047 11048 11049


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
11050
        delta (float): The parameter of huber loss, which controls
11051 11052 11053
                       the range of outliers

    Returns:
M
minqiyang 已提交
11054
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
11055 11056 11057 11058

    Examples:
        .. code-block:: python

11059 11060 11061 11062 11063 11064 11065 11066 11067
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            predict = fluid.layers.fc(input=x, size=1)
            label = fluid.layers.data(
                name='label', shape=[1], dtype='float32')
            loss = fluid.layers.huber_loss(
                input=predict, label=label, delta=1.0)

11068
    """
M
minqiyang 已提交
11069
    helper = LayerHelper('huber_loss', **locals())
11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
11081 11082


D
dengkaipeng 已提交
11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114
@templatedoc()
def kldiv_loss(x, target, reduction='mean', name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
        target (Variable): ${target_comment}
        reduction (Variable): ${reduction_comment}
        name (str, default None): The name of this layer.

    Returns:
        kldiv\_loss (Variable): The KL divergence loss.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[4,2,2], dtype='float32')
            target = fluid.layers.data(name='target', shape=[4,2,2], dtype='float32')
            loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean')
    """
    helper = LayerHelper('kldiv_loss', **locals())
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': x,
                'Target': target},
        outputs={'Loss': loss},
        attrs={'reduction': reduction})
    return loss


Z
zhaozhehao 已提交
11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144
@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

T
Tao Luo 已提交
11145 11146 11147
          # 10 for max_node_size of dataset, 5 for vector width
          nodes_vector = fluid.layers.data(name='vectors', shape=[10, 5], dtype='float32')
          # 10 for max_node_size of dataset, 2 for every edge has two nodes
Z
zhaozhehao 已提交
11148
          # edges must be directional
T
Tao Luo 已提交
11149 11150 11151 11152
          edge_set = fluid.layers.data(name='edge_set', shape=[10, 2], dtype='float32')
          # the shape of output will be [10, 6, 1],
          # 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = fluid.layers.tree_conv(nodes_vector, edge_set, 6, 1, 2)
Z
zhaozhehao 已提交
11153
          # After reshape, output tensor could be nodes_vector for next tree convolution
T
Tao Luo 已提交
11154 11155
          out_vector = fluid.layers.reshape(out_vector, shape=[-1, 10, 6])
          out_vector_2 = fluid.layers.tree_conv(out_vector, edge_set, 3, 4, 2)
Z
zhaozhehao 已提交
11156
          # also output tensor could be pooling(the pooling in paper called global pooling)
T
Tao Luo 已提交
11157
          pooled = fluid.layers.reduce_max(out_vector, dim=2) # global pooling
Z
zhaozhehao 已提交
11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
C
ceci3 已提交
11181 11182


C
ceci3 已提交
11183
from .ops import square
C
ceci3 已提交
11184
from .control_flow import equal
C
ceci3 已提交
11185 11186


C
ceci3 已提交
11187 11188 11189
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
11190

C
ceci3 已提交
11191
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
11192 11193

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
11194
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
11195 11196 11197 11198 11199
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
11200 11201
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
11202 11203 11204 11205 11206 11207 11208

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

C
ceci3 已提交
11209 11210 11211 11212 11213 11214 11215 11216
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
11217 11218 11219 11220 11221 11222 11223
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
11224
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
11225 11226
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
11227 11228
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
11229 11230 11231 11232
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
11233 11234 11235
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
11236 11237 11238
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss
11239 11240


R
ruri 已提交
11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269
def pixel_shuffle(x, upscale_factor):
    """

    **Pixel Shuffle Layer**

    This layer rearranges elements in a tensor of shape [N, C, H, W]
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

        .. code-block:: text
        
            Given a 4-D tensor with the shape:
                x.shape = [1, 9, 4, 4]
            Given upscale_factor:
                upscale_factor= 3
            output shape is:
                [1, 1, 12, 12]
    
    Args:

        x(Variable): The input tensor variable.
        upscale_factor(int): factor to increase spatial resolution

    Returns:

11270
        Out(Variable): Reshaped tensor according to the new dimension.
R
ruri 已提交
11271 11272 11273 11274 11275 11276 11277 11278 11279

    Raises:

        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:

        .. code-block:: python

R
ruri 已提交
11280
            input = fluid.layers.data(name="input", shape=[9,4,4])
R
ruri 已提交
11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299
            output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340
def fsp_matrix(x, y):
    """

    **FSP matrix op**

    This op is used to calculate the flow of solution procedure (FSP) matrix of two feature maps.
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

        x (Variable): A feature map with shape [batch_size, x_channel, height, width].
        y (Variable): A feature map with shape [batch_size, y_channel, height, width].
                      The y_channel can be different with the x_channel of Input(X)
                      while the other dimensions must be the same with Input(X)'s.

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
        The x_channel is the channel of x and the y_channel is the channel of y.

    Examples:

        .. code-block:: python

            feature_map_0 = fluid.layers.conv2d(x)
            feature_map_1 = fluid.layers.conv2d(feature_map_0)
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
H
heqiaozhi 已提交
11341 11342 11343 11344


def continuous_value_model(input, cvm, use_cvm=True):
    """
H
fix doc  
heqiaozhi 已提交
11345

H
heqiaozhi 已提交
11346
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
11347

H
fix doc  
heqiaozhi 已提交
11348
    continuous value model(cvm). Now, it only considers show and click value in CTR project.
H
fix doc  
heqiaozhi 已提交
11349 11350 11351
    We assume that input is an embedding vector with cvm_feature, whose shape is [N * D] (D is 2 + embedding dim).
    If use_cvm is True, it will log(cvm_feature), and output shape is [N * D].
    If use_cvm is False, it will remove cvm_feature from input, and output shape is [N * (D - 2)].
H
heqiaozhi 已提交
11352
    
H
fix doc  
heqiaozhi 已提交
11353
    This layer accepts a tensor named input which is ID after embedded(lod level is 1), cvm is a show_click info.
H
fix doc  
heqiaozhi 已提交
11354

H
heqiaozhi 已提交
11355
    Args:
H
fix doc  
heqiaozhi 已提交
11356 11357

        input (Variable): a 2-D LodTensor with shape [N x D], where N is the batch size, D is 2 + the embedding dim. lod level = 1.
H
heqiaozhi 已提交
11358 11359
        cvm (Variable):   a 2-D Tensor with shape [N x 2], where N is the batch size, 2 is show and click.
        use_cvm  (bool):  use cvm or not. if use cvm, the output dim is the same as input
H
fix doc  
heqiaozhi 已提交
11360 11361
                          if don't use cvm, the output dim is input dim - 2(remove show and click)
                          (cvm op is a customized op, which input is a sequence has embedd_with_cvm default, so we need an op named cvm to decided whever use it or not.)
H
fix doc  
heqiaozhi 已提交
11362

H
heqiaozhi 已提交
11363
    Returns:
H
fix doc  
heqiaozhi 已提交
11364 11365 11366

        Variable: A 2-D LodTensor with shape [N x D], if use cvm, D is equal to input dim, if don't use cvm, D is equal to input dim - 2. 

H
heqiaozhi 已提交
11367
    Examples:
H
fix doc  
heqiaozhi 已提交
11368

H
heqiaozhi 已提交
11369
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
11370

H
heqiaozhi 已提交
11371 11372 11373 11374 11375 11376 11377 11378 11379 11380
          input = fluid.layers.data(name="input", shape=[-1, 1], lod_level=1, append_batch_size=False, dtype="int64")#, stop_gradient=False)
          label = fluid.layers.data(name="label", shape=[-1, 1], append_batch_size=False, dtype="int64")
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
11381

H
heqiaozhi 已提交
11382 11383 11384 11385 11386 11387 11388 11389 11390
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='cvm',
        inputs={'X': [input],
                'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm})
H
heqiaozhi 已提交
11391
    return out
Z
zhoukunsheng 已提交
11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426


def where(condition):
    """
    Return an int64 tensor with rank 2, specifying the coordinate of true element in `condition`.

    Output's first dimension is the number of true element, second dimension is rank(number of dimension) of `condition`.
    If there is zero true element, then an empty tensor will be generated.  

    Args:
        condition(Variable): A bool tensor with rank at least 1.

    Returns:
        Variable: The tensor variable storing a 2-D tensor. 

    Examples:
        .. code-block:: python

             # condition is a tensor [True, False, True]
             out = fluid.layers.where(condition) # [[0], [2]]

             # condition is a tensor [[True, False], [False, True]]
             out = fluid.layers.where(condition) # [[0, 0], [1, 1]]

             # condition is a tensor [False, False, False]
             out = fluid.layers.where(condition) # [[]]
    """
    helper = LayerHelper("where", **locals())

    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)

    helper.append_op(
        type='where', inputs={'Condition': condition}, outputs={'Out': [out]})
    return out
Z
zhoukunsheng 已提交
11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457


def sign(x):
    """
    **sign**

    This function returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Variable|numpy.ndarray): The input tensor.

    Returns:
        Variable: The output sign tensor with identical shape and dtype to `x`.

    Examples:
        .. code-block:: python

          # [1, 0, -1]
          data = fluid.layers.sign(np.array([3, 0, -2])) 
    """

    helper = LayerHelper("sign", **locals())

    if not isinstance(x, Variable):
        x = assign(x)

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out